EP3450827B1 - Coordinated effects system for an automated luminaire - Google Patents
Coordinated effects system for an automated luminaire Download PDFInfo
- Publication number
- EP3450827B1 EP3450827B1 EP18192006.7A EP18192006A EP3450827B1 EP 3450827 B1 EP3450827 B1 EP 3450827B1 EP 18192006 A EP18192006 A EP 18192006A EP 3450827 B1 EP3450827 B1 EP 3450827B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- prisms
- prism
- prism system
- light beam
- rotate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000003138 coordinated effect Effects 0.000 title claims description 55
- 230000003287 optical effect Effects 0.000 claims description 33
- 230000000694 effects Effects 0.000 claims description 30
- 238000004891 communication Methods 0.000 claims description 6
- 230000009021 linear effect Effects 0.000 description 7
- 240000005528 Arctium lappa Species 0.000 description 6
- 230000000875 corresponding effect Effects 0.000 description 6
- 230000007246 mechanism Effects 0.000 description 5
- 230000005355 Hall effect Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 230000003068 static effect Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009432 framing Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000004075 alteration Effects 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V5/00—Refractors for light sources
- F21V5/02—Refractors for light sources of prismatic shape
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V5/00—Refractors for light sources
- F21V5/008—Combination of two or more successive refractors along an optical axis
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S10/00—Lighting devices or systems producing a varying lighting effect
- F21S10/007—Lighting devices or systems producing a varying lighting effect using rotating transparent or colored disks, e.g. gobo wheels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V14/00—Controlling the distribution of the light emitted by adjustment of elements
- F21V14/06—Controlling the distribution of the light emitted by adjustment of elements by movement of refractors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21W—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
- F21W2131/00—Use or application of lighting devices or systems not provided for in codes F21W2102/00-F21W2121/00
- F21W2131/40—Lighting for industrial, commercial, recreational or military use
- F21W2131/406—Lighting for industrial, commercial, recreational or military use for theatres, stages or film studios
Definitions
- the disclosure generally relates to an effects system in an automated luminaire, and more specifically to a system for coordinating multiple effects within an automated luminaire.
- Luminaires with automated and remotely controllable functionality are well known in the entertainment and architectural lighting markets. Such products are commonly used in theatres, television studios, concerts, theme parks, night clubs, and other venues. A typical product will commonly provide control over the pan and tilt functions of the luminaire allowing the operator to control the direction the luminaire is pointing and thus the position of the light beam on the stage or in the studio. Typically, this position control is done via control of the luminaire's position in two orthogonal rotational axes usually referred to as pan and tilt. Many products provide control over other parameters such as the intensity, color, focus, beam size, beam shape, and beam pattern.
- Figure 1 illustrates a typical multiparameter automated luminaire system 10.
- These systems typically include a plurality of multiparameter automated luminaires 12 which typically each contain on-board a light source (not shown), light modulation devices, electric motors coupled to mechanical drives systems, and control electronics (not shown).
- each luminaire 12 In addition to being connected to mains power either directly or through a power distribution system (not shown), each luminaire 12 is connected is series or in parallel via data link 14 to one or more control desks 15. An operator typically controls the automated luminaire system 10 through the control desk 15.
- a prism An optical effect that is commonly used in prior art automated luminaires is often referred to as a prism.
- This is typically a glass or plastic device placed at a point in the optical train such that it converts a single image produced by the beam color, size, shape, and pattern optical systems into multiple beams for display.
- a linear prism may convert a single beam into a linear array of identical beams.
- Figures 2 and 3 A diagrammatic example of the effects produced by a prior art prism optical system is shown in Figures 2 and 3 .
- a single image 20 produced by the beam color, size, shape, and pattern optical systems passes through a prism 21a, resulting in multiple copies of the image 20 as output images 22a.
- the prism 21a may be rotated as indicated by the arc 23, causing a corresponding rotation in the array of output images as indicated by the arc 24.
- Figure 3 shows the same optical system and prism 21a, but with the prism 21a rotated to a new position, resulting in a corresponding rotation of the output images 22b.
- Image 20 is here shown for clarity as a simple circular image, however the image 20 may be any image, complex or simple, as produced by the automated luminaire, in particular it may have a shape defined by patterns or gobos in the optical train.
- the prism may be different shapes and may be capable of being inserted or removed from the light beam automatically. It may further be possible to select different prisms producing different effects for insertion in the beam.
- the prior art systems are only capable of introducing a single prism at one time.
- a coordinated effects system in a first embodiment, includes a first prism system and a second prism system.
- the first prism system includes a first plurality of prisms, and is configured to position a selected one of its prisms in a light beam passing through the first prism system or to remove all of its prisms from the light beam passing through the first prism system.
- the first prism system is also configured to rotate at least one of its prisms.
- the second prism system includes a second plurality of prisms, and is configured to position a selected one of its prisms in the light beam passing through the first prism system or to remove all of its prisms from the light beam passing through the first prism system.
- the second prism system is also configured to rotate at least one of its prisms.
- an automated luminaire in a second embodiment, includes a light source, an optical device coupled to the light source, a first prism system optically coupled to the optical device, a second prism system optically coupled to the first prism system, and a control system.
- the light source is configured to emit a light beam.
- the optical device is configured to produce a first image in the light beam.
- the first prism system includes a first plurality of prisms and is configured to position a selected one of its prisms in the light beam or to remove all of its prisms from the light beam.
- the first prism system is also configured to rotate the selected one of its prisms to produce a modified image from the image.
- the second prism system includes a second plurality of prisms and is configured to position a selected one of its prisms in the light beam or to remove all of its prisms from the light beam.
- the second prism system is also configured to rotate the selected one of its prisms to produce an output image from the modified image.
- the control system is configured to control the first prism system and the second prism system.
- the automated luminaire includes a light source, an optical device, a first prism system, a second prism system, and a control system.
- the light source is configured to emit a light beam.
- the optical device is configured to produce a first image in the light beam.
- the first and second prism systems include corresponding first and second pluralities of prisms and are configured to position selected ones of their respective prisms in the light beam or to remove all of their prisms from the light beam.
- the first prism system is configured to rotate the selected one of its prisms to produce a modified image from the image.
- the second prism system is configured to rotate the selected one of its prisms to produce an output image from the modified image.
- the control system is configured to control the first and second prism systems.
- Figure 4 illustrates an optical system with a first coordinated effects system 400 according to the disclosure in a first configuration.
- a light source 32 produces a light beam whose optical axis is shown by dotted line 36.
- the light beam may pass through gobo wheel 34 and optical lenses 37 and 38 before being emitted from the luminaire.
