EP3447256B1 - System for cooling a process fluid from a heat producing installation - Google Patents

System for cooling a process fluid from a heat producing installation Download PDF

Info

Publication number
EP3447256B1
EP3447256B1 EP17187936.4A EP17187936A EP3447256B1 EP 3447256 B1 EP3447256 B1 EP 3447256B1 EP 17187936 A EP17187936 A EP 17187936A EP 3447256 B1 EP3447256 B1 EP 3447256B1
Authority
EP
European Patent Office
Prior art keywords
heat
process fluid
evaporator
cooler
inlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17187936.4A
Other languages
German (de)
French (fr)
Other versions
EP3447256A1 (en
Inventor
Richard Aumann
Andreas Schuster
Markus Lintl
Roy Langer
Martin Santa Maria
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orcan Energy AG
Original Assignee
Orcan Energy AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orcan Energy AG filed Critical Orcan Energy AG
Priority to EP17187936.4A priority Critical patent/EP3447256B1/en
Priority to PL17187936.4T priority patent/PL3447256T3/en
Priority to JP2020531809A priority patent/JP7174051B2/en
Priority to US16/641,896 priority patent/US11286816B2/en
Priority to PCT/EP2018/070373 priority patent/WO2019038022A1/en
Priority to CN201880069574.0A priority patent/CN111315965B/en
Publication of EP3447256A1 publication Critical patent/EP3447256A1/en
Application granted granted Critical
Publication of EP3447256B1 publication Critical patent/EP3447256B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • F01K25/10Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K9/00Plants characterised by condensers arranged or modified to co-operate with the engines
    • F01K9/003Plants characterised by condensers arranged or modified to co-operate with the engines condenser cooling circuits

Definitions

  • the invention relates to a system for cooling a process fluid of a heat-generating device.
  • the document EP 2 320 058 A1 describes the use of waste heat for combustion engines.
  • the waste heat utilization device includes a cooling water cycle with a circulation path for circulating cooling water and a Rankine cycle with a circulation path for circulating a working fluid.
  • the object of the invention is to avoid or at least mitigate the disadvantages mentioned.
  • the invention describes the solution to the above-mentioned problem by, among other things, using a thermodynamic cycle device to partially convert the heat removed from the medium into mechanical and/or electrical energy.
  • a medium is cooled at temperatures >50°C. This temperature level is sufficient to operate a thermodynamic cycle, e.g. an Organic Rankine Cycle process (ORC process).
  • ORC process Organic Rankine Cycle process
  • usable mechanical and/or electrical energy can also be provided. This energy can, for example, drive an air cooler or be used for other purposes (operation of process-related consumers, pumps, energy storage).
  • thermodynamic cycle therefore at least partially replaces the air cooler originally used in the respective application, which is why in the case of an Organic Rankine Cycle process, for example, one can speak of an ORC cooler for the application.
  • the ORC cooler can be used for all processes in which the fluid to be cooled can be returned to the process with a sufficiently large temperature distance from the ambient temperature (e.g. with a temperature above 40 ° C).
  • Fig. 1 shows a first embodiment 100 of the thermodynamic cycle device not according to the invention.
  • the system 100 for cooling a process fluid (e.g. water) of a heat-generating device 10 comprises: an output 11 of the heat-generating device, the output 11 being provided for discharging process fluid to be cooled from the heat-generating device 10; an inlet 12 of the heat generating device 10, the inlet 12 being provided for supplying cooled process fluid to the heat generating device 10; and a thermodynamic cycle device, in particular an ORC device, wherein the thermodynamic cycle device comprises: an evaporator 20 with an inlet 21 for supplying the process fluid to be cooled from the outlet 11 of the heat-generating device 10 and with an outlet 22 for discharging the cooled process fluid to the inlet 12 the heat-generating device 10, wherein the evaporator 20 is designed to evaporate a working medium of the thermodynamic cycle device using heat from the process fluid; an expansion machine 30 for expanding the evaporated working medium and for generating mechanical and/or electrical energy, for example by means of an electrical generator 40; a condenser 50 for liquefying the expanded working medium, in particular an air
  • the implementation is carried out according to Fig. 1 as follows.
  • the hot process fluid with the process temperature T Proz,out is cooled to the target temperature T Proz, on, while the heat absorbed is used to evaporate the working medium in the ORC circuit.
  • the live steam generated in this way is expanded while producing work in the expansion machine 30, whereby a generator 40, for example, can be driven.
  • the exhaust steam is liquefied in the condenser 50 and is then available in liquid form at the pump 60.
  • the pump 60 then brings the working medium back to the desired pressure.
  • the previously used conventional air cooler of process 10 is replaced and additional useful power is generated.
  • the target temperature T Proz,a cannot be as low as without the ORC circuit. Furthermore, in this first embodiment there is one The system does not have emergency running capability. This means that if the ORC system fails, the temperature T Proz,off cannot be lowered and it cannot be cooled.
  • Fig. 2A shows a second embodiment 200 of the device not according to the invention.
  • a cooler 70 here an air cooler 70
  • the system 200 includes a branch 71, which is provided, for example with respect to a flow direction of the process fluid, downstream of the outlet 11 and upstream of the inlet 21 for dividing the process fluid to be cooled into a first and a second partial flow of the process fluid, the branch 71 being in this Example includes a valve V.
  • the system 200 further includes a merge 72, which is provided with respect to a flow direction of the process fluid downstream of the outlet 22 and upstream of the inlet 12 for combining the second partial flow of the process fluid cooled by the cooler 70 and the first partial flow of the process fluid cooled by the evaporator 20 is; wherein the branch 71 is designed to supply the first partial flow to the evaporator 20 and to supply the second partial flow to the cooler 70.
  • a parallel connection of the components (evaporator 20, cooler 70) that remove heat from the process fluid is implemented.
  • the cooler 70 is here formed in a structural unit with the condenser 50, and a common fan can be provided for air cooling.
  • the connection according to Fig. 2A thus solves the problem of emergency running properties.
  • the bypass option (via valve V) of the ORC circuit ensures cooling if the ORC circuit fails.
  • the target temperature T Proz,in can be achieved by a partial flow bypassing the ORC circuit, being cooled directly in the air cooler (e.g.: V cooler, table cooler) and then being mixed back into the partial flow from the ORC evaporator 20.
  • the electricity generated in the ORC circuit by the generator 40 can be used directly to supply the air cooler 70 (or the Combination of evaporator 50 and air cooler 70) can be used, whereby its electricity costs are significantly reduced, which in turn leads to increasing the economic efficiency of the cooler 70 (evaporator 50).
  • this connection it is possible to always achieve the target temperature T Proz,on .
  • Fig. 2B represents a modification of the execution Fig. 2A in that the flow of ambient air is not as in Fig. 2A passes in parallel through the condenser 50 and the cooler 70, but one after the other first through the cooler 70 and then through the condenser 50.
  • This has the advantage of a compact design, with the lowest air temperature being present at the cooler 70, so that a low temperature of the process fluid can be achieved while the cooling of the working medium in the condenser 50 is less effective.
  • Fig. 2C represents an alternative to the modification according to Fig. 2B
  • the order of cooler 70 and condenser 50 is reversed, so that the ambient air first flows through the condenser 50 and then through the cooler 70.
  • the lowest air temperature is present at the capacitor 50, so that higher electricity generation via the generator 40 is possible with the ORC circuit.
  • Fig. 3 shows a third embodiment 300 of the device not according to the invention.
  • the cooler 70 is disposed downstream of the outlet 22 of the evaporator 20 and upstream of the inlet 12 of the heat generating device 10 with respect to a flow direction of the process fluid for further cooling the process fluid cooled by the evaporator.
  • a valve may be provided which only leads part of the process fluid via the cooler 70.
  • the process fluid/water return from the ORC evaporator 20 is sent through the air cooler 70 to allow further cooling.
  • the heat input to the air cooler 70 can be regulated by intelligent control (for example with the help of the valve mentioned) in order not to cool down any further than necessary.
  • the aim is to achieve the required T process without consuming electricity. This is shown in the temperature-heat flow diagram Fig. 4 shown (TQ diagram).
  • T 1 that can be achieved through the ORC cycle process is above a required limit, a lower temperature T proz,in can be achieved through additional cooling using water or air in the downstream cooler.
  • Fig. 5 shows a fourth embodiment 400 of the device not according to the invention.
  • the fourth embodiment essentially corresponds to the second embodiment Fig. 2 .
  • the difference is that the cooler 70 is provided separately from the condenser 50.
  • ORC cooler with components 20, 30, 40, 50, 60
  • air cooler emergency cooler
  • the ORC cooler can be operated completely independently of each other and can provide emergency cooling for the process even if the ORC cooler fails is guaranteed.
  • systemic separation of the ORC cooler and the air cooler facilitates easy integration into existing cooling systems. After integration, the existing cooler acts as an emergency cooler and the ORC cooler acts as an additional module (“backpack module”) for retrofits or expansions.
  • Fig. 6 shows a fifth embodiment 500 of the device not according to the invention.
  • the fifth embodiment is essentially based on the second embodiment according to Fig. 2 .
  • the system 500 for thermally connecting the condenser 50 and the cooler 70a, 70b further comprises an intermediate circuit with a heat transfer fluid (here water), the capacitor 50 being provided for transferring heat from the expanded working medium to the heat transfer fluid and wherein the cooler 70a, 70b is provided for cooling the heat transfer fluid.
  • a heat transfer fluid here water
  • useful heat can be dissipated to a useful heat device 80 from a branch of the heat transfer fluid flowing from the condenser 50 to the cooler 70a, 70b.
  • Fig. 7 shows a non-inventive sixth embodiment 600 of the device.
  • the sixth embodiment is based on the third embodiment according to Fig. 3 and was modified analogously to the fifth embodiment.
  • the (chemical) composition of the heat transfer fluid is identical to the composition of the process fluid.
  • the wiring variants 3A and 3B reduce this problem by inserting a further heat exchanger 75 and an intermediate circuit with a heat transfer fluid (e.g. water) between the ORC capacitor 50 and the cooler 70.
  • a heat transfer fluid e.g. water
  • the installation locations of the heat source and the cooler are decoupled from each other and a great deal of flexibility is achieved when setting up the ORC process.
  • the water intermediate circuit can supply additional heat consumers.
  • Variants 3A and 3B can also be permuted with regard to the heat source and the heat sink.
  • Fig. 8 shows a seventh embodiment 700 of the device not according to the invention.
  • a further heat exchanger 25 is provided, which is provided (with respect to a flow direction of the process fluid downstream of the evaporator 20) for transferring heat from the process fluid cooled by the evaporator 20 to a heat transfer fluid.
  • the system includes a valve 26 for regulating the mass flow of the heat transfer fluid through the further heat exchanger 25.
  • a temperature measuring device 27 is provided here for measuring the temperature of the process fluid downstream of the further heat exchanger 25, the control of the valve 26 depending on the measured temperature takes place.
  • the heat is then removed in a first step by the ORC circuit.
  • the pre-cooled heat-transferring process fluid then flows through the further heat exchanger 25 in which it is cooled down to the target temperature.
  • another partial flow of the cold process medium to be warmed up can be added to the process fluid in the flow direction after the further heat exchanger 25.
  • Fig. 9 shows a non-inventive eighth embodiment 800 of the device.
  • a further evaporator 90 is provided between the outlet 22 and the inlet 12 for further evaporation of working medium from the process fluid using heat.
  • a throttle valve 91 for lowering the pressure of the working medium in the further evaporator 90 and a liquid jet pump 92 and/or a steam jet pump 93 are arranged between the further evaporator 90 and the condenser 50 for lowering the pressure in the further evaporator 90, in particular a part of the liquefied working medium or part of the evaporated working medium serves as a propellant jet.
  • the heat-supplying medium is returned to the process to be cooled.
  • a partial flow of the working medium is fed to the evaporator 90 via the throttle valve (throttle) 91.
  • the throttle 91 is adjusted such that the pressure approximately corresponds to the pressure in the condenser 50. Due to the pressure reduction, the working medium in the evaporator 90 evaporates only minimally above the condensation pressure and the condensation temperature of the condenser 50, and thus enables the medium to be cooled to cool down to a temperature that is similarly low as the minimum achievable temperature in a direct heat exchanger to cool medium in air. In this way, even if the cooling system is retrofitted with an ORC system, you can ensure that the required temperatures of the medium to be cooled are maintained.
  • a liquid jet pump 92 or a vapor jet pump 93 lowers the pressure in the evaporator 90 to a pressure below the condensation pressure in the condenser 50. This can even achieve a lower boiling pressure than the condensation pressure in the condenser 50. As a result, the working medium is pumped with very little energy and raised back to the condensation pressure.
  • the advantage here is that the working medium only has to be conveyed in small mass flows and with a small increase in pressure. Either part of the live steam or part of the feed fluid serves as a propellant jet.
  • Fig. 10 shows a ninth embodiment 900 of the device corresponding to the present invention defined by independent claim 1.
  • the outlet 22 of the evaporator 20 is connected to an input 71 of the cooler 70, an output 72 of the cooler 70 is connected to an input 51 of the condenser 50 and an output 52 of the condenser 50 is connected to the input 12 of the heat-generating device 10.
  • the process fluid is passed from the evaporator 20 through the cooler 70 for further cooling, then passed through the condenser 50 as a heat-absorbing medium and then again passed to the inlet 12 of the heat-generating device 10.
  • Variant 7 Expansion with an ORC module for existing coolers / with direct condensation
  • Fig. 11 shows a tenth embodiment 1000 of the device not according to the invention.
  • This embodiment is similar to the ninth embodiment 900 according to Fig. 10 , whereby the difference can be found in the capacitor 50 of the ORC circuit.
  • variant 7 shown here direct condensation takes place between the ambient air and the ORC working medium.
  • the disadvantage is that adding additional components increases the complexity of the overall system (e.g. coordination of regulations, additional costs, additional interfaces,).

