EP3455545B1 - Gasspeicher- und -behandlungsanlage - Google Patents

Gasspeicher- und -behandlungsanlage Download PDF

Info

Publication number
EP3455545B1
EP3455545B1 EP16901827.2A EP16901827A EP3455545B1 EP 3455545 B1 EP3455545 B1 EP 3455545B1 EP 16901827 A EP16901827 A EP 16901827A EP 3455545 B1 EP3455545 B1 EP 3455545B1
Authority
EP
European Patent Office
Prior art keywords
pipe
gas
tank
vapour
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16901827.2A
Other languages
English (en)
French (fr)
Other versions
EP3455545A1 (de
EP3455545A4 (de
Inventor
Bruno Deletre
Nicolas HAQUIN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gaztransport et Technigaz SA
Original Assignee
Gaztransport et Technigaz SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gaztransport et Technigaz SA filed Critical Gaztransport et Technigaz SA
Publication of EP3455545A1 publication Critical patent/EP3455545A1/de
Publication of EP3455545A4 publication Critical patent/EP3455545A4/de
Application granted granted Critical
Publication of EP3455545B1 publication Critical patent/EP3455545B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • F17C9/02Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure with change of state, e.g. vaporisation
    • F17C9/04Recovery of thermal energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/004Details of vessels or of the filling or discharging of vessels for large storage vessels not under pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/052Size large (>1000 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0352Pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0352Pipes
    • F17C2205/0355Insulation thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0352Pipes
    • F17C2205/0358Pipes coaxial
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0352Pipes
    • F17C2205/0367Arrangements in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/035Propane butane, e.g. LPG, GPL
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/04Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by other properties of handled fluid before transfer
    • F17C2223/042Localisation of the removal point
    • F17C2223/043Localisation of the removal point in the gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/01Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
    • F17C2225/0107Single phase
    • F17C2225/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/01Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
    • F17C2225/0146Two-phase
    • F17C2225/0153Liquefied gas, e.g. LPG, GPL
    • F17C2225/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/03Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the pressure level
    • F17C2225/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/03Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the pressure level
    • F17C2225/036Very high pressure, i.e. above 80 bars
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0128Propulsion of the fluid with pumps or compressors
    • F17C2227/0157Compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0128Propulsion of the fluid with pumps or compressors
    • F17C2227/0157Compressors
    • F17C2227/0164Compressors with specified compressor type, e.g. piston or impulsive type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0302Heat exchange with the fluid by heating
    • F17C2227/0306Heat exchange with the fluid by heating using the same fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0302Heat exchange with the fluid by heating
    • F17C2227/0309Heat exchange with the fluid by heating using another fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0302Heat exchange with the fluid by heating
    • F17C2227/0327Heat exchange with the fluid by heating with recovery of heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0337Heat exchange with the fluid by cooling
    • F17C2227/0339Heat exchange with the fluid by cooling using the same fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0337Heat exchange with the fluid by cooling
    • F17C2227/0341Heat exchange with the fluid by cooling using another fluid
    • F17C2227/0348Water cooling
    • F17C2227/0351Water cooling using seawater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0337Heat exchange with the fluid by cooling
    • F17C2227/0358Heat exchange with the fluid by cooling by expansion
    • F17C2227/036"Joule-Thompson" effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/0443Flow or movement of content
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/06Controlling or regulating of parameters as output values
    • F17C2250/0605Parameters
    • F17C2250/0636Flow or movement of content
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/03Dealing with losses
    • F17C2260/031Dealing with losses due to heat transfer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/03Treating the boil-off
    • F17C2265/032Treating the boil-off by recovery
    • F17C2265/033Treating the boil-off by recovery with cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/03Treating the boil-off
    • F17C2265/032Treating the boil-off by recovery
    • F17C2265/033Treating the boil-off by recovery with cooling
    • F17C2265/034Treating the boil-off by recovery with cooling with condensing the gas phase
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/03Treating the boil-off
    • F17C2265/032Treating the boil-off by recovery
    • F17C2265/036Treating the boil-off by recovery with heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/03Treating the boil-off
    • F17C2265/032Treating the boil-off by recovery
    • F17C2265/037Treating the boil-off by recovery with pressurising
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/03Treating the boil-off
    • F17C2265/032Treating the boil-off by recovery
    • F17C2265/038Treating the boil-off by recovery with expanding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/05Regasification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/06Fluid distribution
    • F17C2265/066Fluid distribution for feeding engines for propulsion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/07Generating electrical power as side effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/011Barges
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/011Barges
    • F17C2270/0113Barges floating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0118Offshore
    • F17C2270/0123Terminals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C7/00Methods or apparatus for discharging liquefied, solidified, or compressed gases from pressure vessels, not covered by another subclass
    • F17C7/02Discharging liquefied gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure

Definitions

  • the invention relates to the field of installations for storing and treating a gas, such as liquefied natural gas (LNG).
  • a gas such as liquefied natural gas (LNG).
  • the invention relates more particularly to an installation comprising a tank for storing a gas in a liquid-vapour state of equilibrium and a heat exchanger for transferring cold from a vapour-phase gas stream extracted from the tank to another stream to be cooled.
  • an installation comprising a tank for storing liquefied natural gas and a heat exchanger for transferring cold from a vapour-phase gas stream to a stream to be cooled. More particularly, the installation comprises a collection circuit which collects vapour-phase gas in the gaseous headspace of the tank and then conveys it to the heat exchanger to be heated therein. On leaving the exchanger, the heated gas stream is compressed to high pressures that are compatible with the operating conditions of the gas-consuming members.
  • a first portion of the compressed gas is conveyed to one or more gas-consuming members in order to be burnt therein, while a second portion of the compressed gas is conveyed to the heat exchanger in order to transfer heat to the stream of vapour-phase gas collected in the gaseous headspace of the tank.
  • the second portion of gas thus cooled is then depressurized in an expansion device in which, by means of the Joule-Thomson effect, the temperature of the gas stream decreases further during its expansion so as at least partially to liquefy the gas.
  • a phase separator allows the liquid phase and the vapour phase to be separated before conveying the liquid phase into the tank and sending the gas phase back into the vapour-phase gas collection circuit, upstream of the heat exchanger.
  • Such an installation is particularly advantageous in that compression of the gas stream is used, both to make one portion of the gas stream compatible with the working pressures of the gas-consuming members and to allow subsequent reliquefaction of the other portion of the gas stream.
  • the installation is thereby simplified and the cost of the additional reliquefaction function is limited.
  • the same vapour-phase gas collection circuit is moreover used for transferring vapour-phase gas during the loading and emptying of the tank.
  • natural gas in the gas phase is simultaneously transferred from the tank to the terminal so as to keep the pressure prevailing in the gaseous headspace of the tank substantially constant.
  • natural gas in the gas phase is simultaneously transferred from the terminal to the tank in order to avoid a pressure decrease in the tank.
  • the vapour-phase gas collection circuit is thus dimensioned as a function of the substantial throughputs that are liable to be involved during the loading and emptying of the tank.
  • such dimensioning of the vapour-phase gas collection circuit entails that when the circulation throughput of the vapour-phase gas in the vapour-phase gas collection circuit is markedly lower than the throughput generated during the loading or emptying operations of the tank, for example when it is desired to convey vapour-phase gas from the tank to the heat exchanger during tank operations other than the loading or emptying operations, the flow rates in the vapour-phase gas collection circuit are low.
  • the vapour-phase gas heats up considerably, for example by about 25 to 30°C, between the gaseous headspace of the tank and the inlet of the heat exchanger.
  • KR 2015 0135157 A relates to a liquefied gas processing system and provides background art which is useful for understanding the invention.
  • CN 203 743 842 U relates to a reclaiming system of a kind of atmospheric low-temperature LNG storage tank BOG and provides background art which is useful for understanding the invention.
  • An idea forming the basis of the invention is to propose a gas storage and treatment installation, comprising a gas storage tank and a heat exchanger for transferring cold from a vapour-phase gas stream extracted from the tank to another stream to be cooled and in which the heat exchange in the heat exchanger is capable of being increased and a gas treatment process using such an installation.
  • the invention provides a gas treatment process according to the independent claim 1.
  • the tank utilizing operations may include any operation that utilizes the content of the tank while involving a comparatively lower flow rate of vapour-phase gas than the loading or emptying of the tank, e.g. tank operations for vessel propulsion or energy production.
  • the diameter of the second pipe is dimensioned on lower throughputs and thus has a smaller cross section than that of the single pipe of the prior art, such that, for an equal throughput, the flow rate of the gas in the second pipe is much higher than that of the gas in the pipe of the prior art. Consequently, for an equal throughput, the vapour-phase gas spends less time in the second pipe than in the pipe of the prior art, which makes it possible to limit the heating of the vapour-phase gas and is particularly advantageous when this gas is intended to absorb heat.
  • the invention provides a gas storage and treatment installation in line with independent claim 2.
  • such an installation may comprise one or more of the following characteristics.
  • the admission pipe is connected to the first pipe, on the one hand, and to the second pipe, on the other hand, via a three-way connector that is capable of selectively conveying vapour-phase gas collected via the admission pipe either to the first pipe or to the second pipe.
  • the three-way connector is a three-way valve.
  • the three-way connector is a Y-shaped coupling comprising three arms; the two arms leading, respectively, to the first and second pipes each being equipped with a valve.
  • the three-way connector is placed at a distance from the aperture made in the tank wall that is less than 20 metres, advantageously less than 10 metres and preferably less than 5 metres.
  • the first pipe is heat-insulated.
  • the installation comprises a plurality of leaktight and thermally insulating tanks each comprising an internal space intended to be filled with gas in a liquid-vapour two-phase state of equilibrium; the vapour-phase gas collection circuit comprising, for each of said tanks, an admission pipe passing through an aperture made in a wall of said tank and emerging in the internal space of said tank.
  • each admission pipe is connected to the first pipe, on the one hand, and to the second pipe, on the other hand, via a three-way connector that is capable of selectively conveying vapour-phase gas collected via the admission pipe either to the first pipe or to the second pipe.
  • the second pipe has a gas passage cross section of variable diameter; the diameter of the gas passage cross section of said second pipe increasing in the direction of the first channel of the heat exchanger and increasing in stages at each connection of the second pipe to one of the admission pipes.
  • the first pipe has a gas passage cross section of variable diameter; the diameter of the gas passage cross section of said first pipe increasing in the direction of the manifold and increasing in stages at each connection of the first pipe to one of the admission pipes.