- the optical system is shown here much simplified for clarity and, in practice, an automated luminaire may include further optical devices, including but not restricted to, a color wheel, a color mixing mechanism, a rotating gobo, an effects wheel, an iris, a framing shutters mechanism, and other optical devices as known in the art.
- the first coordinated effects system 400 includes a first prism system 40.
- the first prism system 40 comprises a first prism 42 rotatably mounted to a first prism arm 41.
- a motor 44 is configured to rotate the first prism 42 within first prism arm 41 via a belt 46.
- Motor 43 is configured to rotate the first prism arm 41 via a gear 45 to insert or remove the first prism 42 into the light beam.
- the motors 43 and 44 may be operated in a coordinated manner such that the first prism 42 is inserted or removed from the light beam and rotated within the light beam as desired by an operator.
- the motors 43 and 44 may be of a type selected from, but not restricted to, stepper motor, servo-motor, actuator, solenoid, and other motor types as known in the art.
- the first prism 42 is positioned outside of the light beam and has no effect on the light beam emitted from the luminaire.
- the first coordinated effects system 400 further includes a second prism system 50.
- the second prism system 50 comprises a second prism 52 rotatably mounted to a second prism arm 51.
- the motor 54 is configured to rotate the second prism 52 within the second prism arm 51.
- a motor 53 is configured to rotate the second prism arm 51 to insert or remove the second prism 52 into the light beam.
- the motors 53 and 54 may be operated in a coordinated manner such that second prism 52 is inserted or removed from the light beam and rotated within the light beam as desired by the operator.
- the motors 53 and 54 may be of a type selected from, but not restricted to, stepper motor, servo-motor, actuator, solenoid, and other motor types as known in the art.
- the second prism 52 is positioned outside of the light beam and has no effect on the light beam emitted from the luminaire.
- first prism system 40 and the second prism system 50 may include sensors such that the control system of the automated luminaire is aware of, and able to control, the orientation and/or rotation of the first prism 42 and the second prism 52.
- the second prism 52 is fitted with a magnet 57 in its periphery that rotates with the second prism 52.
- a corresponding sensor or sensors such as a Hall effect sensor in second prism system 50 may detect the position of magnet 57, and thus sense the rotational position of second prism 52 at the moment the magnet 57 is detected.
- first prism system 40 may be fitted with a magnet and sensor or sensors such that the rotational position of first prism 42 is known and communicated to the control system of the automated luminaire 100.
- the sensor systems are not restricted to a magnet and Hall effect sensor, and any sensing system may be utilized in other coordinated effects system according to the disclosure, including, but not restricted to, magnetic sensors, optical sensors, and switch sensors.
- Figure 5 illustrates the first coordinated effects system 400 in a second configuration.
- the motor 43 has been operated from the configuration shown in Figure 4 to rotate the first prism arm 41, and thus the first prism 42 has been inserted into the light beam.
- the second prism 52 remains outside the light beam.
- the first prism 42 alone will produce an effect in the light beam.
- the first prism 42 may be rotated while in the light beam by the motor 44, producing effects similar to those illustrated in Figures 2 and 3 .
- Figure 6 illustrates the first coordinated effects system 400 in a third configuration.
- the motor 53 has been operated from the configuration shown in Figure 4 to rotate the second prism arm 51, and thus the second prism 52 has been inserted into the light beam.
- the first prism 42 remains outside light beam.
- the second prism 52 alone will produce an effect in the light beam.
- the second prism 52 may be rotated within the light beam by the motor 54, producing effects similar to those illustrated in Figures 2 and 3 .
- Figure 7 illustrates the first coordinated effects system 400 in a fourth configuration.
- the motor 43 has been operated from the configuration shown in Figure 4 to rotate the first prism arm 41, and thus the first prism 42 has been inserted across the light beam.
- motor 53 has also been operated to rotate the second prism arm 51, and thus the second prism 52 has been inserted into the light beam.
- both the first prism 42 and the second prism 52 will produce effects in the light beam.
- the first prism 42 and the second prism 52 may be rotated while in the light beam by the motors 44 and 54, respectively.
- the second prism 52 receives the light beam after it has passed through, and been affected by, the first prism 42.
- the effect produced by the first prism 42 is then further modified by the second prism 52.
- Figure 8 illustrates the first coordinated effects system 400 in the second configuration with an alternative second prism 58.
- first prism 42 may be replaced with alternative prism designs.
- Figure 9 illustrates an automated luminaire 100 according to the disclosure, fitted with the first prism system 40 and the second prism system 50.
- Figures 10 and 11 illustrate effects of the first coordinated effects system 400 in the fourth configuration.
- Figure 10 illustrates an effect of the first coordinated effects system 400 with the first prism 42 and the second prism 52 in a first position relative to each other.
- a single image 60 produced by beam color, size, shape, and pattern optical systems of the automated luminaire 100 passes through first prism 42 and second prism 52, resulting in multiple copies of the image 60 as output image 63a.
- Image 60 is here shown for clarity as a simple circular image, however image 60 may be any complex image as produced by the automated luminaire, in particular it may have a shape defined by the patterns or gobos in the optical train.
- both first prism 42 and second prism 52 are both linear prisms and are aligned in a parallel manner, the resulting output image 63a is also linearly aligned.
- both first prism 42 and second prism 52 may be rotated independently, as indicated by arcs 64 and 65, respectively, causing a change in pattern and rotation (as indicated by arc 66) in the output image 63a. For example, if the first prism 42 and second prism 52 are rotated in the same direction at the same speed, maintaining their rotational alignment, the output image 63a will maintain its shape and rotate.
- Figure 11 illustrates an effect of the first coordinated effects system 400 in the fourth configuration with the first prism 42 and the second prism 52 of the first coordinated effects system 400 in a second position relative to each other.
- the first prism 42 remains in the same position as in Figure 10 ; however, the second prism 52 has been rotated 90° to a new position orthogonal to its position in Figure 10 .
- the linear effect of the first prism 42 still forms a single linear array of the image 60; however, the second prism 52 now acts on that first linear array in an orthogonal direction, resulting in an output image 63b that is a matrix array of the linear array produced by the first prism 42.
- the output image 63b will rotate while maintaining its shape.
- the first prism 42 and the second prism 52 may be simultaneously rotated in a coordinated manner, such that the angle between them remains constant.
- both prisms may be rotated in the same direction at the same speeds, thus maintaining the difference in angle between them. This results in an output image that remains static and rotates at the same rate as the prisms.