Description

Gebiet der ErfindungField of invention

Die Erfindung betrifft ein System zum Kühlen eines Prozessfluids einer wärmeerzeugenden Einrichtung.The invention relates to a system for cooling a process fluid of a heat-generating device.

Stand der TechnikState of the art

Aktuell gibt es zahlreiche Anwendungsfälle in der Industrie (z.B. Kühlung von Druckluftkompressoren, Lebensmittelindustrie, Chemieindustrie), bei der Stromerzeugung (z.B. Kühlung von Motorkühlwasser bei stationären Motoren, Transformatoren) oder im Verkehr (Verbrennungsmotoren, z.B. Lastkraftwagen), in denen z.B. elektrische (oder mechanische) Energie zum Antrieb eines Kühlers, beispielsweise eines Luftkühlers, eingesetzt wird. Dabei wir das zu kühlende Medium i.d.R. in einen Wärmeübertrager geleitet, welcher von Umgebungsluft durchströmt wird. Der Luftstrom wird hierbei z.B. mittels elektrisch oder mechanisch angetriebenen Lüftern erzeugt. Das zu kühlende Medium (nachfolgend als Prozessfluid bezeichnet) gibt die Energie an die Umgebungsluft ab und geht gekühlt zurück in den Prozess. Nachteilig ist dabei, dass elektrische oder mechanische Energie aufgewendet wird, um dem Prozess thermische Energie zu entnehmen.There are currently numerous applications in industry (e.g. cooling of compressed air compressors, food industry, chemical industry), in power generation (e.g. cooling of engine cooling water in stationary engines, transformers) or in transport (internal combustion engines, e.g. trucks), in which, for example, electrical (or mechanical ) Energy is used to drive a cooler, for example an air cooler. The medium to be cooled is usually passed into a heat exchanger through which ambient air flows. The air flow is generated, for example, using electrically or mechanically driven fans. The medium to be cooled (hereinafter referred to as process fluid) releases the energy into the ambient air and returns to the process cooled. The disadvantage here is that electrical or mechanical energy is used to extract thermal energy from the process.

Das Dokument EP 2 320 058 A1 beschreibt die Abwärmenutzung für Verbrennungsmotoren. Die Abwärmenutzungsvorrichtung umfasst einen Kühlwasserkreislauf mit einem Zirkulationsweg zum Zirkulieren von Kühlwasser und einen Rankine-Zyklus mit einem Zirkulationsweg zum Zirkulieren eines Arbeitsfluids.The document EP 2 320 058 A1 describes the use of waste heat for combustion engines. The waste heat utilization device includes a cooling water cycle with a circulation path for circulating cooling water and a Rankine cycle with a circulation path for circulating a working fluid.

Beschreibung der ErfindungDescription of the invention

Aufgabe der Erfindung ist es, die genannten Nachteile zu vermeiden oder zumindest abzumildern.The object of the invention is to avoid or at least mitigate the disadvantages mentioned.

Die Erfindung beschreibt die Lösung des oben genannten Problems, indem unter anderem mittels einer thermodynamischen Kreisprozessvorrichtung die dem Medium entnommene Wärme teilweise in mechanische und/oder elektrische Energie umgewandelt wird.The invention describes the solution to the above-mentioned problem by, among other things, using a thermodynamic cycle device to partially convert the heat removed from the medium into mechanical and/or electrical energy.

Die erfindungsgemäße Lösung wird definiert durch eine Vorrichtung mit den Merkmalen gemäß Anspruch 1.The solution according to the invention is defined by a device with the features according to claim 1.

Weiterbildungen des erfindungsgemäßen Systems sind in den abhängigen Ansprüchen dargestellt.Further developments of the system according to the invention are presented in the dependent claims.

Weitere, zusätzliche Merkmale und beispielhafte Ausführungsformen, die zu einem Teil Ausführungsformen der Erfindung sind und zu einem anderen Teil nicht Ausführungsformen der Erfindung sind, jedoch zu ihrem Verständnis beitragen, sowie Vorteile der vorliegenden Erfindung werden nachfolgend anhand der Zeichnungen näher erläutert. Es versteht sich, dass die Ausführungsformen nicht den Bereich der vorliegenden Erfindung erschöpfen, wobei die Erfindung ausschließlich durch den anhängenden unabhängigen Anspruch 1 definiert ist.Further, additional features and exemplary embodiments, some of which are embodiments of the invention and some of which are not embodiments of the invention, but which contribute to its understanding, as well as advantages of the present invention are explained in more detail below with reference to the drawings. It is to be understood that the embodiments do not exhaust the scope of the present invention, which invention is defined solely by the appended independent claim 1.

