EP3447190B1 - Bearing device for a railway system - Google Patents

Bearing device for a railway system Download PDF

Info

Publication number
EP3447190B1
EP3447190B1 EP17187153.6A EP17187153A EP3447190B1 EP 3447190 B1 EP3447190 B1 EP 3447190B1 EP 17187153 A EP17187153 A EP 17187153A EP 3447190 B1 EP3447190 B1 EP 3447190B1
Authority
EP
European Patent Office
Prior art keywords
spring structure
crystalline
support device
crystalline spring
base plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17187153.6A
Other languages
German (de)
French (fr)
Other versions
EP3447190A1 (en
Inventor
Roger Müller
Michael Hafner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schweizerische Bundesbahnen SBB
Original Assignee
Schweizerische Bundesbahnen SBB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schweizerische Bundesbahnen SBB filed Critical Schweizerische Bundesbahnen SBB
Priority to EP17187153.6A priority Critical patent/EP3447190B1/en
Publication of EP3447190A1 publication Critical patent/EP3447190A1/en
Application granted granted Critical
Publication of EP3447190B1 publication Critical patent/EP3447190B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B19/00Protection of permanent way against development of dust or against the effect of wind, sun, frost, or corrosion; Means to reduce development of noise
    • E01B19/003Means for reducing the development or propagation of noise
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B2/00General structure of permanent way

Definitions

  • the present invention relates to a storage device for a rail system, according to the preamble of claim 1.
  • a storage device for a rail system increases the stress on the carriageway and the substructure by increasing the operating speed.
  • Static, quasi-static and dynamic load entries occur that are particularly relevant for loads and emissions. It was found that, depending on the speed and typical distances in the vehicle track system - such as bogie and axle distances, but also due to wheel roundness and rail corrugation, periodically recurring load entries occur in different frequency ranges, which lead to increased loads. Model calculations have shown that elastic elements such as intermediate layers, sleeper pads and sub-ballast mats in the superstructure can contribute to the reduction of these loads.
  • DE102013209495A1 describes a sleeper sole, which consists of a highly polymeric elastic material and which is intended for direct connection to a prestressed concrete sleeper made of fresh, unbound concrete, for the purpose of protecting the ballast, as well as for vibration and sound decoupling during track construction for rail traffic.
  • the entire rail system forms a vibration system, which essentially consists of the wheel set with a vibratable, unsprung wheel set mass, the rail, the rail intermediate layer, the sleeper with any soling, gravel and substructure (e.g. soil, concrete slab, tunnel sole, etc.) .
  • the upper coupling level is defined by the rails and the lower one Coupling level formed by the foundation and the soil. Vibrations can pass from threshold to threshold in the upper coupling level via the railroad tracks and in the lower coupling level through the foundation and soil. Due to the effects of the wheels of a rail vehicle on the rails, mechanical vibrations are coupled into the ballast and the substructure (eg soil) via the sleepers.
  • the vibrations of the sleepers and the soil result on the one hand in loads and possibly damage to the track superstructure and substructure (hereinafter the rail system) and on the other hand acoustic and dynamic impairments in the vicinity of the railroad tracks, for example in nearby buildings.
  • the rail system track superstructure and substructure
  • the track track support comprises a spring device, which consists of metal springs or an elastomer and is arranged below the track between the concrete beam and a foundation.
  • shock absorbing elements are arranged between the concrete beam and the foundation, which act in parallel with the spring device.
  • the present invention is therefore based on the object of providing an improved bearing device for a rail system.
  • a storage device is to be created with which, on the one hand, the loads on the rail system and, on the other hand, disruptive acoustic effects on the near area of the railroad tracks can be reduced.
  • the normal superstructure but also special defects in the railway network, such as switches, insulation joints, insufficient ballast thickness, transitions, bridges, tunnels, etc., are to be improved with regard to harmful vibrations, vibrations and shocks. Ballast and substructure in high traffic areas, where maintenance work is only possible to a limited extent, should be extended by using the improved bearing devices.
  • Storage devices according to the invention should be able to be implemented in all required configurations and without restrictions, e.g. can be used advantageously on open routes and engineering structures or in tunnels.
  • the bearing device serves to hold at least one railroad track which rests on an elastic element which bears against a support device.
  • the elastic element is a first macroscopic crystalline spring structure which is aligned with its longitudinal axis or expansion axis perpendicular to the railroad track and preferably perpendicular to the wheel axles of the rail vehicles and which has a preferably periodic three-dimensional crystal structure which has mechanical vibrations in a first frequency range of 1 Hz - 200 Hz at least partially absorbed and / or reflected.
  • the first crystalline spring structure has a crystal structure with a three-dimensional crystal lattice or point lattice, with spacings of the lattice points that are enlarged many times over and range from a few centimeters to a few decimeters.
  • Lattice structures with a lattice structure which correspond to the so-called Bravais lattice are preferably used.
  • Lattice structures with right-angled (orthogonal) axis systems such as cubic crystal systems, tetragonal crystal systems, orthorombic crystal systems, or lattice structures with oblique angles can be used
  • Axis systems such as hexagonal crystal systems, trigonal crystal systems, for example rhombohedral crystal systems, triclinic crystal systems, cylindrical crystal systems are used.
  • the crystalline spring structures used can have the crystal structure of a metallic or non-metallic element or a semiconductor.
  • phononic crystals offer new components by means of which sound can be controlled as well as light by means of mirrors, lenses or photonic optical fibers.
  • the elastic properties of crystals can be represented for small deflections with the help of Hooke's generalized law, i.e. through a linear relationship between tension and shape change.
  • Crystalline spring structures according to the invention are modeled on phononic crystal structures and are dimensioned and designed in such a way that disruptive vibrations which occur in the rail system can be damped or absorbed or reflected.
  • the spectra of oscillations and vibrations that occur in a rail system can be recorded and the damping curves or filter curves of the damping system according to the invention Storage devices are adjusted accordingly. In particular, vibrations are suppressed that burden the infrastructure or the environment in the near field.
  • the first crystalline spring structure is preferably connected in series, directly or indirectly, along the longitudinal axis with at least one second crystalline or elastic spring structure, for example an elastomer, the mechanical vibrations in a second frequency range of preferably 40 Hz - 500 Hz at least partially absorbed and / or reflected.
  • the mechanical vibrations in a second frequency range preferably 40 Hz - 500 Hz at least partially absorbed and / or reflected.
  • Crystalline spring structures can also correspond to a crystal lattice in a linear or non-linear manner in one or more axes. These measures can also optionally influence the vibration properties or damping properties of the damping system over the entire frequency range.
  • crystalline spring structures can also be provided parallel to one another and connected directly or indirectly to one another.
  • a storage device can be provided for storing only one railroad track or for storing two or more rails. If the bearing device supports two rails, at least one first crystalline spring structure is preferably provided for each rail. At least one second crystalline or elastic spring structure is preferably provided, which extends, for example, over the entire bearing device.
  • At least the first crystalline spring structure preferably has two, three or more preferably identical unit cells lying one above the other along the longitudinal axis.
  • the unit cells can also have a plurality of unit cells adjoining one another laterally.
  • unit cells of different types can advantageously also be combined with one another.
  • a plurality of layers of different unit cells are preferably provided, which are each provided for damping vibrations in a specific frequency range.
  • the existing crystalline spring structures can be made of metal or plastic.
  • Crystalline spring structures used to dampen vibrations in the lowest frequency range of e.g. 1 Hz to 100 Hz are provided, are preferably made of metal.
  • Crystalline or elastic spring structures that are used to dampen vibrations above the lowest wave range, e.g. are provided above 40 Hz are preferably made of plastic, preferably an elastomer.
  • the first and preferably also all further crystalline spring structures are preferably designed in such a way that when a force is applied along the longitudinal axis, on the one hand there is compression along the longitudinal axis and on the other hand torsion or shear perpendicular to the longitudinal axis of the crystalline spring structure. Crystal structures with oblique-axis systems that favor shear can be used particularly advantageously.
  • the first and optionally also the further crystalline spring structures are preferably designed such that the bonds between ions and / or atoms of the crystal structure are formed by spring-elastic mechanical connecting elements, such as straight or curved rods made of plastic or spring steel, which are parallel or inclined in accordance with the selected crystal structure are arranged to the longitudinal axis. Rectangular rods with an aspect ratio of 1: 4 to 1: 8, which favors bending, are preferred.
  • At least the first crystalline spring structure has one, two or more connecting plates made of metal or plastic, which are preferably oriented perpendicular to the axis of elongation or longitudinal axis and in which the points of a plane of the lattice structure or crystal structure are included, which are defined by the spring-elastic mechanical connecting elements are connected to one another in one piece or in a form-fitting manner and / or by welding.
  • the crystalline spring elements preferably have at least one base plate and a cover plate or at least one base plate, an intermediate plate and a cover plate.
  • Exposed connecting plates or intermediate plates can perform shear movements and / or rotary movements when the crystalline spring structure is loaded.
  • shear movements or Rotational movements in a lattice plane performed jointly by all the connecting elements located therein.
  • the support device can be formed by a metal base plate or by a one-part or multi-part threshold made of wood, plastic, concrete or metal, which is optionally designed as a tightly sealed hollow body.
  • the support device is preferably formed by a combination of a base plate and a threshold.
  • the crystalline spring structure is adapted to the associated support device or threshold and has e.g. a height in a range from 7.5 cm to 40 cm.
  • the crystalline spring structure completely or partially penetrates the support device or threshold and projects above it at the upper edge by the required amount of e.g. 0.2 cm to 3 cm so that the rail does not hit the support device or threshold under load.
  • the amplitudes of the vibrations that occur are usually relatively low.
  • the amplitudes of the vibrations are preferably measured, after which the excess of the crystalline spring structure is selected accordingly.
  • the crystalline spring structure can advantageously be supported on the threshold in a recess.
  • the first crystalline spring structure is supported on a base plate made of steel, which serves to distribute the forces transmitted via the first crystalline spring structure, so that as far as possible no local forces occur.
  • a solid base plate can serve as a support device.
  • the base plate is preferably in combination with a threshold made of wood, metal, concrete or plastic, which the storage device desires Gives size and stability.
  • the threshold has a continuous recess within which the crystalline spring structure is supported on the one hand on the base plate and from which the crystalline spring structure preferably protrudes on the other hand.
  • the spring structure can also be combined with additional elements that, for example, protrude from the recess.
  • a threshold sole is preferably provided below the base plate, which absorbs or reflects mechanical vibrations transmitted by the base plate in a second frequency range of preferably 40 Hz to 500 Hz.
  • the vibrations acting on the railway vehicle can therefore be advantageously damped by the bearing device using the various damping elements sequentially in different frequency ranges.
  • damping intermediate layers are preferably provided, on which the railroad tracks rest.
  • the threshold sole and the intermediate layers are preferably designed as second or further crystalline or elastic spring structures and preferably comprise a matrix formed from an elastomer, which has a crystalline lattice with periodically repeating regions or unit cells.
  • the oscillation system comprises three or more phononic crystal structures, which have their damping effect and / or reflection effect in frequency ranges.
  • the railroad tracks are also preferably connected to the supporting device by means of spring-elastic clamps in such a way that the first crystalline spring structure is preferably pretensioned in such a way that the first crystalline spring structure operates in the intended first frequency range.
  • Fig. 1 shows a storage device 1 according to the invention in a first preferred embodiment.
  • the bearing device 1 rests on a natural or artificial substructure 9 or 90, on which a layer of ballast 8 is provided.
  • the bearing device 1 resting on the ballast layer 8 comprises a solid metal base plate 12 on which two crystalline or phononic spring elements 11 are arranged, each of which supports a railroad track 6 on which the wheels 4 of a rail vehicle roll.
  • the base plate 12, over which the coupled vibrations are distributed, serves in this case as the sole support device 12.
  • the crystalline spring structures 11 have a base plate 111B resting on the base plate 12 and a cover plate 111T which carries the associated railroad track 6.
  • the base plate 111B and the cover plate 111T are connected to an intermediate plate 111I by spring-elastic mechanical connecting elements 112BI, 112IT.
  • the connecting elements 112BI, 112IT correspond to the bonds between the atoms or ions of the crystal structure.
  • the base plate 111B, the intermediate plate 111I and the cover plate 111T lie in adjacent planes of the lattice structure in which the atoms or ions are arranged.
  • the crystal structures can be designed to be far more complex and have mechanical connecting elements 112BI, 112IT which lead between the base plate 111B, the intermediate plate 111I and the cover plate 111T to further lattice points and where appropriate are connected to one another or pass through the corresponding lattice points.
  • the crystal structures between the base plate 111B and the intermediate plate 111I on the one hand and the intermediate plate 111I and the cover plate 111T on the other hand can be configured identically or differently, so that two interconnected damping systems result which have different damping behavior or different damping curves or filter curves.
  • Any crystalline spring structures 11 can be realized, which have one or more subordinate crystalline spring structures, which work together in order to achieve an optimal damping behavior over the relevant frequency spectrum.
  • both crystalline spring structures 11 can dampen vibrations in the range from 1 Hz to 150 Hz in the same way.
  • one of the spring structures 11 can be set to a frequency range of e.g.
  • the other spring structures can be tuned to a frequency range from 20 Hz to 150 Hz.
  • the frequency ranges in which the crystalline spring structures 11 are to have their effect are selected such that, in particular, strongly disruptive vibrations and shocks are reduced particularly well.
  • a threshold sole 13 made of an elastic material provided that absorbs or reflects mechanical vibrations transmitted by the base plate 12 in a second frequency range of preferably 40 Hz to 500 Hz.
  • Elastic intermediate layers 14 are also provided on the first crystalline spring structures 11, on which the railroad tracks 6 rest.
  • the elastic intermediate layers 14 serve to fix the rails 6 and at the same time serve as first damping layers.
  • the threshold sole 13 and / or the intermediate layer 14 are preferably designed as a second or further crystalline or phononic spring structure and preferably comprise a matrix made of an elastomer, which forms a crystalline lattice with periodically repeating regions or unit cells.
  • Corresponding materials are, for example, from [5], WO2012151472A2 known.
  • the first crystalline spring structure 11 therefore preferably consists of hard-elastic metal parts, while the second spring structure 13 designed as a threshold sole 13 and preferably also the intermediate layer 14 consist of a hard-elastic but relatively soft plastic compared to the first crystalline spring structure 11.
  • the spring structures 11, 13, 14 complement each other to form an advantageous damping system and are tuned to the critical frequency ranges. Each spring structure can be tuned to one or more frequencies, in the range of which vibrations are to be damped or reflected.
  • the spring structure 14 is preferably dimensioned and constructed in such a way that as little noise as possible is emitted from the rail and threshold.
  • Fig. 1 further shows that adjacent to each crystalline spring structure 11 is at least one limiting element 18 is arranged.
  • the limiting element 18 prevents inadmissible lateral deflection or deflection of the crystalline spring structure 11 and is delimited by the latter by an air gap 181.
  • the air gap 181 is dimensioned such that shear movements and rotational movements of the crystalline spring structure 11 can take place, but a material breakage is prevented.
  • the preferably metal limiting element 18 is e.g. plate-shaped or tubular and screwed or welded to the base plate 12.
  • E.g. four cross-shaped angle elements 18 with vertically aligned plates enclose the crystalline spring structure 11.
  • the railroad tracks 6 are further connected to the support device or the base plate 12 by means of spring-elastic clamps 15 such that the first crystalline spring structure 11 is preferably prestressed and operates in the desired first frequency range.
  • Fig. 2 shows the storage device 1 of Fig. 1 in a second embodiment with a metal hollow sleeper 120, which is preferably cuboid and in which crystalline spring structures 11 are arranged.
  • the hollow sleeper 120 which is preferably sealed, comprises the metal base plate 12 on the underside and a metal upper plate 121 on the upper side.
  • the hollow sleeper 120 can be manufactured or bent from a single metal plate or cut-out development, which has a thickness, for example Has a range of 4 mm to 10 mm.
  • Fig. 2 shows two possible variants A (left) and B (right) of the arrangement of the crystalline spring structures 11. Either variant A or variant B is realized.
  • Variant A shows that the crystalline spring structure 11 lies with the cover plate 111T on the top plate 121 and with the base plate 111B on the base plate 12 of the hollow sleeper 120. Deformations of the hollow sleeper 120 are thus dampened by the crystalline spring structure 11.
  • the side walls of the hollow sleeper 120 are connected to at least one spring element, e.g. a resilient bead 125, which gives the hollow sleeper 120 elasticity so that it can follow the movements of the first crystalline spring structures 11.
  • Variant B shows that the crystalline spring structure 11 there is led out through the top plate 121.
  • the required opening in the top plate 121 is sealed by an elastic material 126, preferably an elastomer.
  • the hollow sleeper 120 is thus sealed off, but allows the crystalline spring structure 11 to be coupled directly to the railroad track 6.
  • the railroad track 6 can be fixedly mounted or slidably mounted in variants A and B by means of spring-elastic clamps 15 and connected to a point machine 5.
  • a bearing plate 7 is preferably provided on each crystalline spring structure 11, on which the mounted rail 6 can be displaced.
  • Storage devices 1 according to the invention can thus also be used advantageously for the construction of switches. In this application, wider crystalline spring structures 11 are preferably provided.
  • the railroad track 6 can also be firmly mounted in this embodiment and supported on an intermediate layer 14, as shown in FIG Fig. 1 is shown.
  • Fig. 3 shows the storage device 1 of Fig. 1 in a third embodiment again in two variants A (left) and B (right).
  • the bearing device 1 can be configured in one part or two parts and comprises a threshold 16 or threshold parts 161, 162 made of concrete, wood or plastic.
  • the crystalline spring structures 11 are arranged in a recess 160 of the threshold 16 and separated from the threshold 16 by an air gap 166.
  • the recess 160 runs through the entire threshold 16, so that the crystalline spring structure 11 can be supported on the base plate 12.
  • the railroad track 6 is separated from the crystalline spring structure 11 by an intermediate layer 14 and held by spring-elastic clamps 15 which are screwed to the sleeper 16.
  • the recess 160 does not completely pass the threshold 16 and is e.g. embedded in the shape of a cup in the threshold 16, so that the crystalline spring structure 11 is supported on part of the threshold 16.
  • the diameter of the recess 160 is again dimensioned somewhat larger than the diameter of the crystalline spring structure 11, so that an air gap 166 remains.
  • Fig. 4 shows an example of a crystalline spring structure 11 intended for use in a bearing device 1 according to the invention.
  • the macroscopic crystalline spring structure 11 has a crystal structure with a three-dimensional crystal lattice or point lattice, with distances between the dots that are enlarged many times over and are in the range of a few centimeters, for example 2.5 cm to 60 cm.
  • a simple three-dimensional crystal structure was chosen with right-angled (orthogonal) axis systems or oblique-angled axis systems.
  • the type of axis system is no longer recognizable under load, as shown.
  • the crystalline spring structure has three connecting plates aligned parallel to one another, a base plate 111B, an intermediate plate 111I, a cover plate 111T, made of metal or plastic, which are aligned perpendicular to the expansion axis or longitudinal axis y and in which the points each have a plane of the lattice structure or Crystal structure are included.
  • the points of the lattice structure are connected to one another by spring-elastic mechanical connecting elements.
  • the connecting elements are preferably held in a form-fitting manner in openings in the connecting plates and / or welded to the connecting plates.
  • the connecting plates and the preferably rod-shaped connecting elements can also be connected to one another in one piece and e.g. using a casting process or 3D design process.
  • Fig. 5 shows a damping curve or frequency curve of a bearing device 1 according to the invention.
  • the damping behavior or filter behavior of the crystalline spring structure 11 can be defined.
  • the bold line shows that the first crystalline spring structure 11 can dampen the vibrations with the frequencies in the range from 1 Hz to 100 Hz well. While the attenuation line from 1 Hz to almost 100 Hz is almost linear in the first example, in a second example with a dash-dotted line it is shown that reduced attenuation can also be present in certain frequency ranges (exemplary at 10 Hz). It is therefore measured at which frequencies disturbing vibrations occur.
  • appropriately coordinated crystalline spring structures 11 are used and, if necessary, combined with one another in order to suppress vibrations, in particular in those areas where they appear to be disruptive or damaging.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Vibration Prevention Devices (AREA)