- such rotation may be performed without information received from sensors fitted to the first prism 42 and the second prism 52.
- the sensors fitted to the first prism 42 and the second prism 52 enable the control system of the automated luminaire 100 to maintain improved coordination in the rotation and positioning of the prisms.
- the first prism 42 and the second prism 52 may be simultaneously rotated in a coordinated manner at differing speeds and/or in differing directions, resulting in output images that change and/or rotate. Either or both of the first prism 42 and the second prism 52 may be rotated while the other is held static (i.e., at a rotational speed of zero). Speeds and rotation directions and positions may be accurately controlled through the sensors to produce accurate and repeatable coordinated effects in the output images.
- Figure 12 illustrates an optical system including a second coordinated effects system 1200 according to the disclosure in a first configuration.
- a light source 132 produces a light beam whose optical axis is shown by dotted line 136.
- the light beam passes through a gobo wheel 134 and optical lenses 137a, 137b, and 138 before being emitted from the luminaire.
- the optical system is shown here much simplified for clarity and, in practice, the automated luminaire may include further optical devices including but not restricted to a color wheel, a color mixing mechanism, a rotating gobo, an effects wheel, an iris, a framing shutters mechanism, and other optical devices as known in the art.
- the second coordinated effects system 1200 includes a first prism system 140.
- the first prism system 140 comprises a prism 142a, a prism 142b, and a prism 142c, all rotatably mounted to a first prism support (or arm) 141.
- a motor (not shown) is configured to rotate the prisms 142a, 142b, and 142c within the first prism support 141.
- a second motor (not shown) is configured to rotate the first prism support 141 to insert one of the prisms 142a, 142b, or 142c into the light beam, or to remove all three prisms from the light beam.
- the motors may be operated in a coordinated manner such that one of the prisms 142a, 142b, and 142c is inserted or removed from the light beam and rotated within the light beam, as desired by the operator.
- the motors (or actuators) may be of a type selected from, but not restricted to, stepper motor, servo-motor, actuator, solenoid, and other motor types as known in the art.
- the prisms 142a and 142b are positioned outside of light beam and will have no effect on the exiting light beam, while the prism 142c is positioned in the light beam.
- the second coordinated effects system 1200 further includes a second prism system 150.
- the second prism system 150 comprises a prism 152a, a prism 152b, and a prism 152c rotatably mounted to a second prism support (or arm) 151.
- a third motor (not shown) is configured to rotate the prisms 152a, 152b, and 152c within the second prism support 151.
- a fourth motor (not shown) is configured to rotate the second prism support 151 to insert one of the prisms 152a, 152b, or 152c into the light beam, or to remove all three prisms from the light beam.
- the motors may be operated in a coordinated manner such that one of the prisms 152a, 152b, and 152c is inserted or removed from the light beam and rotated within the light beam, as desired by the operator.
- the motors (or actuators) may be of a type selected from, but not restricted to, stepper motor, servo-motor, actuator, solenoid, and other motor types as known in the art.
- the prisms 152a and 152b are positioned outside of light beam and will have no effect on the exiting light beam, while the prism 152c is positioned into the light beam. In these positions the prism 142c and the prism 152c are both positioned in the light beam and will interact to produce results similar to those shown in Figures 2, 3 , 10, and 11 .
- the prism 142c of the first prism system 140 is positioned in the light beam produced by the light source 132.
- the prism 152c of the second prism system 150 is positioned in the light beam as modified by the first prism system 140.
- the prism 142c produces a first effect in the light beam (or modified image) and the prism 152c produces a second effect in the light beam as modified by the prism 142c, resulting in an output image.
- the ability to position selected prisms from one or both of the first prism system 140 and the second prism system 150 in the light beam, and to selectively rotate either or both of the selected prisms enables an operator of an automated luminaire according to the disclosure to concatenate the effects of the selected prisms and to selectively and cooperatively coordinate the insertion and rotation of the selected prisms to produce new dynamic lighting effects.
- the prism from the second prism system 150 is still characterized for purposes of this disclosure as receiving the light beam as modified by the first prism system 140.
- first prism system 140 and the second prism system 150 may further include sensors such that the control system of the automated luminaire is able to detect and control the orientation and/or rotation of the prisms 142a, 142b, or 142c and the prisms 152a, 152b, or 152c.
- each of the prisms may be fitted with magnets in their respective peripheries that rotate with them.
- a corresponding sensor or sensors such as a Hall effect sensor in the first prism system 140 and the second prism system 150 may detect the position of the magnets, and thus deduce the rotational position of the prisms.
- the sensors are not restricted to a magnet and Hall effect sensor, and any sensing system may be utilized in other embodiments of the disclosure, including, but not restricted to, magnetic sensors, optical sensors, switch sensors.
- a single sensor may be used for each of the first prism system 140 and the second prism system 150, mounted in positions that permit them to sense whichever of the prisms of the first prism system 140 and/or the second prism system 150 are positioned in the light beam.
- prism systems 140 and 150 are described as each comprising a single motor that rotates all three prisms in its prism system, it will be understood that in other embodiments a prism system according to the disclosure may include one or more actuators to individually rotate one or more associated prisms in the prism system.
- Figure 13 presents a simplified view of the second coordinated effects system 1200 of Figure 12 in a second configuration.
- first prism support 141 and second prism support 151 have been rotated to remove all prisms from the light beam.
- a first motor (not shown) is configured to rotate the prisms 152a, 152b, or 152c within the second prism support 151 via a belt 161.
- a second motor (not shown) is configured to rotate the prisms 142a, 142b, or 142c within the first prism support 141 via a belt 163.
- Figure 14 presents a simplified view of the second coordinated effects system 1200 of Figure 12 in the first configuration.
- the first prism support 141 and the second prism support 151 have been rotated from their positions in the second configuration shown in Figure 13 to insert both the prism 142c and the prism 152c into the light beam.
- the prisms will interact to produce results similar to those shown in Figures 2, 3 , 10, and 11 .
- Figure 14 shows a pulley 153 that is coupled to and driven by the first motor described with reference to Figure 13 .
- the pulley 153 engages the belt 161 and causes the prisms 152a, 152b, or 152c to rotate within the second prism support 151.
- FIG 15 presents a block diagram of a control system (or controller) 1500 for an automated luminaire 12 according to the disclosure.
- the control system 1500 is suitable for controlling the coordinated effects systems 400 and 1200 described with reference to Figures 4-8 and 12-14 , respectively.
- the control system 1500 is also suitable for controlling other control functions of the automated luminaire 100, described with reference to Figure 9 .
