EP3445976A1 - Verfahren zum betreiben einer ventileinrichtung, ventileinrichtung und datenträger mit einem computerprogramm - Google Patents

Verfahren zum betreiben einer ventileinrichtung, ventileinrichtung und datenträger mit einem computerprogramm

Info

Publication number
EP3445976A1
EP3445976A1 EP17715710.4A EP17715710A EP3445976A1 EP 3445976 A1 EP3445976 A1 EP 3445976A1 EP 17715710 A EP17715710 A EP 17715710A EP 3445976 A1 EP3445976 A1 EP 3445976A1
Authority
EP
European Patent Office
Prior art keywords
fluid
valve
compressed air
flow
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP17715710.4A
Other languages
English (en)
French (fr)
Other versions
EP3445976B1 (de
Inventor
Rüdiger Neumann
Matthias Doll
David Rager
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Festo SE and Co KG
Original Assignee
Festo SE and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Festo SE and Co KG filed Critical Festo SE and Co KG
Publication of EP3445976A1 publication Critical patent/EP3445976A1/de
Application granted granted Critical
Publication of EP3445976B1 publication Critical patent/EP3445976B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/02Servomotor systems with programme control derived from a store or timing device; Control devices therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B1/00Installations or systems with accumulators; Supply reservoir or sump assemblies
    • F15B1/02Installations or systems with accumulators
    • F15B1/027Installations or systems with accumulators having accumulator charging devices
    • F15B1/033Installations or systems with accumulators having accumulator charging devices with electrical control means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/006Hydraulic "Wheatstone bridge" circuits, i.e. with four nodes, P-A-T-B, and on-off or proportional valves in each link
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/04Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed
    • F15B11/046Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed depending on the position of the working member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/06Servomotor systems without provision for follow-up action; Circuits therefor involving features specific to the use of a compressible medium, e.g. air, steam
    • F15B11/064Servomotor systems without provision for follow-up action; Circuits therefor involving features specific to the use of a compressible medium, e.g. air, steam with devices for saving the compressible medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/021Valves for interconnecting the fluid chambers of an actuator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/20Other details, e.g. assembly with regulating devices
    • F15B15/22Other details, e.g. assembly with regulating devices for accelerating or decelerating the stroke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/20Other details, e.g. assembly with regulating devices
    • F15B15/28Means for indicating the position, e.g. end of stroke
    • F15B15/2815Position sensing, i.e. means for continuous measurement of position, e.g. LVDT
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/20Other details, e.g. assembly with regulating devices
    • F15B15/28Means for indicating the position, e.g. end of stroke
    • F15B15/2815Position sensing, i.e. means for continuous measurement of position, e.g. LVDT
    • F15B15/2838Position sensing, i.e. means for continuous measurement of position, e.g. LVDT with out using position sensors, e.g. by volume flow measurement or pump speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/08Servomotor systems incorporating electrically operated control means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B19/00Testing; Calibrating; Fault detection or monitoring; Simulation or modelling of fluid-pressure systems or apparatus not otherwise provided for
    • F15B19/002Calibrating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/3056Assemblies of multiple valves
    • F15B2211/30565Assemblies of multiple valves having multiple valves for a single output member, e.g. for creating higher valve function by use of multiple valves like two 2/2-valves replacing a 5/3-valve
    • F15B2211/30575Assemblies of multiple valves having multiple valves for a single output member, e.g. for creating higher valve function by use of multiple valves like two 2/2-valves replacing a 5/3-valve in a Wheatstone Bridge arrangement (also half bridges)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/42Flow control characterised by the type of actuation
    • F15B2211/426Flow control characterised by the type of actuation electrically or electronically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6306Electronic controllers using input signals representing a pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6306Electronic controllers using input signals representing a pressure
    • F15B2211/6309Electronic controllers using input signals representing a pressure the pressure being a pressure source supply pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6306Electronic controllers using input signals representing a pressure
    • F15B2211/6313Electronic controllers using input signals representing a pressure the pressure being a load pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/80Other types of control related to particular problems or conditions
    • F15B2211/885Control specific to the type of fluid, e.g. specific to magnetorheological fluid
    • F15B2211/8855Compressible fluids, e.g. specific to pneumatics

Definitions

  • the invention relates to a method for operating a valve device for supplying compressed air to a compressed air consumer. Furthermore, the invention relates to a valve device for operating a compressed air consumer and a data carrier with a computer program for storage in a processing device of a valve device.