Description

Die vorliegende Erfindung betrifft eine Lagervorrichtung für ein Schienensystem, nach dem Oberbegriff des Anspruchs 1. Gemäss [1], Klaus Lieberenz et. al., Dynamische Stabilität der Fahrbahn, Edition ETR 2005, erfolgt durch Anhebung der Betriebsgeschwindigkeit eine Erhöhung der Beanspruchung der Fahrbahn und des Unterbaus. Dabei treten statische bzw. quasistatische und auch dynamische Lasteintragungen auf, die für Belastungen und Emissionen besonders relevant sind. Es wurde festgestellt, dass in Abhängigkeit von der Geschwindigkeit sowie typischer Abstände im Fahrzeug-Fahrweg-System - wie Drehgestell- und Achsabstände, aber auch durch Radunrundheiten und Schienenriffel-periodisch wiederkehrende Lasteintragungen in unterschiedlichen Frequenzbereichen erfolgen, die zu erhöhten Belastungen führen. Anhand von Modellrechnungen wurde nachgewiesen, dass elastische Elemente, wie Zwischenlagen, Schwellensohlen und Unterschottermatten im Oberbau zur Reduktion dieser Belastungen beitragen können.The present invention relates to a storage device for a rail system, according to the preamble of claim 1. According to [1], Klaus Lieberenz et. al., Dynamic stability of the carriageway, Edition ETR 2005, increases the stress on the carriageway and the substructure by increasing the operating speed. Static, quasi-static and dynamic load entries occur that are particularly relevant for loads and emissions. It was found that, depending on the speed and typical distances in the vehicle track system - such as bogie and axle distances, but also due to wheel roundness and rail corrugation, periodically recurring load entries occur in different frequency ranges, which lead to increased loads. Model calculations have shown that elastic elements such as intermediate layers, sleeper pads and sub-ballast mats in the superstructure can contribute to the reduction of these loads.