- the control system 1500 includes a processor 1502 electrically coupled to a memory 1504.
- the processor 1502 is implemented by hardware and software.
- the processor 1502 may be implemented as one or more Central Processing Unit (CPU) chips, cores (e.g., as a multi-core processor), field-programmable gate arrays (FPGAs), application specific integrated circuits (ASICs), and digital signal processors (DSPs).
- CPU Central Processing Unit
- cores e.g., as a multi-core processor
- FPGAs field-programmable gate arrays
- ASICs application specific integrated circuits
- DSPs digital signal processors
- the processor 1502 is further electrically coupled to and in communication with a communication interface 1506.
- the communication interface 1506 is coupled to, and configured to communicate via, the data link 14.
- the processor 1502 is also coupled via a control interface 1508 to one or more other sensors, motors, actuators, controls and/or other devices.
- the processor 1502 is configured to receive control signals via the communication interface 1506 and to control the coordinated effects systems 400 and 1200 and other mechanisms of the automated luminaire 100 via the control interface 1508.
- the control system 1500 is suitable for implementing processes, coordinated effects control, and other functionality as disclosed herein, which may be implemented as instructions stored in the memory 1504 and executed by the processor 1502.
- the memory 1504 comprises one or more disks, tape drives, and/or solid-state drives and may be used as an over-flow data storage device, to store programs when such programs are selected for execution, and to store instructions and data that are read during program execution.
- the memory 1504 may be volatile and/or non-volatile and may be read-only memory (ROM), random access memory (RAM), ternary content-addressable memory (TCAM), and/or static random-access memory (SRAM).
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Light Control Or Optical Switches (AREA)
- Optical Elements Other Than Lenses (AREA)
Description
- The disclosure generally relates to an effects system in an automated luminaire, and more specifically to a system for coordinating multiple effects within an automated luminaire.
- Luminaires with automated and remotely controllable functionality are well known in the entertainment and architectural lighting markets. Such products are commonly used in theatres, television studios, concerts, theme parks, night clubs, and other venues. A typical product will commonly provide control over the pan and tilt functions of the luminaire allowing the operator to control the direction the luminaire is pointing and thus the position of the light beam on the stage or in the studio. Typically, this position control is done via control of the luminaire's position in two orthogonal rotational axes usually referred to as pan and tilt. Many products provide control over other parameters such as the intensity, color, focus, beam size, beam shape, and beam pattern.
Figure 1 illustrates a typical multiparameter automatedluminaire system 10. These systems typically include a plurality of multiparameterautomated luminaires 12 which typically each contain on-board a light source (not shown), light modulation devices, electric motors coupled to mechanical drives systems, and control electronics (not shown). In addition to being connected to mains power either directly or through a power distribution system (not shown), eachluminaire 12 is connected is series or in parallel viadata link 14 to one ormore control desks 15. An operator typically controls theautomated luminaire system 10 through thecontrol desk 15. - An optical effect that is commonly used in prior art automated luminaires is often referred to as a prism. This is typically a glass or plastic device placed at a point in the optical train such that it converts a single image produced by the beam color, size, shape, and pattern optical systems into multiple beams for display. For example, a linear prism may convert a single beam into a linear array of identical beams. A diagrammatic example of the effects produced by a prior art prism optical system is shown in
Figures 2 and 3 . InFigure 2 , asingle image 20 produced by the beam color, size, shape, and pattern optical systems passes through aprism 21a, resulting in multiple copies of theimage 20 asoutput images 22a. Theprism 21a may be rotated as indicated by thearc 23, causing a corresponding rotation in the array of output images as indicated by thearc 24.Figure 3 shows the same optical system andprism 21a, but with theprism 21a rotated to a new position, resulting in a corresponding rotation of theoutput images 22b.Image 20 is here shown for clarity as a simple circular image, however theimage 20 may be any image, complex or simple, as produced by the automated luminaire, in particular it may have a shape defined by patterns or gobos in the optical train. - In further prior art systems the prism may be different shapes and may be capable of being inserted or removed from the light beam automatically. It may further be possible to select different prisms producing different effects for insertion in the beam. However, the prior art systems are only capable of introducing a single prism at one time.
- It would be advantageous to provide a system for an automated luminaire that was capable of introducing a plurality of prisms into the optical effect chain simultaneously such that the effects concatenate. It would further be advantageous to be able to selectively and cooperatively coordinate the insertion, position, and rotation of the plurality of prisms to produce new dynamic lighting effects.
- Reference is made to
EP3056804 andDE 102011113036 which have been cited as documents representative of the state of the art. - It is appreciated that the scope of the invention is in accordance with the claims. Accordingly, there is provided a coordinated effects system, as claimed in claim 1. There is further provided an automated luminaire comprising the coordinated effects system, as claimed in
claim 8. Further features are provided in the dependent claims. - In a first embodiment, a coordinated effects system includes a first prism system and a second prism system. The first prism system includes a first plurality of prisms, and is configured to position a selected one of its prisms in a light beam passing through the first prism system or to remove all of its prisms from the light beam passing through the first prism system. The first prism system is also configured to rotate at least one of its prisms. The second prism system includes a second plurality of prisms, and is configured to position a selected one of its prisms in the light beam passing through the first prism system or to remove all of its prisms from the light beam passing through the first prism system. The second prism system is also configured to rotate at least one of its prisms.
- In a second embodiment, an automated luminaire includes a light source, an optical device coupled to the light source, a first prism system optically coupled to the optical device, a second prism system optically coupled to the first prism system, and a control system. The light source is configured to emit a light beam. The optical device is configured to produce a first image in the light beam. The first prism system includes a first plurality of prisms and is configured to position a selected one of its prisms in the light beam or to remove all of its prisms from the light beam. The first prism system is also configured to rotate the selected one of its prisms to produce a modified image from the image. The second prism system includes a second plurality of prisms and is configured to position a selected one of its prisms in the light beam or to remove all of its prisms from the light beam. The second prism system is also configured to rotate the selected one of its prisms to produce an output image from the modified image. The control system is configured to control the first prism system and the second prism system.
