EP3449185A1 - Vrille d'admission d'air pour système d'injection de turbomachine comprenant un déflecteur aérodynamique à son entrée - Google Patents

Vrille d'admission d'air pour système d'injection de turbomachine comprenant un déflecteur aérodynamique à son entrée

Info

Publication number
EP3449185A1
EP3449185A1 EP17725689.8A EP17725689A EP3449185A1 EP 3449185 A1 EP3449185 A1 EP 3449185A1 EP 17725689 A EP17725689 A EP 17725689A EP 3449185 A1 EP3449185 A1 EP 3449185A1
Authority
EP
European Patent Office
Prior art keywords
air intake
injection system
air
swirler
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP17725689.8A
Other languages
German (de)
English (en)
Other versions
EP3449185B1 (fr
Inventor
Romain Nicolas Lunel
Guillaume Aurélien GODEL
Haris MUSAEFENDIC
Christophe Pieussergues
François Pierre Georges Maurice RIBASSIN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Original Assignee
Safran Aircraft Engines SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran Aircraft Engines SAS filed Critical Safran Aircraft Engines SAS
Publication of EP3449185A1 publication Critical patent/EP3449185A1/fr
Application granted granted Critical
Publication of EP3449185B1 publication Critical patent/EP3449185B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/04Air inlet arrangements
    • F23R3/10Air inlet arrangements for primary air
    • F23R3/12Air inlet arrangements for primary air inducing a vortex
    • F23R3/14Air inlet arrangements for primary air inducing a vortex by using swirl vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/26Controlling the air flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/286Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply having fuel-air premixing devices

