EP3448441A1 - Dispositifs, systèmes et procédés de traitement de dispositifs médicaux comprenant des voies de passage d'ozone gazeux - Google Patents

Dispositifs, systèmes et procédés de traitement de dispositifs médicaux comprenant des voies de passage d'ozone gazeux

Info

Publication number
EP3448441A1
EP3448441A1 EP17790471.1A EP17790471A EP3448441A1 EP 3448441 A1 EP3448441 A1 EP 3448441A1 EP 17790471 A EP17790471 A EP 17790471A EP 3448441 A1 EP3448441 A1 EP 3448441A1
Authority
EP
European Patent Office
Prior art keywords
ozone
lid
hose
treatment system
receptacle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP17790471.1A
Other languages
German (de)
English (en)
Other versions
EP3448441A4 (fr
Inventor
Timothy LEYVA
William E. Olszta
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inceptus Inc
Original Assignee
Soclean Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US15/141,216 external-priority patent/US9669124B2/en
Application filed by Soclean Inc filed Critical Soclean Inc
Publication of EP3448441A1 publication Critical patent/EP3448441A1/fr
Publication of EP3448441A4 publication Critical patent/EP3448441A4/fr
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/10Preparation of ozone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/16Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using chemical substances
    • A61L2/20Gaseous substances, e.g. vapours
    • A61L2/202Ozone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2202/00Aspects relating to methods or apparatus for disinfecting or sterilising materials or objects
    • A61L2202/10Apparatus features
    • A61L2202/11Apparatus for generating biocidal substances, e.g. vaporisers, UV lamps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2202/00Aspects relating to methods or apparatus for disinfecting or sterilising materials or objects
    • A61L2202/10Apparatus features
    • A61L2202/12Apparatus for isolating biocidal substances from the environment
    • A61L2202/122Chambers for sterilisation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2202/00Aspects relating to methods or apparatus for disinfecting or sterilising materials or objects
    • A61L2202/10Apparatus features
    • A61L2202/13Biocide decomposition means, e.g. catalysts, sorbents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2202/00Aspects relating to methods or apparatus for disinfecting or sterilising materials or objects
    • A61L2202/10Apparatus features
    • A61L2202/14Means for controlling sterilisation processes, data processing, presentation and storage means, e.g. sensors, controllers, programs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2202/00Aspects relating to methods or apparatus for disinfecting or sterilising materials or objects
    • A61L2202/20Targets to be treated
    • A61L2202/24Medical instruments, e.g. endoscopes, catheters, sharps