  • the installation also comprises a plurality of second pipes that are each capable of conveying vapour-phase gas from one of the admission pipes to the inlet of the first channel of the heat exchanger; the second pipes each having a gas passage cross section that is smaller than that of the first pipe; each admission pipe being connected to the first pipe, on the one hand, and to one of the second pipes, on the other hand, by a three-way connector that is capable of selectively conveying vapour-phase gas collected via said admission pipe either to the first pipe or to one of the second pipes.
  • the first pipe has a gas passage cross section whose diameter is between 300 and 600 mm.
  • the second pipe has a gas passage cross section whose diameter is between 50 and 200 mm.
  • the first and/or second pipe is formed by a jacketed tube comprising an inner wall and an outer wall that are concentric and separated from each other by an intermediate insulating space.
  • the inner and outer walls of the jacketed tube are made of stainless steel.
  • the intermediate insulating space of the second pipe is under vacuum.
  • Such an insulation makes it possible to achieve excellent insulation performance and is thus particularly pertinent for the second pipe whose heat insulation is particularly critical as regards the amount of heat exchanged in the heat exchanger located downstream.
  • the intermediate insulating space of the first pipe is lined with an insulating material.
  • the insulating material lining the intermediate space of the second pipe is, for example, a polymer foam or glass wool.
  • the installation also comprises:
  • the installation comprises a phase separator connected upstream to the expansion device and downstream, on the one hand, to a return circuit leading to the tank and, on the other hand, to a return pipe connected to the inlet of the first channel of the heat exchanger; the phase separator being arranged to convey the liquid phase of the combustible gas stream to the return circuit and to convey the gas phase of the combustible gas stream to the return pipe.
  • the compressor is a multi-stage compressor.
  • the compressor comprises a plurality of compression stages and a plurality of intermediate heat exchangers, each of the intermediate heat exchangers being placed at the outlet of one of the compression stages.
  • the expansion device is an expansion valve, also known as a Joule-Thomson valve.
  • the gas is a combustible gas.
  • the gas is a gaseous mixture of the LNG or LPG type.
  • the invention provides a vessel comprising an abovementioned installation.
  • the invention also provides a process for loading or unloading such a vessel, in line with the independent method claim 16.
  • the invention also provides a system for transferring a gas according to the claim 15.
  • gas has a generic nature and refers without preference to a gas constituted of a single pure substance or a gaseous mixture constituted of a plurality of components.
  • a gas storage and treatment installation 1 is represented in figure 1 .
  • Such an installation 1 may be installed on land or on a floating structure.
  • the installation may be intended for a liquefaction or regasification barge or for a liquefied natural gas cargo vessel, such as a methane tanker.
  • the installation 1 comprises one or more leaktight and heat-insulating tanks 2.
  • Each tank 2 comprises an internal space intended to be filled with gas.
  • the gas is a combustible gas and may especially be a liquefied natural gas (LNG), i.e. a gaseous mixture predominantly comprising methane and also one or more other hydrocarbons, such as ethane, propane, n-butane, i-butane, n-pentane, i-pentane, neopentane, and nitrogen in small proportion.
  • LNG liquefied natural gas
  • the combustible gas may also be ethane or a liquefied petroleum gas (LPG), i.e. a mixture of hydrocarbons derived from oil refinery essentially comprising propane and butane and nitrogen in small proportion.
  • LPG liquefied petroleum gas
  • the gas is stored in the internal space of each tank 2 in a liquid-vapour two-phase state of equilibrium.
  • the gas is thus present in the vapour phase in the upper part 3 of the tank 2, and in the liquid phase in the lower part 4 of the tank 2.
  • the equilibrium temperature of the liquefied natural gas corresponding to its liquid-vapour two-phase state of equilibrium is about -162°C when it is stored at atmospheric pressure.
  • the installation 1 comprises a vapour-phase gas collection circuit 5.
  • This circuit comprises, for each tank 2, an admission pipe 6 which passes through an aperture made in the upper wall of the tank 2 and thus emerges in the gaseous headspace of the tank 2, i.e. above the maximum height for filling the tank 2 with liquefied gas.
  • the admission pipe 6 thus makes it possible to extract the gas phase of the gas stored in the tank 2.
  • such an admission pipe 6 is described in FR 2 984 454 .
  • Each admission pipe 6 is connected via a three-way connector 7 to a first and a second pipe 8, 9.
  • the three-way connector 7 is a connector that can selectively connect the admission pipe 6 either to the first pipe 8 or to the second pipe 9.
  • the three-way connector 7 is a three-way valve.
  • the three-way connector 7 comprises a Y-shaped coupling, the two arms of which leading, respectively, to the first and second pipes 8, 9 each being equipped with an adjustable valve.
  • the second pipe 9 is connected to a heat exchanger 12.
  • the heat exchanger 12 comprises a first and a second channel 13, 14 each having an inlet 13a, 14a and an outlet 13b, 14b and heat-exchange walls for transferring heat from the second channel 14 to the first channel 13. So as to optimize the heat exchanges, the heat exchanger 12 is a counter-current exchanger.
  • the inlet 13a of the first channel 13 is connected to the second pipe 9 so as to heat the gas stream derived from the natural evaporation collected in the tank 2.
  • the outlet 13b of the first channel 13 is connected to a compressor 15 for compressing the gas stream to pressures that are compatible with the operating of the gas-consuming members 23, 24, 25.
  • the compressor 15 is a multi-stage compressor.
  • the compressor 15 comprises a plurality of compression stages 15a, 15b, 15c, 15d, 15e and intermediate heat exchangers 16a, 16b, 16c, 16d, 16e which are placed at the outlet of each of the compression stages 15a, 15b, 15c, 15d, 15e.
  • the intermediate heat exchangers 16a, 16b, 16c, 16d, 16e are directed toward cooling the compressed gas between two compression stages 15a, 15b, 15c, 15d, 15e.
  • the intermediate heat exchangers 16a, 16b, 16c, 16d, 16e may especially provide an exchange with seawater, thus making it possible to bring the compressed gas stream to a temperature substantially equal to that of seawater.
  • the installation 1 Downstream of the compressor 15, the installation 1 comprises a three-way connector 17 for conveying a first portion of the gas stream to a gas-consuming member 25 and a second portion of the gas stream to the inlet 14a of the second channel 14 of the heat exchanger 12.
  • This three-way connector 17 is driven by a control unit which is arranged to vary the proportions of gas circulating, respectively, to the gas-consuming member 25 and to the inlet 14a of the second channel 14 of the heat exchanger 12 as a function of the gas needs of the gas-consuming member 25.
  • the installation 1 comprises an intermediate three-way connector 18 which is placed between two compression stages 15b, 15c and thus makes it possible to divert part of the gas stream to the gas-consuming members 23, 24 before the outlet of the compressor 15.