Definitions

  • the present invention relates to an air intake swirler intended to form part of an air and fuel injection system in a turbomachine, as well as to an injection system for a turbomachine comprising at least one such swirler. air intake, and an aircraft turbomachine comprising such an injection system.
  • FIG. 1 appended illustrates a turbine engine 10 for an aircraft of a known type, for example a turbojet engine, generally comprising a fan 12 intended for the suction of an air flow dividing downstream of the fan. in a primary flow supplying a heart of the turbomachine and a secondary flow bypassing the heart.
  • the heart of the turbomachine generally comprises a low-pressure compressor 14, a high-pressure compressor 16, a combustion chamber 18, a high-pressure turbine 20 and a low-pressure turbine 22.
  • the turbine engine is streamlined by a nacelle 24 surrounding the flow space 26 of the secondary flow.
  • the rotors of the turbomachine are rotatably mounted about a longitudinal axis 28 of the turbomachine.
  • FIG. 2 represents the combustion chamber 18 of the turbomachine of FIG. 1.
  • this combustion chamber which is of annular type, comprises two coaxial annular walls, respectively radially inner 32 and radially outer 34, which extend from upstream to downstream, in the flow direction 36 of the primary flow of gas in the turbomachine, around the axis of the combustion chamber which merges with the axis 28 of the turbomachine.
  • These inner and outer annular walls 32 are interconnected at their upstream end by an annular chamber bottom wall 40 which extends substantially radially about the axis 28.
  • This annular bottom wall of the chamber 40 is equipped with injection systems 42 distributed around the axis 28 to allow, each, injection of a premix of air and fuel centered along a respective injection axis 44.
  • the axial and radial directions are defined by reference to the injection axis 44.
  • a transverse plane is a plane orthogonal to the injection axis 44.
  • the combustion chamber generally comprises an annular protective fairing 45 extending opposite an upstream face of the chamber bottom wall 40 and having injector and air inlet orifices.
  • a portion 46 of an air flow 48 coming from a diffuser 49 and coming from the compressor 16 feeds the injection systems 42 while another part 50 of this air flow bypasses the combustion chamber flowing downstream along the coaxial walls 32 and 34 of this chamber and allows in particular the supply of air inlet openings provided within these walls 32 and 34.
  • each injection system 42 generally comprises a bushing 52, sometimes referred to as a “sliding bushing”, in which a fuel injection nose 54 forming the end of an injector arm 55 is mounted, and one or more air intake swirlers 56, 58, and finally a bowl 60, sometimes referred to as “mixing bowl” or “pre-vaporization bowl”, which takes essentially the form of a wall annular having a frustoconical part flared downstream.
  • a bushing 52 sometimes referred to as a “sliding bushing”
  • a fuel injection nose 54 forming the end of an injector arm 55
  • air intake swirlers 56, 58 and finally a bowl 60, sometimes referred to as “mixing bowl” or “pre-vaporization bowl”
  • mixing bowl or pre-vaporization bowl
  • the air intake swirlers 56, 58 are separated from each other by an annular wall which extends radially inwardly to form an airfoil.
  • internal deflection annular wall 62 also called “venturi”, having an internal profile of convergent-divergent shape.
  • the injection systems 42 have an essential role in the operation of the combustion chamber. Their effectiveness depends in particular on the quality of their air supply that comes directly from the diffuser.
  • the air intake swirlers 56, 58 contribute to the mixing of air and fuel.
  • Each swirler 56, 58 thus comprises an annular row of fins inclined so as to rotate the air flow 64 and thus improve the atomization of the jet of fuel from the fuel injection nose 54.
  • a part of this fuel flows in liquid form on the inner surface of the venturi 62 and is sheared by the swirling air at the downstream end of the venturi 62.
  • the purpose of the invention is to improve the performance of the injection systems of the turbomachines.
  • an air intake swirler for a turbomachine injection system, comprising an upstream wall and a downstream wall both of revolution about an axis of the air intake swirler, and fins distributed around the axis and connecting the upstream wall to the downstream wall so as to delimit between the upstream and downstream walls of the air inlet channels each having an inlet arranged on a radially outer side and an arranged outlet d a radially internal side.
  • the air intake swirler further comprises an aerodynamic deflector which extends the downstream wall radially outwards to a free end of the aerodynamic deflector, and which has a concavity facing upstream of so that the aerodynamic deflector extends radially facing the respective inputs of the air inlet channels.
  • the aerodynamic deflector makes it possible to channel the flow of air intended to enter the air intake ducts and thus to limit as much as possible the pressure losses of this air flow.
  • the aerodynamic deflector extends continuously 360 degrees about the axis, from the downstream wall to the free end of the aerodynamic deflector.
  • the aerodynamic deflector comprises recesses formed in the free end of the aerodynamic deflector so as to delimit between them teeth respectively arranged opposite the respective inlets of the air inlet channels. .
  • the upstream and downstream walls extend substantially orthogonal to the axis.
  • the aerodynamic deflector is preferably shaped so that at each point of the free end of the aerodynamic deflector, a circumferential plane tangential to a radially inner edge of the free end is substantially parallel to the axis of the spin air intake.
  • the invention also relates to an injection system for injecting a mixture of air and fuel into a turbomachine combustion chamber, comprising a sleeve for centering an injector, a bowl, and at least a first auger. air intake of the type described above arranged axially between the sleeve and the bowl.
  • the injection system further comprises a second air intake auger also of the type described above, arranged axially between the first air intake auger and the bowl.
  • downstream wall of the first air intake swirler is preferably the upstream wall of the second air intake swirler.
  • the injection system advantageously comprises an annular internal deflection wall having an internal profile of convergent-divergent shape, which extends the downstream wall of the first air intake auger towards the inside of the injection system.
  • the respective free ends of the respective aerodynamic baffles of the first and second air intake spindles extend substantially in the same transverse plane.
  • the upstream wall of the first air intake swirler advantageously extends in the same transverse plane.
  • the respective free ends of the respective aerodynamic baffles of the first and second air intake jibs can be offset relative to each other in the direction of the axis of the air intake swirler. .
  • each of the respective aerodynamic baffles of the first and second air intake booms is of revolution about the axis of the air intake swirler.
  • At least one of the respective aerodynamic baffles of the first and second air intake booms is shaped so that the radial extent of the inlet section of the air of the corresponding air intake swirl varies around the axis of the air intake swirl.
  • the invention also relates to an aircraft turbomachine, comprising a combustion chamber and at least one injection system of the type described above for supplying the combustion chamber with a mixture of air and fuel.
  • FIG. 1, already described, is a schematic view in axial section of a turbomachine of a known type
  • FIG. 2 is a schematic half-view in axial section of a combustion chamber of the turbomachine of FIG. 1;
  • FIG. 3, already described, is a diagrammatic view in axial section of an injection system of the combustion chamber of FIG. 2;
  • FIG. 4 is a schematic half-view in axial section of an injection system according to a first preferred embodiment of the invention;
  • FIG. 5 is a partial schematic view in perspective and in axial section of the injection system of FIG. 4;
  • FIGS. 6 and 7 are diagrammatic views, respectively in perspective and from the front, of an injection system according to a second preferred embodiment of the invention.
  • FIGS. 8 to 11 are schematic perspective views of injection systems according to other preferred embodiments of the invention.
  • FIGS. 4 and 5 illustrate an injection system 70 similar to the injection system 42 of FIG. 2 described above but comprising two air intake swirlers 100, 200 which are both in accordance with a first embodiment of FIG. preferred embodiment of the invention.
  • the injection system 70 is intended to equip an aircraft turbomachine of the same type as the turbomachine of FIG. 1 described above, or any other type of turbomachine.
  • the injection system 70 thus comprises a bushing 52 intended to receive a fuel injection nose, the air intake swirlers 100, 200, and a bowl 60.
  • the air intake swirlers 100, 200 are intended for injecting a swirling air flow into two internal annular spaces of the injection system separated from each other by an annular internal deflection wall 62 having an internal profile of convergent-divergent shape, also called "venturi", as explained above in relation to the injection system 42 of known type.
  • the first air intake swirler 100 also called “internal swirler”, has an upstream wall 102 and a downstream wall 104 which are both of revolution about an axis of the swirl which merges with the axis. injection 44 of the injection system.
  • the first air intake swirler 100 further comprises fins 106 distributed around the axis 44 and connecting the upstream wall 102 to the downstream wall 104 so as to delimit between the upstream and downstream walls of the air inlet channels 108.
  • Each air inlet channel 108 has an inlet 110 arranged on a radially outer side and an outlet 112 arranged on a radially inner side. More specifically, each inlet 110 is delimited between respective radially outer ends of the two consecutive fins 106 which delimit the corresponding air inlet channel 108. Similarly, each outlet 112 is delimited between respective radially inner ends of the two consecutive fins 106 which delimit the corresponding air inlet channel 108.