Die [2], DE102013209495A1 beschreibt eine Schwellensohle, die aus einem hochpolymeren elastischen Material besteht und die zur direkten Anbindung an eine Spannbetonschwelle aus frischem, ungebundenen Beton vorgesehen ist, zum Zweck der Schotterschonung, sowie zur Schwingungs- und Schallentkopplung beim Gleisbau für den Schienenverkehr.The 2], DE102013209495A1 describes a sleeper sole, which consists of a highly polymeric elastic material and which is intended for direct connection to a prestressed concrete sleeper made of fresh, unbound concrete, for the purpose of protecting the ballast, as well as for vibration and sound decoupling during track construction for rail traffic.

Zu beachten ist, dass das gesamte Schienensystem ein Schwingungssystem bildet, welches im Wesentlichen aus dem Radsatz mit schwingungsfähiger unabgefederter Radsatzmasse, der Schiene, der Schienenzwischenlage, der Schwelle mit allfälliger Besohlung, Schotter und Unterbau (z.B. Erdreich, Betonplatte, Tunnelsohle, etc.) besteht. Die obere Kopplungsebene wird durch die Schienen und die untere Kopplungsebene durch das Fundament und das Erdreich gebildet. Schwingungen können in der oberen Kopplungsebene über die Eisenbahnschienen und in der unteren Kopplungsebene durch das Fundament und Erdreich von Schwelle zu Schwelle gelangen. Durch die Einwirkungen der Räder eines Schienenfahrzeugs auf die Schienen werden mechanische Schwingungen über die Schwellen in den Schotter und den Unterbau (z.B. Erdreich) eingekoppelt. Durch die Erschütterungen der Schwellen und des Erdreichs resultieren einerseits Belastungen und möglicherweise Beschädigungen des Gleisober- und Gleisunterbaus (nachfolgend Schienensystem) und andererseits akustische und dynamische Beeinträchtigungen im Nahbereich der Eisenbahnschienen, z.B. in naheliegenden Gebäuden.It should be noted that the entire rail system forms a vibration system, which essentially consists of the wheel set with a vibratable, unsprung wheel set mass, the rail, the rail intermediate layer, the sleeper with any soling, gravel and substructure (e.g. soil, concrete slab, tunnel sole, etc.) . The upper coupling level is defined by the rails and the lower one Coupling level formed by the foundation and the soil. Vibrations can pass from threshold to threshold in the upper coupling level via the railroad tracks and in the lower coupling level through the foundation and soil. Due to the effects of the wheels of a rail vehicle on the rails, mechanical vibrations are coupled into the ballast and the substructure (eg soil) via the sleepers. The vibrations of the sleepers and the soil result on the one hand in loads and possibly damage to the track superstructure and substructure (hereinafter the rail system) and on the other hand acoustic and dynamic impairments in the vicinity of the railroad tracks, for example in nearby buildings.

Aus der EP3121333A1 ist eine schwingungsdämmende Bahngleisauflagerung bekannt, deren Schienen mittels Schwellen samt Schotterbett oder Gleistragplatten auf einem Betonbalken ruhen. Die Bahngleisauflagerung umfasst eine Federeinrichtung, die aus Metallfedern oder einem Elastomer besteht und unterhalb des Gleises zwischen dem Betonbalken und einem Fundament angeordnet ist. Zusätzlich zur und neben der Federeinrichtung sind zwischen dem Betonbalken und dem Fundament Stossdämpfungselemente angeordnet, die parallel mit der Federeinrichtung zur Wirkung gelangen.From the EP3121333A1 a vibration-damping railway track support is known, the rails of which rest on a concrete beam by means of sleepers including a ballast bed or track slabs. The track track support comprises a spring device, which consists of metal springs or an elastomer and is arranged below the track between the concrete beam and a foundation. In addition to and next to the spring device, shock absorbing elements are arranged between the concrete beam and the foundation, which act in parallel with the spring device.

Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, eine verbesserte Lagervorrichtung für ein Schienensystem zu schaffen.The present invention is therefore based on the object of providing an improved bearing device for a rail system.

Insbesondere ist eine Lagervorrichtung zu schaffen, mit der einerseits die Belastungen des Schienensystems und andererseits störende akustische Einwirkungen auf den Nahbereich der Eisenbahnschienen wesentlich reduziert werden können.In particular, a storage device is to be created with which, on the one hand, the loads on the rail system and, on the other hand, disruptive acoustic effects on the near area of the railroad tracks can be reduced.

Der normale Oberbau, aber auch spezielle Störstellen im Eisenbahnnetz, wie Weichen, Isolierstösse, eine zu geringe Schotterdicke, Übergänge, Brücken, Tunnel, etc., sollen bezüglich schädlichen Schwingungen, Vibrationen und Erschütterungen verbessert werden. Schotter und Unterbau in verkehrstechnisch hochbelasteten Strecken, bei denen Wartungseinsätze nur noch beschränkt möglich sind, sollen durch Einsatz der verbesserten Lagervorrichtungen eine höhere Lebensdauer erhalten.The normal superstructure, but also special defects in the railway network, such as switches, insulation joints, insufficient ballast thickness, transitions, bridges, tunnels, etc., are to be improved with regard to harmful vibrations, vibrations and shocks. Ballast and substructure in high traffic areas, where maintenance work is only possible to a limited extent, should be extended by using the improved bearing devices.

Erfindungsgemässe Lagervorrichtungen sollen in allen erforderlichen Ausgestaltungen realisierbar sein und uneingeschränkt, z.B. auf offenen Strecken und Kunstbauten oder in Tunnels vorteilhaft eingesetzt werden können.Storage devices according to the invention should be able to be implemented in all required configurations and without restrictions, e.g. can be used advantageously on open routes and engineering structures or in tunnels.

Diese Aufgabe wird mit einer Lagervorrichtung gelöst, welche die in Anspruch 1 angegebenen Merkmale aufweist. Vorteilhafte Ausgestaltungen der Erfindung sind in den abhängigen Ansprüchen angegeben.This object is achieved with a storage device which has the features specified in claim 1. Advantageous embodiments of the invention are specified in the dependent claims.

Die Lagervorrichtung dient dem Halten wenigstens einer Eisenbahnschiene, die auf einem elastischen Element ruht, das an einer Abstützvorrichtung anliegt.The bearing device serves to hold at least one railroad track which rests on an elastic element which bears against a support device.

Erfindungsgemäss ist das elastische Element eine erste makroskopische kristalline Federstruktur, die mit ihrer Längsachse bzw. Dehnungsachse senkrecht zur Eisenbahnschiene und vorzugsweise senkrecht zu den Radachsen der Schienenfahrzeuge ausgerichtet ist und die eine vorzugsweise periodische dreidimensionale Kristallstruktur aufweist, die mechanische Schwingungen in einem ersten Frequenzbereich von 1 Hz - 200 Hz zumindest teilweise absorbiert und/oder reflektiert.According to the invention, the elastic element is a first macroscopic crystalline spring structure which is aligned with its longitudinal axis or expansion axis perpendicular to the railroad track and preferably perpendicular to the wheel axles of the rail vehicles and which has a preferably periodic three-dimensional crystal structure which has mechanical vibrations in a first frequency range of 1 Hz - 200 Hz at least partially absorbed and / or reflected.

Die erste kristalline Federstruktur weist eine Kristallstruktur mit einem dreidimensionalen Kristallgitter oder Punktgitter auf, mit Abständen der Gitterpunkte, die um ein Vielfaches vergrössert sind und im Bereich von einigen Zentimetern bis zu wenigen Dezimeter liegen.The first crystalline spring structure has a crystal structure with a three-dimensional crystal lattice or point lattice, with spacings of the lattice points that are enlarged many times over and range from a few centimeters to a few decimeters.

Vorzugsweise werden dreidimensionale Kristallstrukturen mit einer Gitterstruktur verwendet, die dem sogenannten Bravais-Gitter entsprechen. Dabei können Gitterstrukturen mit rechtwinkligen (orthogonalen) Achsensystemen, wie kubische Kristallsysteme, tetragonale Kristallsysteme, orthorombische Kristallsysteme, oder Gitterstrukturen mit schiefwinkligen Achsensystemen, wie hexagonale Kristallsysteme, trigonale Kristallsysteme, z.B. rhomboedrische Kristallsysteme, trikline Kristallsysteme, zylindrische Kristallsysteme eingesetzt werden.Three-dimensional crystal structures with a lattice structure which correspond to the so-called Bravais lattice are preferably used. Lattice structures with right-angled (orthogonal) axis systems, such as cubic crystal systems, tetragonal crystal systems, orthorombic crystal systems, or lattice structures with oblique angles can be used Axis systems, such as hexagonal crystal systems, trigonal crystal systems, for example rhombohedral crystal systems, triclinic crystal systems, cylindrical crystal systems are used.

Die verwendeten kristallinen Federstrukturen können dabei die Kristallstruktur eines metallenen oder nicht-metallenen Elements oder eines Halbleiters aufweisen. In [3], Gorishnyy et. al., Sound ideas, Physics World, Dezember 2005 , wird festgestellt, dass sogenannte phononische Kristalle neue Komponenten offerieren, mittels denen Schall ebenso kontrolliert werden kann, wie Licht mittels Spiegeln, Linsen oder photonischen Lichtwellenleitern.The crystalline spring structures used can have the crystal structure of a metallic or non-metallic element or a semiconductor. In [3], Gorishnyy et. al., Sound ideas, Physics World, December 2005 , it is found that so-called phononic crystals offer new components by means of which sound can be controlled as well as light by means of mirrors, lenses or photonic optical fibers.

Die elastischen Eigenschaften von Kristallen können für geringe Auslenkungen mit Hilfe des verallgemeinerten Hooke'schen Gesetzes dargestellt werden, d.h. durch eine lineare Beziehung zwischen Spannung und Formänderung.The elastic properties of crystals can be represented for small deflections with the help of Hooke's generalized law, i.e. through a linear relationship between tension and shape change.

In [4], Delpero et. al., Structural engineering of three-dimensional phononic crystals, Journal of Sound and Vibration, November 2015, wird festgestellt, dass anhand makroskopischer Strukturen neue Dämpfungslösungen in konventionellen technischen Bereichen, wie der Mechanik, erzielt werden können.In [4], Delpero et. al., Structural engineering of three-dimensional phononic crystals, Journal of Sound and Vibration, November 2015, states that macroscopic structures can be used to achieve new damping solutions in conventional technical areas such as mechanics.

Erfindungsgemässe kristalline Federstrukturen sind phononischen Kristallstrukturen nachgebildet und derart dimensioniert und ausgebildet, dass störende Schwingungen, die im Schienensystem auftreten, gedämpft oder absorbiert oder reflektiert werden können.Crystalline spring structures according to the invention are modeled on phononic crystal structures and are dimensioned and designed in such a way that disruptive vibrations which occur in the rail system can be damped or absorbed or reflected.