  • a method for compressed air supply of a compressed air consumer to determine a position of a movable component of the compressed air consumer, such as a working piston of a pneumatic cylinder, along a path of movement using a position measuring system and provided by the Wegmesssystem
  • a processing device in which a processing of the position signal is carried out, for example, to obtain at least one information about a movement of the movable component of the compressed air consumer from an absolute amount of the position signal and / or a change in position of the position signal.
  • This information is then used to control a valve arrangement assigned to the processing device in order to influence a fluid flow in a working space or from a working space of the compressed air consumer in such a way. flow that the movable component of the compressed air consumer can be moved to a predetermined position along the path of travel and / or at a predetermined speeds along the path of movement.
  • a valve position of the valve arrangement On the basis of the position signal of the displacement measuring system, it is thus possible to control or regulate a valve position of the valve arrangement.
  • the change in the valve position as a function of the pressure conditions on the compressed air consumer and a compressed air source leads to different fluid flow rates to the compressed air consumer, which are detected by the processing device indirectly via the position signal of the position measuring system and lead to a renewed adjustment of the valve position.
  • the object of the invention is to provide a method for operating a valve device, a valve device and a data carrier with a computer program for storage in a processing device of a valve device, with which an improved provision of compressed air for a compressed air consumer is made possible.
  • This object is achieved for a method of the type mentioned in the introduction with the following steps: determination of a first fluid pressure in a first section of a fluid channel of the valve arrangement which extends between an inlet connection for a fluidically communicating connection to a fluid source or fluid sink and a valve element extending, determining a second fluid pressure in a second portion of the fluid passage of the valve assembly extending between the valve member and an output port for fluidly communicating communication with a compressed air consumer, determining a flow value for the valve element from the two fluid pressures and a Flow function, linking the flow value with a predeterminable fluid volume flow or fluid mass flow for the pressurized fluid, which is provided for the flow through the Fluidka- channel, at a conductance and determination of a required actuation energy for an actuator, which is designed for actuation of the valve element, and providing the Actuation energy to the actuating device for setting the predeterminable fluid volume flow or fluid mass flow.
  • the object of the method is based on the determined pressure values and knowing the fluidic properties of the valve element used to be able to set a fluid volume flow or fluid mass flow for the compressed air consumer to a predeterminable fluid flow and thus directly influence a movement behavior of the compressed air consumer, which is for example a compressed air drive, in particular to a pneumatic cylinder or pneumatic rotary actuator is to be able to take.
  • the fluid volume flow describes the flowing fluid volume per unit time.
  • the density of the fluid is additionally taken into account, whereby the calculation effort can be reduced.
  • the metrological effort for the control or regulation of the compressed air supply for the compressed air consumer can be kept low.
  • valve channel sections are fluidically separated from one another or fluidically communicating with each other in dependence on a functional position of the valve element.
  • the valve element in response to a provision of energy, in particular electrical or fluid energy to an actuator freely, in particular proportional to the amount of energy provided between a closed position with separate connection of the two fluid channel sections and an open position with free communicating connection of the two Fluid channel sections, can be moved.
  • a flow value is determined in a subsequent step on the basis of the fluid pressures and a flow function.
  • the flow function is, for example, a family of curves or a map in which the flow characteristics of the valve element for a fluid flowing through the valve element, depending on the pressure conditions before and after the valve element and in further dependence on a valve position of the valve element are deposited.
  • Flow value is then measured with a predeterminable fluid flow or fluid mass flow for the pressurized fluid to form a conductance.
  • This conductance is needed to determine an actuation energy for the actuator, which is designed for the actuation of the valve element. Subsequently, the determined actuation energy is provided to the actuating device for setting the predeterminable fluid volume flow or fluid mass flow.
  • valve device is operated in the manner of a flow control valve, in contrast to a flow control valve can be dispensed with a complex and costly mass flow sensor, since the total determination of the fluid volume flow or fluid mass flow through the valve device based on the pressure values, the pressure sensors be provided on or in the fluid channel.
  • the flow value is determined from the flow function, which is set in relation to a quotient of the first fluid pressure and the second fluid pressure and / or that the actuation energy is determined on the basis of the conductance and a, in particular experimentally determined, valve characteristic.