  • the 100 further comprises an aerodynamic deflector 120 which extends the downstream wall 104 radially outwardly to a free end 122 of the aerodynamic deflector 120.
  • the latter has a concavity facing upstream.
  • the aerodynamic deflector 120 thus extends radially opposite the respective inlets 110 of the air inlet channels 108.
  • the free end 122 of the aerodynamic deflector 120 is thus oriented generally towards the upstream and delimits a section of air intake of the first air intake swirler 100.
  • the aerodynamic deflector 120 thus makes it possible to channel the flow of air F1 entering the air intake channels 108 and thus to limit the pressure losses of this air flow as much as possible.
  • the aerodynamic deflector 120 extends continuously 360 degrees about the axis 44, from the downstream wall 104 to the free end 122 of the aerodynamic deflector 120.
  • the upstream and downstream walls 102 102 of the first air intake auger 100 extend orthogonally to the axis 44.
  • the auger is therefore of the radial type and thus has an optimal compactness in the direction axial.
  • the upstream and downstream walls 102 may be inclined with respect to the axis 44 without departing from the scope of the invention.
  • the aerodynamic deflector 120 has a curved shape from the downstream wall 104 and up to the free end 122.
  • the aerodynamic deflector 120 may advantageously be manufactured by means of an additive manufacturing process, for example of the selective laser melting (SLM) type.
  • SLM selective laser melting
  • the aerodynamic deflector 120 may have one or more curved axial sections and one or more cylindrical or frustoconical axial sections arranged axially end-to-end, without departing from the scope of the invention.
  • the aerodynamic baffle 120 may consist of a succession of axial sections of frustoconical shape, having respective black and white rims smaller than the axial section in question is remote from the downstream wall 104. Otherwise said aerodynamic deflector 120 may have a segmented curvature instead of a continuous curvature, without departing from the scope of the invention.
  • the aerodynamic deflector 120 is shaped so that at each point of its free end 122, a circumferential plane PI tangential to a radially inner edge 124 of the free end 122 is parallel to the axis 44 of the first air intake swirler 100.
  • the aerodynamic deflector 120 is of revolution about the axis 44.
  • the aerodynamic deflector 120 thus delimits an air inlet section of the first air intake auger 100, of constant radial extent SI around of axis 44.
  • the air inlet section of the first air intake swirler 100 is greater than or equal to three times the sum of respective passage sections of the air intake channels. air 108 of the first air intake swirler 100.
  • the aerodynamic deflector 120 may have an irregular shape around the axis 44 so as to adapt the radial extent SI of the air inlet section to the pressure irregularities of the air flow 46 from the diffuser 49 turbomachine, as will become clearer in what follows.
  • the second air intake swirler 200 which is arranged axially between the first air intake swirler 100 and the bowl 60, has a configuration similar to that of the first air intake swirler 100.
  • the second air intake swirler 200 also called “external swirler”
  • has an upstream wall 202 which is the downstream wall 104 of the first air intake swirler 100, and a downstream wall 204.
  • the two walls 202, 204 are of revolution about the axis of the swirler 200 which merges with the injection axis 44 of the injection system.
  • the second air intake swirler 200 further comprises fins 206 distributed around the axis 44 and connecting the upstream wall 202 to the downstream wall 204 so as to delimit between the upstream and downstream walls of the inlet channels. 208.
  • Each air inlet channel 208 has an inlet 210 arranged on a radially outer side and an outlet 212 arranged on a radially inner side.
  • each inlet 210 is delimited between respective radially outer ends of the two consecutive fins 206 which delimit the corresponding air inlet channel 208.
  • each outlet 212 is delimited between respective radially inner ends of the two consecutive fins 206 which delimit the corresponding air inlet channel 208.
  • the second air intake swirler 200 includes an aerodynamic deflector 220 which extends the downstream wall 204 radially outwardly to a free end 222 of the aerodynamic deflector 220 oriented generally towards the upstream and delimiting an air intake section of the second air intake swirler 200.
  • the aerodynamic deflector 220 has characteristics similar to those of the aerodynamic deflector 120 of the first air intake swirler 100 described above, and thus makes it possible to channel the air flow F 2 entering the inlet channels of air 208.
  • a circumferential plane P2 tangential to a radially inner edge 224 of the free end 222 is parallel to the axis 44 of the second air intake swirler 200 (FIG. 4).
  • the respective free ends 122, 222 of the respective aerodynamic deflectors 120, 220 of the first and second air intake auger 100, 200 extend substantially in the same transverse plane P3, in which also the upstream wall 102 of the first air intake auger 100.
  • the air inlet sections delimited respectively by the aerodynamic deflectors 120 and 220 are defined substantially in the transverse plane P3.
  • annular internal deflection wall 62 extends in the extension of the downstream wall 104 of the first air intake auger 100 towards the inside of the injection system 70.
  • FIGS 6 and 7 illustrate an injection system 70A substantially similar to the injection system 70 described above, but wherein the first and second air intake auger 100A, 200A differ from the auger 100, 200 described herein. above, because each of their respective aerodynamic baffles 120A, 220A has recesses 126A, 226A formed in its free end 122A, 222A. These recesses 126A, 226A delimit between them teeth 128A, 228A respectively arranged opposite the respective inlets 110, 210 of the air inlet channels 108, 208.
  • the teeth 128A of the aerodynamic deflector 120A of the first air intake swirler 100A are advantageously angularly offset relative to the teeth 228A of the aerodynamic deflector 220A of the second air intake swirler 200A, so that each tooth 128A is arranged axially facing a recess 226A corresponding.
  • the recesses 126A of the aerodynamic deflector 120A of the first air intake swirler 100A thus allow to pass an excess of air towards the second air intake swirler 200A.
  • an injection system according to the invention may comprise a single air intake swirler, or a first air intake swirler according to the second embodiment described above and a second swirl of air. air intake according to the first embodiment described above, or vice versa.
  • FIG. 8 illustrates an injection system 70B substantially similar to the injection system 70 described above, but in which the aerodynamic deflector 220B of the second air intake swirler 200B is shaped such that the radial extent S2 of the air inlet section of said air intake swirler 200B varies about the axis 44.
  • the aerodynamic deflector 220B is in particular shaped so that its free end 222B is circular in shape and eccentric with respect to the axis 44.
  • the free end 222B is, for example, eccentric from the axis 44 in a direction radially outwardly with respect to the axis 28 of the combustion chamber (visible in Figure 2).
  • the radial extent S2 preferably takes a minimum value S2min equal to half of a nominal value corresponding to the radial extent that would have an equivalent section but constant radial extent (as in Figures 4 and 5).
  • the radial extent S2 preferably takes a maximum value S2max equal to three times the nominal value.
  • the variability of the radial extent S2 of the air inlet section can be obtained by a non-axisymmetric shape of the aerodynamic deflector 220B, for example an off-center oval shape.
  • the aerodynamic deflector of the first air intake swirler may adopt a configuration such that the radial extent SI of the air intake section of the first air intake swirler varies around axis 44.
  • the variability of the radial extent of the air intake section of at least one of the intake air auger makes it possible to optimize the homogeneity of the air supply of this twist with respect to various design parameters of the turbomachine, including in particular the possible heterogeneity of the flow at the output of the compressor 16, the wake induced by the injector arm 55 in the air flow supplying the fuel system. injection 70B, and the influence of the annular protective fairing 45 on the aforementioned air flow.
  • FIGS. 9 and 10 respectively illustrate injection systems 70C and 70D that are generally similar to the injection system 70 described above, but in which the respective free ends of the respective aerodynamic deflectors of the first and second air intake gears are offset relative to each other in the direction of the axis 44.
  • the aerodynamic deflector 120C of the first air intake swirler 100C extends upstream beyond the free end 222 of the aerodynamic deflector 220 of the second air intake swirler 200.
  • the aerodynamic deflector 220D of the second air intake swirler 200D extends upstream beyond the free end 122 of the aerodynamic deflector 120 of the first air intake swirler 100.
  • FIG. 11 illustrates an injection system 70E similar to that of FIG. 10, except that the aerodynamic deflector 220E of the second air intake swirler 200E has an oval or oblong free end 222E, extending for example from an annular portion of circular section 223E of the deflector.
  • the major axis 230E of the free end 222E is oriented in a circumferential direction defined with respect to the axis 28 of the combustion chamber (visible in Figure 2).
  • the shape of the free end 222E makes it possible to obtain a variability of the radial extent of the air inlet section of the second air intake swirler 200E about the axis 44, in a similar way to what has been described with reference to FIG.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Nozzles (AREA)
  • Cyclones (AREA)
  • Jet Pumps And Other Pumps (AREA)