- For a more complete understanding of the present disclosure and the advantages thereof, reference is now made to the following description taken in conjunction with the accompanying drawings in which like reference numerals indicate like features and wherein:
-
Figure 1 illustrates a typical prior art automated lighting system; -
Figure 2 illustrates a prior art prism effects system; -
Figure 3 illustrates a prior art prism effects system; -
Figure 4 illustrates an optical system with a first coordinated effects system according to the disclosure in a first configuration; -
Figure 5 illustrates the first coordinated effects system ofFigure 4 in a second configuration; -
Figure 6 illustrates the first coordinated effects system ofFigure 4 in a third configuration; -
Figure 7 illustrates the first coordinated effects system ofFigure 4 in a fourth configuration; -
Figure 8 illustrates the first coordinated effects system ofFigure 4 in the second configuration with an alternative second prism; -
Figure 9 illustrates an automated luminaire according to the disclosure, fitted with the first coordinated effects system ofFigure 4 ; -
Figure 10 illustrates an effect of the first coordinated effects system ofFigure 4 in the fourth configuration with prisms of the first coordinated effects system in a first position relative to each other; -
Figure 11 illustrates an effect of the first coordinated effects system ofFigure 4 in the fourth configuration with prisms of the first coordinated effects system in a second position relative to each other; -
Figure 12 illustrates an optical system including a second coordinated effects system according to the disclosure in a first configuration; -
Figure 13 presents a simplified view of the second coordinated effects system ofFigure 12 in a second configuration; -
Figure 14 presents a simplified view of the second coordinated effects system ofFigure 12 in the first configuration; and -
Figure 15 presents a block diagram of a control system for an automated luminaire according to the disclosure. - Preferred embodiments are illustrated in the figures, like numerals being used to refer to like and corresponding parts of the various drawings.
- Disclosed herein are a coordinated effects system and an automated luminaire. The automated luminaire includes a light source, an optical device, a first prism system, a second prism system, and a control system. The light source is configured to emit a light beam. The optical device is configured to produce a first image in the light beam. The first and second prism systems include corresponding first and second pluralities of prisms and are configured to position selected ones of their respective prisms in the light beam or to remove all of their prisms from the light beam. The first prism system is configured to rotate the selected one of its prisms to produce a modified image from the image. The second prism system is configured to rotate the selected one of its prisms to produce an output image from the modified image. The control system is configured to control the first and second prism systems.
-
Figure 4 illustrates an optical system with a firstcoordinated effects system 400 according to the disclosure in a first configuration. Alight source 32 produces a light beam whose optical axis is shown by dottedline 36. The light beam may pass throughgobo wheel 34 andoptical lenses - The first
coordinated effects system 400 includes afirst prism system 40. Thefirst prism system 40 comprises afirst prism 42 rotatably mounted to a first prism arm 41. A motor 44 is configured to rotate thefirst prism 42 within first prism arm 41 via abelt 46.Motor 43 is configured to rotate the first prism arm 41 via agear 45 to insert or remove thefirst prism 42 into the light beam. Themotors 43 and 44 may be operated in a coordinated manner such that thefirst prism 42 is inserted or removed from the light beam and rotated within the light beam as desired by an operator. Themotors 43 and 44 may be of a type selected from, but not restricted to, stepper motor, servo-motor, actuator, solenoid, and other motor types as known in the art. In the configuration shown inFigure 4 , thefirst prism 42 is positioned outside of the light beam and has no effect on the light beam emitted from the luminaire. - The first
coordinated effects system 400 further includes asecond prism system 50. Thesecond prism system 50 comprises asecond prism 52 rotatably mounted to asecond prism arm 51. Themotor 54 is configured to rotate thesecond prism 52 within thesecond prism arm 51. Amotor 53 is configured to rotate thesecond prism arm 51 to insert or remove thesecond prism 52 into the light beam. Themotors second prism 52 is inserted or removed from the light beam and rotated within the light beam as desired by the operator. Themotors Figure 4 , thesecond prism 52 is positioned outside of the light beam and has no effect on the light beam emitted from the luminaire. - Either or both of the
first prism system 40 and thesecond prism system 50 may include sensors such that the control system of the automated luminaire is aware of, and able to control, the orientation and/or rotation of thefirst prism 42 and thesecond prism 52. For example, as illustrated inFigure 4 , thesecond prism 52 is fitted with amagnet 57 in its periphery that rotates with thesecond prism 52. A corresponding sensor or sensors (not shown) such as a Hall effect sensor insecond prism system 50 may detect the position ofmagnet 57, and thus sense the rotational position ofsecond prism 52 at the moment themagnet 57 is detected. Similarly,first prism system 40 may be fitted with a magnet and sensor or sensors such that the rotational position offirst prism 42 is known and communicated to the control system of theautomated luminaire 100. The sensor systems are not restricted to a magnet and Hall effect sensor, and any sensing system may be utilized in other coordinated effects system according to the disclosure, including, but not restricted to, magnetic sensors, optical sensors, and switch sensors. -
Figure 5 illustrates the firstcoordinated effects system 400 in a second configuration. InFigure 5 , themotor 43 has been operated from the configuration shown inFigure 4 to rotate the first prism arm 41, and thus thefirst prism 42 has been inserted into the light beam. Thesecond prism 52 remains outside the light beam. In this configuration, thefirst prism 42 alone will produce an effect in the light beam. Thefirst prism 42 may be rotated while in the light beam by the motor 44, producing effects similar to those illustrated inFigures 2 and 3 . -
Figure 6 illustrates the firstcoordinated effects system 400 in a third configuration. InFigure 6 , themotor 53 has been operated from the configuration shown inFigure 4 to rotate thesecond prism arm 51, and thus thesecond prism 52 has been inserted into the light beam. Thefirst prism 42 remains outside light beam. In this configuration, thesecond prism 52 alone will produce an effect in the light beam. Thesecond prism 52 may be rotated within the light beam by themotor 54, producing effects similar to those illustrated inFigures 2 and 3 . -
Figure 7 illustrates the firstcoordinated effects system 400 in a fourth configuration. InFigure 7 , themotor 43 has been operated from the configuration shown inFigure 4 to rotate the first prism arm 41, and thus thefirst prism 42 has been inserted across the light beam. Further,motor 53 has also been operated to rotate thesecond prism arm 51, and thus thesecond prism 52 has been inserted into the light beam. In this position both thefirst prism 42 and thesecond prism 52 will produce effects in the light beam. Thefirst prism 42 and thesecond prism 52 may be rotated while in the light beam by themotors 44 and 54, respectively. Thesecond prism 52 receives the light beam after it has passed through, and been affected by, thefirst prism 42. Thus, the effect produced by thefirst prism 42 is then further modified by thesecond prism 52. -
Figure 8 illustrates the firstcoordinated effects system 400 in the second configuration with an alternative second prism 58. Similarly,first prism 42 may be replaced with alternative prism designs. -
Figure 9 illustrates anautomated luminaire 100 according to the disclosure, fitted with thefirst prism system 40 and thesecond prism system 50. -
Figures 10 and 11 illustrate effects of the firstcoordinated effects system 400 in the fourth configuration.Figure 10 illustrates an effect of the firstcoordinated effects system 400 with thefirst prism 42 and thesecond prism 52 in a first position relative to each other. Asingle image 60 produced by beam color, size, shape, and pattern optical systems of theautomated luminaire 100 passes throughfirst prism 42 andsecond prism 52, resulting in multiple copies of theimage 60 asoutput image 63a.Image 60 is here shown for clarity as a simple circular image, howeverimage 60 may be any complex image as produced by the automated luminaire, in particular it may have a shape defined by the patterns or gobos in the optical train. - Because the