  • Such an arrangement makes it possible to divert gas to a gas-consuming member 23, 24 once it has passed through a sufficient number of compression stages 15a, 15b, 15c, 15d, 15e to reach the feed pressure corresponding to said gas-consuming member 23, 24.
  • the installation 1 comprises three different types of gas-consuming members, namely a burner 23, an electrical generator 24 and a motor 25, for example of the ME-GI type, for propelling a vessel.
  • the compressor 15 is dimensioned as a function of the gas-consuming members 23, 24, 25 intended to be fed and especially as a function of their maximum flow rate and of the pressure level at which the combustible gas must be distributed thereto.
  • the compressor 15 is dimensioned such that the gas stream leaving the compressor 17 typically has a pressure of between 250 and 300 bar absolute.
  • the operating rate of the compressor 27 is constant and corresponds substantially to the maximum flow rate of the gas-consuming members.
  • the control unit acts on the three-way connectors 17, 18 so as to adapt the flow rates of the gas streams conveyed to the gas-consuming members as a function of their needs.
  • the second part of the gas stream is cooled in the second channel 14 of the heat exchanger 12 during the transfer of its heat to the vapour-phase gas originating from the vapour-phase gas collection circuit 5.
  • the outlet 14b of the second channel 14 of the heat exchanger 12 is connected to a phase separator 19 via an expansion device 20 through which the gas stream will be depressurized to a pressure substantially equal to the pressure prevailing in the tank 2, for example a pressure close to atmospheric pressure. Consequently, the gas stream undergoes an expansion which gives rise, via the Joule-Thomson effect, to a decrease of its temperature and its liquefaction, at least partially.
  • the expansion device 20 is, for example, an expansion valve.
  • the phase separator 19 occasionally referred to as a mist separator, allows the liquid phase to be separated from the gas phase. Downstream, the phase separator 19 is connected, on the one hand, to a return circuit 21 leading to the tank 2 and, on the other hand, to a return pipe 22 which is connected to the inlet 13a of the first channel 13 of the heat exchanger 12.
  • the phase separator 19 thus conveys the liquid phase of the gas to the tank 2, whereas the vapour phase is returned to the inlet 13a of the first channel 13 of the heat exchanger 12.
  • the first pipe 8 is intended to convey vapour-phase gas to a maritime or harbour terminal during the transfer of gas cargo from or to the tank 2.
  • the gas phase be transferred in the opposite direction to or from the tank 2 so as to keep the pressure in the tank 2 substantially constant.
  • the first pipe 8 is arranged to convey vapour-phase gas to a manifold 11 intended to be connected via an insulated pipeline to the terminal.
  • the installation 1 also comprises a compressor 10 for sucking a gas stream through the first pipe 8 and for returning it to the manifold 11.
  • the installation 1 may be without such a compressor, the gas transfer between the tank 2 and the terminal then being performed by means of a compressor of the terminal.
  • a part of the compression stages 15a, 15b, 15c, 15d, 15e of the multi-stage compressor 15 may be used to suck a gas stream through the first pipe 8 and to convey it to the manifold 11.
  • first pipe 8 is connected upstream of a compressor stage 15 and that a three-way connector is arranged downstream of the compression stage(s) concerned so as to divert the compressed gas stream to the manifold 11 intended to be connected via an insulated pipeline to the loading/emptying terminal.
  • the structure of the vapour-phase gas collection circuit 5 is more particularly observed.
  • the first and second pipes 8, 9 run parallel to each other between the three-way connector 7 and the cargo room 26.
  • a large proportion of the gas-treating equipment, such as the compressors 10, 15, the heat exchanger 13, the expansion device 20 and the phase separator 19, are regrouped in the cargo room 26.
  • the first and second pipes 8, 9 have different gas passage cross sections, the gas passage cross section of the second pipe 9 being smaller than that of the first pipe 8.
  • the dimensions of the gas passage cross sections of the first pipe 8 and of the second pipe 9 are, respectively, determined as a function of the gas flow rates that are liable to pass through them for their respective case of use and so as to limit the heating of the gas.
  • the heating of a gas circulating in a pipe depends on two conflicting phenomena.
  • the heating of the gas circulating in a pipe depends on the heat transfers taking place between the exterior and the interior of the pipe.
  • the intensity of these heat transfers obviously depends on the insulation characteristics of the pipe, but also depends on the residence time of the gas in the pipe, and consequently on the flow rate and the cross section of the tube. Specifically, for an equal flow rate, the gas spends longer in a pipe of larger cross section and consequently becomes heated up more.
  • the heating of the gas circulating in a pipe also depends on the phenomenon of viscous dissipation which leads to increasing the heating of the fluid when, for the same flow rate, the cross section of the pipe decreases.
  • an optimum dimension of gas passage cross section exists, which, for a given flow rate, allows the heating of the gas to be limited.
  • the cross section of the first pipe 8 is dimensioned as a function of the rates of vapour phase gas transfer, between the tank 2 and a loading/emptying terminal, which are liable to be used during loading or emptying of the tank.
  • the vapour-phase gas transfer rates that are liable to be generated through the first pipe 8 are of the order of 12 000 to 14 000 m 3 /h.
  • the cross section of the first pipe 8 typically has a diameter of between 300 and 600 mm.
  • the cross section of the second pipe 9 is, for its part, dimensioned as a function of the average flow rates that are liable to be used for supplying the gas-consuming member(s) 23, 24, 25 of the installation 1.
  • the average vapour-phase gas transfer rate that is liable to be generated through the second pipe 9 is of the order of 4700 m 3 /h.
  • the cross section of the second pipe 9 typically has a diameter of between 50 and 200 mm.
  • Curves a and b of figure 8 respectively represents the heating of the gas circulating in the first pipe 8 and in the second pipe 9 as a function of the flow rate.
  • Figure 8 shows that heating of the gas is lower in the second pipe 9 than in the first pipe 8 for a flow rate lower than 8000 Kg/h while heating of the gas is lower in the first pipe 8 than in the second pipe 9 for a flow rate greater than 8000 Kg/h.
  • the heating of the gas circulating in the second pipe 9 is slightly lower than 3°C while the heating of the gas circulating in the second pipe 9 is approximately of 15°C.
  • the heating of the gas circulating in the second pipe 9 is slightly lower than 6°C while the heating of the gas circulating in the second pipe 9 is approximately of 30°C.
  • the three-way connector 7 is placed close to the aperture of the tank 2 through which passes the admission pipe 7.
  • the three-way connector 7 is placed at a distance from the aperture made in the tank wall of less than 20 metres, advantageously less than 10 metres and preferably less than 5 metres.