Zeichnungendrawings

Fig. 1Fig. 1
zeigt eine erste nicht erfindungsgemäße Ausführungsform (Variante 1) der Vorrichtung.shows a first embodiment not according to the invention (variant 1) of the device.
Fig. 2Fig. 2
zeigt eine nicht-erfindungsgemäße zweite Ausführungsform (Variante 2A) der Vorrichtung.shows a second embodiment (variant 2A) of the device not according to the invention.
Fig. 3Fig. 3
zeigt eine nicht-erfindungsgemäße dritte Ausführungsform (Variante 2B) der Vorrichtung.shows a third embodiment (variant 2B) of the device not according to the invention.
Fig. 4Fig. 4
zeigt ein Temperatur-Wärmestrom-Diagramm (T-Q-Diagramm)shows a temperature-heat flow diagram (TQ diagram)
Fig. 5Fig. 5
zeigt eine nicht-erfindungsgemäße vierte Ausführungsform (Variante 2C) der Vorrichtung.shows a fourth embodiment (variant 2C) of the device not according to the invention.
Fig. 6Fig. 6
zeigt eine nicht-erfindungsgemäße fünfte Ausführungsform (Variante 3A) der Vorrichtung.shows a fifth embodiment (variant 3A) of the device not according to the invention.
Fig. 7Fig. 7
zeigt eine nicht-erfindungsgemäße sechste Ausführungsform (Variante 3B) der Vorrichtung.shows a non-inventive sixth embodiment (variant 3B) of the device.
Fig. 8Fig. 8
zeigt eine nicht-erfindungsgemäße siebte Ausführungsform (Variante 4) der Vorrichtung.shows a seventh embodiment (variant 4) of the device not according to the invention.
Fig. 9Fig. 9
zeigt eine nicht-erfindungsgemäße achte Ausführungsform (Variante 5) der Vorrichtung.shows a non-inventive eighth embodiment (variant 5) of the device.
Fig. 10Fig. 10
zeigt eine erfindungsgemäße neunte Ausführungsform (Variante 6) der Vorrichtung, wobei die Erfindung durch den anhängenden unabhängigen Anspruch 1 definiert ist.shows a ninth embodiment (variant 6) of the device according to the invention, the invention being defined by the appended independent claim 1.
Fig. 11Fig. 11
zeigt eine nicht-erfindungsgemäße zehnte Ausführungsform (Variante 7) der Vorrichtung.shows a tenth embodiment (variant 7) of the device not according to the invention.

Gleiche Bezugszeichen in den Zeichnungen beziehen sich auf identische oder entsprechende Bestandteile.Like reference numbers in the drawings refer to identical or corresponding components.

AusführungsformenEmbodiments

Bei zahlreichen Anwendungen von Luftkühlern (siehe Abschnitt: Stand der Technik) wird ein Medium mit Temperaturen >50°C gekühlt. Dieses Temperaturniveau ist ausreichend, um damit einen thermodynamischen Kreisprozess zu betreiben, z.B. einen Organic-Rankine-Cycle Prozess (ORC-Prozess). Es kann also neben der Kühlfunktion noch nutzbare mechanische und/oder elektrische Energie bereitgestellt werden. Diese Energie kann zum Beispiel einen Luftkühler antreiben oder für sonstige Zwecke verwendet werden (Betrieb von prozessnahen Verbrauchern, Pumpen, Energiespeicher...).In numerous applications of air coolers (see section: State of the art), a medium is cooled at temperatures >50°C. This temperature level is sufficient to operate a thermodynamic cycle, e.g. an Organic Rankine Cycle process (ORC process). In addition to the cooling function, usable mechanical and/or electrical energy can also be provided. This energy can, for example, drive an air cooler or be used for other purposes (operation of process-related consumers, pumps, energy storage...).

Der thermodynamische Kreisprozess ersetzt somit zumindest teilweise den ursprünglich eingesetzten Luftkühler der jeweiligen Anwendung, weshalb im Falle eines Organic-Rankine-Cycle Prozesses beispielsweise von einem ORC-Kühler für die Anwendung gesprochen werden kann.The thermodynamic cycle therefore at least partially replaces the air cooler originally used in the respective application, which is why in the case of an Organic Rankine Cycle process, for example, one can speak of an ORC cooler for the application.

Spezifische bevorzugte Anforderungen an den ORC Kühler:Specific ORC Cooler Preferred Requirements:

  • Die Kühlleistung soll auch bei Ausfall des ORC-Kreislaufs gewährleistet werden.The cooling performance should be guaranteed even if the ORC circuit fails.
  • Bei machen Anwendungen soll kein überschüssiger Strom erzeugt werden, weil durch eine direkte Netzeinspeisung die technische und rechtliche Komplexität ggf. unverhältnismäßig steigt. Daher ist in einem solchen Fall auch keine Verbindung mit dem Stromnetz erforderlich.In some applications, excess electricity should not be generated because direct feed-in to the grid may increase the technical and legal complexity disproportionately. Therefore, in such a case, no connection to the power grid is required.
  • Es sollte möglichst Wartungsfreiheit bestehen bzw. es sollte keine Erhöhung des Wartungsaufwands im Vergleich zu konventionellen Kühlern resultieren.There should be as little maintenance as possible and there should be no increase in maintenance costs compared to conventional coolers.
  • Falls erforderlich, soll ein Temperaturniveau des Hauptprozesses / des zu kühlenden Prozesses eingehalten werden, also z.B. sollte eine Temperatur des zurückgeführten Prozessfluids erzielt bzw. unterschritten werden. Durch Hinzufügen wenigstens eines weiteren Wärmeübertragers ist eine weitere Temperaturdifferenz zwischen dem Arbeitsmedium bzw. auch dem Prozessfluid und dem Kühlfluid eines Kühlers (z.B. Umgebungsluft oder Kühlwasser) vorhanden, sodass die Zieltemperatur des zu kühlenden Prozesses nicht eingehalten werden kann. Durch die unten angeführten Verschaltungen wird das Problem der zusätzlichen Temperaturdifferenz gelöst.If necessary, a temperature level of the main process / the process to be cooled should be maintained, i.e. a temperature of the returned process fluid should be achieved or fallen below. By adding at least one further heat exchanger, a further temperature difference is present between the working medium or the process fluid and the cooling fluid of a cooler (e.g. ambient air or cooling water), so that the target temperature of the process to be cooled cannot be maintained. The problem of the additional temperature difference is solved using the connections listed below.
  • Eine Modularität des Systems ist bevorzugt, um bei Bedarf höhere Kühlleistungen bereitstellen zu können.Modularity of the system is preferred in order to be able to provide higher cooling capacities if required.
  • Es sollte kein Einfluss auf das bestehende Regelungssystem des Hauptprozess entstehen.There should be no influence on the existing control system of the main process.

Allgemein, innerhalb und außerhalb der vorliegenden Erfindung, kann der ORC-Kühler für alle Prozesse angewendet werden, bei denen das zu kühlende Fluid mit einem ausreichend großen Temperaturabstand zur Umgebungstemperatur (z.B. mit einer Temperatur über 40°C) an den Prozess zurückgegeben werden kann.In general, within and outside of the present invention, the ORC cooler can be used for all processes in which the fluid to be cooled can be returned to the process with a sufficiently large temperature distance from the ambient temperature (e.g. with a temperature above 40 ° C).

Beispielanwendungen für zu kühlende Prozesse (nicht vollständig):Example applications for processes to be cooled (not complete):

  • Motoren (Zug, LKW, Baumaschinen, Kran, Marine)Engines (train, truck, construction machinery, crane, marine)
  • DruckluftkompressorenAir compressors
  • Industrieprozesse (Automobil, Chemie, Druck, Elektro- und Elektronik, Glas, Gummi, Kunststoff, Laser, Nahrungsmittel, Pharma, Textil, Umwelt, Verpackung,...)Industrial processes (automotive, chemicals, printing, electrical and electronics, glass, rubber, plastics, lasers, food, pharmaceuticals, textiles, environment, packaging,...)
  • Transformatoren-StationenTransformer stations
  • Data Center (Serverkühlung)Data center (server cooling)
Detaillierte Beschreibung im Zusammenhang mit den ZeichnungenDetailed description related to the drawings Variante 1 - GrundverschaltungVariant 1 - basic wiring

Fig. 1 zeigt eine erste nicht erfindungsgemäße Ausführungsform 100 der thermodynamischen Kreisprozessvorrichtung. Fig. 1 shows a first embodiment 100 of the thermodynamic cycle device not according to the invention.