first prism 42 and thesecond prism 52 are both linear prisms and are aligned in a parallel manner, the resultingoutput image 63a is also linearly aligned. However, bothfirst prism 42 andsecond prism 52 may be rotated independently, as indicated byarcs 64 and 65, respectively, causing a change in pattern and rotation (as indicated by arc 66) in theoutput image 63a. For example, if thefirst prism 42 andsecond prism 52 are rotated in the same direction at the same speed, maintaining their rotational alignment, theoutput image 63a will maintain its shape and rotate. -
Figure 11 illustrates an effect of the firstcoordinated effects system 400 in the fourth configuration with thefirst prism 42 and thesecond prism 52 of the firstcoordinated effects system 400 in a second position relative to each other. Thefirst prism 42 remains in the same position as inFigure 10 ; however, thesecond prism 52 has been rotated 90° to a new position orthogonal to its position inFigure 10 . In this configuration, the linear effect of thefirst prism 42 still forms a single linear array of theimage 60; however, thesecond prism 52 now acts on that first linear array in an orthogonal direction, resulting in anoutput image 63b that is a matrix array of the linear array produced by thefirst prism 42. As described with reference toFigure 10 , if thefirst prism 42 andsecond prism 52 are rotated in the same direction at the same speed, maintaining their rotational alignment, theoutput image 63b will rotate while maintaining its shape. - Intermediate angles between the
first prism 42 and thesecond prism 52 to the angles shown inFigures 10 and 11 will produce output images intermediate betweenoutput images first prism 42 and thesecond prism 52 changes. If the angle changes slowly, the variation in the output images also changes slowly. Similarly, if the angle changes quickly, the variation in the output images also changes quickly. - The
first prism 42 and thesecond prism 52 may be simultaneously rotated in a coordinated manner, such that the angle between them remains constant. For example, both prisms may be rotated in the same direction at the same speeds, thus maintaining the difference in angle between them. This results in an output image that remains static and rotates at the same rate as the prisms. In some embodiments, such rotation may be performed without information received from sensors fitted to thefirst prism 42 and thesecond prism 52. In other embodiments, the sensors fitted to thefirst prism 42 and thesecond prism 52 enable the control system of theautomated luminaire 100 to maintain improved coordination in the rotation and positioning of the prisms. Thefirst prism 42 and thesecond prism 52 may be simultaneously rotated in a coordinated manner at differing speeds and/or in differing directions, resulting in output images that change and/or rotate. Either or both of thefirst prism 42 and thesecond prism 52 may be rotated while the other is held static (i.e., at a rotational speed of zero). Speeds and rotation directions and positions may be accurately controlled through the sensors to produce accurate and repeatable coordinated effects in the output images. -
Figure 12 illustrates an optical system including a secondcoordinated effects system 1200 according to the disclosure in a first configuration. Alight source 132 produces a light beam whose optical axis is shown by dottedline 136. The light beam passes through agobo wheel 134 andoptical lenses - The second
coordinated effects system 1200 includes afirst prism system 140. Thefirst prism system 140 comprises aprism 142a, aprism 142b, and aprism 142c, all rotatably mounted to a first prism support (or arm) 141. A motor (not shown) is configured to rotate theprisms first prism support 141. A second motor (not shown) is configured to rotate thefirst prism support 141 to insert one of theprisms prisms Figure 12 , theprisms prism 142c is positioned in the light beam. - The second
coordinated effects system 1200 further includes asecond prism system 150. Thesecond prism system 150 comprises aprism 152a, aprism 152b, and aprism 152c rotatably mounted to a second prism support (or arm) 151. A third motor (not shown) is configured to rotate theprisms second prism support 151. A fourth motor (not shown) is configured to rotate thesecond prism support 151 to insert one of theprisms prisms Figure 12 , theprisms prism 152c is positioned into the light beam. In these positions theprism 142c and theprism 152c are both positioned in the light beam and will interact to produce results similar to those shown inFigures 2, 3 ,10, and 11 . - In the first configuration of the second
coordinated effects system 1200, theprism 142c of thefirst prism system 140 is positioned in the light beam produced by thelight source 132. Theprism 152c of thesecond prism system 150 is positioned in the light beam as modified by thefirst prism system 140. As described with reference toFigures 10 and 11 , theprism 142c produces a first effect in the light beam (or modified image) and theprism 152c produces a second effect in the light beam as modified by theprism 142c, resulting in an output image. - The ability to position selected prisms from one or both of the
first prism system 140 and thesecond prism system 150 in the light beam, and to selectively rotate either or both of the selected prisms enables an operator of an automated luminaire according to the disclosure to concatenate the effects of the selected prisms and to selectively and cooperatively coordinate the insertion and rotation of the selected prisms to produce new dynamic lighting effects. - When the second
coordinated effects system 1200 is in a configuration similar to that shown inFigure 6 (i.e., with the prisms of thefirst prism system 140 removed from the light beam and a prism from thesecond prism system 150 positioned in the light beam), the prism from thesecond prism system 150 is still characterized for purposes of this disclosure as receiving the light beam as modified by thefirst prism system 140. - Either or both of the
first prism system 140 and thesecond prism system 150 may further include sensors such that the control system of the automated luminaire is able to detect and control the orientation and/or rotation of theprisms prisms first prism system 140 and thesecond prism system 150 may detect the position of the magnets, and thus deduce the rotational position of the prisms. - The sensors are not restricted to a magnet and Hall effect sensor, and any sensing system may be utilized in other embodiments of the disclosure, including, but not restricted to, magnetic sensors, optical sensors, switch sensors. In some embodiments, a single sensor may be used for each of the
first prism system 140 and thesecond prism system 150, mounted in positions that permit them to sense whichever of the prisms of thefirst prism system 140 and/or thesecond prism system 150 are positioned in the light beam. - While the
prism systems -
Figure 13 presents a simplified view of the secondcoordinated effects system 1200 ofFigure 12 in a second configuration. InFigure 13 bothfirst prism support 141 andsecond prism support 151 have been rotated to remove all prisms from the light beam. A first motor (not shown) is configured to rotate theprisms second prism support 151 via abelt 161. A second motor (not shown) is configured to rotate theprisms first prism support 141 via abelt 163. -
Figure 14 presents a simplified view of the secondcoordinated effects system 1200 ofFigure 12 in the first configuration. In the first configuration, thefirst prism support 141 and thesecond prism support 151 have been rotated from their positions in the second configuration shown inFigure 13 to insert both theprism 142c and theprism 152c into the light beam. In this first configuration, the prisms will interact to produce results similar to those shown inFigures 2, 3 ,10, and 11 . -
Figure 14 shows apulley 153 that is coupled to and driven by the first motor described with reference toFigure 13 . Thepulley 153 engages thebelt 161 and causes theprisms second prism support 151. - Although embodiments with two prism systems have been illustrated and described, in other embodiments any number of prism systems may be utilized to produce complex coordinated effects. Each of the multiple prism systems may be fitted with any number of prisms.