Für erfindungsgemässe Lagervorrichtungen können die Spektren von Schwingungen und Vibrationen, die in einem Schienensystem auftreten, aufgenommen und die Dämpfungskurven oder Filterkurven des Dämpfungssystems der erfindungsgemässen Lagervorrichtungen entsprechend angepasst werden. Insbesondere werden Schwingungen unterdrückt, welche die Infrastruktur oder die Umgebung im Nahfeld belasten.For storage devices according to the invention, the spectra of oscillations and vibrations that occur in a rail system can be recorded and the damping curves or filter curves of the damping system according to the invention Storage devices are adjusted accordingly. In particular, vibrations are suppressed that burden the infrastructure or the environment in the near field.

In vorzugsweisen Ausgestaltungen ist die erste kristalline Federstruktur vorzugsweise entlang der Längsachse seriell, direkt oder indirekt, mit wenigstens einer zweiten kristallinen oder elastischen Federstruktur, zum Beispiel einem Elastomer, verbunden, die mechanische Schwingungen in einem zweiten Frequenzbereich von vorzugsweise 40 Hz - 500 Hz zumindest teilweise absorbiert und/oder reflektiert. Durch Kombination unterschiedlicher Dämpfungssysteme mit kristallinen und elastischen Federstrukturen können vorteilhaft beliebige Dämpfungsverläufe des Gesamtsystems erreicht werden. Dabei können kristalline Federstrukturen auch einem Kristallgitter entsprechen linear oder nichtlinear in einer oder mehreren Achsen gedehnt oder gestaucht wurde. Durch diese Massnahmen lassen sich die Schwingungseigenschaften bzw. Dämpfungseigenschaften des Dämpfungssystems über den gesamten Frequenzbereich zusätzlich wahlweise beeinflussen.In preferred configurations, the first crystalline spring structure is preferably connected in series, directly or indirectly, along the longitudinal axis with at least one second crystalline or elastic spring structure, for example an elastomer, the mechanical vibrations in a second frequency range of preferably 40 Hz - 500 Hz at least partially absorbed and / or reflected. By combining different damping systems with crystalline and elastic spring structures, any desired damping characteristics of the overall system can advantageously be achieved. Crystalline spring structures can also correspond to a crystal lattice in a linear or non-linear manner in one or more axes. These measures can also optionally influence the vibration properties or damping properties of the damping system over the entire frequency range.

In erfindungsgemässen Lagervorrichtungen können kristalline Federstrukturen auch parallel zueinander vorgesehen und direkt oder indirekt miteinander verbunden werden.In the storage devices according to the invention, crystalline spring structures can also be provided parallel to one another and connected directly or indirectly to one another.

Eine Lagervorrichtung kann dabei zur Lagerung nur einer Eisenbahnschiene oder zur Lagerung von zwei oder mehr Schienen vorgesehen werden. Falls die Lagervorrichtung zwei Schienen stützt, wird vorzugsweise für jede Schiene wenigstens eine erste kristalline Federstruktur vorgesehen. Vorzugsweise wird wenigstens eine zweite kristalline oder elastische Federstruktur vorgesehen, die sich z.B. über die gesamte Lagervorrichtung erstreckt.A storage device can be provided for storing only one railroad track or for storing two or more rails. If the bearing device supports two rails, at least one first crystalline spring structure is preferably provided for each rail. At least one second crystalline or elastic spring structure is preferably provided, which extends, for example, over the entire bearing device.

Vorzugsweise weist zumindest die erste kristalline Federstruktur entlang der Längsachse zwei, drei oder mehr übereinander liegende vorzugsweise identische Elementarzellen auf. Alternativ oder zusätzlich können die Elementarzellen auch seitlich mehrere aneinander anschliessende Elementarzellen aufweisen.At least the first crystalline spring structure preferably has two, three or more preferably identical unit cells lying one above the other along the longitudinal axis. As an alternative or in addition, the unit cells can also have a plurality of unit cells adjoining one another laterally.

Zur Festlegung des Dämpfungsverhaltens über den relevanten Frequenzbereich können vorteilhaft auch Elementarzellen unterschiedlicher Beschaffenheit miteinander kombiniert werden. Vorzugsweise werden mehrere Lagen von unterschiedlichen Elementarzellen vorgesehen, die zur Dämpfung von Schwingungen jeweils in einem bestimmten Frequenzbereich vorgesehen sind.In order to determine the damping behavior over the relevant frequency range, unit cells of different types can advantageously also be combined with one another. A plurality of layers of different unit cells are preferably provided, which are each provided for damping vibrations in a specific frequency range.

Die vorhandenen kristallinen Federstrukturen können aus Metall oder Kunststoff gefertigt werden. Kristalline Federstrukturen, die zur Dämpfung von Vibrationen im untersten Frequenzbereich von z.B. 1 Hz bis 100 Hz vorgesehen sind, werden vorzugsweise aus Metall gefertigt. Kristalline bzw. elastische Federstrukturen, die zur Dämpfung von Vibrationen oberhalb des untersten Wellenbereichs z.B. oberhalb von 40 Hz vorgesehen sind, werden vorzugsweise aus Kunststoff, vorzugsweise einem Elastomer gefertigt.The existing crystalline spring structures can be made of metal or plastic. Crystalline spring structures used to dampen vibrations in the lowest frequency range of e.g. 1 Hz to 100 Hz are provided, are preferably made of metal. Crystalline or elastic spring structures that are used to dampen vibrations above the lowest wave range, e.g. are provided above 40 Hz, are preferably made of plastic, preferably an elastomer.

Die erste und vorzugsweise auch alle weiteren kristallinen Federstrukturen sind vorzugsweise derart ausgebildet, dass bei einer Krafteinwirkung entlang der Längsachse einerseits eine Stauchung entlang der Längsachse und andererseits eine Torsion oder Scherung senkrecht zur Längsachse der kristallinen Federstruktur erfolgt. Besonders vorteilhaft können Kristallstrukturen mit schiefwinkligen Achsensystemen eingesetzt werden, die Scherungen begünstigen.The first and preferably also all further crystalline spring structures are preferably designed in such a way that when a force is applied along the longitudinal axis, on the one hand there is compression along the longitudinal axis and on the other hand torsion or shear perpendicular to the longitudinal axis of the crystalline spring structure. Crystal structures with oblique-axis systems that favor shear can be used particularly advantageously.

Vorzugsweise sind die erste und gegebenenfalls auch die weiteren kristallinen Federstrukturen derart ausgebildet, dass die Bindungen zwischen Ionen und/oder Atomen der Kristallstruktur durch federelastische mechanische Verbindungselemente, wie gerade oder gekrümmte Stäbe aus Kunststoff oder Federstahl gebildet werden, die entsprechend der gewählten Kristallstruktur parallel oder geneigt zur Längsachse angeordnet sind. Bevorzugt werden rechteckige Stäbe mit einem Seitenverhältnis von 1:4 bis 1:8, welches Biegungen begünstigt.The first and optionally also the further crystalline spring structures are preferably designed such that the bonds between ions and / or atoms of the crystal structure are formed by spring-elastic mechanical connecting elements, such as straight or curved rods made of plastic or spring steel, which are parallel or inclined in accordance with the selected crystal structure are arranged to the longitudinal axis. Rectangular rods with an aspect ratio of 1: 4 to 1: 8, which favors bending, are preferred.

In besonders bevorzugten Ausgestaltungen weist wenigstens die erste kristalline Federstruktur eine, zwei oder mehrere Verbindungsplatten aus Metall oder Kunststoff auf, die vorzugsweise senkrecht zur Dehnungsachse bzw. Längsachse ausgerichtet sind und in denen die Punkte einer Ebene der Gitterstruktur bzw. Kristallstruktur eingeschlossen sind, die durch die federelastischen mechanischen Verbindungselemente miteinander einstückig oder formschlüssig und/oder durch Schweissen miteinander verbunden sind. Vorzugsweise weisen die kristallinen Federelemente wenigstens eine Grundplatte und eine Deckplatte oder wenigstens eine Grundplatte, eine Zwischenplatte und eine Deckplatte auf. Durch die Verbindung der Gitterpunkte in einer Ebene nicht durch einzelne mechanische Verbindungselemente, sondern durch die Verbindungsplatten, resultiert ein einfacher und stabiler Aufbau der kristallinen Federstruktur. Frei liegende Verbindungsplatten bzw. Zwischenplatten können dabei Scherbewegungen und/oder Drehbewegungen ausführen, wenn die kristalline Federstruktur belastet wird. Es ist jedoch auch möglich, alle Gitterpunkte einer Ebene der Gitterstruktur individuell durch mechanische Verbindungselemente miteinander zu verbinden. In der Folge werden Scherbewegungen oder Drehbewegungen in einer Gitterebene von allen darin liegenden Verbindungselementen gemeinsam vollzogen.In particularly preferred embodiments, at least the first crystalline spring structure has one, two or more connecting plates made of metal or plastic, which are preferably oriented perpendicular to the axis of elongation or longitudinal axis and in which the points of a plane of the lattice structure or crystal structure are included, which are defined by the spring-elastic mechanical connecting elements are connected to one another in one piece or in a form-fitting manner and / or by welding. The crystalline spring elements preferably have at least one base plate and a cover plate or at least one base plate, an intermediate plate and a cover plate. By connecting the lattice points in one plane not by individual mechanical connection elements, but by the connection plates, the crystalline spring structure is simple and stable. Exposed connecting plates or intermediate plates can perform shear movements and / or rotary movements when the crystalline spring structure is loaded. However, it is also possible to connect all the lattice points of a plane of the lattice structure to one another individually by mechanical connecting elements. As a result, shear movements or Rotational movements in a lattice plane performed jointly by all the connecting elements located therein.

Die Abstützvorrichtung kann durch eine metallene Basisplatte oder durch eine einteilige oder mehrteilige Schwelle aus Holz, Kunststoff, Beton oder Metall gebildet werden, die gegebenenfalls als dicht abgeschlossener Hohlkörper ausgestaltet ist. Vorzugsweise wird die Abstützvorrichtung durch eine Kombination einer Basisplatte und einer Schwelle gebildet.The support device can be formed by a metal base plate or by a one-part or multi-part threshold made of wood, plastic, concrete or metal, which is optionally designed as a tightly sealed hollow body. The support device is preferably formed by a combination of a base plate and a threshold.