Das System 100 zum Kühlen eines Prozessfluids (z.B. Wasser) einer wärmeerzeugenden Einrichtung 10, umfasst: einen Ausgang 11 der wärmeerzeugenden Einrichtung, wobei der Ausgang 11 zum Abführen von zu kühlendem Prozessfluid von der wärmeerzeugenden Einrichtung 10 vorgesehen ist; einen Eingang 12 der wärmeerzeugenden Einrichtung 10, wobei der Eingang 12 zum Zuführen von gekühltem Prozessfluid zur wärmeerzeugenden Einrichtung 10 vorgesehen ist; und eine thermodynamische Kreisprozessvorrichtung, insbesondere eine ORC-Vorrichtung, wobei die thermodynamische Kreisprozessvorrichtung umfasst: einen Verdampfer 20 mit einem Einlass 21 zum Zuführen des zu kühlenden Prozessfluids vom Ausgang 11 der wärmeerzeugenden Einrichtung 10 und mit einem Auslass 22 zum Abführen des gekühlten Prozessfluids zum Eingang 12 der wärmeerzeugenden Einrichtung 10, wobei der Verdampfer 20 zum Verdampfen eines Arbeitsmediums der thermodynamischen Kreisprozessvorrichtung mittels Wärme aus dem Prozessfluid ausgebildet ist; eine Expansionsmaschine 30 zum Expandieren des verdampften Arbeitsmediums und zur Erzeugung von mechanischer und/oder elektrischer Energie, beispielsweise mittels elektrischem Generator 40; einen Kondensator 50 zum Verflüssigen des expandierten Arbeitsmediums, insbesondere einen luftgekühlten Kondensator 50; und eine Pumpe 60 zum Pumpen des verflüssigten Arbeitsmediums zum Verdampfer.The system 100 for cooling a process fluid (e.g. water) of a heat-generating device 10 comprises: an output 11 of the heat-generating device, the output 11 being provided for discharging process fluid to be cooled from the heat-generating device 10; an inlet 12 of the heat generating device 10, the inlet 12 being provided for supplying cooled process fluid to the heat generating device 10; and a thermodynamic cycle device, in particular an ORC device, wherein the thermodynamic cycle device comprises: an evaporator 20 with an inlet 21 for supplying the process fluid to be cooled from the outlet 11 of the heat-generating device 10 and with an outlet 22 for discharging the cooled process fluid to the inlet 12 the heat-generating device 10, wherein the evaporator 20 is designed to evaporate a working medium of the thermodynamic cycle device using heat from the process fluid; an expansion machine 30 for expanding the evaporated working medium and for generating mechanical and/or electrical energy, for example by means of an electrical generator 40; a condenser 50 for liquefying the expanded working medium, in particular an air-cooled condenser 50; and a pump 60 for pumping the liquefied working medium to the evaporator.

Die Implementierung erfolgt gemäß Fig. 1 wie folgt. Im Verdampfer 20 wird das heiße Prozessfluid mit der Prozesstemperatur TProz,aus auf die Zieltemperatur TProz,ein gekühlt, während die aufgenommene Wärme zur Verdampfung des Arbeitsmediums im ORC-Kreis verwendet wird. Der so erzeugte Frischdampf wird unter Arbeitsabgabe in der Expansionsmaschine 30 entspannt, wodurch z.B. ein Generator 40 angetrieben werden kann. Der Abdampf wird im Kondensator 50 verflüssigt und steht anschließend flüssig an der Pumpe 60 an. Die Pumpe 60 bringt das Arbeitsmedium anschließend wieder auf den gewünschten Druck. Durch die Vorrichtung in Fig. 1 wird der zuvor eingesetzte konventionelle Luftkühler des Prozesses 10 ersetzt und zusätzlich Nutzleistung generiert. Wie weiter oben ausgeführt, kann jedoch durch den zusätzlichen Kreislauf des Arbeitsmediums die Zieltemperatur TProz,ein nicht so niedrig sein, wie ohne den ORC-Kreis. Weiterhin ist in dieser ersten Ausführungsform eine Notlauffähigkeit der Anlage nicht gegeben. Das heißt, bei Ausfall der ORC-Anlage kann die Temperatur TProz,aus nicht abgesenkt werden, es kann nicht gekühlt werden.The implementation is carried out according to Fig. 1 as follows. In the evaporator 20, the hot process fluid with the process temperature T Proz,out is cooled to the target temperature T Proz, on, while the heat absorbed is used to evaporate the working medium in the ORC circuit. The live steam generated in this way is expanded while producing work in the expansion machine 30, whereby a generator 40, for example, can be driven. The exhaust steam is liquefied in the condenser 50 and is then available in liquid form at the pump 60. The pump 60 then brings the working medium back to the desired pressure. Through the device in Fig. 1 The previously used conventional air cooler of process 10 is replaced and additional useful power is generated. As explained above, however, due to the additional circuit of the working medium, the target temperature T Proz,a cannot be as low as without the ORC circuit. Furthermore, in this first embodiment there is one The system does not have emergency running capability. This means that if the ORC system fails, the temperature T Proz,off cannot be lowered and it cannot be cooled.

Variante 2A - Parallele Verschaltung Variant 2A - Parallel connection

Fig. 2A zeigt eine nicht-erfindungsgemäße zweite Ausführungsform 200 der Vorrichtung. In dieser zweiten Ausführungsform 200 des Systems ist zusätzlich Kühler 70 (hier ein Luftkühler 70) zum Kühlen wenigstens eines Teils des zu kühlenden Prozessfluids vorgesehen. Das System 200 umfasst eine Abzweigung 71, die beispielhaft in Bezug auf eine Strömungsrichtung des Prozessfluids stromabwärts des Ausgangs 11 und stromaufwärts des Einlasses 21 zum Aufteilen des zu kühlenden Prozessfluids in einen ersten und einen zweiten Teilstrom des Prozessfluids vorgesehen ist, wobei die Abzweigung 71 in diesem Beispiel ein Ventil V umfasst. Das System 200 umfasst weiterhin eine Zusammenführung 72, die in Bezug auf eine Strömungsrichtung des Prozessfluids stromabwärts des Auslasses 22 und stromaufwärts des Eingangs 12 zum Zusammenführen des durch den Kühler 70 gekühlten zweiten Teilstroms des Prozessfluids und des durch den Verdampfer 20 gekühlten ersten Teilstroms des Prozessfluids vorgesehen ist; wobei die Abzweigung 71 zum Zuführen des ersten Teilstroms zum Verdampfer 20 und zum Zuführen des zweiten Teilstroms zum Kühler 70 ausgebildet ist. Somit ist in Bezug auf den Strom des Prozessfluids eine parallele Verschaltung der Komponenten (Verdampfer 20, Kühler 70), die dem Prozessfluid Wärme entziehen, realisiert. Der Kühler 70 ist hier in einer baulichen Einheit mit dem Kondensator 50 ausgebildet, und es kann ein gemeinsamer Ventilator zur Luftkühlung bereitgestellt sein. Fig. 2A shows a second embodiment 200 of the device not according to the invention. In this second embodiment 200 of the system, a cooler 70 (here an air cooler 70) is additionally provided for cooling at least part of the process fluid to be cooled. The system 200 includes a branch 71, which is provided, for example with respect to a flow direction of the process fluid, downstream of the outlet 11 and upstream of the inlet 21 for dividing the process fluid to be cooled into a first and a second partial flow of the process fluid, the branch 71 being in this Example includes a valve V. The system 200 further includes a merge 72, which is provided with respect to a flow direction of the process fluid downstream of the outlet 22 and upstream of the inlet 12 for combining the second partial flow of the process fluid cooled by the cooler 70 and the first partial flow of the process fluid cooled by the evaporator 20 is; wherein the branch 71 is designed to supply the first partial flow to the evaporator 20 and to supply the second partial flow to the cooler 70. Thus, with respect to the flow of the process fluid, a parallel connection of the components (evaporator 20, cooler 70) that remove heat from the process fluid is implemented. The cooler 70 is here formed in a structural unit with the condenser 50, and a common fan can be provided for air cooling.

Die Verschaltung gemäß Fig. 2A löst somit das Problem der Notlaufeigenschaft. Die Bypass-Möglichkeit (über das Ventil V) des ORC-Kreislaufs gewährleistet die Kühlung bei Ausfall des ORC-Kreislaufs. Die Zieltemperatur TProz,ein kann erreicht werden indem ein Teilstrom den ORC-Kreislauf umgeht, direkt im Luftkühler (z.B.: V-Kühler, Tischkühler) gekühlt wird und anschließend wieder dem Teilstrom aus dem ORC-Verdampfer 20 zugemischt wird. Der im ORC-Kreislauf durch den Generator 40 erzeugte Strom kann direkt für die Versorgung des Luftkühlers 70 (bzw. der Kombination aus Verdampfer 50 und Luftkühler 70) verwendet werden, wodurch dessen Stromkosten signifikant reduziert werden, was wiederum zur Erhöhung der Wirtschaftlichkeit des Kühlers 70 (Verdampfer 50) führt. Zusätzlich ist es mit dieser Verschaltung möglich, stets die Zieltemperatur TProz,ein zu erreichen.The connection according to Fig. 2A thus solves the problem of emergency running properties. The bypass option (via valve V) of the ORC circuit ensures cooling if the ORC circuit fails. The target temperature T Proz,in can be achieved by a partial flow bypassing the ORC circuit, being cooled directly in the air cooler (e.g.: V cooler, table cooler) and then being mixed back into the partial flow from the ORC evaporator 20. The electricity generated in the ORC circuit by the generator 40 can be used directly to supply the air cooler 70 (or the Combination of evaporator 50 and air cooler 70) can be used, whereby its electricity costs are significantly reduced, which in turn leads to increasing the economic efficiency of the cooler 70 (evaporator 50). In addition, with this connection it is possible to always achieve the target temperature T Proz,on .