Definitions

  • the present disclosure generally relates to ozone gas treatment of medical devices and more particularly, is related to devices, systems and methods using agents or gas, such as ozone gas, for cleaning, disinfecting and sterilizing medical devices in a ozone device with multiple cleaning, disinfecting and sterilizing properties, with one or more receptacles, and receiving ports and chambers for ease of cleaning, disinfecting and sterilizing medical devices, medical instruments and medical passageways, such as hoses and/or tubes.
  • agents or gas such as ozone gas
  • Medical devices, medical instruments and medical accessories require varying degrees of cleaning, disinfection and/or sterilization to prevent bacteria and mold build-up and for safe use and reuse of devices on the same patient and between patients.
  • medical devices that have multiple pieces and accessories that require cleaning, disinfection and/or sterilization including, without limitation, hoses, tubes, facemasks, probes, compartments, reservoirs, irrigation systems, pumps and other accessories.
  • Current devices, systems and methods for preparing medical devices for use and/or reuse have proved to be tiring and difficult for users, hospitals and other medical device provider services.
  • Devices often require daily and weekly maintenance steps to prevent bacteria and mold buildup, requiring each part of the device to be cleaned individually, which is difficult and time consuming for users on a daily or weekly basis.
  • Other cleaning methods include soaking the component parts of a medical device in solvents or mixtures for instance of vinegar and water to disinfect the component parts. Because of the inherent nature for many medical devices to collect bacteria and mold, a number of other products are available for consumers to make medical devices safer to use, including but not limited to sprays, UV light devices, cleaning wipes and cleaning brushes.
  • Ozone gas is powerful and effective for removal of odors, impurities and dangerous pathogens, working by exchanging electron charge with particles that ozone comes into contact with to form oxygen, O , from the unstable ozone 03. This process is particularly useful for purifying air and water and for killing bacteria and microorganisms that the ozone comes into contact with.
  • Ozonators can be used to create ozone from oxygen molecules, often by applying ultraviolet light to the oxygen.
  • Ozone gas is made of oxygen molecules that have been ionized by radiation to form groups of three oxygen atoms, O , and may be created, for instance in a device, using an ozonator, air, and the application of ultraviolet light to convert oxygen into ozone gas.
  • ozone gas is a powerful cleaning, disinfecting and sterilizing gas
  • ozone gas must be contained and controlled as it is not safe for users to breath ozone gas until it has safely converted back to oxygen.
  • the amount of time that is needed for ozone to convert safely from ozone to oxygen varies significantly based on the amount of ozone used in a treatment cycle, in some embodiments ranging from 1 minute to 24 hours.
  • FIG. 1 is a perspective view of an ozone treatment device, in accordance with an embodiment of the present disclosure.
  • FIG. 1A is a perspective view of an ozone treatment device with a connector unit, in accordance with an embodiment of the present disclosure.
  • FIG. 2 is a schematic illustration of an ozone process in accordance with an embodiment of the present disclosure.
  • FIG. 2A is a schematic illustration of an ozone process in accordance with an embodiment of the present disclosure.
  • FIG. 3 is a perspective view of an ozone treatment device coupled to a hose and a medical device, in accordance with an embodiment of the present disclosure.
  • FIG. 4 is a perspective view of an ozone treatment device with an ozone distribution line for recirculating the ozone into the device, in accordance with an embodiment of the present disclosure.
  • the present disclosure relates to a device, system and method for cleaning, disinfecting and sterilizing medical devices, the system comprising, a device with an ozone operating system; a distribution line fluidly connected to the ozone operating system for receiving and distributing ozone gas; a first receptacle on the device, wherein the distribution line is fluidly coupled to the first receptacle for releasing ozone gas; a connector unit, wherein the connector unit is configured to be fluidly connected at a proximal end to the first receptacle on the device and fluidly connected at a distal end to a proximal end of a hose in one embodiment, in another embodiment to be fluidly connected to a second receptacle on the device, and in another embodiment to be fluidly connected to the proximal end of a medical device; and an exhaust port configured to be fluidly coupled to the distal end of the hose, such that ozone gas passes through the fluid passageway and is exhausted.
  • FIG. 1 is a perspective view of an ozone treatment device 100 for treating a medical device tube or hose 115, and medical devices and medical device accessories with ozone.
  • the medical devices may include any medical devices with passageways including, without limitation, tubes and hoses.
  • treating with ozone refers to the use of ozone to clean, disinfect and/or sterilize
  • an ozone operating system is embedded at the bottom of the device 100 behind a compartment door for ease of access by a user.
  • the ozone operating system in this embodiment including an air pump, such as an aquarium pump, for pumping air and an ozone generator for receiving the air and creating ozone gas.