  • the pressure ratio across the valve element which can be determined as a quotient of the first fluid pressure and the second fluid pressure, is that Size, by means of which, regardless of a level of fluid pressure in the fluid channel, a precise assignment to flow characteristics of the valve element for a fluid flowing through the valve element, can be created.
  • the valve characteristic establishes a relationship between a provision of energy, in particular electrical or fluidic energy, to the valve element and a resulting functional position for the valve element. It is preferably provided to set the valve characteristic in relation to the determined conductance in order to be able to determine therefrom the energy required for achieving a desired functional position of the valve element for the actuating device.
  • two independently controllable valve arrangements are provided, the respective second sections of the respective fluid channels are connected to a common output port and their input terminals are connected to different fluid sources or Fluidsidenseken, with an optional control of one of the two valve assemblies as a function of a pressure difference between the respective input port and the common output port and the predetermined fluid volume flow or fluid mass flow takes place.
  • a compressed air consumer can be alternately connected to different fluid sources or fluid sinks, wherein always a fluid volume flow or fluid mass flow can be predetermined, which is maintained in the course of the process by appropriate control of each of the two valve assemblies.
  • the fluid volume flow or fluid mass flow can be constant for example over a predefinable period of time or follow a predetermined profile, for example, a constant movement of a trained as a compressed air actuator compressed air consumer or a predetermined variable movement of the compressed air consumer bring about.
  • the compressed air source can be designed as a local compressed air compressor or central compressed air network.
  • the compressed air sink can be, for example, a compressed air outlet in an environment of the valve arrangement, which is equipped in particular with a silencer.
  • the compressed air consumer has two fluidically separated, kinematically coupled work spaces and each of the work spaces are assigned two independently controllable valve arrangements whose respective second portions of the respective fluid channels are connected to a common output terminal and their respective input terminals with different Fluid sources or fluid sinks are connected, wherein a synchronous compressed air supply of the two working spaces with predeterminable fluid volume flows takes place by selective control of the respective valve arrangements.
  • a compressed air consumer which may be designed in particular as a pneumatic cylinder or pneumatic pivot drive, two working spaces of a movable wall, in particular a working piston, fluidly sealingly separated from each other and are variable in size due to the mobility of the wall.
  • a movement of the wall leads at the same time to an enlargement of the one working space and to a reduction of the other working space, it is also possible to speak of a kinematic coupling of the two work spaces, wherein the movable wall forms the kinematic coupling element.
  • a synchronous compressed air supply is made in both work spaces, wherein the term compressed air supply both an influx of compressed air in the working space as well as an outflow of compressed air from the working space is understood.
  • synchronous fluid flow rates are provided for both working spaces of the compressed air consumer.
  • an influx of compressed air takes place in one of the two working spaces, while in the other working space
  • a first fluid volume flow or fluid mass flow for a first working space of the compressed air consumer and a second fluid volume flow or fluid mass flow for a second working space of the compressed air consumer to achieve a motion profile for the connected compressed air consumer is specified and / or that a first pressure profile for the first working space and a second pressure profile profile for the second working space is specified.
  • the movement of the wall is influenced by means of a predetermined pressure profile, the pressures in the two work spaces resulting from the fluid volume flows provided and the movement of the wall.
  • the object of the invention is achieved for a valve device of the type mentioned, which is designed for operating a compressed air consumer, with the features of claim 6.
  • the valve device in which a fluid channel is formed between an input port for a fluidic communication with a fluid source or fluid sink and an output port for fluidly communicating communication with a compressed air consumer, and a valve element that is movable to influence a cross section of the fluid channel Fluid channel is arranged and to which an actuating device is assigned to change a functional position, and a processing device for providing actuation energy to the actuator, wherein a first portion of the fluid channel between the input port and the valve element is associated with a first pressure sensor and wherein a second portion of the fluid channel between the valve element and the outlet port, a second pressure sensor is associated, wherein the processing means for carrying out a method according to Ans pruch 1 or 2 is formed.
  • valve device In a development of the valve device, it is provided that two independently controllable valve arrangements are provided, whose respective second sections of the respective fluid channels are connected to a common output port and whose input ports are connected to different fluid sources or fluid sinks, and that the processing device for carrying out a method is designed according to claim 3.