Fig. 2B stellt eine Abwandlung der Ausführung gemäß Fig. 2A dar, indem der Strom der Umgebungsluft nicht wie in Fig. 2A parallel durch den Kondensator 50 und den Kühler 70 hindurchgeht, sondern nacheinander zuerst durch den Kühler 70 und danach durch den Kondensator 50. Dies hat den Vorteil einer kompakten Bauweise, wobei die geringste Lufttemperatur am Kühler 70 vorliegt, so dass dadurch eine niedrige Temperatur des Prozessfluids erzielt werden kann, während die Kühlung des Arbeitsmediums im Kondensator 50 weniger effektiv ist. Fig. 2B represents a modification of the execution Fig. 2A in that the flow of ambient air is not as in Fig. 2A passes in parallel through the condenser 50 and the cooler 70, but one after the other first through the cooler 70 and then through the condenser 50. This has the advantage of a compact design, with the lowest air temperature being present at the cooler 70, so that a low temperature of the process fluid can be achieved while the cooling of the working medium in the condenser 50 is less effective.

Fig. 2C stellt eine Alternative zur Abwandlung gemäß Fig. 2B dar Hierbei ist in Bezug auf die Luftdurchströmung die Reihenfolge von Kühler 70 und Kondensator 50 vertauscht, so dass die Umgebungsluft zunächst durch den Kondensator 50 und anschließen durch den Kühler 70 strömt. Dadurch liegt die geringste Lufttemperatur am Kondensator 50 vor, so dass mit dem ORC-Kreislauf eine höhere Stromerzeugung über den Generator 40 möglich ist. Fig. 2C represents an alternative to the modification according to Fig. 2B Here, with regard to the air flow, the order of cooler 70 and condenser 50 is reversed, so that the ambient air first flows through the condenser 50 and then through the cooler 70. As a result, the lowest air temperature is present at the capacitor 50, so that higher electricity generation via the generator 40 is possible with the ORC circuit.

In den Abwandlungen gemäß Fig. 2B und 2C bleibt die in Bezug auf Fig. 2A beschriebene Notlauffähigkeit erhalten.In the modifications according to Figures 2B and 2C remains the in relation to Fig. 2A described emergency running capability.

Variante 2B - Serielle Verschaltung Variant 2B - Serial connection

Fig. 3 zeigt eine nicht-erfindungsgemäße dritte Ausführungsform 300 der Vorrichtung. Fig. 3 shows a third embodiment 300 of the device not according to the invention.

In der dritten Ausführungsform ist der Kühler 70 in Bezug auf eine Strömungsrichtung des Prozessfluids stromabwärts des Auslasses 22 des Verdampfers 20 und stromaufwärts des Eingangs 12 der wärmeerzeugenden Einrichtung 10 zum weiteren Kühlen des durch den Verdampfer gekühlten Prozessfluids angeordnet. Dies realisiert eine Reihenverschaltung der Komponenten (Verdampfer 20, Kühler 70), die dem Prozessfluid Wärme entziehen. In einer modifizierten Ausführung, kann (ähnlich zur Ausführungsform gemäß Fig. 2 ein Ventil vorgesehen sein, das nur einen Teil des Prozessfluids über den Kühler 70 führt.In the third embodiment, the cooler 70 is disposed downstream of the outlet 22 of the evaporator 20 and upstream of the inlet 12 of the heat generating device 10 with respect to a flow direction of the process fluid for further cooling the process fluid cooled by the evaporator. This creates a series connection of the components (evaporator 20, cooler 70), which remove heat from the process fluid. In a modified version, (similar to Embodiment according to Fig. 2 a valve may be provided which only leads part of the process fluid via the cooler 70.

Der Prozessfluid-/Wasser-Rücklauf aus dem ORC-Verdampfer 20 wird durch den Luftkühler 70 geschickt um eine weitere Auskühlung zu ermöglichen. In einer Weiterentwicklung kann durch eine intelligente Regelung der Wärmeeintrag zum Luftkühler 70 geregelt werden (z.B. mit Hilfe des genannten Ventils), um nicht weiter als notwendig auszukühlen. Ziel ist es, die geforderte Tproz,ein zu erreichen ohne Strom zu verbrauchen. Dies ist im Temperatur-Wärmestrom-Diagramm gemäß Fig. 4 dargestellt (T-Q-Diagramm).The process fluid/water return from the ORC evaporator 20 is sent through the air cooler 70 to allow further cooling. In a further development, the heat input to the air cooler 70 can be regulated by intelligent control (for example with the help of the valve mentioned) in order not to cool down any further than necessary. The aim is to achieve the required T process without consuming electricity. This is shown in the temperature-heat flow diagram Fig. 4 shown (TQ diagram).

Ist die durch den ORC-Kreisprozess erreichbare Auskühlung T1 über einer geforderten Grenze, so kann über eine zusätzliche Kühlung durch Wasser oder Luft im nachgelagerten Kühler eine geringere Temperatur Tproz,ein erreicht werden.If the cooling T 1 that can be achieved through the ORC cycle process is above a required limit, a lower temperature T proz,in can be achieved through additional cooling using water or air in the downstream cooler.

Variante 2C - Unabhängige Verschaltung Variant 2C - Independent interconnection

Fig. 5 zeigt eine nicht-erfindungsgemäße vierte Ausführungsform 400 der Vorrichtung. Fig. 5 shows a fourth embodiment 400 of the device not according to the invention.

Die vierte Ausführungsform entspricht im Wesentlichen der zweiten Ausführungsform gemäß Fig. 2. Der Unterschied besteht darin, dass der Kühler 70 separat vom Kondensator 50 vorgesehen ist.The fourth embodiment essentially corresponds to the second embodiment Fig. 2 . The difference is that the cooler 70 is provided separately from the condenser 50.

Der Vorteil dieser Variante ist, dass der ORC-Kühler (mit den Komponenten 20, 30, 40, 50, 60) und der Luftkühler (Notkühler) 70 vollständig unabhängig voneinander betrieben werden können und auch bei Ausfall des ORC Kühlers eine Notkühlung für den Prozess gewährleistet ist. Zusätzlich erleichtert die systemische Trennung des ORC-Kühlers und des Luftkühlers die einfache Integration in bestehende Kühlsysteme. Der bestehende Kühler fungiert nach der Integration als Notkühler und der ORC-Kühler als Zusatzmodul ("Rucksackmodul") für Nachrüstungen oder Erweiterungen.The advantage of this variant is that the ORC cooler (with components 20, 30, 40, 50, 60) and the air cooler (emergency cooler) 70 can be operated completely independently of each other and can provide emergency cooling for the process even if the ORC cooler fails is guaranteed. In addition, the systemic separation of the ORC cooler and the air cooler facilitates easy integration into existing cooling systems. After integration, the existing cooler acts as an emergency cooler and the ORC cooler acts as an additional module (“backpack module”) for retrofits or expansions.

Variante 3A - Parallele Verschaltung im Wasserkreis Variant 3A - Parallel connection in the water circuit

Fig. 6 zeigt eine nicht-erfindungsgemäße fünfte Ausführungsform 500 der Vorrichtung. Fig. 6 shows a fifth embodiment 500 of the device not according to the invention.

Die fünfte Ausführungsform basiert im Wesentlichen auf der zweiten Ausführungsform gemäß Fig. 2.The fifth embodiment is essentially based on the second embodiment according to Fig. 2 .

Gemäß der fünften Ausführungsform umfasst das System 500 zur thermischen Verbindung des Kondensators 50 und des Kühlers 70a, 70b jedoch weiterhin einen Zwischenkreis mit einem Wärmeträgerfluid (hier Wasser), wobei der Kondensator 50 zum Übertragen von Wärme aus dem expandierten Arbeitsmedium auf das Wärmeträgerfluid vorgesehen ist und wobei der Kühler 70a, 70b zum Kühlen des Wärmeträgerfluids vorgesehen ist. Aus einem vom Kondensator 50 zum Kühler 70a, 70b fließenden Zweig des Wärmeträgerfluids kann beispielsweise Nutzwärme zu einer Nutzwärmeeinrichtung 80 abgeführt werden kann.According to the fifth embodiment, the system 500 for thermally connecting the condenser 50 and the cooler 70a, 70b, however, further comprises an intermediate circuit with a heat transfer fluid (here water), the capacitor 50 being provided for transferring heat from the expanded working medium to the heat transfer fluid and wherein the cooler 70a, 70b is provided for cooling the heat transfer fluid. For example, useful heat can be dissipated to a useful heat device 80 from a branch of the heat transfer fluid flowing from the condenser 50 to the cooler 70a, 70b.

Variante 3B - Serielle Verschaltung im Wasserkreis Variant 3B - Serial connection in the water circuit

Fig. 7 zeigt eine nicht-erfindungsgemäße sechste Ausführungsform 600 der Vorrichtung. Fig. 7 shows a non-inventive sixth embodiment 600 of the device.

Die sechste Ausführungsform basiert auf der dritten Ausführungsform gemäß Fig. 3 und wurde analog zur fünften Ausführungsform modifiziert. Dabei ist die (chemische) Zusammensetzung des Wärmeträgerfluids identisch zur Zusammensetzung des Prozessfluids.The sixth embodiment is based on the third embodiment according to Fig. 3 and was modified analogously to the fifth embodiment. The (chemical) composition of the heat transfer fluid is identical to the composition of the process fluid.