-
Figure 15 presents a block diagram of a control system (or controller) 1500 for anautomated luminaire 12 according to the disclosure. Thecontrol system 1500 is suitable for controlling thecoordinated effects systems Figures 4-8 and12-14 , respectively. Thecontrol system 1500 is also suitable for controlling other control functions of theautomated luminaire 100, described with reference toFigure 9 . Thecontrol system 1500 includes aprocessor 1502 electrically coupled to amemory 1504. Theprocessor 1502 is implemented by hardware and software. Theprocessor 1502 may be implemented as one or more Central Processing Unit (CPU) chips, cores (e.g., as a multi-core processor), field-programmable gate arrays (FPGAs), application specific integrated circuits (ASICs), and digital signal processors (DSPs). - The
processor 1502 is further electrically coupled to and in communication with acommunication interface 1506. Thecommunication interface 1506 is coupled to, and configured to communicate via, thedata link 14. Theprocessor 1502 is also coupled via acontrol interface 1508 to one or more other sensors, motors, actuators, controls and/or other devices. Theprocessor 1502 is configured to receive control signals via thecommunication interface 1506 and to control thecoordinated effects systems automated luminaire 100 via thecontrol interface 1508. - The
control system 1500 is suitable for implementing processes, coordinated effects control, and other functionality as disclosed herein, which may be implemented as instructions stored in thememory 1504 and executed by theprocessor 1502. Thememory 1504 comprises one or more disks, tape drives, and/or solid-state drives and may be used as an over-flow data storage device, to store programs when such programs are selected for execution, and to store instructions and data that are read during program execution. Thememory 1504 may be volatile and/or non-volatile and may be read-only memory (ROM), random access memory (RAM), ternary content-addressable memory (TCAM), and/or static random-access memory (SRAM). - While the disclosure has been described with respect to a limited number of embodiments, those skilled in the art, having benefit of this disclosure, will appreciate that other embodiments may be devised which do not depart from the scope of the disclosure herein. While the disclosure has been described in detail, it should be understood that various changes, substitutions and alterations can be made hereto without departing from the scope of the disclosure.
Claims (14)
- A coordinated effects system (400, 1200), comprising:a first prism system (40, 140) comprising a first plurality of prisms (42, 142a, 142b, 142c), the first prism system configured to position a selected one of the first plurality of prisms in a light beam passing through the first prism system or to remove all of the first plurality of prisms from the light beam passing through the first prism system, the first prism system further configured to rotate at least one of the first plurality of prisms; anda second prism system (50, 150) optically coupled to the first prism system (40, 140) and comprising a second plurality of prisms (52, 152a, 152b, 152c), the second prism system configured to position a selected one of the second plurality of prisms in the light beam passing through the first prism system or to remove all of the second plurality of prisms from the light beam passing through the first prism system, the second prism system further configured to rotate at least one of the second plurality of prisms.
- The coordinated effects system of claim 1, wherein at least one of the first prism system (40, 140) and the second prism system (50, 150) is configured to rotate all of the associated plurality of prisms simultaneously.
- The coordinated effects system (400) of claim 1, wherein:the first prism system (40, 140) is configured to detect an orientation of a one of the first plurality of prisms positioned in the light beam passing through the first prism system; andthe second prism system (50, 150) is configured to detect an orientation of a one of the second plurality of prisms positioned in the light beam passing through the first prism system.
- The coordinated effects system of claim 3, wherein:the first prism system (40, 140) comprises a sensor (1508) configured to detect an orientation of the selected one of the first plurality of prisms positioned in the light beam passing through the first prism system; andthe second prism system (50, 150) comprises a sensor configured to detect an orientation of the selected one of the second plurality of prisms positioned in the light beam passing through the first prism system.
- The coordinated effects system of claim 1, wherein:the first prism system (40) comprises a first stepper motor (42) configured to rotate the selected one of the first plurality of prisms; andthe second prism system (50) comprises a second stepper motor (54) configured to rotate the at least one of the second plurality of prisms.
- The coordinated effects system (400) of claim 1, wherein:the first prism system (40) comprises a first stepper motor (44) configured to position the selected one of the first plurality of prisms in the light beam passing through the first prism system or to remove all of the first plurality of prisms (41, 141a, 141b, 141c) from the light beam passing through the first prism system; andthe second prism system (50) comprises a second stepper motor (54) configured to position the selected one of the second plurality of prisms (51, 151a, 151b, 151c) in the light beam passing through the first prism system or to remove all of the first plurality of prisms from the light beam passing through the first prism system.
- The coordinated effects system of claim 1, wherein at least one of the first prism system (40, 140,) and the second prism system (50, 150) comprises:an arm (41, 141, 51, 151) on which are rotatably mounted the prisms of the associated plurality of prisms; andan actuator (43, 44) coupled to the arm, the actuator configured to rotate the arm to position the selected one of the associated plurality of prisms in the light beam passing through the first prism system or to remove all of the associated plurality of prisms from the light beam passing through the first prism system.
- An automated luminaire (100), comprising the automated effects system (400) having a first prism system (40), and a second prism system (50), as claimed in claim 1, and further comprising:a light source (32) configured to emit a light beam;an optical device (34, 37, 38) coupled to the light source and configured to produce a first image (60) in the light beam;wherein the first prism system (40, 140) is optically coupled to the optical device configured to produce a modified image from the image;wherein the second prism system (50, 150) is optically coupled to the first prism system (40, 140) and configured to produce an output image (63a) from the modified image; anda control system (1500) configured to control the first prism system (140) and the second prism system (150).