  • an ozone distribution line 140 is coupled to the ozone operating system wherein the distribution line 140 releases ozone into a first ozone delivering receptacle 105, as shown in Fig. 1.
  • the first receptacle 105 is configured to fluidly couple to a proximal end of a medical device hose 115, such as a continuous positive airway pressure device hose.
  • a second ozone receiving receptacle 130 on the device 100 is designed to engage the distal end of the medical device hose 115, such that when a top lid 132 is in a closed position, tabs 131 engage the second receptacle and form a secure seal surrounding the hose 115.
  • the second receptacle is fluidly coupled to a gas-tight compartment 135 with an exhaust port 125 embedded therein.
  • the gas-tight compartment 135 can be used to clean, disinfect, and/or sterilize medical devices and accessories made of materials that do not degrade in the presence of ozone, such as CPAP facemasks, as an example, thereby closing a closed loop ozone process.
  • ozone gas traverses from the ozone operating system, to a distribution line, to a first receptacle, through a hose, through a second receptacle, into a gas-tight sanitization chamber, and to an exhaust port.
  • the exhaust port 125 in accordance with this embodiment is coupled to the gas-tight compartment 135 and exhausts ozone from the fluid passageway described in the present embodiment for reuse and/or release.
  • an oxidizing catalyst is coupled to the exhaust port 125 for collecting and breaking down ozone gas into oxygen, for safe release.
  • ozone generated in the device 100 is released from the ozone operating system into the first receptacle 105 and ozone gas traverses from the device 100 into the hose 115 and is released through the exhaust port 125.
  • the device further includes a third receptacle, 130a, wherein both the second receptacle 130 and the third receptacle 130a have a removable seal 107.
  • the removable seal 107 on the second receptacle 130 and third receptacle 130a allows the medical device hose 115 to be fluidly connected into the second receptacle 130 or third receptacle 130a while maintaining a closed- loop system and preventing release of ozone gas from the closed-loop system prior to conversion of the ozone gas back to oxygen.
  • the ozone gas is released into a gas-tight compartment 135 to treat medical devices and accessories placed in the gas-tight compartment 135 in the device 100.
  • medical devices and accessories can be placed in the gas-tight compartment and cleaned, disinfected and/or sterilized, while hoses and tubes are cleaned, disinfected and/or sterilized with the ozone gas from the ozone operating system, through the first receptacle and into the hose and exhaust port, in a closed-loop system as described.
  • the transfer of ozone gas from the ozone operating system to the second and/or third receptacle 130 and 130a can be accomplished with one or more hoses, distribution lines or connectors.
  • the ozone treatment device 100 also includes a user interface coupled to the ozone operating system 160, a timer coupled to the ozone operating system, a sensor 145 for sensing remaining ozone gas in the hose 115, gas-tight compartments 135 and/or anywhere in the closed loop system, and a safety switch to prevent start of an ozone process or use of a medical devices during an ozone process and an oxidizing catalyst coupled to the exhaust port 125 to collect and break down ozone.
  • FIG. 1A is a perspective view of an ozone treatment device 100 for cleaning, disinfecting and sterilizing a medical device tube or hose 115, and medical devices and medical device accessories.
  • an ozone operating system is embedded in the device 100, the ozone operating system in this embodiment including an air pump, such as an aquarium pump, for pumping air and an ozone generator for receiving the air and creating ozone gas.
  • an ozone distribution line 140 is coupled to the ozone operating system wherein the distribution line 140 releases ozone into a first receptacle 105, as shown in Fig. 1A.
  • the first receptacle 105 is configured to be fluidly coupled to a proximal end of a connector unit 110.
  • the connector unit is sized to be fluidly coupled at the distal end of the connector unit to the proximal end to the hose 115.
  • the second receptacle 130 on the device 100 is designed to engage the distal end of the hose 115, such that when a top lid 132 is in a closed position, tabs 131, 131a engage the second receptacle and form a secure seal surrounding the hose 115.
  • the second receptacle 130 is fluidly coupled to an exhaust port 125, in this example, through a gas-tight compartment 135 with the exhaust port 125 embedded in the device 100.
  • the gas-tight compartment 135 can be used to clean, disinfect, and/or sterilize medical devices and accessories made of materials that do not degrade in the presence of ozone, such as CPAP facemasks, as an example, thereby closing a closed loop ozone process.
  • ozone gas traverses from the ozone operating system, to a distribution line 140, to a first receptacle 105, through a hose 115, through a second receptacle in the hose 115 , into a gas-tight compartment 135, and to an exhaust port 125.
  • the exhaust port 125 in accordance with this embodiment is coupled to the to the gas-tight compartment 135 exhausts ozone from the fluid passageway described in the present embodiment for reuse and/or release.
  • an oxidizing catalyst is coupled to the exhaust port 125 for collecting and breaking down ozone gas into oxygen, for safe release.
  • ozone generated in the device 100 is released from the ozone operating system into the first receptacle 105 and ozone gas traverses from the device 100 into the hose 115 and is released through the exhaust port 125.