Oftmals gestaltet es sich schwierig, Luftkühler (z.B. Tischkühler) aufgrund ihrer großen Aufstellfläche in vorhandene Anlagen einzugliedern. Die Verschaltungsvarianten 3A und 3B verringern diese Problematik indem zwischen ORC-Kondensator 50 und dem Kühler 70 ein weiterer Wärmeübertrager 75 und ein Zwischenkreis mit einem Wärmeträgerfluid (z.B. Wasser) eingefügt werden. Somit werden die Aufstellorte der Wärmequelle und des Kühlers voneinander entkoppelt und eine große Flexibilität bei der Aufstellung des ORC Prozesses erreicht. Weiterhin kann der Wasserzwischenkreis weitere Wärmeverbraucher speisen. Die Varianten 3A und 3B können hinsichtlich der Wärmequelle und der Wärmesenke auch permutiert werden.It is often difficult to integrate air coolers (e.g. table coolers) into existing systems due to their large installation area. The wiring variants 3A and 3B reduce this problem by inserting a further heat exchanger 75 and an intermediate circuit with a heat transfer fluid (e.g. water) between the ORC capacitor 50 and the cooler 70. This means that the installation locations of the heat source and the cooler are decoupled from each other and a great deal of flexibility is achieved when setting up the ORC process. Furthermore, the water intermediate circuit can supply additional heat consumers. Variants 3A and 3B can also be permuted with regard to the heat source and the heat sink.

Variante 4 - Kombination Kühler - Vorwärmer - ORC Variant 4 - combination cooler - preheater - ORC

Fig. 8 zeigt eine nicht-erfindungsgemäße siebte Ausführungsform 700 der Vorrichtung. Fig. 8 shows a seventh embodiment 700 of the device not according to the invention.

Gemäß der siebten Ausführungsform 700 des erfindungsgemäßen Systems ist ein weiterer Wärmeübertrager 25 vorgesehen, der (in Bezug auf eine Strömungsrichtung des Prozessfluids stromabwärts des Verdampfers 20) zum Übertragen von Wärme von dem durch den Verdampfer 20 gekühlten Prozessfluid auf ein Wärmeträgerfluid vorgesehen ist.According to the seventh embodiment 700 of the system according to the invention, a further heat exchanger 25 is provided, which is provided (with respect to a flow direction of the process fluid downstream of the evaporator 20) for transferring heat from the process fluid cooled by the evaporator 20 to a heat transfer fluid.

Das System umfasst ein Ventil 26 zum Regeln des Massenstroms des Wärmeträgerfluids durch den weiteren Wärmeübertrager 25. Weiterhin ist hier beispielhaft eine Temperaturmesseinrichtung 27 zum Messen der Temperatur des Prozessfluids stromabwärts des weiteren Wärmeübertragers 25 vorgesehen ist, wobei die Regelung des Ventils 26 in Abhängigkeit von der gemessenen Temperatur erfolgt. In dieser Ausführung ist es möglich, eine Absenkung der Temperatur TProz,ein auf das gleiche Temperaturniveau wie ohne ORC zu erreichen, indem zusätzlich ein Teilstrom eines kalten, aufzuwärmenden Prozessmediums (Wärmeträgerfluid, hier Wasser) zur Kühlung verwendet wird. Die Wärmeabnahme geschieht dann in einem ersten Schritt durch den ORC-Kreis. Das vorgekühlte wärmeübertragende Prozessfluid durchströmt anschließend den weiteren Wärmeübertrager 25 in dem es auf die Zieltemperatur herabgekühlt wird.The system includes a valve 26 for regulating the mass flow of the heat transfer fluid through the further heat exchanger 25. Furthermore, by way of example, a temperature measuring device 27 is provided here for measuring the temperature of the process fluid downstream of the further heat exchanger 25, the control of the valve 26 depending on the measured temperature takes place. In this version, it is possible to reduce the temperature T Proz,in to the same temperature level as without ORC by additionally using a partial flow of a cold process medium to be warmed up (heat transfer fluid, here water) for cooling. The heat is then removed in a first step by the ORC circuit. The pre-cooled heat-transferring process fluid then flows through the further heat exchanger 25 in which it is cooled down to the target temperature.

Dabei kann zur Einstellung der Zieltemperatur ein anderer Teilstrom des kalten, aufzuwärmenden Prozessmediums dem Prozessfluid in Strömungsrichtung nach dem weiteren Wärmeübertrager 25 beigemischt werden.In order to set the target temperature, another partial flow of the cold process medium to be warmed up can be added to the process fluid in the flow direction after the further heat exchanger 25.

Variante 5 - 3 stufige Kühlung des wärmezuführenden MediumsVariant 5 - 3-stage cooling of the heat-supplying medium

Fig. 9 zeigt eine nicht-erfindungsgemäße achte Ausführungsform 800 der Vorrichtung. Fig. 9 shows a non-inventive eighth embodiment 800 of the device.

Gemäß der achten Ausführungsform ist ein weiterer Verdampfer 90 zwischen dem Auslass 22 und dem Eingang 12 zum weiteren Verdampfen von Arbeitsmedium mittels Wärme aus dem Prozessfluid vorgesehen. Zudem ist ein Drosselventil 91 zum Absenken des Drucks des Arbeitsmediums in dem weiteren Verdampfer 90 und eine Flüssigkeitsstrahlpumpe 92 und/oder eine Dampfstrahlpumpe 93 zwischen dem weiteren Verdampfer 90 und dem Kondensator 50 zur Absenkung des Drucks in dem weiteren Verdampfer 90 angeordnet, wobei insbesondere ein Teil des verflüssigten Arbeitsmediums bzw. ein Teil des verdampften Arbeitsmediums als Treibstrahl dient. Dies realisiert eine 3-stufige Kühlung des Prozessfluids, wie nachfolgend beschrieben. In der Zeichnung ist sowohl die Ausführung mit der Flüssigkeitsstrahlpumpe 92 als auch mit der Dampfstrahlpumpe 93 gezeigt. In der Regel ist nur eine der beiden Pumpen vorgesehen. Mit der Flüssigkeitsstrahlpumpe 92 ist die untere Leitung nach der Pumpe 60 zur Flüssigkeitsstrahlpumpe 92 erforderlich, während im Falle der Dampfstrahlpumpe 93 die obere Leitung für das im Verdampfer 20 verdampfte Arbeitsmedium erforderlich ist.According to the eighth embodiment, a further evaporator 90 is provided between the outlet 22 and the inlet 12 for further evaporation of working medium from the process fluid using heat. In addition, a throttle valve 91 for lowering the pressure of the working medium in the further evaporator 90 and a liquid jet pump 92 and/or a steam jet pump 93 are arranged between the further evaporator 90 and the condenser 50 for lowering the pressure in the further evaporator 90, in particular a part of the liquefied working medium or part of the evaporated working medium serves as a propellant jet. This realizes a 3-stage cooling of the process fluid, as described below. The drawing shows both the version with the liquid jet pump 92 and with the steam jet pump 93. As a rule, only one of the two pumps is provided. With the liquid jet pump 92, the lower line after the pump 60 to the liquid jet pump 92 is required, while in the case of the vapor jet pump 93, the upper line is required for the working medium evaporated in the evaporator 20.

1. Stufe: Normalbetrieb1st stage: Normal operation

Wärmezuführendes Medium wird nach der Wärmeabgabe im Verdampfer an den zu kühlenden Prozess zurückgeführt.After the heat has been released in the evaporator, the heat-supplying medium is returned to the process to be cooled.

2. Stufe: Kühlbetrieb2nd stage: cooling mode

Ein Teilstrom des Arbeitsmediums wird über das Drosselventil (Drossel) 91 dem Verdampfer 90 zugeführt. Die Drossel 91 wird derart eingestellt, dass der Druck annähernd dem Druck im Kondensator 50 entspricht. Durch die Druckabsenkung verdampft das Arbeitsmedium im Verdampfer 90 nur minimal über dem Kondensationsdruck und der Kondensationstemperatur des Kondensators 50, und ermöglicht so eine Auskühlung des zu kühlenden Mediums bis auf eine Temperatur, die ähnlich niedrig ist, wie die minimal erzielbare Temperatur in einem direkten Wärmeübertrager von zu kühlendem Medium an Luft. Auf diese Weise kann man selbst bei Nachrüstung der Kühlanlage mit einem ORC-System gewährleisten, dass die geforderten Temperaturen des zu kühlenden Mediums eingehalten werden.A partial flow of the working medium is fed to the evaporator 90 via the throttle valve (throttle) 91. The throttle 91 is adjusted such that the pressure approximately corresponds to the pressure in the condenser 50. Due to the pressure reduction, the working medium in the evaporator 90 evaporates only minimally above the condensation pressure and the condensation temperature of the condenser 50, and thus enables the medium to be cooled to cool down to a temperature that is similarly low as the minimum achievable temperature in a direct heat exchanger to cool medium in air. In this way, even if the cooling system is retrofitted with an ORC system, you can ensure that the required temperatures of the medium to be cooled are maintained.