Abstract

Une vrille d'admission d'air (100, 200) pour système d'injection (70) de turbomachine comprend une paroi amont (102, 202) et une paroi aval (104, 204), toutes deux de révolution autour d'un axe (44) de la vrille d'admission d'air, et des ailettes (106, 206) réparties autour de l'axe (44) et reliant la paroi amont à la paroi aval de manière à délimiter entre les parois amont et aval des canaux d'entrée d'air (108, 208) présentant chacun une entrée (110, 210) et une sortie (112, 212).La vrille comporte deux déflecteurs aérodynamiques (120, 220) prolongeant respectivement les parois aval (104, 204) radialement vers l'extérieur et présentant une concavité tournée vers l'amont. Les déflecteurs aérodynamiques s'étendent en regard radialement des entrées (110, 210) respectives des canaux d'entrée d'air et permettent ainsi de limiter la perte de charge de l'air alimentant les canaux d'entrée d'air (108, 208).

Description

VRILLE D'ADMISSION D'AIR POUR SYSTÈME D'INJECTION DE TURBOMACHINE COMPRENANT UN DÉFLECTEUR AÉRODYNAMIQUE À SON ENTRÉE
DESCRIPTION DOMAINE TECHNIQUE
La présente invention concerne une vrille d'admission d'air destinée à faire partie d'un système d'injection d'air et de carburant dans une turbomachine, ainsi qu'un système d'injection pour turbomachine comprenant au moins une telle vrille d'admission d'air, et une turbomachine pour aéronef comprenant un tel système d'injection.
ÉTAT DE LA TECHNIQUE ANTÉRIEURE
La figure 1 annexée illustre une turbomachine 10 pour aéronef d'un type connu, par exemple un turboréacteur à double flux, comportant de manière générale une soufflante 12 destinée à l'aspiration d'un flux d'air se divisant en aval de la soufflante en un flux primaire alimentant un cœur de la turbomachine et un flux secondaire contournant ce cœur. Le cœur de la turbomachine comporte, de manière générale, un compresseur basse pression 14, un compresseur haute pression 16, une chambre de combustion 18, une turbine haute pression 20 et une turbine basse pression 22. La turbomachine est carénée par une nacelle 24 entourant l'espace d'écoulement 26 du flux secondaire. Les rotors de la turbomachine sont montés rotatifs autour d'un axe longitudinal 28 de la turbomachine.
La figure 2 représente la chambre de combustion 18 de la turbomachine de la figure 1. De manière classique, cette chambre de combustion, qui est de type annulaire, comprend deux parois annulaires coaxiales, respectivement radialement interne 32 et radialement externe 34, qui s'étendent de l'amont vers l'aval, selon le sens 36 d'écoulement du flux primaire de gaz dans la turbomachine, autour de l'axe de la chambre de combustion qui se confond avec l'axe 28 de la turbomachine. Ces parois annulaires interne 32 et externe 34 sont reliées entre elles à leur extrémité amont par une paroi annulaire de fond de chambre 40 qui s'étend sensiblement radialement autour de l'axe 28. Cette paroi annulaire de fond de chambre 40 est équipée de systèmes d'injection 42 répartis autour de l'axe 28 pour permettre, chacun, l'injection d'un prémélange d'air et de carburant centré selon un axe d'injection 44 respectif. Dans l'ensemble de la présente description, les directions axiale et radiale sont définies par référence à l'axe d'injection 44. De plus, un plan transversal est un plan orthogonal à l'axe d'injection 44.
La chambre de combustion comporte en général un carénage annulaire de protection 45 s'étendant en regard d'une face amont de la paroi de fond de chambre 40 et comportant des orifices de passage d'injecteurs et d'admission d'air.
En fonctionnement, une partie 46 d'un flux d'air 48 issu d'un diffuseur 49 et provenant du compresseur 16 alimente les systèmes d'injection 42 tandis qu'une autre partie 50 de ce flux d'air contourne la chambre de combustion en s'écoulant vers l'aval le long des parois coaxiales 32 et 34 de cette chambre et permet notamment l'alimentation d'orifices d'entrée d'air prévus au sein de ces parois 32 et 34.
Comme le montre la figure 3, chaque système d'injection 42 comporte de manière générale une douille 52, parfois dénommée « traversée coulissante », dans laquelle un nez d'injection de carburant 54 formant l'extrémité d'un bras d'injecteur 55 est monté, ainsi qu'une ou plusieurs vrilles d'admission d'air 56, 58, et enfin un bol 60, parfois dénommé « bol mélangeur » ou « bol de pré-vaporisation », qui prend essentiellement la forme d'une paroi annulaire ayant une pa rtie tronconique évasée vers l'aval. Ces éléments sont centrés par rapport à l'axe d'injection 44.
Les vrilles d'admission d'air 56, 58 (également dénommées « swirlers » d'après la terminologie anglo-saxonne) sont séparées l'une de l'autre par une paroi annulaire qui se prolonge radialement vers l'intérieur pour former une paroi annulaire de déflection interne 62, également dénommée « venturi », ayant un profil interne de forme convergente-divergente.
Les systèmes d'injection 42 ont un rôle essentiel dans le fonctionnement de la chambre de combustion. Leur efficacité dépend notamment de la qualité de leur alimentation en air qui provient directement du diffuseur. À cet égard, les vrilles d'admission d'air 56, 58 contribuent au mélange de l'air et du carburant. Chaque vrille 56, 58 comporte ainsi une rangée annulaire d'ailettes inclinées de manière à mettre en rotation l'écoulement d'air 64 et améliorer ainsi l'atomisation du jet de carburant provenant du nez d'injection de carburant 54. En particulier, une partie de ce carburant ruisselle sous forme liquide sur la surface interne du venturi 62 et est cisaillé par l'air tourbillonnant au niveau de l'extrémité aval du venturi 62.
EXPOSÉ DE L'INVENTION
L'invention a pour but d'améliorer les performances des systèmes d'injection des turbomachines.
Elle propose à cet effet une vrille d'admission d'air pour système d'injection de turbomachine, comprenant une paroi amont et une paroi aval toutes deux de révolution autour d'un axe de la vrille d'admission d'air, et des ailettes réparties autour de l'axe et reliant la paroi amont à la paroi aval de manière à délimiter entre les parois amont et aval des canaux d'entrée d'air présentant chacun une entrée agencée d'un côté radialement externe et une sortie agencée d'un côté radialement interne.
Selon l'invention, la vrille d'admission d'air comporte en outre un déflecteur aérodynamique qui prolonge la paroi aval radialement vers l'extérieur jusqu'à une extrémité libre du déflecteur aérodynamique, et qui présente une concavité tournée vers l'amont de sorte que le déflecteur aérodynamique s'étend en regard radialement des entrées respectives des canaux d'entrée d'air.
D'une manière générale, le déflecteur aérodynamique permet de canaliser le flux d'air destiné à entrer dans les canaux d'entrée d'air et donc de limiter au mieux les pertes de charges de ce flux d'air.
II en résulte une amélioration des performances générales d'une chambre de combustion de turbomachine équipée d'un système d'injection comprenant une telle vrille d'admission d'air, en particulier en termes de cycle thermodynamique global. Dans un premier mode de réalisation préféré de l'invention, le déflecteur aérodynamique s'étend continûment sur 360 degrés autour de l'axe, depuis la paroi aval jusqu'à l'extrémité libre du déflecteur aérodynamique.
Dans un deuxième mode de réalisation préféré de l'invention, le déflecteur aérodynamique comporte des évidements formés dans l'extrémité libre du déflecteur aérodynamique de manière à délimiter entre eux des dents respectivement agencées en regard des entrées respectives des canaux d'entrée d'air.
De préférence, les parois amont et aval s'étendent sensiblement orthogonalement à l'axe.
Par ailleurs, le déflecteur aérodynamique est de préférence conformé de sorte qu'en chaque point de l'extrémité libre du déflecteur aérodynamique, un plan circonférentiel tangent à un bord radialement interne de l'extrémité libre est sensiblement parallèle à l'axe de la vrille d'admission d'air.
L'invention concerne également un système d'injection pour injecter un mélange d'air et de carburant dans une chambre de combustion de turbomachine, comprenant une douille pour le centrage d'un injecteur, un bol, et au moins une première vrille d'admission d'air du type décrit ci-dessus agencée axialement entre la douille et le bol.
De préférence, le système d'injection comprend en outre une deuxième vrille d'admission d'air également du type décrit ci-dessus, agencée axialement entre la première vrille d'admission d'air et le bol.