  • first pipe 8 and the second pipe 9 are each connected to the compressor 10 and to the heat exchanger 12 via a four-way connector 27.
  • the four-way connector 27 is capable of selectively conveying vapour-phase gas circulating in the first pipe 8 or in the second pipe 9; either to the compressor 10 in order to be returned to the manifold intended to be connected to a gas storage terminal; or to the heat exchanger 11 in order partly to be conveyed to a gas-consuming member and partly returned to the second channel of the heat exchanger 11.
  • the four-way connector 27 is constituted by a three-way valve 28 which is connected to a Y-shaped coupling, the two arms of which leading, respectively, to the heat exchanger 12 and to the compressor 10 are equipped with a valve 29, 30.
  • vapour-phase gas from the first pipe 8 to the heat exchanger 12.
  • Such a gas circulation may especially be useful in the following specific cases of use:
  • the vapour-phase gas extracted from the tank 2 is conveyed to the heat exchanger 12 either through the first pipe 8 or to the second pipe in function of the need of the gas consuming members 23, 24, 25.
  • the set flow rate of the gas consuming members 23, 24, 25 is compared to a determined threshold and the vapour-phase gas is conveyed through the first pipe when the set flow-rate is greater or equal than the determined threshold while the vapour-phase gas is conveyed through the second pipe when the set flow-rate is lower than to the determined threshold.
  • the set flow-rate approximately corresponds to the flow rate for which the energy increase is equal for a gas circulation in the first pipe 8 and in the second pipe 9.
  • the determined threshold is between 6600 and 10000 kg/h, for example about 8000 kg/h.
  • the installation 1 may comprise a plurality of tanks 2, three in figure 4 .
  • each tank 2 comprises an admission pipe 6 which passes through an aperture made in the upper wall of the tank 2 and emerges in the gaseous headspace of the tank 2.
  • Each of the admission pipes 6 is connected via a three-way connector 7, on the one hand, to the first pipe 8 and, on the other hand, to the second pipe 9.
  • the gaseous headspaces of the tanks 6 are connected in series to the first pipe 8, on the one hand, and to the second pipe 9, on the other hand.
  • each of the first and second pipes 8, 9 is formed by a jacketed tube comprising two cylindrical and concentric walls 8a, 8b; 9a, 9b, which are separated from each other by an intermediate insulating space 8c, 9c.
  • the two walls 8a, 8b; 9a, 9b are made, for example, of stainless steel.
  • the intermediate insulating space 8c of the first pipe 8 is lined with an insulating material, for instance polymer foam or glass wool.
  • the intermediate insulating space 9c of the second pipe 9 is placed under vacuum, which contributes towards obtaining excellent heat-insulating characteristics.
  • the first and second pipes 8, 9 advantageously have compensation devices giving them flexibility along the longitudinal direction so as to allow their contraction and expansion depending on whether or not a stream of vapour-phase gas is passing therethrough.
  • the first pipe 8 has compensation loops 31, i.e. a U-shaped form using 90° bends.
  • compensation loops 31 i.e. a U-shaped form using 90° bends.
  • the second pipe 9 is, on the other hand, straight over virtually its entire length.
  • the inner wall 9b of the second pipe 9 regularly has gusset zones 32.
  • the diameter of the gas passage cross section of each of the first and second pipes 8, 9 is variable, this diameter increasing on approaching the cargo room 26 and increasing in stages at each connection of the pipe to one of the admission pipes 6.
  • the cross sections of the first and second pipes 8, 9 each have a first diameter d8 1 , d9 1 in a first portion running between the tank 2 that is furthest from the cargo room 26 and a second adjacent tank, a second diameter d8 2 , d9 2 in a second portion between the second tank and a third adjacent tank and a third diameter d8 3 , d9 3 in a third portion between the third tank and the cargo room 26; the abovementioned diameters corresponding to the following inequality: d 9 1 ⁇ d 9 2 ⁇ d 9 3 ⁇ d 8 1 ⁇ d 8 2 ⁇ d 8 3
  • Such an arrangement makes it possible to take into account the increase in gas flow in the first and second pipes 8, 9 as and when they are connected to other admission pipes 6 so as to dimension the cross section of the pipes 8, 9 as closely as possible. This also contributes towards limiting the heating of the gas in the first and second pipes 8, 9.
  • FIG 6 shows an installation 1 according to an alternative embodiment.
  • This embodiment differs from the embodiments of figures 4 and 5 in that the installation 1 comprises a second pipe 9, 9', 9" for each of the tanks 2.
  • the second pipes 9, 9', 9" are each capable of conveying vapour-phase gas from one of the admission pipes 6 to the inlet 13a of the first channel 13 of the heat exchanger 12.
  • each of the admission pipes 6 is connected via a three-way connector 7 to the first pipe 8 and to each of the second pipes 9, 9', 9".
  • Such an arrangement is advantageous in that, to convey gas between the tanks 2 and the heat exchanger 12, the gas circulates in pipes 9, 9', 9" whose dimensions are optimized as a function of the gas flow rate liable to pass therethrough, whether the vapour-phase gas stream to be conveyed to the heat exchanger 12 originates from only one of the tanks 2 or from all of the tanks 2.
  • Figure 7 shows a transfer system 40 for loading/unloading combustible gas such as liquefied natural gas and forming the interface between a vessel 41 and a floating or land-based installation, not shown.
  • the vessel 41 is equipped with an installation for feeding gas-consuming members with combustible gas and for liquefying said combustible gas as described above.
  • the fluid-tight and insulated tank not shown, is of generally prismatic form and is mounted in the double hull of the vessel.
  • the transfer system 40 forming the interface between the vessel 41 and the floating or land-based installation comprises at least one platform 43 bearing a storage/handling gantry 44 and a main platform 45 to take all the equipment that allows connecting the immersed cryogenic lines 42 to flexible transfer pipes 46.
  • Each flexible transfer pipe 46 is intended to be connected to a vessel's manifold 47 through a connection module 48.
  • the vessel's manifolds 47 are connected to the tank by means of loading/unloading pipelines arranged on the upper deck of the vessel 41 in order to transfer a cargo of liquefied gas from or to the tank.
  • gantry 44 The chief function of gantry 44 is to enable handling and storage of transfer parts, namely each connection module 48 and the mobile ends of the flexible transfer pipe 46, by means of a crane and winches.
  • the transfer system comprises three parallel flexible transfer pipes 46, two of which make it possible to transfer the liquefied natural gas between the floating or land-based installation and the vessel, whereas the third transfer pipe makes it possible to transfer gas in order to balance the pressures in the gaseous headspaces of the tank of the vessel.
  • on-board pumps in the vessel 41 are used, and/or pumps installed in the land-based installation, and/or pumps fitted to transfer system 40.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Claims (16)