  • valve device in a further embodiment of the valve device is provided that the processing device with two pairs of in each case two independently controllable valve arrangements are connected, wherein the second sections of the respective fluid channels are each connected in pairs to a common output port and wherein a first input port of each pair is connected to a fluid source and a second input port of each pair is connected to a fluid sink, characterized in that the processing device is designed for a synchronous compressed air supply of the two working spaces with predeterminable fluid volume flows by selective activation of the respective valve arrangements.
  • the valve arrangement is preferably designed as a proportional valve, in particular as a fluidically pilot-operated proportional valve.
  • the object of the invention is achieved by a data carrier with a computer program that is designed to be stored in a processing device of a valve device, wherein the computer program when processed in a processor of the processing device causes a method according to one of claims 1 to 5.
  • the data carrier may be a portable carrier medium, such as a CD, a DVD or a USB memory.
  • the data carrier can be designed as a drive or solid-state memory of a data server in which a multiplicity of different data are stored, which can be accessed by the processing device via remote access, in particular to a data cloud.
  • FIG. 1 shows: a schematic representation of a first embodiment of a fluidic system with a valve device and a compressed air consumer, which has two kinematically coupled Hähoff me, a schematic representation of a second Auspar tion form of a fluidic system with a valve device comprising a valve element, and a compressed air consumer, the one Working space, and a schematic representation of a third Auspar tion form of a fluidic system with a valve device comprising two valve elements, and a compressed air consumer, which has a working space.
  • a fluidic system 1 shown in FIG. 1 is designed purely by way of example for providing a linear movement and for this purpose comprises a valve device 2 and a compressed air consumer 3.
  • the valve device 2 is designed as a pneumatic full bridge circuit with a total of four valve elements designed as 2/2-way proportional valves 4, 5, 6 and 7 realized, wherein each of the valve elements 4, 5, 6 and 7 purely by way of example as a solenoid valve with a magnetic drive 8, 9, 10 and 11 is formed as an actuating device.
  • the actuating device may also be designed as a piezo drive or magnetostrictive or otherwise suitable drive.
  • Each of the valve elements 4, 5, 6 and 7 can, with appropriate loading of the associated magnetic drives 8, 9, 10 and 11 are switched with electrical energy between two functional positions, in particular a blocking position and an open position.
  • the magnetic drives 8, 9, 10 and 11 are electrically connected via control lines 15, 16, 17 and 18 to a processing device 19, which forms part of the valve device 2 and includes, by way of example, a microprocessor or microcontroller.
  • Each of the valve elements 4, 5, 6 and 7 is connected via fluid lines 20 to 27 associated with fluidic nodes 28 to 31 and forms with each paired fluid lines 20 to 27 each have a valve arrangement not designated in detail.
  • the fluid lines 20 to 23 are respectively designated as the first section of a fluid channel of the respective valve element 4, 5, 6 and 7.
  • the fluid lines 24 to 27, however, are referred to as second sections of a fluid channel of the respective valve element 4, 5, 6 and 7.
  • the fluid lines 20 and 21 open together at a fluidic node 28, the fluid lines 22 and 23 open together at the fluidic node 30, the fluid lines 24 and 25 open together at the fluidic node 29 and the fluid lines 26 and 27 open together at the fluidic node 31 from.
  • the fluidic node 28 is connected via a supply line 36 to a fluid source 32, while the fluidic node 30 is connected via an exhaust duct 37 with a fluid outlet, which is associated with a muffler 33.
  • the fluidic node 29 forms a first working port of the valve device 2 and is connected via a first connecting line 38 to a fluid port 39 of the compressed air consumer 3, while the fluidic node 31 has a second working port of the valve.
  • L healthy 2 forms and is connected via a second connecting line 40 with a fluid port 41 of the compressed air consumer 3.
  • the supply line 36, the exhaust air line 37, the first connecting line 38 and the second connecting line 40 to each be assigned a pressure sensor 42 to 45, each for detecting the respective fluid pressure in the associated line 36, 37, 38 and 40 and for providing a pressure-dependent sensor signal via a respective associated sensor line 46 to 49 to the processing device 19 is formed.
  • at least one of the pressure sensors is arranged in a housing for the valve device or outside of such a housing.