Dans ce cas, la paroi aval de la première vrille d'admission d'air est de préférence la paroi amont de la deuxième vrille d'admission d'air.
De plus, le système d'injection comprend avantageusement une paroi annulaire de déflection interne ayant un profil interne de forme convergente-divergente, qui prolonge la paroi aval de la première vrille d'admission d'air vers l'intérieur du système d'injection.
De préférence, les extrémités libres respectives des déflecteurs aérodynamiques respectifs des première et deuxième vrilles d'admission d'air s'étendent sensiblement dans un même plan transversal. Dans ce cas, la paroi amont de la première vrille d'admission d'air s'étend avantageusement dans le même plan transversal.
En variante, les extrémités libres respectives des déflecteurs aérodynamiques respectifs des première et deuxième vrilles d'admission d'air peuvent être décalées l'une par rapport à l'autre selon la direction de l'axe de la vrille d'admission d'air.
Dans des modes de réalisation préférés de l'invention, chacun des déflecteurs aérodynamiques respectifs des première et deuxième vrilles d'admission d'air est de révolution autour de l'axe de la vrille d'admission d'air.
Dans d'autres modes de réalisation préférés de l'invention, l'un au moins des déflecteurs aérodynamiques respectifs des première et deuxième vrilles d'admission d'air est conformé de sorte que l'étendue radiale de la section d'entrée d'air de la vrille d'admission d'air correspondante varie autour de l'axe de la vrille d'admission d'air.
L'invention concerne encore une turbomachine pour aéronef, comprenant une chambre de combustion et au moins un système d'injection du type décrit ci-dessus pour alimenter la chambre de combustion en un mélange d'air et de carburant.
BRÈVE DESCRIPTION DES DESSINS L'invention sera mieux comprise, et d'autres détails, avantages et caractéristiques de celle-ci apparaîtront à la lecture de la description suivante faite à titre d'exemple non limitatif et en référence aux dessins annexés dans lesquels :
- la figure 1, déjà décrite, est une vue schématique en section axiale d'une turbomachine d'un type connu ;
- la figure 2, déjà décrite, est une demi-vue schématique en section axiale d'une chambre de combustion de la turbomachine de la figure 1 ;
- la figure 3, déjà décrite, est une vue schématique en section axiale d'un système d'injection de la chambre de combustion de la figure 2 ; - la figure 4 est une demi-vue schématique en section axiale d'un système d'injection selon un premier mode de réalisation préféré de l'invention ;
- la figure 5 est une vue schématique partielle en perspective et en section axiale du système d'injection de la figure 4 ;
- les figures 6 et 7 sont des vue schématiques, respectivement en perspective et de face, d'un système d'injection selon un deuxième mode de réalisation préféré de l'invention ;
- les figures 8 à 11 sont des vue schématiques en perspective de systèmes d'injection selon d'autres modes de réalisation préférés de l'invention.
Dans l'ensemble de ces figures, des références identiques peuvent désigner des éléments identiques ou analogues.
EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PRÉFÉRÉS
Les figures 4 et 5 illustrent un système d'injection 70 semblable au système d'injection 42 de la figure 2 décrit ci-dessus mais comprenant deux vrilles d'admission d'air 100, 200 qui sont toutes deux conformes à un premier mode de réalisation préféré de l'invention. Le système d'injection 70 est destiné à équiper une turbomachine pour aéronef du même type que la turbomachine de la figure 1 décrite ci- dessus, ou tout autre type de turbomachine.
Le système d'injection 70 comprend ainsi une douille 52 destinée à recevoir un nez d'injection de carburant, les vrilles d'admission d'air 100, 200, et un bol 60. Les vrilles d'admission d'air 100, 200 sont destinées à l'injection d'un flux d'air tourbillonnant dans deux espaces annulaires internes du système d'injection séparés l'un de l'autre par une paroi annulaire de déflection interne 62 ayant un profil interne de forme convergente-divergente, également dénommée « venturi », comme expliqué ci- dessus en relation avec le système d'injection 42 de type connu.
La première vrille d'admission d'air 100, également dénommée « vrille interne », comporte une paroi amont 102 et une paroi aval 104 qui sont toutes les deux de révolution autour d'un axe de la vrille qui se confond avec l'axe d'injection 44 du système d'injection. La première vrille d'admission d'air 100 comporte en outre des ailettes 106 réparties autour de l'axe 44 et reliant la paroi amont 102 à la paroi aval 104 de manière à délimiter entre les parois amont et aval des canaux d'entrée d'air 108. Chaque canal d'entrée d'air 108 présente une entrée 110 agencée d'un côté radialement externe et une sortie 112 agencée d'un côté radialement interne. Plus précisément, chaque entrée 110 est délimitée entre des extrémités radialement externes respectives des deux ailettes 106 consécutives qui délimitent le canal d'entrée d'air 108 correspondant. De manière analogue, chaque sortie 112 est délimitée entre des extrémités radialement internes respectives des deux ailettes 106 consécutives qui délimitent le canal d'entrée d'air 108 correspondant.
Selon une particularité de l'invention, la première vrille d'admission d'air
100 comporte en outre un déflecteur aérodynamique 120 qui prolonge la paroi aval 104 radialement vers l'extérieur jusqu'à une extrémité libre 122 du déflecteur aérodynamique 120. Ce dernier présente une concavité tournée vers l'amont. Le déflecteur aérodynamique 120 s'étend ainsi en regard radialement des entrées 110 respectives des canaux d'entrée d'air 108. L'extrémité libre 122 du déflecteur aérodynamique 120 est donc orientée globalement en direction de l'amont et délimite une section d'entrée d'air de la première vrille d'admission d'air 100.
D'une manière générale, le déflecteur aérodynamique 120 permet ainsi de canaliser le flux d'air Fl entrant dans les canaux d'entrée d'air 108 et donc de limiter au mieux les pertes de charges de ce flux d'air.
Dans le premier mode de réalisation préféré de l'invention illustré sur les figures 4 et 5, le déflecteur aérodynamique 120 s'étend continûment sur 360 degrés autour de l'axe 44, depuis la paroi aval 104 jusqu'à l'extrémité libre 122 du déflecteur aérodynamique 120.
Dans l'exemple illustré, les parois amont 102 et aval 104 de la première vrille d'admission d'air 100 s'étendent orthogonalement à l'axe 44. La vrille est donc du type radial et présente ainsi une compacité optimale selon la direction axiale.
En variante, les parois amont 102 et aval 104 peuvent être inclinées par rapport à l'axe 44, sans sortir du cadre de l'invention. De plus, dans l'exemple illustré, le déflecteur aérodynamique 120 présente une forme incurvée à partir de la paroi aval 104 et jusqu'à l'extrémité libre 122.
Le déflecteur aérodynamique 120 peut être avantageusement fabriqué au moyen d'un procédé de fabrication additive, par exemple du type fusion sélective par laser (SLM).
En variante, le déflecteur aérodynamique 120 peut présenter une ou plusieurs sections axiales incurvées et une ou plusieurs sections axiales cylindriques ou tronconiques agencées axialement bout-à-bout, sans sortir du cadre de l'invention.
En variante encore, le déflecteur aérodynamique 120 peut être constitué d'une succession de sections axiales de forme tronconique, ayant des a ngles au som met respectifs d'auta nt plus petits que la section axiale considérée est éloignée de la paroi aval 104. Autrement dit, le déflecteur aérodynamique 120 peut présenter une courbure segmentée au lieu d'une courbure continue, sans sortir du cadre de l'invention.
Par ailleurs, dans l'exemple illustré, le déflecteur aérodynamique 120 est conformé de sorte qu'en chaque point de son extrémité libre 122, un plan circonférentiel PI tangent à un bord radialement interne 124 de l'extrémité libre 122 est parallèle à l'axe 44 de la première vrille d'admission d'air 100.
En outre, le déflecteur aérodynamique 120 est de révolution autour de l'axe 44. Le déflecteur aérodynamique 120 délimite ainsi une section d'entrée d'air de la première vrille d'admission d'air 100, d'étendue radiale SI constante autour de l'axe 44.
Dans des modes de réalisation préférés de l'invention, la section d'entrée d'air de la première vrille d'admission d'air 100 est supérieure ou égale au triple de la somme de sections de passage respectives des canaux d'entrée d'air 108 de la première vrille d'admission d'air 100.