  1. Verfahren zur Behandlung von Gasa, umfassend :
    - Bereitstellen eines dichten und wärmeisolierenden Tanks (2) mit einem Innenraum, der mit Gas in einem Flüssigkeits-Dampf-Zweiphasen-Gleichgewichtszustand gefüllt ist;
    - Bereitstellen eines Wärmetauschers (12), der dazu bestimmt ist, Kälte von einem im Tank (2) gesammelten Dampfphasengasstrom auf ein zu kühlendes Fluid zu übertragen; wobei der Wärmetauscher (12) einen ersten Kanal (13) und einen zweiten Kanal (14) umfasst, wobei jeder von diesen einen Einlass (13a, 14a) und einen Auslass (13b, 14b) und Wärmeaustauschwände zur Übertragung von Wärme vom zweiten Kanal (14) zum ersten Kanal (13) aufweist; und
    - Entnehmen von Gas in der Dampfphase aus dem Tank (2) über eine Einlassleitung (6), welche durch eine Öffnung in einer Wand des Tanks (2) strömt und während eines Ladevorgangs des Tanks (2) in den Innenraum des Tanks austritt und durch eine erste Leitung (8) zu einem Verteiler (11, 47) befördert wird, der mit einem Gasspeicherterminal verbunden ist; und
    - Entnehmen von Gas in der Dampfphase aus dem Tank (2) über die Einlassleitung (6) während eines Tanknutzungsvorgangs und Fördern desselben zum Wärmetauscher (12) durch eine zweite Leitung (9), die wärmeisoliert ist und einen Gasdurchgangsquerschnitt aufweist, der kleiner ist als der der ersten Leitung (8), wobei das Gasbehandlungsverfahren ferner umfasst:
    - Bereitstellen eines Kompressors (15), der stromaufwärts mit dem Auslass (13b) des ersten Kanals (13) des Wärmetauschers (12) verbunden ist, um den in dem Wärmetauscher (12) erhitzten Gasstrom zu komprimieren, und stromabwärts mit einem Drei-Wege-Verbinder (17, 18) verbunden ist, der dazu ausgelegt ist, einen ersten Teil des Gasstroms zu einem Gasverbrauchselement (23, 24, 25) und einen zweiten Teil des Gasstroms zum Einlass (14a) des zweiten Kanals (14) des Wärmetauschers (12) zu leiten, um den zweiten Teil des Gasstroms zu kühlen; und
    - Bereitstellen einer Expansionsvorrichtung (20), die stromaufwärts mit dem Auslass (14b) des zweiten Kanals (14) des Wärmetauschers (12) und stromabwärts mit einem zum Tank (2) führenden Rückführungskreislauf (21) verbunden ist; wobei die Expansionsvorrichtung (20) derart angeordnet ist, dass sie den zweiten Teil des aus dem zweiten Kanal (14) des Wärmetauschers (12) stammenden Gasstroms druckentlastet, um ihn zu verflüssigen;
    - Bestimmen einer eingestellten Durchflussmenge des Gasverbrauchselements (23, 24, 25) während des Tanknutzungsvorgangs;
    - Vergleich der eingestellten Durchflussmenge mit einem bestimmten Schwellenwert;
    - Entnehmen von Gas in der Dampfphase aus dem Tank (2) über die Einlassleitung (6) und Fördern des Gases durch die erste Leitung (8) zum Wärmetauscher (12), wenn die eingestellte Durchflussmenge größer oder gleich dem festgelegten Schwellenwert ist; und
    - Entnehmen von Gas in der Dampfphase aus dem Tank (2) über die Einlassleitung (6) und Weiterleitung durch die zweite Leitung (9) zum Wärmetauscher (12), wenn die eingestellte Durchflussmenge unter dem festgelegten Schwellenwert liegt.
  2. Gasspeicher- und Behandlungsanlage (1), bestehend aus:
    - einem dichten und wärmeisolierenden Tank (2) mit einem Innenraum, der dazu bestimmt ist, mit Gas in einem Flüssigkeits-Dampf-Zweiphasen-Gleichgewichtszustand gefüllt zu werden;
    - einen Wärmetauscher (12), der dazu bestimmt ist, Kälte von einem in dem Tank (2) gesammelten Dampfphasen-Gasstrom auf ein zu kühlendes Fluid zu übertragen; wobei der Wärmetauscher (12) einen ersten Kanal (13) und einen zweiten Kanal (14) umfasst, die jeweils einen Einlass (13a, 14a) und einen Auslass (13b, 14b) sowie Wärmetauscherwände zum Übertragen von Wärme vom zweiten Kanal (14) zum ersten Kanal (13) haben; und
    - einen Dampfphasen-Gassammelkreislauf (5), umfassend:
    - eine Einlassleitung (6), die derart beschaffen ist, dass diese Gas in der Dampfphase im Tank (2) auffängt, wobei die Einlassleitung (6) durch eine in einer Wand des Tanks (2) angebrachte Öffnung führt und in den Innenraum des Tanks mündet;
    - eine erste Leitung (8), die derart beschaffen ist, dass sie Gas in der Dampfphase von der Einlassleitung (6) zu einem Verteiler (11) befördert, der dazu bestimmt ist, während der Beladung des Tanks (2) an ein Gasspeicherterminal angeschlossen zu werden;
    - eine zweite Leitung (9), die derart angeordnet ist, dass sie Gas in der Dampfphase von der Einlassleitung (6) zum Einlass (13) des ersten Kanals (13) des Wärmetauschers (12) befördert; wobei die zweite Leitung (9) wärmeisoliert ist und einen Gasdurchgangsquerschnitt aufweist, der kleiner ist als der der ersten Leitung (8);
    - einen Kompressor (10), der mit der ersten Leitung (8) verbunden und derart angeordnet ist, dass dieser Gas in der Dampfphase durch die erste Leitung (8) ansaugt und es an den Verteiler (11) liefert;
    - einen Laderaum (26), in dem der Wärmetauscher (12) und der Kompressor (10) in dem Laderaum (26) untergebracht sind,
    - wobei die erste Leitung (8) und die zweite Leitung (9) parallel zueinander zwischen der Einlassleitung (6) und dem Laderaum (26) verlaufen, wobei die erste Leitung (8) und die zweite Leitung (9) jeweils mit dem Kompressor (10) und dem Wärmetauscher (12) über einen Vier-Wege-Verbinder (27) verbunden sind, der in der Lage ist, das in der ersten Leitung (8) oder in der zweiten Leitung (9) zirkulierende Dampfphasengas wahlweise zum Kompressor (10) oder zum Wärmetauscher (12) zu leiten.
  3. Anlage gemäß Anspruch 2, bei der die Einlassleitung (6) mit der ersten Leitung (8) einerseits und mit der zweiten Leitung (9) andererseits über einen Drei-Wege-Verbinder (7) verbunden ist, der in der Lage ist, das über die Einlassleitung (6) gesammelte Gas der Dampfphase wahlweise entweder zur ersten Leitung (8) oder zur zweiten Leitung (9) zu leiten.