- The automated luminaire of claim 8, wherein the control system (1500) is configured to:detect a first orientation of the selected one of the first plurality of prisms (41, 141a, 141b, 141c);detect a second orientation of the selected one of the second plurality of prisms (51, 151a, 151b, 151c); andcontrol rotation of the selected one of the first plurality of prisms and rotation of the selected one of the second plurality of prisms based on the detected first and second orientations.
- The automated luminaire of claim 9, wherein the control system (1500) is configured to rotate one of the selected one of the first plurality of prisms (41, 141a, 141b, 141c) and the selected one of the second plurality of prisms (51, 151a, 151b, 151c) while not rotating the other one of the first plurality of prisms and the selected one of the second plurality of prisms.
- The automated luminaire of claim 9, wherein the control system (1500) is configured to rotate the selected one of the first plurality of prisms (41, 141a, 141b, 141c) and the selected one of the second plurality of prisms (51, 151a, 151b, 151c) in the same direction at the same speed and maintain a desired rotational alignment between the selected one of the first plurality of prisms (41, 141a, 141b, 141c) and the selected one of the second plurality of prisms (51, 151a, 151b, 151c).
- The automated luminaire of claim 8, wherein the control system (1500) is configured to rotate the selected one of the first plurality of prisms (41, 141a, 141b, 141c) and the selected one of the second plurality of prisms (51, 151a, 151b, 151c) in opposite directions.
- The automated luminaire of claim 8, wherein the control system (1500) is configured to rotate the selected one of the first plurality of prisms (41, 141a, 141b, 141c) at a first speed and the selected one of the second plurality of prisms (51, 151a, 151b, 151 c) at a second speed.
- The automated luminaire of claim 8, wherein the control system (1500) comprises a communication interface and the control system is configured to control the first prism system (40, 140) and the second prism system (50, 150) in response to control signals via the communication interface (1506).
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201762553565P | 2017-09-01 | 2017-09-01 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3450827A1 EP3450827A1 (en) | 2019-03-06 |
EP3450827B1 true EP3450827B1 (en) | 2019-08-21 |
Family
ID=63491421
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP18192006.7A Active EP3450827B1 (en) | 2017-09-01 | 2018-08-31 | Coordinated effects system for an automated luminaire |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP3450827B1 (en) |
CN (1) | CN109424937A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210396305A1 (en) * | 2019-12-24 | 2021-12-23 | Guangzhou Haoyang Electronic Co., Ltd. | Precision Gear Transmission Component And Stage Light With The Same |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11175017B2 (en) * | 2019-10-31 | 2021-11-16 | Robe Lighting S.R.O. | System and method for producing a blending light distribution from LED luminaires |
CN114135846B (en) * | 2020-09-03 | 2024-06-18 | 罗布照明公司 | Braking system for automatic lamp |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7703948B2 (en) * | 2007-11-08 | 2010-04-27 | Martin Professional A/S | Interchangeable light effects |
IT1402378B1 (en) * | 2010-09-07 | 2013-09-04 | Clay Paky Spa | STAGE PROJECTOR |
WO2016054418A1 (en) * | 2014-10-01 | 2016-04-07 | Robe Lighting, Inc. | Improved coordinated effects system for an automated luminaire |
HUE035474T2 (en) * | 2015-02-16 | 2018-05-02 | D T S Illuminazione S R L | Projector of light beams |
-
2018
- 2018-08-31 EP EP18192006.7A patent/EP3450827B1/en active Active
- 2018-09-03 CN CN201811023325.6A patent/CN109424937A/en active Pending
Non-Patent Citations (1)
Title |
---|
None * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210396305A1 (en) * | 2019-12-24 | 2021-12-23 | Guangzhou Haoyang Electronic Co., Ltd. | Precision Gear Transmission Component And Stage Light With The Same |
Also Published As
Publication number | Publication date |
---|---|
CN109424937A (en) | 2019-03-05 |
EP3450827A1 (en) | 2019-03-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3450827B1 (en) | Coordinated effects system for an automated luminaire | |
US10845016B2 (en) | Coordinated effects system for an automated luminaire | |
US10724709B2 (en) | Coordinated effects system for an automated luminaire | |
EP3623697B1 (en) | Head balance control system for an automated luminaire | |
CN109425974B (en) | Zoom optical system | |
CN112443821B (en) | Braking system for automatic light fixture | |
EP2550480A1 (en) | Animation wheel for an automated luminaire | |
EP2475927A1 (en) | Improved optics for an automated luminaire | |
CN110493589A (en) | A kind of 3 D image acquring system | |
US10724710B2 (en) | Framing system for an automated luminaire | |
EP3740713A1 (en) | Color mixing from different light sources | |
EP3450836B1 (en) | Framing system for an automated luminaire | |
US11143860B1 (en) | Photonic crystal-based optical steering | |
US11703213B2 (en) | Braking system for an automated luminaire | |
US12072070B2 (en) | Lighting effect system | |
CN115143433B (en) | Absolute position sensing system for stepper motor mechanism | |
US5555339A (en) | Display matrix comprising light-emitting fibers that are maskable by disks each having a plurality of sectors | |
KR102178495B1 (en) | Operation system in logo light | |
US20230316958A1 (en) | Flag actuation system for a lighting fixture | |
JP2016019371A (en) | Compensation method of backlash | |
CN114135846A (en) | Braking system for automatic light fixture | |
JPH04342378A (en) | Polarizing plate type photographing device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
17P | Request for examination filed |
Effective date: 20190204 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20190429 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602018000460 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1170169 Country of ref document: AT Kind code of ref document: T Effective date: 20190915 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: HK Ref legal event code: DE Ref document number: 1261144 Country of ref document: HK |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191223 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191121 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190821 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190821 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191121 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190821 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190821 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190821 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191221 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191122 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190821 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190821 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190821 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1170169 Country of ref document: AT Kind code of ref document: T Effective date: 20190821 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190821 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190821 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190821 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190821 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190821 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190821 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190821 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200224 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190821 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190821 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190821 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602018000460 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG2D | Information on lapse in contracting state deleted |
Ref country code: IS |
|
26N | No opposition filed |
Effective date: 20200603 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200831 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20200831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20180831 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200831 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200831 |
|
PGRI | Patent reinstated in contracting state [announced from national office to epo] |
Ref country code: FR Effective date: 20210827 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210831 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190821 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190821 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190821 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230523 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190821 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20230720 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20240723 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240723 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240723 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240723 Year of fee payment: 7 |