Die kristalline Federstruktur ist an die zugehörige Abstützvorrichtung bzw. Schwelle angepasst und weist z.B. eine Höhe in einem Bereich von 7.5 cm bis 40 cm auf. Die kristalline Federstruktur durchdringt die Abstützvorrichtung bzw. Schwelle ganz oder teilweise und überragt diese an der Oberkante um das erforderliche Mass von z.B. 0.2 cm bis 3 cm, sodass die Eisenbahnschiene unter Last nicht an der Abstützvorrichtung bzw. Schwelle anschlägt. Dabei ist zu beachten, dass die Amplituden der auftretenden Schwingungen meist relativ gering sind. Vorzugsweise werden die Amplituden der Schwingungen gemessen, wonach das Übermass der kristallinen Federstruktur entsprechend gewählt wird.The crystalline spring structure is adapted to the associated support device or threshold and has e.g. a height in a range from 7.5 cm to 40 cm. The crystalline spring structure completely or partially penetrates the support device or threshold and projects above it at the upper edge by the required amount of e.g. 0.2 cm to 3 cm so that the rail does not hit the support device or threshold under load. It should be noted that the amplitudes of the vibrations that occur are usually relatively low. The amplitudes of the vibrations are preferably measured, after which the excess of the crystalline spring structure is selected accordingly.

Die kristalline Federstruktur kann vorteilhaft in einer Ausnehmung der Schwelle auf diese abgestützt werden. In besonders bevorzugten Ausgestaltungen ist die erste kristalline Federstruktur hingegen auf eine Basisplatte aus Stahl abgestützt, die der Kraftverteilung der über die erste kristalline Federstruktur übertragenen Kräfte dient, so dass möglichst keine lokalen Kräfte auftreten. Wie erwähnt, kann eine massiv ausgestaltete Basisplatte als Abstützvorrichtung dienen. Vorzugsweise liegt die Basisplatte jedoch in Kombination mit einer Schwelle aus Holz, Metall, Beton oder Kunststoff vor, die der Lagervorrichtung eine gewünschte Grösse und Stabilität verleiht. Die Schwelle weist in diesem Fall eine durchgehende Ausnehmung auf, innerhalb der die kristalline Federstruktur einerseits auf die Basisplatte abgestützt ist und aus der die kristalline Federstruktur andererseits vorzugsweise herausragt. Selbstverständlich kann die Federstruktur auch mit zusätzlichen Elementen kombiniert werden, die z.B. aus der Ausnehmung herausragen.The crystalline spring structure can advantageously be supported on the threshold in a recess. In particularly preferred configurations, however, the first crystalline spring structure is supported on a base plate made of steel, which serves to distribute the forces transmitted via the first crystalline spring structure, so that as far as possible no local forces occur. As mentioned, a solid base plate can serve as a support device. However, the base plate is preferably in combination with a threshold made of wood, metal, concrete or plastic, which the storage device desires Gives size and stability. In this case, the threshold has a continuous recess within which the crystalline spring structure is supported on the one hand on the base plate and from which the crystalline spring structure preferably protrudes on the other hand. Of course, the spring structure can also be combined with additional elements that, for example, protrude from the recess.

Unterhalb der Basisplatte ist vorzugsweise eine Schwellenbesohlung vorgesehen, die von der Basisplatte übertragene mechanische Schwingungen in einem zweiten Frequenzbereich von vorzugsweise 40 Hz bis 500 Hz absorbiert oder reflektiert. Die vom Eisenbahnfahrzeug einwirkenden Schwingungen können durch die Lagervorrichtung anhand der verschiedenen Dämpfungselemente daher sequenziell in verschiedenen Frequenzbereichen vorteilhaft gedämpft werden.A threshold sole is preferably provided below the base plate, which absorbs or reflects mechanical vibrations transmitted by the base plate in a second frequency range of preferably 40 Hz to 500 Hz. The vibrations acting on the railway vehicle can therefore be advantageously damped by the bearing device using the various damping elements sequentially in different frequency ranges.

Auf den ersten kristallinen Federstrukturen sind vorzugsweise dämpfende Zwischenlagen vorgesehen, auf denen die Eisenbahnschienen ruhen.On the first crystalline spring structures, damping intermediate layers are preferably provided, on which the railroad tracks rest.

Die Schwellenbesohlung und die Zwischenlagen sind vorzugsweise als zweite oder weitere kristalline oder elastische Federstrukturen ausgebildet und umfassen vorzugsweise eine aus einem Elastomer gebildete Matrix, die ein kristallines Gitter mit sich periodisch wiederholenden Bereichen oder Elementarzellen aufweist.The threshold sole and the intermediate layers are preferably designed as second or further crystalline or elastic spring structures and preferably comprise a matrix formed from an elastomer, which has a crystalline lattice with periodically repeating regions or unit cells.

Das Schwingungssystem umfasst in diesem Fall drei oder mehr phononische Kristallstrukturen, die in Frequenzbereichen störende Schwingungen ihre Dämpfungswirkung und/oder Reflexionswirkung entfalten.In this case, the oscillation system comprises three or more phononic crystal structures, which have their damping effect and / or reflection effect in frequency ranges.

Die Eisenbahnschienen sind ferner vorzugsweise mittels federelastischen Klemmen derart mit der Abstützvorrichtung verbunden, dass die erste kristalline Federstruktur vorzugsweise derart vorgespannt wird, dass die erste kristalline Federstruktur im vorgesehenen ersten Frequenzbereich arbeitet.The railroad tracks are also preferably connected to the supporting device by means of spring-elastic clamps in such a way that the first crystalline spring structure is preferably pretensioned in such a way that the first crystalline spring structure operates in the intended first frequency range.

Ausführungsbeispiele der vorliegenden Erfindung werden nachstehend anhand von Figuren näher erläutert. Es zeigen:

Fig. 1
eine erfindungsgemässe Lagervorrichtung 1 für zwei Eisenbahnschienen in einer ersten Ausgestaltung mit ersten kristallinen Federstrukturen 11 und einer zweiten kristallinen oder elastischen Federstruktur 13, welche je eine Eisenbahnschiene 6 stützen;
Fig. 2
eine erfindungsgemässe Lagervorrichtung 1 in einer zweiten Ausgestaltung mit in einer metallenen Hohlschwelle 120 angeordneten ersten kristallinen Federstrukturen 11 und einer zweiten elastischen oder kristallinen Federstruktur 13, welche je eine Eisenbahnschiene 6 stützen;
Fig. 3
eine erfindungsgemässe Lagervorrichtung 1 in einer dritten Ausgestaltung mit einer Schwelle 16 aus Beton, Holz oder Kunststoff und ersten kristallinen Federstrukturen 11, welche je eine Eisenbahnschiene 6 stützen und je in einer Ausnehmung 160 der Schwelle 16 angeordnet sind, und einer zweiten elastischen oder kristallinen Federstruktur 13;
Fig. 4
eine für den Einsatz in einer erfindungsgemässen Lagervorrichtung 1 vorgesehene kristalline Federstruktur 11 in exemplarischer Darstellung; und
Fig. 5
einen Dämpfungsverlauf einer erfindungsgemässen Lagervorrichtung.
Exemplary embodiments of the present invention are explained in more detail below with reference to figures. Show it:
Fig. 1
a bearing device 1 according to the invention for two railroad tracks in a first embodiment with first crystalline spring structures 11 and a second crystalline or elastic spring structure 13, which each support a railroad track 6;
Fig. 2
a bearing device 1 according to the invention in a second embodiment with first crystalline spring structures 11 arranged in a metal hollow sleeper 120 and a second elastic or crystalline spring structure 13, each of which supports a railroad track 6;
Fig. 3
a bearing device 1 according to the invention in a third embodiment with a threshold 16 made of concrete, wood or plastic and first crystalline spring structures 11, which each support a railroad track 6 and are each arranged in a recess 160 of the threshold 16, and a second elastic or crystalline spring structure 13 ;
Fig. 4
an exemplary illustration of a crystalline spring structure 11 intended for use in a bearing device 1 according to the invention; and
Fig. 5
a damping curve of a bearing device according to the invention.

Fig. 1 zeigt eine erfindungsgemässe Lagervorrichtung 1 in einer ersten vorzugsweisen Ausgestaltung. Die Lagervorrichtung 1 ruht auf einem natürlichen oder künstlichen Unterbau 9, bzw. 90, auf dem eine Schicht Schotter 8 vorgesehen ist. Fig. 1 shows a storage device 1 according to the invention in a first preferred embodiment. The bearing device 1 rests on a natural or artificial substructure 9 or 90, on which a layer of ballast 8 is provided.

Die auf der Schotterschicht 8 ruhende Lagervorrichtung 1 umfasst eine massive metallene Basisplatte 12, auf der zwei kristalline bzw. phononische Federelemente 11 angeordnet sind, die je eine Eisenbahnschiene 6 stützen, auf denen die Räder 4 eines Schienenfahrzeugs abrollen. Die Basisplatte 12, über die sich die eingekoppelten Schwingungen verteilen, dient in diesem Fall als alleinige Abstützvorrichtung 12.The bearing device 1 resting on the ballast layer 8 comprises a solid metal base plate 12 on which two crystalline or phononic spring elements 11 are arranged, each of which supports a railroad track 6 on which the wheels 4 of a rail vehicle roll. The base plate 12, over which the coupled vibrations are distributed, serves in this case as the sole support device 12.

Die kristallinen Federstrukturen 11, die symbolisch gezeigt sind, weisen eine periodische dreidimensionale Kristallstruktur auf, die mechanische Schwingungen in einem ersten Frequenzbereich von vorzugsweise 1 Hz - 200 Hz zumindest teilweise absorbiert und/oder reflektiert. Analog zu einem photonischen Lichtwellenleiter, der Licht einer bestimmten Wellenlänge nicht passieren lässt, lassen auch die kristallinen Federstrukturen 11 Schwingungen einer bestimmten Frequenz nicht passieren und absorbieren oder reflektieren die eintreffenden Schwingungen.The crystalline spring structures 11, which are shown symbolically, have a periodic three-dimensional crystal structure which at least partially absorbs and / or reflects mechanical vibrations in a first frequency range of preferably 1 Hz to 200 Hz. Analogous to a photonic optical waveguide that does not allow light of a certain wavelength to pass, the crystalline spring structures 11 also do not allow vibrations of a certain frequency to pass and absorb or reflect the incoming vibrations.

Die kristallinen Federstrukturen 11 weisen in den exemplarisch gezeigten Ausgestaltungen eine auf der Basisplatte 12 ruhende Bodenplatte 111B und eine Deckplatte 111T auf, die die zugehörige Eisenbahnschiene 6 trägt. In dieser vorzugsweisen Ausgestaltung sind die Bodenplatte 111B und die Deckplatte 111T durch federelastische mechanische Verbindungselemente 112BI, 112IT mit einer Zwischenplatte 111I verbunden. Die Verbindungselemente 112BI, 112IT entsprechen den Bindungen zwischen den Atomen oder Ionen der Kristallstruktur.In the exemplary embodiments shown, the crystalline spring structures 11 have a base plate 111B resting on the base plate 12 and a cover plate 111T which carries the associated railroad track 6. In this preferred embodiment, the base plate 111B and the cover plate 111T are connected to an intermediate plate 111I by spring-elastic mechanical connecting elements 112BI, 112IT. The connecting elements 112BI, 112IT correspond to the bonds between the atoms or ions of the crystal structure.