  • the connector unit 110 allows the device 100 to be coupled to any device hose, by providing a first receptacle 105 on the device that fluidly couples to the connector unit 110.
  • the connector unit 110 may be sized to couple at the proximal end to the first receptacle 105 and on the distal end to a CPAP hose 115.
  • the connector unit 110 may be sized to couple at the proximal end to the hose and at the distal end to an endoscope.
  • adapters and means to change the distal end of the connector unit 110 to fit a variety of sized tubes for any medical device are disclosed herein.
  • FIGS. 2 and 2A are schematic sketches showing closed-loop ozone processes in accordance with an embodiment of the present disclosure.
  • an ozone treatment system 200 with a reverse loop ozone process is described, wherein the device has a first receptacle 205 and a second receptacle 230 that fluidly couple to a medical device hose 215 for providing a closed loop ozone process in accordance with an embodiment of the present disclosure.
  • the ozone treatment system 200 has an ozone operating system 202 including an ozone pump 201 coupled to an ozone generator 203, for producing ozone gas, and a distribution line 240 that carries ozone gas to a first receptacle 205. Ozone gas migrates in this embodiment through the coupled hose 215 and exits the hose into the exhaust port 225, before the ozone gas is release or recycled from the closed-loop system described.
  • FIG 2A shows an ozone operating system 202 fluidly coupled to a first receptacle 205 with a distribution line 240, with ozone gas migrating into the hose 215 and through the second receptacle 230 on the device 100 into a gas-tight chamber for cleaning, disinfecting and/or sterilizing medical instruments and accessories in the gas tight chamber, before the ozone gas is released or recycles from the closed loop system through an exhaust port 225.
  • an oxide filter 270 is further shown for collecting and breaking down ozone gas into oxygen.
  • a method of treating a medical device with ozone gas is disclosed, the method describing an ozone process of producing ozone gas in a device with an ozone operating system, migrating ozone gas through a distribution line through a first receptacle in the device and into a hose of a medical device, and exhausting ozone gas from the hose of the medical device.
  • a second receptacle on the device may be used on the device with an exhaust port and/or a gas- tight compartment coupled to an exhaust port and housed in the device, such that the ozone gas is re-circulated into the device before being removed, released or re-circulated from the system, in a closed-loop ozone process.
  • FIG. 3 shows a perspective view of an ozone device with an ozone operating system, in accordance with an embodiment of the present disclosure.
  • a distribution line 340 traverses a first receptacle 305 and attaches at a distal end to a connector unit 310.
  • the distribution line traverses into the connector unit 310, which is coupled at a proximal end to a medical device 350 and at the distal end to a medical device hose 315, and ozone is released into the hose and/or into a cavity in the medical device 350.
  • a second receptacle 330 and a third receptacle 330a, with a seal 307 are provided such that the hose 315 can be connected as shown through the second receptacle 330 to release ozone gas into a gas-tight compartment 335 and be exhausted through exhaust port 325.
  • a sensor 345 is provided in the gas-tight compartment 335 to sense the amount of ozone gas in the closed loop system described herein.
  • the sensor 345 is coupled to the user interface 360 for providing ozone process information to a user, including but not limited to ozone levels remaining in the gas tight compartment 335, ozone cycle time, and ozone safety signals.
  • the device 300 and the methods and systems described may further have a user interface 360 coupled to the ozone operating system, a timer coupled to the ozone operating system, a safety switch 365 to prevent start of an ozone process or use of a medical device during an ozone process, and an oxidizing catalyst such as an magnesium oxide filter coupled to the exhaust port 325 to collect and break down ozone.
  • a user interface 360 coupled to the ozone operating system
  • a timer coupled to the ozone operating system
  • a safety switch 365 to prevent start of an ozone process or use of a medical device during an ozone process
  • an oxidizing catalyst such as an magnesium oxide filter coupled to the exhaust port 325 to collect and break down ozone.
  • a system comprising, a device 300 with an ozone operating system; a distribution line 340 fluidly connected to the ozone operating system for receiving and distributing ozone gas; a first receptacle 305 on the device, wherein the distribution line 340 traverses the first receptacle and connects to a connector unit 310; the connector unit 310, wherein the connector unit 310 is configured to be fluidly connected to a medical device 350 and to a medical device hose 315; a second receptacle 330 that engages the hose 315 when the lid 332 is in a closed position with a free end immersed in a gas-tight compartment 335 in the device 300, is described.
  • FIG. 4 is a perspective view of a device 400 with an ozone operating system, showing devices, methods and systems for cleaning, disinfecting and sterilizing medical devices and medical device accessories.
  • an ozone operating system is embedded in the device 400, the ozone operating system in this embodiment including an air pump, such as an aquarium pump, for pumping air and an ozone generator for receiving the air and creating ozone gas.