3. Stufe: Drosselung auf einen Druck unterhalb des Kondensatordrucks3rd stage: Throttling to a pressure below the condenser pressure

Eine Flüssigkeitsstrahlpumpe 92 oder eine Dampfstrahlpumpe 93 bewirkt eine Druckabsenkung im Verdampfer 90 auf einen Druck unterhalb des Kondensationsdrucks im Kondensator 50. Es kann damit sogar ein geringerer Siededruck als der Kondensationsdruck im Kondensator 50 erreicht werden. Hierdurch wird das Arbeitsmedium mit sehr wenig Energieaufwand gefördert und wieder auf den Kondensationsdruck angehoben. Vorteilhaft ist hierbei, dass das Arbeitsmedium nur in geringen Massenströmen und bei geringer Druckerhöhung gefördert werden muss. Hierbei dient entweder ein Teil des Frischdampfes oder ein Teil des Speisefluids als Treibstrahl.A liquid jet pump 92 or a vapor jet pump 93 lowers the pressure in the evaporator 90 to a pressure below the condensation pressure in the condenser 50. This can even achieve a lower boiling pressure than the condensation pressure in the condenser 50. As a result, the working medium is pumped with very little energy and raised back to the condensation pressure. The advantage here is that the working medium only has to be conveyed in small mass flows and with a small increase in pressure. Either part of the live steam or part of the feed fluid serves as a propellant jet.

Variante 6 - Erweiterung durch ein ORC Modul für bestehende Kühler / ohne DirektkondensationVariant 6 - Expansion with an ORC module for existing coolers / without direct condensation

Fig. 10 zeigt eine neunte Ausführungsform 900 der Vorrichtung, wie sie der, durch den unabhängigen Anspruch 1 definierten, vorliegenden Erfindung entspricht. Fig. 10 shows a ninth embodiment 900 of the device corresponding to the present invention defined by independent claim 1.

Gemäß dieser Ausführungsform ist der Auslass 22 des Verdampfers 20 mit einem Eingang 71 des Kühlers 70, ein Ausgang 72 des Kühlers 70 mit einem Eingang 51 des Kondensators 50 und ein Ausgang 52 des Kondensators 50 mit dem Eingang 12 der wärmeerzeugenden Einrichtung 10 verbunden. Im Betrieb wird das Prozessfluid vom Verdampfer 20 zur weiteren Kühlung durch den Kühler 70 geleitet, daran anschließend als wärmeaufnehmendes Medium durch den Kondensator 50 geleitet und wiederum daran anschließend zum Eingang 12 der wärmeerzeugenden Einrichtung 10 geleitet.According to this embodiment, the outlet 22 of the evaporator 20 is connected to an input 71 of the cooler 70, an output 72 of the cooler 70 is connected to an input 51 of the condenser 50 and an output 52 of the condenser 50 is connected to the input 12 of the heat-generating device 10. During operation, the process fluid is passed from the evaporator 20 through the cooler 70 for further cooling, then passed through the condenser 50 as a heat-absorbing medium and then again passed to the inlet 12 of the heat-generating device 10.

Diese Verschaltung löst das Problem der Notlaufeigenschaft, weil der Kühler 70 unabhängig vom ORC-Kreislauf betrieben wird. Je nach gewünschter Zieltemperatur entnimmt der ORC-Kreislauf Wärme, die notwendige Kühlerleistung wird reduziert und der nachgelagerte Lüfter wird entlastet, was zu einer Reduktion seiner Wartungsintervalle führt. Diese Variante zeichnet sich durch ihre Kompaktheit (wenige Bauteile) und Synergieeffekte der gemeinsamen Komponenten aus. Sie kann gut zur Integration von bestehenden Kühlsystemen verwendet werden. Neben der Verdampfung findet auch die Kondensation im ORC Kreislauf gegen das zu kühlende Fluid statt (bei den anderen Varianten findet die Kondensation gegen die Umgebungsluft statt).This connection solves the problem of emergency running properties because the cooler 70 is operated independently of the ORC circuit. Depending on the desired target temperature, the ORC circuit extracts heat, the necessary cooler performance is reduced and the downstream fan is relieved, which leads to a reduction in its maintenance intervals. This variant is characterized by its compactness (few components) and synergy effects of the common components. It can be used well to integrate existing cooling systems. In addition to evaporation, condensation also occurs in the ORC circuit against what is to be cooled Fluid takes place (in the other variants the condensation takes place against the ambient air).

Variante 7 - Erweiterung durch ein ORC Modul für bestehende Kühler / mit Direktkondensation Variant 7 - Expansion with an ORC module for existing coolers / with direct condensation

Fig. 11 zeigt eine nicht-erfindungsgemäße zehnte Ausführungsform 1000 der Vorrichtung. Fig. 11 shows a tenth embodiment 1000 of the device not according to the invention.

Diese Ausführungsform ist ähnlich zur neunten Ausführungsform 900 gemäß Fig. 10, wobei der Unterschied im Kondensator 50 des ORC Kreislaufs zu finden ist. Bei der hier gezeigten Variante 7 findet eine Direktkondensation zwischen Umgebungsluft und ORC Arbeitsmedium statt. Durch bauliche Anpassungen der Wärmeübertragerflächen ist die Erweiterung bei Standardmodellen in der Industrie mit wenig Aufwand verbunden. Je nach Kühlermodell unterscheidet sich die Maßnahme.This embodiment is similar to the ninth embodiment 900 according to Fig. 10 , whereby the difference can be found in the capacitor 50 of the ORC circuit. In variant 7 shown here, direct condensation takes place between the ambient air and the ORC working medium. By structurally adapting the heat exchanger surfaces, the expansion of standard models in industry requires little effort. The measure differs depending on the cooler model.

Vorteile / Nachteile der beschriebenen Systeme:Advantages/disadvantages of the systems described:

Als Vorteile können genannt werden: Erhöhung der Betriebssicherheit (2 unabhängige Kühlsysteme, ORC + Kühler); Nutzung möglichst vieler Synergiekomponenten von Kühler und ORC; geringe Wartung; sehr gute Wirtschaftlichkeit (Einsparung von elektrischer Energie); Verringerung der CO2 - Emission; Erhöhung der Effizienz (Wirkungsgrad des Kühlprozesses wird erhöht, Synergieeffekte zwischen Komponenten). Weiterhin kann ein bereits bestehender Kühler verwendet werden, um den ORC-Kondensator zu kühlen und mit einem geringen konstruktiven Aufwand wird aus einem Prozess, welcher Energie benötigt, ein energieneutraler oder energieerzeugender Prozess.The following advantages can be mentioned: increasing operational safety (2 independent cooling systems, ORC + cooler); Use as many synergy components as possible from cooler and ORC; low maintenance; very good economic efficiency (saving of electrical energy); Reduction of CO 2 emissions; Increase in efficiency (efficiency of the cooling process is increased, synergy effects between components). Furthermore, an existing cooler can be used to cool the ORC capacitor and with little design effort, a process that requires energy becomes an energy-neutral or energy-generating process.

Nachteilig ist, dass durch das Hinzufügen zusätzlicher Komponenten die Komplexität des Gesamtsystems steigt (z.B.: Abstimmung der Regelungen, zusätzliche Kosten, zusätzliche Schnittstellen,...).The disadvantage is that adding additional components increases the complexity of the overall system (e.g. coordination of regulations, additional costs, additional interfaces,...).

Die dargestellten Ausführungsformen sind lediglich beispielhaft und der vollständige Umfang der vorliegenden Erfindung wird durch die Ansprüche definiert.The illustrated embodiments are merely exemplary and the full scope of the present invention is defined by the claims.

Claims (7)

  1. System (200) for cooling a process fluid of a heat-producing apparatus (10), comprising:
    an outlet (11) of the heat-producing apparatus (10), the outlet (11) being provided for discharging process fluid to be cooled from the heat-producing apparatus (10);
    an inlet (12) of the heat-producing apparatus (10), the inlet (12) being provided for supplying cooled process fluid to the heat-producing apparatus (10); and
    a thermodynamic cycle device, in particular an ORC device, the thermodynamic cycle device comprising:
    an evaporator (20) having an inlet for supplying the process fluid to be cooled from the outlet (11) of the heat-producing apparatus (10) and having an outlet (22) for discharging the cooled process fluid to the inlet (12) of the heat-producing apparatus (10), wherein the evaporator (20) is adapted to evaporate a working medium of the thermodynamic cycle device by means of heat from the process fluid;
    an expansion machine (30) for expanding the evaporated working medium and for generating mechanical and/or electrical energy;
    a condenser (50) for liquefying the expanded working medium; and
    a pump (60) for pumping the liquefied working medium to the evaporator (20);
    wherein the system (200) further comprises a cooler (70) for cooling at least part of the process fluid to be cooled;
    characterized in that
    the outlet of the evaporator is connected to an inlet of the cooler, an outlet of the cooler is connected to an inlet of the condenser, and an outlet of the condenser is connected to the inlet of the heat-producing apparatus, so that in operation the process fluid is guided from the evaporator through the condenser for further cooling, is subsequently passed through the condenser as a heat-absorbing medium, and is in turn subsequently guided to the inlet of the heat-producing apparatus.
  2. System according to claim 1, wherein the cooler is arranged downstream of the outlet of the evaporator with respect to a flow direction of the process fluid and upstream of the inlet of the heat-producing apparatus for further cooling the process fluid cooled by the evaporator.
  3. System according to claim 1, wherein the cooler forms a structural unit with the condenser or is provided separately from the condenser.
  4. System according to one of claims 1 to 3, further comprising a control device for controlling the heat input into the cooler, wherein in particular a set temperature of the process fluid returned to the inlet of the heat-producing apparatus can be achieved.
  5. System according to one of claims 1 to 4, further comprising:
    a further heat exchanger (25) provided downstream of the evaporator with respect to a flow direction of the process fluid for transferring heat from the process fluid cooled by the evaporator to a heat transfer fluid.
  6. System according to claim 5, further comprising:
    a valve (26) for controlling the mass flow of the heat transfer fluid through the additional heat exchanger;
    wherein preferably a temperature measurement device (27) is provided for measuring the temperature of the process fluid downstream of the further heat exchanger, wherein the control of the valve is effected depending on the measured temperature.
  7. System according to one of claims 1 to 4, further comprising:
    a further evaporator (90) between the outlet of the evaporator and the inlet of the heat-producing apparatus for further evaporation of working fluid using heat from the process fluid;
    a throttle valve (91) for adjusting the size of a partial flow of the working medium through the further evaporator; and
    a liquid jet pump (92) or a vapor jet pump (93) between the further evaporator and the condenser for lowering the pressure in the further evaporator, wherein in particular a part of the liquefied working medium or a part of the evaporated working medium serves as a driving jet.
EP17187936.4A 2017-08-25 2017-08-25 System for cooling a process fluid from a heat producing installation Active EP3447256B1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP17187936.4A EP3447256B1 (en) 2017-08-25 2017-08-25 System for cooling a process fluid from a heat producing installation
PL17187936.4T PL3447256T3 (en) 2017-08-25 2017-08-25 System for cooling a process fluid from a heat producing installation
JP2020531809A JP7174051B2 (en) 2017-08-25 2018-07-27 ORC device for cooling process fluids
US16/641,896 US11286816B2 (en) 2017-08-25 2018-07-27 ORC device for cooling a process fluid
PCT/EP2018/070373 WO2019038022A1 (en) 2017-08-25 2018-07-27 Orc device for cooling a process fluid
CN201880069574.0A CN111315965B (en) 2017-08-25 2018-07-27 ORC device for cooling a process fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP17187936.4A EP3447256B1 (en) 2017-08-25 2017-08-25 System for cooling a process fluid from a heat producing installation