Die Bodenplatte 111B, die Zwischenplatte 111I und die Deckplatte 111T liegen in benachbarten Ebenen der Gitterstruktur, in denen die Atome oder Ionen angeordnet sind. Die Kristallstrukturen können jedoch weit komplexer ausgebildet sein und mechanische Verbindungselemente 112BI, 112IT aufweisen, die zwischen der Bodenplatte 111B, der Zwischenplatte 111I und der Deckplatte 111T zu weiteren Gitterpunkten geführt und dort gegebenenfalls miteinander verbunden sind oder die entsprechenden Gitterpunkte durchlaufen.The base plate 111B, the intermediate plate 111I and the cover plate 111T lie in adjacent planes of the lattice structure in which the atoms or ions are arranged. However, the crystal structures can be designed to be far more complex and have mechanical connecting elements 112BI, 112IT which lead between the base plate 111B, the intermediate plate 111I and the cover plate 111T to further lattice points and where appropriate are connected to one another or pass through the corresponding lattice points.

Die Kristallstrukturen zwischen der Bodenplatte 111B und der Zwischenplatte 111I einerseits und der Zwischenplatte 111I sowie der Deckplatte 111T andererseits können identisch oder unterschiedlich ausgestaltet sein, sodass zwei miteinander verbundene Dämpfungssysteme resultieren, die ein unterschiedliches Dämpfungsverhalten bzw. unterschiedliche Dämpfungskurven oder Filterkurven aufweisen. Es sind beliebige kristalline Federstrukturen 11 realisierbar, die einen oder mehrere untergeordnete kristalline Federstrukturen aufweisen, die zusammenwirken, um ein optimales Dämpfungsverhalten über das relevante Frequenzspektrum zu erzielen. Beispielsweise können beide kristallinen Federstrukturen 11 Schwingungen im Bereich von 1 Hz bis 150 Hz mit gleicher Weise dämpfen. Alternativ kann eine der Federstrukturen 11 auf einen Frequenzbereich von z.B. 1 Hz bis 20 Hz und die andere Federstrukturen auf einen Frequenzbereich von 20 Hz bis 150 Hz abgestimmt sein. Die Frequenzbereiche, in denen die kristallinen Federstrukturen 11 ihre Wirkung entfalten sollen, werden derart gewählt, dass insbesondere stark störende Schwingungen und Erschütterungen besonders gut reduziert werden.The crystal structures between the base plate 111B and the intermediate plate 111I on the one hand and the intermediate plate 111I and the cover plate 111T on the other hand can be configured identically or differently, so that two interconnected damping systems result which have different damping behavior or different damping curves or filter curves. Any crystalline spring structures 11 can be realized, which have one or more subordinate crystalline spring structures, which work together in order to achieve an optimal damping behavior over the relevant frequency spectrum. For example, both crystalline spring structures 11 can dampen vibrations in the range from 1 Hz to 150 Hz in the same way. Alternatively, one of the spring structures 11 can be set to a frequency range of e.g. 1 Hz to 20 Hz and the other spring structures can be tuned to a frequency range from 20 Hz to 150 Hz. The frequency ranges in which the crystalline spring structures 11 are to have their effect are selected such that, in particular, strongly disruptive vibrations and shocks are reduced particularly well.

An der Unterseite der Basisplatte 12 ist eine Schwellenbesohlung 13 aus einem elastischen Material vorgesehen, die von der Basisplatte 12 übertragene mechanische Schwingungen in einem zweiten Frequenzbereich von vorzugsweise 40 Hz bis 500 Hz absorbiert oder reflektiert.On the underside of the base plate 12 is a threshold sole 13 made of an elastic material provided that absorbs or reflects mechanical vibrations transmitted by the base plate 12 in a second frequency range of preferably 40 Hz to 500 Hz.

Auf den ersten kristallinen Federstrukturen 11 sind zudem elastische Zwischenlagen 14 vorgesehen, auf denen die Eisenbahnschienen 6 ruhen. Die elastischen Zwischenlagen 14 dienen der Fixierung der Schienen 6 und gleichzeitig auch als erste Dämpfungsschichten.Elastic intermediate layers 14 are also provided on the first crystalline spring structures 11, on which the railroad tracks 6 rest. The elastic intermediate layers 14 serve to fix the rails 6 and at the same time serve as first damping layers.

Die Schwellenbesohlung 13 und/oder die Zwischenlage 14 sind vorzugsweise als zweite bzw. weitere kristalline bzw. phononische Federstruktur ausgebildet und umfassen vorzugsweise eine Matrix aus einem Elastomer, die ein kristallines Gitter mit sich periodisch wiederholenden Bereichen oder Elementarzellen bildet. Entsprechende Materialien sind z.B. aus der [5], WO2012151472A2 bekannt.The threshold sole 13 and / or the intermediate layer 14 are preferably designed as a second or further crystalline or phononic spring structure and preferably comprise a matrix made of an elastomer, which forms a crystalline lattice with periodically repeating regions or unit cells. Corresponding materials are, for example, from [5], WO2012151472A2 known.

Die erste kristalline Federstruktur 11 besteht daher vorzugsweise aus hartelastischen Metallteilen, während die als Schwellenbesohlung 13 ausgebildete zweite Federstruktur 13 und vorzugsweise auch die Zwischenlage 14 aus einem hartelastischen, aber im Vergleich zur ersten kristallinen Federstruktur 11 relativ weichen Kunststoff bestehen. Die Federstrukturen 11, 13, 14 ergänzen sich zu einem vorteilhaften Dämpfungssystem und sind auf die kritischen Frequenzbereiche abgestimmt. Jede Federstruktur kann auf eine oder mehrere Frequenzen abgestimmt sein, in deren Bereich Schwingungen gedämpft oder reflektiert werden sollen. Die Federstruktur 14 wird vorzugsweise derart dimensioniert und konstruiert, dass möglichst wenig Lärm von der Schiene und Schwelle abgestrahlt wird.The first crystalline spring structure 11 therefore preferably consists of hard-elastic metal parts, while the second spring structure 13 designed as a threshold sole 13 and preferably also the intermediate layer 14 consist of a hard-elastic but relatively soft plastic compared to the first crystalline spring structure 11. The spring structures 11, 13, 14 complement each other to form an advantageous damping system and are tuned to the critical frequency ranges. Each spring structure can be tuned to one or more frequencies, in the range of which vibrations are to be damped or reflected. The spring structure 14 is preferably dimensioned and constructed in such a way that as little noise as possible is emitted from the rail and threshold.

Fig. 1 zeigt ferner, dass benachbart zu jeder kristallinen Federstruktur 11 wenigstens ein Begrenzungselement 18 angeordnet ist. Das Begrenzungselement 18 verhindert eine unzulässige seitliche Auslenkung bzw. Ausscherung der kristallinen Federstruktur 11 und ist von dieser durch einen Luftspalt 181 begrenzt. Der Luftspalt 181 ist derart bemessen, dass Scherbewegungen und Drehbewegungen der kristallinen Federstruktur 11 erfolgen können, ein Materialbruch jedoch verhindert wird. Vorzugsweise werden nur Scherbewegungen im linearen Kraft-Dehnungsbereich der kristallinen Federstruktur 11 erlaubt, die zu keiner Überbelastung und zu keinem Bruch der kristallinen Federstruktur 11 führen. Fig. 1 further shows that adjacent to each crystalline spring structure 11 is at least one limiting element 18 is arranged. The limiting element 18 prevents inadmissible lateral deflection or deflection of the crystalline spring structure 11 and is delimited by the latter by an air gap 181. The air gap 181 is dimensioned such that shear movements and rotational movements of the crystalline spring structure 11 can take place, but a material breakage is prevented. Preferably, only shear movements in the linear force-expansion range of the crystalline spring structure 11 are permitted, which do not lead to any overloading or breakage of the crystalline spring structure 11.

Das vorzugsweise metallene Begrenzungselement 18 ist z.B. plattenförmig oder röhrenförmig ausgebildet und mit der Basisplatte 12 verschraubt oder verschweisst. Z.B. umschliessen vier kreuzförmig ausgerichtete Winkelelemente 18 mit vertikal ausgerichteten Platten die kristalline Federstruktur 11.The preferably metal limiting element 18 is e.g. plate-shaped or tubular and screwed or welded to the base plate 12. E.g. four cross-shaped angle elements 18 with vertically aligned plates enclose the crystalline spring structure 11.

Die Eisenbahnschienen 6 sind ferner mittels federelastischen Klemmen 15 derart mit der Abstützvorrichtung bzw. der Basisplatte 12 verbunden, dass die erste kristalline Federstruktur 11 vorzugsweise vorgespannt wird und im gewünschten ersten Frequenzbereich arbeitet.The railroad tracks 6 are further connected to the support device or the base plate 12 by means of spring-elastic clamps 15 such that the first crystalline spring structure 11 is preferably prestressed and operates in the desired first frequency range.

Fig. 2 zeigt die Lagervorrichtung 1 von Fig. 1 in einer zweiten Ausgestaltung mit einer metallenen Hohlschwelle 120, die vorzugsweise quaderförmig ausgestaltet ist und in der kristalline Federstrukturen 11 angeordnet sind. Die Hohlschwelle 120, die vorzugsweise dicht abgeschlossen ist, umfasst an der Unterseite die metallene Basisplatte 12 und an der Oberseite eine metallene Oberplatte 121. Die Hohlschwelle 120 kann aus einer einzigen Metallplatte bzw. ausgeschnittenen Abwicklung gefertigt bzw. gebogen werden, die z.B. eine Dicke im Bereich von 4 mm bis 10 mm aufweist. Fig. 2 shows the storage device 1 of Fig. 1 in a second embodiment with a metal hollow sleeper 120, which is preferably cuboid and in which crystalline spring structures 11 are arranged. The hollow sleeper 120, which is preferably sealed, comprises the metal base plate 12 on the underside and a metal upper plate 121 on the upper side. The hollow sleeper 120 can be manufactured or bent from a single metal plate or cut-out development, which has a thickness, for example Has a range of 4 mm to 10 mm.

Fig. 2 zeigt zwei mögliche Varianten A (links) und B (rechts) der Anordnung der kristallinen Federstrukturen 11. Entweder wird Variante A oder Variante B realisiert. Fig. 2 shows two possible variants A (left) and B (right) of the arrangement of the crystalline spring structures 11. Either variant A or variant B is realized.

Variante A (links) zeigt, dass die kristalline Federstruktur 11 mit der Deckplatte 111T an der Oberplatte 121 und mit der Grundplatte 111B an der Basisplatte 12 der Hohlschwelle 120 anliegt. Deformationen der Hohlschwelle 120 werden durch die kristalline Federstruktur 11 somit gedämpft. Die Seitenwände der Hohlschwelle 120 sind mit wenigstens einem Federelement, z.B. einer federelastischen Sicke 125 versehen, die der Hohlschwelle 120 Elastizität verleiht, sodass diese den Bewegungen der ersten kristallinen Federstrukturen 11 folgen kann.Variant A (left) shows that the crystalline spring structure 11 lies with the cover plate 111T on the top plate 121 and with the base plate 111B on the base plate 12 of the hollow sleeper 120. Deformations of the hollow sleeper 120 are thus dampened by the crystalline spring structure 11. The side walls of the hollow sleeper 120 are connected to at least one spring element, e.g. a resilient bead 125, which gives the hollow sleeper 120 elasticity so that it can follow the movements of the first crystalline spring structures 11.