  • the compressed air consumer 3 is designed purely by way of example as a double-acting pneumatic cylinder, in which a working piston 50, also referred to as a movable wall, is received linearly movable in a cylinder recess 51 of a cylinder housing 52 and thereby separates a first variable-size working space 53 from a second variable-volume working space 54.
  • the working piston 50 is connected to a piston rod 55, which passes through the cylinder housing 52 on the front side and can be displaced together with the working piston 50 along a rectilinear movement path 56 relative to the cylinder housing 52.
  • the working piston 50 is to be moved, starting from the position shown in FIG. 1, in such a way that one end face of the working piston 50 comes into contact with an inner surface 58 of the cylinder housing 52 disposed opposite to it.
  • the predeterminable movement profile is embodied such that initially a uniform acceleration of the working piston 50 to a predefinable target speed, then a uniform movement of the working piston while maintaining the target speed and finally a deceleration of the working piston 50 to a vanishing speed.
  • valve element 4 and of the valve element 6 are provided by way of example, wherein a fluidically communicating connection between the fluid source 32, the fluidic node 29 and the second fluid port 39 is established via the valve element 4 and via the valve element 6 a fluidically communicating connection between the first fluid port 41, the fluidic node 31 and the fluid outlet with associated muffler 33 is made.
  • the processing device 19 first determines the sensor signal. nale of the pressure sensors 42 to 45 in order to calculate pressure ratios over the two valve elements 4 and 6 can. Based on these pressure ratios, a flow value for the respective valve element 4, 6 from the two fluid pressures and a flow function can be determined for each of the valve elements 4 and 6 in a subsequent step in the processing device 19. Subsequently, a linkage of the respective determined flow value with a predeterminable fluid volume flow or fluid mass flow, which is to be made available to the respective working space 53, 54, in order to achieve the desired movement of the working piston 50 according to the movement profile.
  • the result of this combination is referred to as conductance and is required to determine a required actuation energy for the respective magnetic drive 8, 10.
  • the actuation energy is determined for each of the magnetic drives 8, 10 by linking the conductance with a, in particular experimentally determined, valve characteristic. Subsequently, the actuation energy to the respective magnetic drives 8, 10 is provided and there leads to a movement of the respective unspecified valve spool of the respective valve elements 4, 6 and thus to a release of a fluidly communicating connection between the respective fluidic nodes 28 and 29 and 31 and 30.
  • a respective fluid volume flow or fluid mass flow is established between the fluid source 32 and the working space 54 and between the working space 53 and the muffler 33, which changes with a change in the pressures in the respective fluid lines 20 to 27 goes along.
  • the processing device 19 By cyclically recurring determination of the sensor signals of the pressure sensors 42 to 45 and the subsequent processing of the pressure conditions according to the above procedure, the processing device 19, the fluid volume flows for the two working chambers 53, 54 of the compressed air consumer 3 set so that the desired movement profile for the working piston 50 is maintained.
  • FIGS. 2 and 3 differ from the fluidic system 1 according to FIG. 1 in that the compressed air consumer 63 is designed purely by way of example as a single-acting pneumatic cylinder, so that only one in the respective cylinder housing 64 Working space 65 is formed.
  • the valve device 62 is designed, for example, as a proportional 3/3-way valve, in which in the illustrated switching position, which can also be referred to as rest position or neutral position, fluidically communicating connections between a fluid source 66, a working port 67 and a Fluids outlet 68 are blocked with muffler.
  • the valve spool 69 of the valve device 62 can be brought into two different functional positions with the aid of the associated magnetic drives 70, 71. In the first functional position, a fluidically communicating connection between the fluid source 66 and the working space 65 is established. In the second functional position, a fluidically communicating connection between the working space 65 and the fluid outlet 68 is produced.
  • the processing device 72 is designed in the same way as the processing device 19 according to FIG. 1 and thus makes it possible to provide a supply of sensor signals from the pressure sensors 73, 74, 75 predeterminable fluid flow in the working space 65 and from the working space 65th
  • valve devices 92 are each in the form of proportional 2/2-way valves 100,
  • valve spools 99 as valve elements and can be controlled individually by the associated processing device 102 in order to ensure an optional provision of pressurized fluid from the fluid source 66 into the working space 65 or from the working space 65 to the fluid outlet 68.
  • the processing device 102 controls the valve spools 99 in order to ensure an optional provision of pressurized fluid from the fluid source 66 into the working space 65 or from the working space 65 to the fluid outlet 68.