En variante, le déflecteur aérodynamique 120 peut présenter une forme irrégulière autour de l'axe 44 de manière à adapter l'étendue radiale SI de la section d'entrée d'air aux irrégularités de pression du flux d'air 46 issu du diffuseur 49 de la turbomachine, comme cela apparaîtra plus clairement dans ce qui suit. La deuxième vrille d'admission d'air 200, qui est agencée axialement entre la première vrille d'admission d'air 100 et le bol 60, présente une configuration analogue à celle de la première vrille d'admission d'air 100.
En particulier, la deuxième vrille d'admission d'air 200, également dénommée « vrille externe », comporte une paroi amont 202, qui est la paroi aval 104 de la première vrille d'admission d'air 100, et une paroi aval 204. Les deux parois 202, 204 sont de révolution autour de l'axe de la vrille 200 qui se confond avec l'axe d'injection 44 du système d'injection. La deuxième vrille d'admission d'air 200 comporte en outre des ailettes 206 réparties autour de l'axe 44 et reliant la paroi amont 202 à la paroi aval 204 de manière à délimiter entre les parois amont et aval des canaux d'entrée d'air 208. Chaque canal d'entrée d'air 208 présente une entrée 210 agencée d'un côté radialement externe et une sortie 212 agencée d'un côté radialement interne. Plus précisément, chaque entrée 210 est délimitée entre des extrémités radialement externes respectives des deux ailettes 206 consécutives qui délimitent le canal d'entrée d'air 208 correspondant. De manière analogue, chaque sortie 212 est délimitée entre des extrémités radialement internes respectives des deux ailettes 206 consécutives qui délimitent le canal d'entrée d'air 208 correspondant.
De plus, la deuxième vrille d'admission d'air 200 comporte un déflecteur aérodynamique 220 qui prolonge la paroi aval 204 radialement vers l'extérieur jusqu'à une extrémité libre 222 du déflecteur aérodynamique 220 orientée globalement en direction de l'amont et délimitant une section d'entrée d'air de la deuxième vrille d'admission d'air 200.
Le déflecteur aérodynamique 220 présente des caractéristiques analogues à celles du déflecteur aérodynamique 120 de la première vrille d'admission d'air 100 décrit ci-dessus, et permet ainsi de canaliser le flux d'air F2 entrant dans les canaux d'entrée d'air 208.
En particulier, un plan circonférentiel P2 tangent à un bord radialement interne 224 de l'extrémité libre 222 est parallèle à l'axe 44 de la deuxième vrille d'admission d'air 200 (figure 4). Dans l'exemple illustré, les extrémités libres 122, 222 respectives des déflecteurs aérodynamiques 120, 220 respectifs des première et deuxième vrilles d'admission d'air 100, 200 s'étendent sensiblement dans un même plan transversal P3, dans lequel s'étend également la paroi amont 102 de la première vrille d'admission d'air 100. Ainsi, les sections d'entrées d'air délimitées respectivement par les déflecteurs aérodynamiques 120 et 220 sont définies sensiblement dans le plan transversal P3.
Par ailleurs, la paroi annulaire de déflection interne 62 s'étend dans le prolongement de la paroi aval 104 de la première vrille d'admission d'air 100 vers l'intérieur du système d'injection 70.
Les figures 6 et 7 illustrent un système d'injection 70A globalement semblable au système d'injection 70 décrit ci-dessus, mais dans lequel les première et deuxième vrilles d'admission d'air 100A, 200A diffèrent des vrilles 100, 200 décrites ci- dessus, du fait que chacun de leurs déflecteurs aérodynamiques 120A, 220A respectifs comporte des évidements 126A, 226A formés dans son extrémité libre 122A, 222A. Ces évidements 126A, 226A délimitent entre eux des dents 128A, 228A respectivement agencées en regard des entrées 110, 210 respectives des canaux d'entrée d'air 108, 208.
Les dents 128A du déflecteur aérodynamique 120A de la première vrille d'admission d'air 100A sont avantageusement décalées angulairement par rapport aux dents 228A du déflecteur aérodynamique 220A de la deuxième vrille d'admission d'air 200A, de telle sorte que chaque dent 128A soit agencée en regard axialement d'un évidement 226A correspondant.
Les évidements 126A du déflecteur aérodynamique 120A de la première vrille d'admission d'air 100A permettent ainsi de laisser passer un surcroît d'air en direction de la deuxième vrille d'admission d'air 200A.
En variante, un système d'injection selon l'invention peut comporter une unique vrille d'admission d'air, ou encore une première vrille d'admission d'air conforme au deuxième mode de réalisation décrit ci-dessus et une deuxième vrille d'admission d'air conforme au premier mode de réalisation décrit ci-dessus, ou l'inverse.
La figure 8 illustre un système d'injection 70B globalement semblable au système d'injection 70 décrit ci-dessus, mais dans lequel le déflecteur aérodynamique 220B de la deuxième vrille d'admission d'air 200B est conformé de sorte que l'étendue radiale S2 de la section d'entrée d'air de ladite vrille d'admission d'air 200B varie autour de l'axe 44.
Dans l'exemple illustré sur la figure 8, le déflecteur aérodynamique 220B est en particulier conformé de sorte que son extrémité libre 222B soit de forme circulaire et soit excentrée par rapport à l'axe 44. L'extrémité libre 222B est par exemple excentrée de l'axe 44 dans une direction orientée radialement vers l'extérieur par rapport à l'axe 28 de la chambre de combustion (visible sur la figure 2).
L'étendue radiale S2 prend de préférence une valeur minimale S2min égale à la moitié d'une valeur nominale correspondant à l'étendue radiale qu'aurait une section équivalente mais d'étendue radiale constante (comme sur les figures 4 et 5). De plus, l'étendue radiale S2 prend de préférence une valeur maximale S2max égale au triple de la valeur nominale.
En variante, la variabilité de l'étendue radiale S2 de la section d'entrée d'air peut être obtenue par une forme non axisymétrique du déflecteur aérodynamique 220B, par exemple une forme ovale excentrée.
En variante ou de manière complémentaire, le déflecteur aérodynamique de la première vrille d'admission d'air peut adopter une configuration telle que l'étendue radiale SI de la section d'entrée d'air de la première vrille d'admission d'air varie autour de l'axe 44.
D'une manière générale, la variabilité de l'étendue radiale de la section d'entrée d'air de l'une au moins des vrilles d'admission d'air permet d'optimiser l'homogénéité de l'alimentation en air de cette vrille eu égard à divers paramètres de conception de la turbomachine, dont en particulier l'hétérogénéité éventuelle de l'écoulement en sortie de compresseur 16, le sillage induit par le bras d'injecteur 55 dans le flux d'air alimentant le système d'injection 70B, et l'influence du carénage annulaire de protection 45 sur le flux d'air précité.
D'autres variantes permettent d'optimiser l'alimentation en air des vrilles d'admission d'air en fonction de tels paramètres, comme le montrent les figures 9 à 11. Les figures 9 et 10 illustrent respectivement des systèmes d'injection 70C et 70D globalement semblables au système d'injection 70 décrit ci-dessus, mais dans lesquels les extrémités libres respectives des déflecteurs aérodynamiques respectifs des première et deuxième vrilles d'admission d'air sont décalées l'une par rapport à l'autre selon la direction de l'axe 44.
Ainsi, dans le mode de réalisation de la figure 9, le déflecteur aérodynamique 120C de la première vrille d'admission d'air 100C s'étend vers l'amont au- delà de l'extrémité libre 222 du déflecteur aérodynamique 220 de la deuxième vrille d'admission d'air 200.
À l'inverse, dans le mode de réalisation de la figure 10, le déflecteur aérodynamique 220D de la deuxième vrille d'admission d'air 200D s'étend vers l'amont au-delà de l'extrémité libre 122 du déflecteur aérodynamique 120 de la première vrille d'admission d'air 100.
Enfin, la figure 11 illustre un système d'injection 70E semblable à celui de la figure 10, sauf en ce que le déflecteur aérodynamique 220E de la deuxième vrille d'admission d'air 200E présente une extrémité libre 222E ovale ou oblongue, s'étendant par exemple à partir d'une portion annulaire de section circulaire 223E du déflecteur.
Dans l'exemple illustré, le grand-axe 230E de l'extrémité libre 222E est orienté selon une direction circonférentielle définie par rapport à l'axe 28 de la chambre de combustion (visible sur la figure 2).
La forme de l'extrémité libre 222E permet d'obtenir une variabilité de l'étendue radiale de la section d'entrée d'air de la deuxième vrille d'admission d'air 200E autour de l'axe 44, de manière analogue à ce qui a été décrit en référence à la figure 8.