Variante B (rechts) zeigt, dass die dortige kristalline Federstruktur 11 durch die Oberplatte 121 hindurch nach aussen geführt ist. Die dazu erforderliche Öffnung in der Oberplatte 121 ist durch ein elastisches Material 126, vorzugsweise einen Elastomer abgedichtet. Die Hohlschwelle 120 ist somit dicht abgeschlossen, erlaubt aber die direkte Kopplung der kristallinen Federstruktur 11 mit der Eisenbahnschiene 6.Variant B (right) shows that the crystalline spring structure 11 there is led out through the top plate 121. The required opening in the top plate 121 is sealed by an elastic material 126, preferably an elastomer. The hollow sleeper 120 is thus sealed off, but allows the crystalline spring structure 11 to be coupled directly to the railroad track 6.

Die Eisenbahnschiene 6 kann in den Varianten A und B mittels federelastischen Klemmen 15 fest montiert oder verschiebbar gelagert und mit einem Weichenantrieb 5 verbunden sein. Dazu wird auf jeder kristallinen Federstruktur 11 vorzugsweise eine Lagerplatte 7 vorgesehen, auf der die gelagerte Eisenbahnschiene 6 verschiebbar ist. Erfindungsgemäss Lagervorrichtungen 1 können somit auch für den Aufbau von Weichen vorteilhaft verwendet werden. In diesem Anwendungsfall werden vorzugsweise breitere kristalline Federstrukturen 11 vorgesehen.The railroad track 6 can be fixedly mounted or slidably mounted in variants A and B by means of spring-elastic clamps 15 and connected to a point machine 5. For this purpose, a bearing plate 7 is preferably provided on each crystalline spring structure 11, on which the mounted rail 6 can be displaced. Storage devices 1 according to the invention can thus also be used advantageously for the construction of switches. In this application, wider crystalline spring structures 11 are preferably provided.

Selbstverständlich kann die Eisenbahnschiene 6 auch in diesem Ausführungsbeispiel fest montiert und auf eine Zwischenlage 14 abgestützt werden, wie dies in Fig. 1 gezeigt ist.Of course, the railroad track 6 can also be firmly mounted in this embodiment and supported on an intermediate layer 14, as shown in FIG Fig. 1 is shown.

Fig. 3 zeigt die Lagervorrichtung 1 von Fig. 1 in einer dritten Ausgestaltung wiederum in zwei Varianten A (links) und B (rechts). Die Lagervorrichtung 1 kann einteilig oder zweiteilig ausgestaltet sein und umfasst eine Schwelle 16 oder Schwellenteile 161, 162 aus Beton, Holz oder Kunststoff. In beiden Varianten A und B sind die kristallinen Federstrukturen 11 in einer Ausnehmung 160 der Schwelle 16 angeordnet und durch einen Luftspalt 166 von der Schwelle 16 getrennt. Fig. 3 shows the storage device 1 of Fig. 1 in a third embodiment again in two variants A (left) and B (right). The bearing device 1 can be configured in one part or two parts and comprises a threshold 16 or threshold parts 161, 162 made of concrete, wood or plastic. In both variants A and B, the crystalline spring structures 11 are arranged in a recess 160 of the threshold 16 and separated from the threshold 16 by an air gap 166.

In Variante A durchläuft die Ausnehmung 160 die gesamte Schwelle 16, sodass die kristalline Federstruktur 11 auf die Basisplatte 12 abgestützt werden kann. Die Eisenbahnschiene 6 ist durch eine Zwischenlage 14 von der kristallinen Federstruktur 11 getrennt und durch federelastische Klemmen 15 gehalten, die mit der Schwelle 16 verschraubt sind.In variant A, the recess 160 runs through the entire threshold 16, so that the crystalline spring structure 11 can be supported on the base plate 12. The railroad track 6 is separated from the crystalline spring structure 11 by an intermediate layer 14 and held by spring-elastic clamps 15 which are screwed to the sleeper 16.

In Variante B durchläuft die Ausnehmung 160 die Schwelle 16 nicht vollständig und ist z.B. becherförmig in die Schwelle 16 eingelassen, sodass die kristalline Federstruktur 11 auf einem Teil der Schwelle 16 abgestützt ist. Der Durchmesser der Ausnehmung 160 ist wiederum etwas grösser bemessen als der Durchmesser der kristallinen Federstruktur 11, sodass ein Luftspalt 166 verbleibt.In variant B, the recess 160 does not completely pass the threshold 16 and is e.g. embedded in the shape of a cup in the threshold 16, so that the crystalline spring structure 11 is supported on part of the threshold 16. The diameter of the recess 160 is again dimensioned somewhat larger than the diameter of the crystalline spring structure 11, so that an air gap 166 remains.

Fig. 4 zeigt eine für den Einsatz in einer erfindungsgemässen Lagervorrichtung 1 vorgesehene kristalline Federstruktur 11 in exemplarischer Darstellung. Die makroskopische kristalline Federstruktur 11 weist eine Kristallstruktur mit einem dreidimensionalen Kristallgitter oder Punktgitter auf, mit Abständen der Punkte, die um ein Vielfaches vergrössert sind und im Bereich von einigen Zentimetern, z.B. 2.5 cm bis 60 cm, liegen. Fig. 4 shows an example of a crystalline spring structure 11 intended for use in a bearing device 1 according to the invention. The macroscopic crystalline spring structure 11 has a crystal structure with a three-dimensional crystal lattice or point lattice, with distances between the dots that are enlarged many times over and are in the range of a few centimeters, for example 2.5 cm to 60 cm.

Gewählt wurde eine einfache dreidimensionale Kristallstruktur mit rechtwinkligem (orthogonalen) Achsensystemen oder schiefwinkligen Achsensystemen. Unter Last, wie gezeigt, ist die Art des Achsensystems nicht mehr erkennbar.A simple three-dimensional crystal structure was chosen with right-angled (orthogonal) axis systems or oblique-angled axis systems. The type of axis system is no longer recognizable under load, as shown.

Die kristalline Federstruktur weist drei parallel zueinander ausgerichtete Verbindungsplatten, eine Grundplatte 111B, eine Zwischenplatte 111I, eine Deckplatte 111T, aus Metall oder Kunststoff auf, die senkrecht zur Dehnungsachse bzw. Längsachse y ausgerichtet sind und in denen die Punkte je einer Ebene der Gitterstruktur bzw. Kristallstruktur eingeschlossen sind. Die Punkte der Gitterstruktur sind durch federelastische mechanische Verbindungselemente miteinander verbunden. Die Verbindungselemente sind vorzugsweise in Öffnungen der Verbindungsplatten formschlüssig gehalten und/oder mit den Verbindungsplatten verschweisst. Die Verbindungsplatten und die vorzugsweise stabförmigen Verbindungselemente können auch einstückig miteinander verbunden sein und z.B. anhand eines Giessverfahrens oder 3D-Konstruktionsverfahrens gefertigt werden.The crystalline spring structure has three connecting plates aligned parallel to one another, a base plate 111B, an intermediate plate 111I, a cover plate 111T, made of metal or plastic, which are aligned perpendicular to the expansion axis or longitudinal axis y and in which the points each have a plane of the lattice structure or Crystal structure are included. The points of the lattice structure are connected to one another by spring-elastic mechanical connecting elements. The connecting elements are preferably held in a form-fitting manner in openings in the connecting plates and / or welded to the connecting plates. The connecting plates and the preferably rod-shaped connecting elements can also be connected to one another in one piece and e.g. using a casting process or 3D design process.

Verhalten der kristallinen Federstruktur: Durch eine parallel zur Längsachse y eingeleitete Kraft wurden die beiden Verbindungsplatten 111B, 111T gegeneinander gedrückt. Bei diesem Vorgang wurden die stabförmigen Verbindungselemente 112BI, 112IT verbogen und/oder geneigt, wodurch eine Scherbewegung oder Drehung der Zwischenplatte 111I verursacht wurde.Behavior of the crystalline spring structure: The two connecting plates 111B, 111T were pressed against one another by a force introduced parallel to the longitudinal axis y. During this process, the rod-shaped connecting elements 112BI, 112IT were bent and / or inclined, causing the intermediate plate 111I to shear or rotate.

Nach der Entlastung der kristallinen Federstruktur 11 fällt diese in die Ruhelage zurück und es kann festgestellt werden, ob ein rechtwinkliges (orthogonale Ausrichtung der Verbindungselemente 112BI; 112IT) oder schiefwinkliges Achsensystem (geneigte Ausrichtung der Verbindungselemente 112BI; 112IT) vorliegt.After the relief of the crystalline spring structure 11, it falls back into the rest position and it can be determined whether a right-angled (orthogonal orientation of the Connectors 112BI; 112IT) or angled axis system (inclined alignment of the connecting elements 112BI; 112IT) is present.

Fig. 5 zeigt einen Dämpfungsverlauf oder Frequenzverlauf einer erfindungsgemässen Lagervorrichtung 1. Durch Wahl der Kristallstruktur sowie der Abmessungen und Beschaffenheit der Verbindungsplatten 111B, 111I, 111T und der Verbindungselemente 112BI; 112IT kann das Dämpfungsverhalten oder Filterverhalten der kristallinen Federstruktur 11 festgelegt werden. Die fett gezeichnete Linie zeigt in einem ersten Beispiel, dass die erste kristalline Federstruktur 11 die Schwingungen mit den Frequenzen im Bereich von 1 Hz bis 100 Hz gut dämpfen kann. Während die Dämpfungslinie von 1 Hz bis nahezu 100 Hz beim ersten Beispiel nahezu linear verläuft, ist in einem zweiten Beispiel mit einer strichpunktierten gezeigt, dass in bestimmten Frequenzbereichen auch eine reduzierte Dämpfung vorliegen kann (exemplarisch bei 10 Hz). Es wird daher gemessen, bei welchen Frequenzen störende Schwingungen auftreten. In der Folge werden entsprechend abgestimmte kristalline Federstrukturen 11 eingesetzt und gegebenenfalls miteinander kombiniert, um Schwingungen insbesondere in den Bereichen zu unterdrücken, an denen sie störend oder schädigend in Erscheinung treten. Fig. 5 shows a damping curve or frequency curve of a bearing device 1 according to the invention. By selecting the crystal structure and the dimensions and nature of the connecting plates 111B, 111I, 111T and the connecting elements 112BI; 112IT, the damping behavior or filter behavior of the crystalline spring structure 11 can be defined. In a first example, the bold line shows that the first crystalline spring structure 11 can dampen the vibrations with the frequencies in the range from 1 Hz to 100 Hz well. While the attenuation line from 1 Hz to almost 100 Hz is almost linear in the first example, in a second example with a dash-dotted line it is shown that reduced attenuation can also be present in certain frequency ranges (exemplary at 10 Hz). It is therefore measured at which frequencies disturbing vibrations occur. As a result, appropriately coordinated crystalline spring structures 11 are used and, if necessary, combined with one another in order to suppress vibrations, in particular in those areas where they appear to be disruptive or damaging.