  • an ozone distribution line 440 is coupled to the ozone operating system wherein the distribution line 440 traverses a first receptacle 405, as shown in Fig. 4.
  • the first receptacle 405 is configured to allow the distribution line 440 to traverse through the first receptacle 405 and engage the second receptacle, which is fluidly coupled to a gas-tight compartment 435 with an exhaust port 425 embedded therein.
  • the gas-tight compartment 435 can be used to clean, disinfect, and/or sterilize medical devices and accessories made of materials that do not degrade in the presence of ozone, such as CPAP facemasks, as an example, thereby closing a closed loop ozone process, whereby ozone gas traverses from the ozone operating system, to a distribution line, through a first receptacle and second receptacle, into a gas-tight chamber, and to an exhaust port.
  • the exhaust port 425 in accordance with this embodiment is coupled to the to the gas-tight compartment 435 and exhausts ozone from the fluid passageway described in the present embodiment for reuse and/or release.
  • an oxidizing catalyst is coupled to the exhaust port 425 for collecting and breaking down ozone gas into oxygen, for safe release.
  • a device with an ozone operating system comprising; a first receptacle, wherein the first receptacle is adapted to fluidly transfer ozone gas from the ozone operating system to a hose; and a second receptacle, wherein the second receptacle is adapted to fluidly transfer ozone gas from the hose to an exhaust port, is described.
  • the device further comprises a gas-tight compartment, wherein the exhaust port is coupled to the gas-tight compartment.
  • the device in the present embodiment further comprises a connector unit, wherein the first end of the connector unit is configured to fluidly couple to the first receptacle and a second end is configured to fluidly couple to a first end of the hose.
  • second receptacle on the device is configured to engage with a second end of the hose, allowing ozone gas to be released from the hose, through the second receptacle, into the gas-tight compartment.
  • the device in the present embodiment further comprises a user interface coupled to the ozone operating system, a timer coupled to the ozone operating system, a sensor coupled to the ozone operating system for sensing remaining ozone in the medical device, an air pump coupled to the ozone operating system and an oxidizing catalyst coupled to the exhaust port to collect and break down ozone.
  • the closed-loop systems described include, in some embodiments, steps for delaying the start of an ozone process of a for a fixed period of time from the last ozone process for the safety of the consumers.
  • the step of delaying the start time may range from may range from about 30 seconds to about 24 hours, depending on the device being treated and the level of cleaning, disinfection and/or sterilization required.
  • the step of sensing remaining ozone in a the medical devices being treated further increases the safety of the present treatment systems and methods for users, while also indicating to users that a medical device has been fully treated in accordance with user guidelines and required ozone exposure numbers.
  • the user interface may display a variety of ozone process information to a user, including but not limited to ozone cycle time, device being treated, ozone levels as detected by sensors, level of treatment required based on an assessment of bacterial, mold, dirt or other criteria on a device being treated, light or sound indicators, and consumable product indicators, for the convenience of users.
  • the present disclosure discloses, devices, systems and methods of using ozone gas in closed-loop systems to clean, disinfect and/or sterilize medical devices, medical device hoses and tubes and accessories.
  • medical devices that may be cleaned, disinfected and/or sterilized in accordance with the embodiments described in the present disclosure include but are not limited to: surgical instruments, irrigation systems for sterile instruments in sterile tissues, endoscopes and endoscopic biopsy accessories, duodenoscopes, endotracheal tubes, bronchosopes, laryngosopes blades and other respiratory equipment, esophageal manometry probes, diaphragm fitting rings and gastrointestinal endoscopes, infusion pumps, ventilators, and continuous positive airway pressure devices (CPAP), prone to bacterial build-up because of humidified air and contact with a patients mouth.
  • Many of the devices listed above include passageways that are difficult to clean, disinfect and sterilize, such as any of the endoscopes, probes, ventilators and CPAP
  • the present disclosure thus discloses unique cleaning, disinfecting and sterilizing devices with one or more receptacles and connector units for cleaning, disinfecting and/or sterilizing multiple medical devices, medical tubes and accessories.
  • the devices, systems and methods described may include multiple connector units of different sizes and shapes, multiple ozone distribution lines from a device, wherein the devices may be of any size and shape, a timer, a sensor for sensing ozone in the closed-loop systems, a display for displaying cycle parameters and information, medical device cycle levels, cycle times, a controller for controlling release of ozone into the closed-loop systems, a locking mechanism for locking the device, an exhaust port, and a oxygen catalyst coupled to the exhaust port and uniquely designed connector units that connect to multiple medical devices.