Claims

REVENDICATIONS
1. Système d'injection (70 ; 70A ; 70B ; 70C ; 70D ; 70E) pour injecter un mélange d'air et de carburant dans une chambre de combustion de turbomachine, comprenant une douille (52) pour le centrage d'un injecteur, un bol (60), une première vrille d'admission d'air (100 ; 100A ; 100C) agencée axialement entre la douille (52) et le bol (60), et une deuxième vrille d'admission d'air (200 ; 200A ; 200B ; 200D ; 200E) agencée axialement entre la première vrille d'admission d'air (100 ; 100A ; 100C) et le bol (60), chacune des vrilles d'admission d'air comprenant une paroi amont (102, 202) et une paroi aval (104, 204) toutes deux de révolution autour d'un axe (44) de la vrille d'admission d'air, et des ailettes (106, 206) réparties autour de l'axe (44) et reliant la paroi amont à la paroi aval de manière à délimiter entre les parois amont et aval des canaux d'entrée d'air (108, 208) présentant chacun une entrée (110, 210) agencée d'un côté radialement externe et une sortie (112, 212) agencée d'un côté radialement interne, dans lequel la paroi aval (104) de la première vrille d'admission d'air (100 ; 100A ; 100C) est la paroi amont (202) de la deuxième vrille d'admission d'air (200 ; 200A ; 200B ; 200D ; 200E), caractérisé en ce que chacune des vrilles d'admission d'air comporte en outre un déflecteur aérodynamique (120, 220 ; 120A, 220A ; 120, 220B ; 120C , 220 ; 120, 220D ; 120, 220E) respectif qui prolonge la paroi aval (104, 204) de la vrille d'admission d'air correspondante radialement vers l'extérieur et se termine par une extrémité libre (122, 222 ; 122A, 222A ; 122, 222B ; 122, 222E), chaque déflecteur aérodynamique respectif présentant une concavité tournée vers l'amont de sorte que le déflecteur aérodynamique s'étend en regard radialement des entrées (110, 210) respectives des canaux d'entrée d'air de la vrille d'admission d'air correspondante.
2. Système d'injection selon la revendication 1, dans lequel le déflecteur aérodynamique (120, 220 ; 120, 220B ; 120C , 220 ; 120, 220D ; 120, 220E) d'au moins l'une des première et deuxième vrilles d'admission d'air (100, 200 ; 100, 200B ; 100C, 200 ; 100, 200D ; 100, 200E) s'étend continûment sur 360 degrés autour de l'axe (44), depuis la paroi aval (104, 204) jusqu'à l'extrémité libre (122, 222 ; 122, 222B ; 122, 222E) du déflecteur aérodynamique.
3. Système d'injection selon la revendication 1, dans lequel le déflecteur aérodynamique (120A, 220A) d'au moins l'une des première et deuxième vrilles d'admission d'air (100A, 200A) comporte des évidements (126A, 226A) formés dans l'extrémité libre (122A, 222A) du déflecteur aérodynamique de manière à délimiter entre eux des dents (128A, 228A) respectivement agencées en regard des entrées (110, 210) respectives des canaux d'entrée d'air de la vrille d'admission d'air (100A, 200A) correspondante.
4. Système d'injection selon l'une quelconque des revendications 1 à
3, dans lequel les parois amont (102, 202) et aval (104, 204) de chacune des première et deuxième vrilles d'admission d'air (100, 200 ; 100A, 200A ; 100, 200B ; 100C, 200 ; 100, 200D ; 100, 200E) s'étendent sensiblement orthogonalement à l'axe (44).
5. Système d'injection selon l'une quelconque des revendications 1 à
4, dans lequel le déflecteur aérodynamique (120, 220 ; 120A, 220A ; 120, 220B ; 120C , 220 ; 120, 220D ; 120, 220E) de chacune des première et deuxième vrilles d'admission d'air (100, 200 ; 100A, 200A ; 100, 200B ; 100C, 200 ; 100, 200D ; 100, 200E) est conformé de sorte qu'en chaque point de l'extrémité libre (122, 222) du déflecteur aérodynamique, un plan circonférentiel (PI, P2) tangent à un bord radialement interne (124, 224) de l'extrémité libre est sensiblement parallèle à l'axe (44).
6. Système d'injection selon l'une quelconque des revendications 1 à
5, comprenant en outre une paroi annulaire de déflection interne (62) ayant un profil interne de forme convergente-divergente, qui prolonge la paroi aval (104) de la première vrille d'admission d'air vers l'intérieur du système d'injection.
7. Système d'injection selon l'une quelconque des revendications 1 à 6, dans lequel les extrémités libres respectives (122, 222 ; 122A, 222A ; 122, 222B) des déflecteurs aérodynamiques respectifs (120, 220 ; 120A, 220A ; 120, 220B) des première et deuxième vrilles d'admission d'air (100, 200 ; 100A, 200A ; 100, 200B) s'étendent sensiblement dans un même plan transversal (P3).
8. Système d'injection selon la revendication 7, dans lequel la paroi amont (102) de la première vrille d'admission d'air (100 ; 100A) s'étend dans le même plan transversal (P3).
9. Système d'injection selon l'une quelconque des revendications 1 à 6, dans lequel les extrémités libres respectives (122, 222) des déflecteurs aérodynamiques respectifs (120C, 220 ; 120, 220D) des première et deuxième vrilles d'admission d'air (100C, 200 ; 100, 200D) sont décalées l'une par rapport à l'autre selon la direction de l'axe (44).
10. Système d'injection selon l'une quelconque des revendications 1 à 9, dans lequel chacun des déflecteurs aérodynamiques respectifs (120, 220 ; 120C, 220 ; 120, 220D) des première et deuxième vrilles d'admission d'air (100, 200 ; 100C, 200 ; 100, 200D) est de révolution autour de l'axe (44).
11. Système d'injection selon l'une quelconque des revendications 1 à 9, dans lequel l'un au moins des déflecteurs aérodynamiques respectifs (220B ; 220E) des première et deuxième vrilles d'admission d'air est conformé de sorte que l'étendue radiale (S2) de la section d'entrée d'air de la vrille d'admission d'air correspondante (200B ; 200E) varie autour de l'axe (44).
12. Turbomachine pour aéronef, comprenant une chambre de combustion et au moins un système d'injection (70, 70A) selon l'une quelconque des revendications 1 à 11 pour alimenter la chambre de combustion en un mélange d'air et de carburant.
EP17725689.8A 2016-04-28 2017-04-28 Système d'injection de turbomachine comprenant un déflecteur aérodynamique à son entrée et une vrille d'admission d'air Active EP3449185B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1653828A FR3050806B1 (fr) 2016-04-28 2016-04-28 Vrille d'admission d'air pour systeme d'injection de turbomachine comprenant un deflecteur aerodynamique a son entree
PCT/FR2017/051017 WO2017187104A1 (fr) 2016-04-28 2017-04-28 Vrille d'admission d'air pour système d'injection de turbomachine comprenant un déflecteur aérodynamique à son entrée

Publications (2)

Publication Number Publication Date
EP3449185A1 true EP3449185A1 (fr) 2019-03-06
EP3449185B1 EP3449185B1 (fr) 2021-08-04

Family

ID=56148528

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17725689.8A Active EP3449185B1 (fr) 2016-04-28 2017-04-28 Système d'injection de turbomachine comprenant un déflecteur aérodynamique à son entrée et une vrille d'admission d'air

Country Status (5)