Literaturverzeichnisbibliography

  1. [1] Klaus Lieberenz et. al., Dynamische Stabilität der Fahrbahn, Edition ETR 2005 [1] Klaus Lieberenz et. al., Dynamic stability of the road, Edition ETR 2005
  2. [2] DE102013209495A1 [2] DE102013209495A1
  3. [3] Gorishnyy et. al., Sound ideas, Physics World, Dez. 2005 [3] Gorishnyy et. al., Sound ideas, Physics World, Dec. 2005
  4. [4] Delpero et. al., Structural engineering of three-dimensional phononic crystals, Journal of Sound and Vibration, November 2015 [4] Delpero et. al., Structural engineering of three-dimensional phononic crystals, Journal of Sound and Vibration, November 2015
  5. [5] WO2012151472A2 [5] WO2012151472A2

Claims (15)

  1. Support device (1) for a rail system, with at least one railway rail (6), with an elastic element (11) and with a bearing device (12; 13, 16) for resting on a substructure (9), characterised in that the elastic element (11) is a first macroscopic crystalline spring structure (11), which is aligned with its longitudinal axis (y) perpendicular to the railway rail (6) and which has a periodic three-dimensional crystal structure which, in the installed state, at least partially absorbs and/or reflects mechanical vibrations in a first frequency range of 1 Hz - 200 Hz, wherein the elastic element (11) abuts against the bearing device (12; 13; 16) and the at least one railway rail (6) rests on the elastic element.
  2. Support device (1) according to claim 1, characterised in that the first crystalline spring structure (11) is connected along the longitudinal axis (y) serially, directly or indirectly, to at least one second crystalline spring structure (13) which, in the installed state, at least partially absorbs and/or reflects mechanical vibrations in a second frequency range of preferably 40 Hz - 500 Hz.
  3. Support device (1) according to claim 1 or 2, characterised in that at least the first crystalline spring structure (11) has the crystal structure of a metallic or non-metallic element or of a semiconductor, or in that at least the first crystalline spring structure (11) has two, three or more identical or different elementary cells lying one above the other along the longitudinal axis (y) and/or in that at least the first crystalline spring structure (11) has two, three or more elementary cells lying one above the other along the longitudinal axis (y), to which further elementary cells optionally adjoin laterally.
  4. Support device (1) according to one of the claims 1 - 3, characterised in that at least the first crystalline spring structure (11) is made of metal or plastic and/or in that at least the first crystalline spring structure (11) is designed in such a way that when a force is applied along the longitudinal axis (y), on the one hand a compression and on the other hand a torsion or shearing of the crystalline spring structure (11) can occur.
  5. Support device (1) according to one of the claims 1 - 4, characterised in that at least the first crystalline spring structure (11) is designed in such a way that the bonds between ions or atoms of the crystal structure are formed by spring-elastic mechanical connecting elements (112BI; 112IT), such as straight or curved rods of plastic or metal, preferably spring steel, which are arranged parallel or inclined to the longitudinal axis (y).
  6. Support device (1) according to claim 5, characterised in that at least the first crystalline spring structure (11) has one, two or more connecting plates (111B, 111I, 111T) made of metal or plastic, which are aligned perpendicular to the axis of elongation or longitudinal axis (y) and in which the points of a plane of the lattice structure or crystal structure are enclosed, which are connected or welded to one another in one piece or in a form-fitting manner by the spring-elastic mechanical connecting elements (112BI; 112IT).
  7. Support device (1) according to one of the claims 1 - 6, characterised in that the bearing device (12; 13, 16) is formed by a metal base plate (12) or by a one-piece or multi-piece sleeper (13, 16) made of wood, plastic, concrete or metal, which is optionally designed as a tightly sealed hollow body, or in that the bearing device (12, 13, 16) is a combination of the base plate (12) and the sleeper (13, 16).
  8. Support device (1) according to one of the claims 1 - 7, characterised in that the first crystalline spring structure (11) is supported on the base plate (12) made of steel, which serves to absorb and/or distribute the vibrations and forces transmitted via the first crystalline spring structure (11).
  9. Support device (1) according to claim 1 - 8, characterised in that the first crystalline spring structure (11) has a height in a range from 7.5 cm to 20 cm and/or in that the crystalline spring structure (11) at least partially penetrates the sleeper (13, 16) and preferably projects in height by 0.2 cm to 3 cm.
  10. Support device (1) according to claim 7, characterised in that a sleeper sole pad (13) is provided below the base plate (12), which absorbs or reflects mechanical vibrations transmitted by the base plate (12) in the installed state in a second frequency range of preferably 40 Hz to 500 Hz.
  11. Support device (1) according to one of the claims 1 - 10, characterised in that the at least one railway rail (6) is connected to the first crystalline spring structure (11) by an intermediate layer (14).
  12. Support device (1) according to claim 11, characterised in that the sleeper sole pad (13) and/or the intermediate layer (14) are formed as a second or further crystalline spring structure and comprise a matrix of an elastomer which forms a crystalline grid with periodically repeating regions or elementary cells.
  13. Support device (1) according to one of the claims 1 - 12, characterised in that at least one limiting element (16, 18), which limits the lateral deflection of the spring structure (11), is provided, separated from the first crystalline spring structure (11) by an air gap (161, 181).
  14. Support device (1) according to claim 13, characterised in that the at least one limiting element (16, 18) is a hollow cylinder (18) resting on the base plate (11) or adjacent material of the sleeper (16), which has a recess (160) for receiving the first crystalline spring structure (11).
  15. Support device (1) according to one of the claims 1 - 14, characterised in that the at least one railway rail (6) is connected to the bearing device (12; 13, 16) by means of spring-elastic clamps (15) in such a way that the first crystalline spring structure (11) is preferably pre-stressed in such a way that the first crystalline spring structure (11) can operate in the first frequency range provided.
EP17187153.6A 2017-08-21 2017-08-21 Bearing device for a railway system Active EP3447190B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP17187153.6A EP3447190B1 (en) 2017-08-21 2017-08-21 Bearing device for a railway system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP17187153.6A EP3447190B1 (en) 2017-08-21 2017-08-21 Bearing device for a railway system

Publications (2)

Publication Number Publication Date
EP3447190A1 EP3447190A1 (en) 2019-02-27
EP3447190B1 true EP3447190B1 (en) 2020-03-18

Family

ID=59683455

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17187153.6A Active EP3447190B1 (en) 2017-08-21 2017-08-21 Bearing device for a railway system

Country Status (1)

Country Link
EP (1) EP3447190B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112458800A (en) * 2020-11-18 2021-03-09 成都主导科技有限责任公司 Composite damping steel sleeper
CN112853825B (en) * 2021-01-13 2022-04-26 华东交通大学 Adjustable quasi-periodic damping steel rail

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1297712C (en) * 2004-07-23 2007-01-31 尹学军 Floating road bed
US8833510B2 (en) 2011-05-05 2014-09-16 Massachusetts Institute Of Technology Phononic metamaterials for vibration isolation and focusing of elastic waves
DE102013209495B4 (en) 2013-05-22 2017-02-16 GKT Gummi- und Kunststofftechnik Fürstenwalde GmbH Sleeper for a railway sleeper
AT517573A1 (en) * 2015-07-21 2017-02-15 Steinhauser Consulting Eng Zt Gmbh Bahngleisauflagerung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3447190A1 (en) 2019-02-27

Similar Documents

Publication Publication Date Title
EP3121333B1 (en) Rail track support
EP0722012B1 (en) Track for rail-bound vehicles
EP3447190B1 (en) Bearing device for a railway system
EP1836352B1 (en) Fixed track bed for rail vehicles
CH633847A5 (en) TRACK FOR RAIL VEHICLES.
EP0552788B1 (en) Sleeper for the rails of a permanent way for rail cars
AT503436B1 (en) Railway track for use at top of bridge for high-speed train has superstructure having first zone with value of ballast coefficient of at least one elastic layer that is smaller than inside of second zone
DE102006013851A1 (en) Method for vibration damping of rail track onto an elastomer base layer and with ballast layers between elastomer layers
DE3937086A1 (en) DEVICE FOR STORING RAILS FOR RAIL VEHICLES
DE102010038720A1 (en) Vibration absorber for damping mechanical vibrations
EP0663470A1 (en) Superstructure for railway tracks
EP2817457A1 (en) Noise reduction device
DE102006062638A1 (en) Track system for rail-bound vehicle i.e. magnetic levitation vehicle, has springs pre-loaded about measure during unloaded condition of beams, where measure is approximately smaller than another measure yielded during loaded condition
AT409641B (en) Ballastless superstructure with prefabricated concrete support plates as well as a procedure for the replacement of the same
EP2021545B1 (en) Guideway
EP1114221B1 (en) Sleeper frame for a rail system for rail-mounted vehicles, especially for a ballasted track
WO2018091351A1 (en) Anchor clamp and fastening point for fastening a rail to a subsurface
EP1258563B1 (en) Ballastless railway track with elastically supported sound absorber elements
DE202007018656U1 (en) Embedded gravel superstructure
EP0771907A1 (en) Absorption body for the reduction of airborne noise
DE19920146B4 (en) Storage of a rail for rail vehicles
AT512523B1 (en) Foundationless noise protection device
EP1718802A2 (en) Tie for a ballasted track
WO1995006166A1 (en) Rail seat
EP4083320B1 (en) Railway sleeper, method of manufacturing a track superstructure and use of railway sleeper

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190827

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: E01B 19/00 20060101AFI20191028BHEP

Ipc: E01B 2/00 20060101ALN20191028BHEP

INTG Intention to grant announced

Effective date: 20191114

RIC1 Information provided on ipc code assigned before grant

Ipc: E01B 19/00 20060101AFI20191104BHEP

Ipc: E01B 2/00 20060101ALN20191104BHEP

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTC Intention to grant announced (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

INTG Intention to grant announced

Effective date: 20200129

RIC1 Information provided on ipc code assigned before grant

Ipc: E01B 2/00 20060101ALN20200120BHEP

Ipc: E01B 19/00 20060101AFI20200120BHEP

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017004269

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1246024

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200415

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: PETER RUTZ C/O RUTZ AND PARTNER, CH

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200618

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200618

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200619

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200718

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017004269

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

26N No opposition filed

Effective date: 20201221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200821

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200821

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230529

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230821

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230825

Year of fee payment: 7

Ref country code: GB

Payment date: 20230822

Year of fee payment: 7

Ref country code: CH

Payment date: 20230902

Year of fee payment: 7

Ref country code: AT

Payment date: 20230822

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230821

Year of fee payment: 7

Ref country code: FR

Payment date: 20230828

Year of fee payment: 7

Ref country code: DE

Payment date: 20230821

Year of fee payment: 7