Abstract

L'invention concerne de manière générale des dispositifs, des procédés et des systèmes de nettoyage, de désinfection et/ou de stérilisation d'un dispositif médical, de tuyaux médicaux et de tubes et d'accessoires associés avec de l'ozone gazeux. Et en particulier, l'invention concerne des dispositifs, des procédés et des systèmes comprenant de multiples récipients permettant de fournir des trajets de fluide en boucle fermée pour distribuer de l'ozone gazeux vers des voies de passage internes et les compartiments externes de dispositifs médicaux. Les dispositifs selon un mode de réalisation de l'invention comportent au moins deux récipients permettant de distribuer de l'ozone gazeux, un compartiment étanche aux gaz, un système de commande d'ozone, et une ou plusieurs unités de raccordement conçues pour faire migrer l'ozone de manière fluidique dans des systèmes de traitement en boucle fermée.
EP17790471.1A 2016-04-28 2017-04-27 Dispositifs, systèmes et procédés de traitement de dispositifs médicaux comprenant des voies de passage d'ozone gazeux Pending EP3448441A4 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/141,216 US9669124B2 (en) 2011-07-15 2016-04-28 Devices, systems and methods for treating multiple medical devices having passageways with ozone gas
PCT/US2017/029950 WO2017189916A1 (fr) 2016-04-28 2017-04-27 Dispositifs, systèmes et procédés de traitement de dispositifs médicaux comprenant des voies de passage d'ozone gazeux

Publications (2)

Publication Number Publication Date
EP3448441A1 true EP3448441A1 (fr) 2019-03-06
EP3448441A4 EP3448441A4 (fr) 2020-01-01

Family

ID=60160115

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17790471.1A Pending EP3448441A4 (fr) 2016-04-28 2017-04-27 Dispositifs, systèmes et procédés de traitement de dispositifs médicaux comprenant des voies de passage d'ozone gazeux