Country Link
US (1) US10883718B2 (fr)
EP (1) EP3449185B1 (fr)
CN (1) CN109073224B (fr)
FR (1) FR3050806B1 (fr)
WO (1) WO2017187104A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3096114B1 (fr) 2019-05-13 2022-10-28 Safran Aircraft Engines Chambre de combustion comprenant des moyens de refroidissement d’une zone d’enveloppe annulaire en aval d’une cheminée
US20240159398A1 (en) * 2022-11-13 2024-05-16 Raytheon Technologies Corporation Fuel injector assembly for gas turbine engine

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2958195A (en) * 1959-02-25 1960-11-01 Philip G Dooley Air inlet construction
US3648457A (en) * 1970-04-30 1972-03-14 Gen Electric Combustion apparatus
GB1421399A (en) * 1972-11-13 1976-01-14 Snecma Fuel injectors
FR2235274B1 (fr) * 1973-06-28 1976-09-17 Snecma
US3946552A (en) * 1973-09-10 1976-03-30 General Electric Company Fuel injection apparatus
US3972182A (en) * 1973-09-10 1976-08-03 General Electric Company Fuel injection apparatus
DE4110507C2 (de) * 1991-03-30 1994-04-07 Mtu Muenchen Gmbh Brenner für Gasturbinentriebwerke mit mindestens einer für die Zufuhr von Verbrennungsluft lastabhängig regulierbaren Dralleinrichtung
EP0678708B1 (fr) 1994-04-20 1998-12-02 ROLLS-ROYCE plc Injecteur de carburant pour turbines à gaz
US6550251B1 (en) * 1997-12-18 2003-04-22 General Electric Company Venturiless swirl cup
US6272865B1 (en) * 1999-04-30 2001-08-14 United Technologies Corporation Swirler scoop and bearing plate for combustor
US6883332B2 (en) * 1999-05-07 2005-04-26 Parker-Hannifin Corporation Fuel nozzle for turbine combustion engines having aerodynamic turning vanes
GB0219461D0 (en) 2002-08-21 2002-09-25 Rolls Royce Plc Fuel injection arrangement
FR2903171B1 (fr) * 2006-06-29 2008-10-17 Snecma Sa Agencement a liaison par crabot pour chambre de combustion de turbomachine
JP4421620B2 (ja) 2007-02-15 2010-02-24 川崎重工業株式会社 ガスタービンエンジンの燃焼器
US8806871B2 (en) * 2008-04-11 2014-08-19 General Electric Company Fuel nozzle
FR2941288B1 (fr) * 2009-01-16 2011-02-18 Snecma Dispositif d'injection d'un melange d'air et de carburant dans une chambre de combustion de turbomachine
GB0916944D0 (en) 2009-09-28 2009-11-11 Rolls Royce Plc Air blast fuel injector
FR2975467B1 (fr) * 2011-05-17 2013-11-08 Snecma Systeme d'injection de carburant pour une chambre de combustion de turbomachine
GB201112434D0 (en) * 2011-07-20 2011-08-31 Rolls Royce Plc A fuel injector
GB201315008D0 (en) 2013-08-22 2013-10-02 Rolls Royce Plc Airblast fuel injector
EP2944792A1 (fr) * 2014-05-12 2015-11-18 Siemens Aktiengesellschaft Procédé de fonctionnement d'un brûleur et système de combustion
CN204084467U (zh) * 2014-09-22 2015-01-07 北京华清燃气轮机与煤气化联合循环工程技术有限公司 燃气轮机燃烧室轴向两级方向相反的旋流喷嘴
US10317083B2 (en) * 2014-10-03 2019-06-11 Pratt & Whitney Canada Corp. Fuel nozzle
US9927126B2 (en) * 2015-06-10 2018-03-27 General Electric Company Prefilming air blast (PAB) pilot for low emissions combustors
US20160377293A1 (en) * 2015-06-25 2016-12-29 Delavan Inc Fuel injector systems

Also Published As

Publication number Publication date
FR3050806A1 (fr) 2017-11-03
EP3449185B1 (fr) 2021-08-04
CN109073224B (zh) 2021-02-05
CN109073224A (zh) 2018-12-21
US10883718B2 (en) 2021-01-05
FR3050806B1 (fr) 2020-02-21
WO2017187104A1 (fr) 2017-11-02
US20200033007A1 (en) 2020-01-30

Similar Documents

Publication Publication Date Title
CA2750856C (fr) Ensemble diffuseur-redresseur pour une turbomachine
EP2034245B1 (fr) Chambre de combustion de turbomachine à circulation hélicoïdale de l'air
EP2710298A1 (fr) Chambre annulaire de combustion pour une turbomachine
FR2930591A1 (fr) Optimisation du positionnement angulaire d'un distributeur de turbine en sortie d'une chambre de combustion de turbomachine
EP2003399B1 (fr) Chambre de combustion de turbomachine à circulation hélicoïdale de l'air
EP2409085B1 (fr) Chambre de combustion de turbomachine comprenant des moyens ameliores d'alimentation en air primaire
EP1688588A1 (fr) Diffuseur pour chambre annulaire de combustion, ainsi que chambre de combustion et turbopropulseur comprenant un tel diffuseur
CA2638793A1 (fr) Turbomachine avec diffuseur
BE1024684A1 (fr) Bec degivrant de compresseur de turbomachine axiale
EP3530908A1 (fr) Chambre de combustion comportant deux types d'injecteurs dans lesquels les organes d'étanchéité ont un seuil d'ouverture différent
EP3449185B1 (fr) Système d'injection de turbomachine comprenant un déflecteur aérodynamique à son entrée et une vrille d'admission d'air
EP3286500B1 (fr) Chambre de combustion de turbomachine comportant un dispositif de guidage de flux d'air de forme spécifique
WO2020144416A1 (fr) Systeme d'injection pour turbomachine, comprenant une vrille et des trous tourbillonnaires de bol melangeur
EP3039342B1 (fr) Chambre de combustion pour turbomachine a admission d'air homogène au travers de systèmes d'injection de carburant
FR3029271B1 (fr) Paroi annulaire de deflection pour systeme d'injection de chambre de combustion de turbomachine offrant une zone etendue d'atomisation de carburant
FR3091332A1 (fr) Nez d’injecteur pour turbomachine comprenant une vrille secondaire de carburant à section évolutive
WO2016087780A1 (fr) Couronne d'admission d'air pour système d'injection de chambre de combustion de turbomachine et procédé d'atomisation de carburant dans un système d'injection comprenant ladite couronne d'admission d'air
EP3877699B1 (fr) Nez d'injecteur pour turbomachine comprenant un circuit primaire de carburant agencé autour d'un circuit secondaire de carburant
EP2771619A2 (fr) Chambre de combustion annulaire dans une turbomachine
FR3127785A1 (fr) Ensemble pour turbine pour turbomachine d’aeronef
FR3022597A1 (fr) Diffuseur a triple flux pour module de turbomachine comprenant des dispositifs de canalisation d'air entre les deux parois de separation du diffuseur
FR2979005A1 (fr) Systemes d'injection de carburant pour turbomachine d'aeronef a permeabilites differenciees

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20181105

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200423

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210222

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1417343

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210815

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602017043327

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210804

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1417343

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211104

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211206

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211104

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602017043327

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220428

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220428

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230321

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240320

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20240320

Year of fee payment: 8

Ref country code: IT

Payment date: 20240320

Year of fee payment: 8

Ref country code: FR

Payment date: 20240320

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804