  4. Anlage gemäß Anspruch 3, bei der der Drei-Wege-Verbinder (7) in einem Abstand von weniger als 20 m oder weniger als 10 m oder weniger als 5 m von der in der Tankwand angebrachten Öffnung angeordnet ist.
  5. Anlage gemäß einem der Ansprüche 2 bis 4 umfassend mehrere dichte und wärmeisolierende Tanks (2), die jeweils einen Innenraum umfassen, der dazu bestimmt ist, mit Gas in einem Flüssigkeits-Dampf-Zweiphasen-Gleichgewichtszustand gefüllt zu werden; wobei der Dampfphasen-Gassammelkreislauf (5) für jeden der Tanks (2) eine Einlassleitung (6) aufweist, die durch eine in einer Wand des Tanks (2) ausgebildete Öffnung verläuft und in den Innenraum des Tanks (2) mündet.
  6. Anlage gemäß Anspruch 5, bei der jede Einlassleitung (6) mit der ersten Leitung (8) einerseits und mit der zweiten Leitung (9) andererseits über einen Drei-Wege-Verbinder (7) verbunden ist, der in der Lage ist, das über die EInlassleitung (6) gesammelte Dampfphasengas selektiv entweder zur ersten Leitung (8) oder zur zweiten Leitung (9) zu leiten.
  7. Anlage gemäß Anspruch 6, bei der die zweite Leitung (9) einen Gasdurchtrittsquerschnitt mit variablem Durchmesser aufweist, wobei der Durchmesser des Gasdurchtrittsquerschnitts der zweiten Leitung (9) in Richtung des ersten Kanals (13) des Wärmetauschers (12) zunimmt und bei jeder Verbindung der zweiten Leitung (9) mit einer der Einlassleitungen (6) stufenweise zunimmt.
  8. Anlage gemäß Anspruch 6, weiterhin umfassend eine Vielzahl von Zweitleitungen (9, 9', 9"), die jeweils in der Lage sind, Gas in der Dampfphase von einer der Einlassleitungen (6) zum Einlass (13a) des ersten Kanals (13) des Wärmetauschers (12) zu leiten; wobei die zweiten Leitungen (9, 9', 9") jeweils einen Gasdurchgangsquerschnitt aufweisen, der kleiner ist als der der ersten Leitung (S); wobei jede Einlassleitung (6) einerseits mit der ersten Leitung (8) und andererseits mit einem der zweiten Leitungen (9, 9', 9") über einen Drei-Wege-Verbinder (7) verbunden ist, der in der Lage ist, das über die Einlassleitung (6) gesammelte Gas der Dampfphase selektiv entweder zur ersten Leitung (8) oder zu einer der zweiten Leitungen (9) zu leiten.
  9. Anlage gemäß einem der Ansprüche 2 bis 4, bei der die erste Leitung (8) einen Gasdurchlassquerschnitt aufweist, dessen Durchmesser zwischen 300 und 600 mm liegt, und bei der die zweite Leitung (9) einen Gasdurchlassquerschnitt aufweist, dessen Durchmesser zwischen 50 und 200 mm liegt.
  10. Anlage gemäß einem der Ansprüche 2 bis 4, bei der die erste und/oder zweite Leitung (8, 9) durch ein ummanteltes Rohr gebildet wird, das eine Innenwand (8b, 9b) und eine Außenwand (8a, 9a) umfasst, die konzentrisch sind und durch einen isolierenden Zwischenraum (8c, 9c) voneinander getrennt sind.
  11. Anlage gemäß Anspruch 10, bei der der Isolierzwischenraum (9c) der zweiten Leitung unter Vakuum steht.
  12. Anlage gemäß Anspruch 10 oder 11, bei der der Isolierzwischenraum (8c) der ersten Leitung (8) mit einem Isoliermaterial ausgekleidet ist.
  13. Anlage gemäß einem der Ansprüche 2 bis 4, weiterhin umfassend:
    - einen Kompressor (15), der stromaufwärts mit dem Auslass (13b) des ersten Kanals (13) des Wärmetauschers (12) verbunden ist, um den in dem Wärmetauscher (12) erhitzten Gasstrom zu komprimieren, und der stromabwärts mit einem Drei-Wege-Verbinder (17, 18) verbunden, der in der Lage ist, einen ersten Teil des Gasstroms zu einem Gasverbrauchselement (23, 24, 25) zu befördern und einen zweiten Teil des Gasstroms zum Einlass (14a) des zweiten Kanals (14) des Wärmetauschers (12) zu befördern, um den zweiten Teil des Gasstroms zu kühlen; und
    - eine Expansionsvorrichtung (20), die stromaufwärts mit dem Auslass (14b) des zweiten Kanals (14) des Wärmetauschers (12) und stromabwärts mit einem zum Tank (2) führenden Rückführungskreislauf (21) verbunden ist; wobei die Expansionsvorrichtung (20) derart angeordnet ist, dass sie den zweiten Teil des aus dem zweiten Kanal (14) des Wärmetauschers (12) stammenden Gasstroms drucklos macht, um ihn zu verflüssigen.
  14. Behälter (40) zum Transportieren eines Gases, wobei der Behälter (40) eine Anlage (1) gemäß Anspruch 2 umfasst.
  15. Gastransfersystem, wobei das System einen Behälter (40) gemäß Anspruch 14, kryogene Transferleitungen (42, 46), die derart angeordnet sind, dass sie den Tank der im Rumpf des Behälters installierten Anlage mit einem schwimmenden oder landgestützten Gasspeicherterminal verbinden, und eine Pumpe zum Befördern eines Flüssigphasengasstroms durch die kryogenen Transferleitungen vom oder zum schwimmenden oder landgestützten Gasspeicherterminal zum oder vom Tank (2) des Behälters umfasst; wobei das Transfersystem weiterhin eine Gasübertragungsleitung für die Dampfphase umfasst, die derart angeordnet ist, dass sie den Verteiler (11, 47) mit dem Gasspeicherterminal verbindet, um den Transfer von Gas in der Dampfphase zwischen der Gasspeicher- und Behandlungsanlage (1) und dem Gasspeicherterminal zu ermöglichen.
  16. Verfahren zum Beladen oder Entleeren eines Behälters (40) gemäß Anspruch 15, bei dem ein Gas durch kryogene Transferleitungen (42, 46) von oder zu einem schwimmenden oder landgestützten Gasspeicherterminal zu oder von dem Tank der Gasspeicher- und Behandlungsanlage des Behälters geleitet wird.
EP16901827.2A 2016-05-11 2016-05-11 Gasspeicher- und -behandlungsanlage Active EP3455545B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2016/031763 WO2017196310A1 (en) 2016-05-11 2016-05-11 Gas storage and treatment installation