Country Status (10)

Country Link
EP (1) EP3448441A4 (fr)
JP (3) JP6929872B2 (fr)
CN (1) CN109069675A (fr)
BR (1) BR112018071444B1 (fr)
CA (1) CA3005981C (fr)
CL (1) CL2018003063A1 (fr)
IL (1) IL262603B (fr)
MX (1) MX2018013169A (fr)
RU (1) RU2018136948A (fr)
WO (1) WO2017189916A1 (fr)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10434204B2 (en) 2011-07-15 2019-10-08 Soclean, Inc. Technologies for sanitizing mist humidifiers
WO2015171730A1 (fr) 2014-05-06 2015-11-12 Inceptus, Inc. Dispositifs, systèmes et procédés de désinfection à l'ozone de dispositifs de pression positive continue des voies aériennes
PL2731632T3 (pl) 2011-07-15 2018-04-30 Soclean, Inc. Urządzenie cpap z generatorem ozonu
US10485888B2 (en) 2011-07-15 2019-11-26 Soclean, Inc. Devices, systems and methods for treating multiple medical devices having passageways with ozone gas
US9669124B2 (en) 2011-07-15 2017-06-06 Soclean, Inc. Devices, systems and methods for treating multiple medical devices having passageways with ozone gas
US10427961B2 (en) 2011-07-15 2019-10-01 Soclean, Inc. Technologies for sanitizing reservoirs
USD819190S1 (en) 2016-04-28 2018-05-29 Soclean, Inc. Ozone treatment device
CN114025809A (zh) * 2019-03-19 2022-02-08 速克粼股份有限公司 用于对医疗装置进行消毒的技术
CN110013562A (zh) * 2019-04-26 2019-07-16 深圳市三一进取技术有限公司 臭氧杀菌装置和杀菌系统
CN111110891A (zh) * 2019-12-31 2020-05-08 湖南明康中锦医疗科技发展有限公司 呼吸支持设备消毒系统
CN112023092B (zh) * 2020-06-04 2023-11-07 深圳市三一进取技术有限公司 臭氧杀菌装置和杀菌方法
CN113750273A (zh) * 2020-06-04 2021-12-07 深圳市三一进取技术有限公司 一种臭氧消毒设备和臭氧消毒系统
WO2023049729A1 (fr) * 2021-09-21 2023-03-30 Kwj Engineering, Inc. Stérilisateur portable pour équipement de protection individuelle

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4019986A (en) * 1973-06-11 1977-04-26 William Alan Burris Portable water purifier
US4207291A (en) * 1978-04-03 1980-06-10 Mcdonnell Douglas Corporation Ozone removal filter having manganese dioxide coated thereon
US5029879A (en) * 1988-08-24 1991-07-09 Injection Plastics Manufacturing Company, Inc. Seal for pipe to wall junctions
US5207237A (en) * 1990-07-20 1993-05-04 Kew Import/Export Inc. Ozoneated liquid system
US5344622A (en) * 1993-04-03 1994-09-06 Cyclo3 pss Medical Systems, Inc. Ozone sterilization system vapor humidification component with disposable water source
US5520893A (en) * 1993-09-29 1996-05-28 Oxidyn, Incorporated Apparatus with safety means for sterilizing articles with ozone
DE60020419T2 (de) * 1999-02-05 2006-05-04 Olympus Corporation, Shibuya Vorrichtung zur Reinigung und Desinfektion von Endoskopen
US20030063997A1 (en) * 1999-12-21 2003-04-03 Ben Fryer Monitoring sterilant concentration in a sterilization process
WO2003068274A2 (fr) * 2002-02-14 2003-08-21 Bradford Beheer B.V. Dispositif de sterilisation ou desinfection
JP3859691B2 (ja) * 2004-03-31 2006-12-20 株式会社湯山製作所 滅菌方法及び装置
US20050220665A1 (en) * 2004-04-05 2005-10-06 Ding Lambert L Low temperature sterilization and disinfections method and apparatus for medical apparatus and instruments
CA2576206C (fr) * 2004-08-10 2013-02-26 Electrotemp Technologies Inc. Systeme de sterilisation de l'ozone pour systeme de distribution d'eau
WO2015171730A1 (fr) * 2014-05-06 2015-11-12 Inceptus, Inc. Dispositifs, systèmes et procédés de désinfection à l'ozone de dispositifs de pression positive continue des voies aériennes
PL2731632T3 (pl) * 2011-07-15 2018-04-30 Soclean, Inc. Urządzenie cpap z generatorem ozonu
US8992853B2 (en) * 2011-09-22 2015-03-31 Bürkert Contromatic Corp. Devices, systems and methods for localized sterilization
CN102397567A (zh) * 2011-11-25 2012-04-04 谭官勤 医用呼吸管消毒机
US8865065B2 (en) * 2013-01-09 2014-10-21 Global Ozone Innovations, Llc Ozone sanitizing system
CN105031693B (zh) * 2015-09-15 2017-08-25 石狮市诺朗电子商务有限公司 一种运行稳定且可调速的医用臭氧消毒柜装置