  • 102 is formed in the same way as the processing device 19 according to FIG. 1 and thus makes it possible to provide predeterminable fluid flows into the working space 65 and out of the working space 65 on the basis of sensor signals of the pressure sensors 103, 104, 105.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Fluid-Driven Valves (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zum Betreiben einer Ventileinrichtung zur Druckluftversorgung eines Druckluftverbrauchers (3; 63), mit den Schritten: Ermitteln eines ersten Fluiddrucks in einem ersten Abschnitt (20, 21, 22, 23) eines Fluidkanals der Ventilanordnung, der sich zwischen einem Eingangsanschluss (28, 30) für eine fluidisch kommunizierende Verbindung mit einer Fluidquelle (32; 66; 96) oder Fluidsenke (33; 68) und einem Ventilelement (4, 5, 6, 7; 69; 99) erstreckt, Ermitteln eines zweiten Fluiddrucks in einem zweiten Abschnitt (24, 25, 26, 27) des Fluidkanals der Ventilanordnung, der sich zwischen dem Ventilelement (4, 5, 6, 7; 69; 99) und einem Ausgangsanschluss (29, 31) für eine fluidisch kommunizierende Verbindung mit einem Druckluftverbraucher (3; 63) erstreckt, Ermitteln eines Durchflusswerts für das Ventilelement (4, 5, 6, 7; 69; 99) aus den beiden Fluiddrücken und einer Durchflussfunktion, Verknüpfen des Durchflusswerts mit einem vorgebbaren Fluidvolumenstrom oder Fluidmassenstrom für das druckbeaufschlagte Fluid, der zur Durchströmung des Fluidkanals (20 bis 27) vorgesehen ist, zu einem Leitwert und Ermittlung einer benötigten Betätigungsenergie für eine Betätigungseinrichtung (8, 9, 10, 11; 70, 71; 100, 101), die für eine Betätigung des Ventilelements (4, 5, 6, 7; 69; 99) ausgebildet ist, und Bereitstellen der Betätigungsenergie an die Betätigungseinrichtung (8, 9, 10, 11; 70, 71; 100, 101) zur Einstellung des vorgebbaren Fluidvolumenstroms oder Fluidmassenstrom.

Description

Verfahren zum Betreiben einer Ventileinrichtung,
Ventileinrichtung und Datenträger mit einem Computerprogramm
Die Erfindung betrifft ein Verfahren zum Betreiben einer Ventileinrichtung zur Druckluftversorgung eines Druckluftverbrauchers. Ferner betrifft die Erfindung eine Ventileinrichtung zum Betreiben eines Druckluftverbrauchers und einen Datenträger mit einem Computerprogramm zur Speicherung in einer Verarbeitungseinrichtung einer Ventileinrichtung.
Gemäß einem der Anmelderin bekannten, druckschriftlich nicht niedergelegten Stand der Technik ist bei einem Verfahren zur Druckluftversorgung eines Druckluftverbrauchers vorgesehen, eine Position einer beweglichen Komponente des Druckluftverbrauchers, beispielsweise eines Arbeitskolbens eines Pneumatikzylinders, längs eines Bewegungswegs mit Hilfe eines Wegmesssystems zu ermitteln und ein vom Wegmesssystem bereitgestelltes Positionssignal an eine Verarbeitungseinrichtung bereitzustellen, in der eine Verarbeitung des Positionssignals erfolgt, um beispielsweise aus einem absoluten Betrag des Positionssignals und/oder einer zeitlichen Veränderung des Positionssignals wenigstens eine Information über eine Bewegung der beweglichen Komponente des Druckluftverbrauchers zu erhalten. Mit dieser Information wird anschließend eine der Verarbeitungseinrichtung zugeordnete Ventilanordnung angesteuert, um einen Fluidstrom in einen Arbeitsraum oder aus einem Arbeitsraum des Druckluftverbrauchers derart zu beein- flussen, dass die bewegliche Komponente des Druckluftverbrauchers an eine vorgegebene Position längs des Bewegungswegs und/oder mit einer vorgegebenen Geschwindigkeiten längs des Bewegungswegs bewegt werden kann. Auf Basis des Positionssignals des Wegmesssystems kann somit eine Steuerung oder Regelung einer Ventilstellung der Ventilanordnung erfolgen. Dabei führt die Veränderung der Ventilstellung in Abhängigkeit von den Druckverhältnissen am Druckluftverbraucher und einer Druckluftquelle zu unterschiedlichen Fluidvolumenströmen zum Druckluftverbraucher, die von der Verarbeitungseinrichtung mittelbar über das Positionssignal des Wegmesssystems erfasst werden und zu einer neuerlichen Anpassung der Ventilstellung führen .