Publications (3)

Publication Number Publication Date
EP3455545A1 EP3455545A1 (de) 2019-03-20
EP3455545A4 EP3455545A4 (de) 2020-01-22
EP3455545B1 true EP3455545B1 (de) 2022-11-09

Family

ID=60267495

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16901827.2A Active EP3455545B1 (de) 2016-05-11 2016-05-11 Gasspeicher- und -behandlungsanlage

Country Status (6)

Country Link
EP (1) EP3455545B1 (de)
JP (1) JP6776370B2 (de)
KR (1) KR101953507B1 (de)
CN (1) CN109563967B (de)
ES (1) ES2937024T3 (de)
WO (1) WO2017196310A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6595143B1 (ja) * 2019-07-03 2019-10-23 株式会社神戸製鋼所 圧縮機ユニット及び圧縮機ユニットの制御方法
FR3100055B1 (fr) * 2019-08-19 2021-07-23 Gaztransport Et Technigaz Système de traitement de gaz contenu dans une cuve de stockage et/ou de transport de gaz à l’état liquide et à l’état gazeux équipant un navire

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002295799A (ja) * 2001-04-03 2002-10-09 Kobe Steel Ltd 液化天然ガス及び窒素の処理方法及び処理システム
US6692192B2 (en) * 2002-05-03 2004-02-17 Single Buoy Moorings Inc. Spread moored midship hydrocarbon loading and offloading system
FR2852590B1 (fr) * 2003-03-20 2005-06-17 Snecma Moteurs Alimentation en energie d'un terminal gazier a partir d'un navire transportant du gaz liquefie
AU2004229037B2 (en) * 2003-11-20 2010-05-20 Itp Pipeline for the transportation of liquefied natural gas
JP2005155668A (ja) * 2003-11-20 2005-06-16 Jgc Corp 低温液体出荷配管ライン
EP2716542A4 (de) * 2011-05-31 2016-05-04 Daewoo Shipbuilding & Marine Kalte wärmerückgewinnungsvorrichtung mit einem flüssigerdgasbrennstoff und flüssiggasträger damit
KR101386543B1 (ko) * 2012-10-24 2014-04-18 대우조선해양 주식회사 선박의 증발가스 처리 시스템
SG11201504439YA (en) * 2012-12-11 2015-07-30 Daewoo Shipbuilding & Marine Liquefied gas processing system for ship
KR101640768B1 (ko) * 2013-06-26 2016-07-29 대우조선해양 주식회사 선박의 제조방법
CN203743842U (zh) 2014-03-27 2014-07-30 山西易高煤层气有限公司 一种常压低温lng储罐bog的回收系统
KR101635061B1 (ko) * 2014-04-18 2016-06-30 삼성중공업 주식회사 액화천연가스 하역 시스템
WO2015178743A1 (ko) * 2014-05-23 2015-11-26 현대중공업 주식회사 액화가스 처리 시스템
KR101857325B1 (ko) * 2014-05-23 2018-05-11 현대중공업 주식회사 액화가스 처리 시스템
WO2017078244A1 (ko) * 2015-11-05 2017-05-11 현대중공업 주식회사 가스 처리 시스템 및 이를 포함하는 선박

Also Published As

Publication number Publication date
CN109563967A (zh) 2019-04-02
EP3455545A1 (de) 2019-03-20
KR101953507B1 (ko) 2019-02-28
KR20180029975A (ko) 2018-03-21
JP2019516917A (ja) 2019-06-20
WO2017196310A1 (en) 2017-11-16
CN109563967B (zh) 2021-04-02
EP3455545A4 (de) 2020-01-22
JP6776370B2 (ja) 2020-10-28
ES2937024T3 (es) 2023-03-23

Similar Documents

Publication Publication Date Title
EP1064506B1 (de) Wiederverdampfung verflüssigten erdgases an bord eines transportschiffes
EP1459006B1 (de) Verfahren zum Heizen und Lagern von Kaltgasen
CN107850260B (zh) 操作连接至用于储存液化气的罐的热绝缘屏障的泵送设备的设备
EP1912863B1 (de) Einfache systeme zum transfer kryogener fluide
CN107110427B (zh) 用于冷却液化气的装置和方法
KR102462361B1 (ko) 액화 가스 냉각 방법
EP1266170B1 (de) System und verfahren zum transfer kryogener flüssigkeiten
EP2419322A2 (de) Dockseitiger schiff-zu-schiff-transfer von flüssigerdgas
US11125391B2 (en) Process and method for transporting liquid hydrocarbon and CO2 for producing hydrogen with CO2 capture
AU2006241566B2 (en) Large distance offshore LNG export terminal with boil-off vapour collection and utilization capacities
WO2015048420A1 (en) Apparatus, system and method for the capture, utilization and sendout of latent heat in boil off gas onboard a cryogenic storage vessel
EP3455545B1 (de) Gasspeicher- und -behandlungsanlage
US3256705A (en) Apparatus for and method of gas transportation
CN115052809A (zh) 船舶液化气再气化系统及方法
KR101826900B1 (ko) 화물 저장탱크 및 그의 배관 시스템
WO2014086413A1 (en) Integrated and improved system for sea transportation of compressed natural gas in vessels, including multiple treatment steps for lowering the temperature of the combined cooling and chilling type
KR101699326B1 (ko) 선박용 증발가스 처리 시스템
WO2007008851A2 (en) Fluid vaporizer
KR101788752B1 (ko) 선박용 증발가스 재액화 장치 및 방법
KR20200044508A (ko) 액화가스 재기화 장치
KR20240032571A (ko) 이산화탄소 액화시스템 및 이를 포함하는 선박

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20181206

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20191220

RIC1 Information provided on ipc code assigned before grant

Ipc: F17C 9/04 20060101ALI20191216BHEP

Ipc: F17C 13/00 20060101ALI20191216BHEP

Ipc: F17C 9/00 20060101AFI20191216BHEP

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: GAZTRANSPORT ET TECHNIGAZ

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220609

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1530579

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602016076292

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20221109

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2937024

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20230323

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1530579

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230309

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230309

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230210

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20230426

Year of fee payment: 8

Ref country code: FR

Payment date: 20230523

Year of fee payment: 8

Ref country code: ES

Payment date: 20230607

Year of fee payment: 8

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602016076292

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20230515

Year of fee payment: 8

26N No opposition filed

Effective date: 20230810

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602016076292

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230511

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230531

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230511

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231201

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230511

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240424

Year of fee payment: 9