Also Published As

Publication number Publication date
JP2021191726A (ja) 2021-12-16
CA3005981A1 (fr) 2017-11-02
JP2019514822A (ja) 2019-06-06
WO2017189916A1 (fr) 2017-11-02
MX2018013169A (es) 2019-06-24
RU2018136948A (ru) 2020-05-28
BR112018071444A2 (pt) 2019-02-05
RU2018136948A3 (fr) 2020-10-13
CL2018003063A1 (es) 2019-05-17
NZ747131A (en) 2023-10-27
IL262603B (en) 2022-05-01
IL262603A (en) 2018-12-31
JP6929872B2 (ja) 2021-09-01
BR112018071444B1 (pt) 2022-01-04
JP2023138992A (ja) 2023-10-03
CA3005981C (fr) 2022-11-29
CN109069675A (zh) 2018-12-21
EP3448441A4 (fr) 2020-01-01

Similar Documents

Publication Publication Date Title
US10940222B2 (en) Devices, systems and methods for treating medical devices having passageways with ozone gas
CA3005981C (fr) Dispositifs, systemes et procedes de traitement de dispositifs medicaux comprenant des voies de passage d'ozone gazeux
US11738105B2 (en) Devices, systems and methods for treating multiple medical devices having passageways with ozone gas
AU2018200514B2 (en) Systems, methods and devices for ozone sanitization of continuous positive airway pressure devices
WO2017189915A1 (fr) Dispositifs, systèmes et procédés de traitement de multiples dispositifs médicaux comprenant des voies de passage d'ozone gazeux
KR101177868B1 (ko) 핸드피스 소독 멸균장치
KR101131607B1 (ko) 연속동작이 가능한 이산화염소를 이용한 저온 멸균소독기 및 이를 이용한 멸균방법
KR20100058089A (ko) 의료용 기구의 멸균 및 건조 장치
KR101020517B1 (ko) 의료용 핸드피스의 멸균 및 건조 장치
NZ747131B2 (en) Devices, systems and methods for treating medical devices having passageways with ozone gas
ITBG20100064A1 (it) Riunito odontoiatrico ad ozono sanitizzante dei suoi impianti idrico e/o pneumatico

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20181004

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20191129

RIC1 Information provided on ipc code assigned before grant

Ipc: A61G 10/00 20060101ALI20191125BHEP

Ipc: C01B 13/10 20060101ALI20191125BHEP

Ipc: A61L 2/20 20060101AFI20191125BHEP

Ipc: A61H 33/14 20060101ALI20191125BHEP

Ipc: B01J 15/00 20060101ALI20191125BHEP

Ipc: A61L 9/015 20060101ALI20191125BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20231018