Publications (2)

Publication Number Publication Date
EP3447256A1 EP3447256A1 (en) 2019-02-27
EP3447256B1 true EP3447256B1 (en) 2023-11-01

Family

ID=59702617

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17187936.4A Active EP3447256B1 (en) 2017-08-25 2017-08-25 System for cooling a process fluid from a heat producing installation

Country Status (6)

Country Link
US (1) US11286816B2 (en)
EP (1) EP3447256B1 (en)
JP (1) JP7174051B2 (en)
CN (1) CN111315965B (en)
PL (1) PL3447256T3 (en)
WO (1) WO2019038022A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112539092B (en) * 2020-11-30 2022-05-24 攀钢集团攀枝花钢铁研究院有限公司 CNG auxiliary production device based on organic Rankine cycle
CN115387910A (en) * 2021-05-25 2022-11-25 华能北京热电有限责任公司 Cooling water system for cooling air of turbine of gas turbine
CN114272714A (en) * 2021-12-29 2022-04-05 司少龙 Benzene vapor condensation cooling system of debenzolization tower by using air cooler

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004098951A (en) * 2002-09-12 2004-04-02 Calsonic Kansei Corp Attachment structure of heat exchanger for automobile
EP1925806A2 (en) * 2006-11-24 2008-05-28 Behr GmbH & Co. KG System with an organic Rankine cycle for operating at least one expansion machine, heat exchanger for operating one expansion machine, method for operating at least one expansion machine
JP2009167995A (en) * 2008-01-21 2009-07-30 Sanden Corp Waste heat using device of internal combustion engine

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4374467A (en) * 1979-07-09 1983-02-22 Hybrid Energy, Inc. Temperature conditioning system suitable for use with a solar energy collection and storage apparatus or a low temperature energy source
JPS62206302A (en) * 1986-03-05 1987-09-10 株式会社 日阪製作所 Evaporator
CA2394202A1 (en) * 1999-12-17 2001-06-21 The Ohio State University Heat engine
JP2006188156A (en) * 2005-01-06 2006-07-20 Denso Corp Vapor compressing type refrigerator
US8528333B2 (en) 2007-03-02 2013-09-10 Victor Juchymenko Controlled organic rankine cycle system for recovery and conversion of thermal energy
JP2009167994A (en) 2008-01-21 2009-07-30 Sanden Corp Waste heat using device of internal combustion engine
US8881523B2 (en) 2008-08-26 2014-11-11 Sanden Corporation Waste heat utilization device for internal combustion engine
US9470115B2 (en) 2010-08-11 2016-10-18 Cummins Intellectual Property, Inc. Split radiator design for heat rejection optimization for a waste heat recovery system
CA2818760A1 (en) * 2010-12-07 2012-06-14 Joseph John Matula Geothermal system
US9038391B2 (en) * 2012-03-24 2015-05-26 General Electric Company System and method for recovery of waste heat from dual heat sources
DE102012217339A1 (en) * 2012-09-25 2014-03-27 Duerr Cyplan Ltd. Network for transporting heat
JP5964229B2 (en) 2012-12-28 2016-08-03 三菱重工業株式会社 Power generation system
JP6788412B2 (en) 2015-10-09 2020-11-25 株式会社東芝 Exhaust heat recovery system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004098951A (en) * 2002-09-12 2004-04-02 Calsonic Kansei Corp Attachment structure of heat exchanger for automobile
EP1925806A2 (en) * 2006-11-24 2008-05-28 Behr GmbH & Co. KG System with an organic Rankine cycle for operating at least one expansion machine, heat exchanger for operating one expansion machine, method for operating at least one expansion machine
JP2009167995A (en) * 2008-01-21 2009-07-30 Sanden Corp Waste heat using device of internal combustion engine

Also Published As

Publication number Publication date
CN111315965B (en) 2023-08-01
EP3447256A1 (en) 2019-02-27
JP7174051B2 (en) 2022-11-17
US11286816B2 (en) 2022-03-29
CN111315965A (en) 2020-06-19
JP2020531749A (en) 2020-11-05
US20210199026A1 (en) 2021-07-01
PL3447256T3 (en) 2024-03-25
WO2019038022A1 (en) 2019-02-28

Similar Documents

Publication Publication Date Title
WO2007014942A2 (en) Drive device
EP3163036B1 (en) Functional synergies of thermodynamic circuit processes and heat sources
DE102006036122A1 (en) Power system for vehicles has an IC engine cooled by two coolant circuits and with some of the coolant converted into a gas phase to drive an expansion engine
DE2852076A1 (en) PLANT FOR GENERATING MECHANICAL ENERGY FROM HEAT SOURCES OF DIFFERENT TEMPERATURE
EP3447256B1 (en) System for cooling a process fluid from a heat producing installation
WO2004033859A1 (en) Method and device for recovering energy
DE212016000187U1 (en) ORC for converting heat loss from a heat source into mechanical energy and cooling system making use of the ORC
DE112011102629T5 (en) Emission-critical charge cooling using an organic Rankine cycle
DE102006019282A1 (en) Exhaust gas recycling system for internal combustion engine, has exhaust gas line and fresh air line that are connected by exhaust gas recycling pipeline, where exhaust gas cooler and thermo-electric generator are arranged in pipeline
EP3918199B1 (en) Cooling arrangement and method for cooling a compressed-air generator with at least two stages
DE3105418A1 (en) "GAS COMPRESSION SYSTEM"
EP3006682B1 (en) Device and method for operating a heating distribution station
WO2015197456A1 (en) Cooling and energy recovery system
DE102009050263A1 (en) Heat recovery system for recovering heat from Clausius-Rankine processes in motor vehicle, has Rankine-cycle with working medium, and exhaust system thermally connected to Rankine-cycle by heat exchangers
DE102006043491A1 (en) Steam cycle process with improved energy utilization
DE102010004079A1 (en) Power system for utilizing Rankine process to use heat of internal combustion engine, has exhaust gas heat exchanger which delivers heat of charge air of internal combustion engine to working fluid
EP0893872A2 (en) Generator cooling system
EP3530890B1 (en) Drive with integrated orc
DE19957874A1 (en) Combined power plant
DE102015118528A1 (en) Exhaust heat recovery system
DE102017011851A1 (en) Arrangement for converting thermal energy from heat loss of an internal combustion engine
DE102016220634A1 (en) Waste heat power plant with gradual heat supply
DE102007016557A1 (en) Utilization of waste heat from combustion engines for power generation
EP2733339B1 (en) Device for utilisation of the waste heat of an internal combustion engine
DE102016014731A1 (en) Waste heat recovery device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190823

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: LANGER, ROY

Inventor name: SANTA-MARIA, MARTIN

Inventor name: AUMANN, RICHARD

Inventor name: LINTL, MARKUS

Inventor name: SCHUSTER, ANDREAS

RIN1 Information on inventor provided before grant (corrected)

Inventor name: LINTL, MARKUS

Inventor name: AUMANN, RICHARD

Inventor name: LANGER, ROY

Inventor name: SCHUSTER, ANDREAS

Inventor name: SANTA-MARIA, MARTIN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210913

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230531

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230621

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SANTA MARIA, MARTIN

Inventor name: LANGER, ROY

Inventor name: LINTL, MARKUS

Inventor name: SCHUSTER, ANDREAS

Inventor name: AUMANN, RICHARD

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017015547

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20231101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240301