Die Aufgabe der Erfindung besteht darin, ein Verfahren zum Betreiben einer Ventileinrichtung, eine Ventileinrichtung und einen Datenträger mit einem Computerprogramm zur Speicherung in einer Verarbeitungseinrichtung einer Ventileinrichtung bereitzustellen, mit denen eine verbesserte Bereitstellung von Druckluft für einen Druckluftverbraucher ermöglicht wird.
Diese Aufgabe wird für ein Verfahren der eingangs genannten Art mit den nachfolgend angeführten Schritten gelöst: Ermitteln eines ersten Fluiddrucks in einem ersten Abschnitt eines Fluidkanals der Ventilanordnung, der sich zwischen einem Ein- gangsanschluss für eine fluidisch kommunizierende Verbindung mit einer Fluidquelle oder Fluidsenke und einem Ventilelement erstreckt, Ermitteln eines zweiten Fluiddrucks in einem zweiten Abschnitt des Fluidkanals der Ventilanordnung, der sich zwischen dem Ventilelement und einem Ausgangsanschluss für eine fluidisch kommunizierende Verbindung mit einem Druck- luftverbraucher erstreckt, Ermitteln eines Durchflusswerts für das Ventilelement aus den beiden Fluiddrücken und einer Durchflussfunktion, Verknüpfen des Durchflusswerts mit einem vorgebbaren Fluidvolumenstrom oder Fluidmassenstrom für das druckbeaufschlagte Fluid, der zur Durchströmung des Fluidka- nals vorgesehen ist, zu einem Leitwert und Ermittlung einer benötigten Betätigungsenergie für eine Betätigungseinrichtung, die für eine Betätigung des Ventilelements ausgebildet ist, und Bereitstellen der Betätigungsenergie an die Betätigungseinrichtung zur Einstellung des vorgebbaren Fluidvolu- menstroms oder Fluidmassenstroms .
Die Zielsetzung des Verfahrens besteht darin, anhand der ermittelten Druckwerte und in Kenntnis der fluidtechnischen Eigenschaften des verwendeten Ventilelements einen Fluidvolumenstrom oder Fluidmassenstrom für den Druckluftverbraucher auf einen vorgebbaren Fluidvolumenstrom einstellen zu können und damit unmittelbar Einfluss auf ein Bewegungsverhalten des Druckluftverbrauchers, bei dem es sich beispielsweise um einen Druckluftantrieb, insbesondere um einen Pneumatikzylinder oder pneumatischen Schwenkantrieb handelt, nehmen zu können. Der Fluidvolumenstrom beschreibt das strömende Fluidvolumen pro Zeiteinheit. Beim Fluidmassenstrom wird zusätzlich die Dichte des Fluids mit berücksichtigt, wodurch der Berechnungsaufwand reduziert werden kann. Zudem kann auch der messtechnische Aufwand für die Steuerung oder Regelung der Druckluftversorgung für den Druckluftverbraucher gering gehalten werden. Dies wird insbesondere dadurch erreicht, dass für die Durchführung des Verfahrens lediglich Drucksensoren erforderlich sind, die zur Ermittlung von Fluiddrücken in den jeweiligen Abschnitten des Fluidkanals der Ventilanordnung ausgebildet sind. Abgesehen davon, dass hierdurch auf ein typischerweise recht kostenintensives Wegmesssystem verzichtet werden kann, ergeben sich weitere Vorteile dadurch, dass die Drucksensoren in unmittelbarer Nähe des Ventilelements sowie einer Verarbeitungseinrichtung angeordnet werden können, die für eine Auswertung der Drucksignale der Drucksensoren sowie für eine Ansteuerung der Betätigungseinrichtung ausgebildet ist. Somit kann eine elektrische Verbindung zwischen den Drucksensoren und der Verarbeitungseinrichtung mit kurzen elektrischen Leitungen verwirklicht werden.
Für die Durchführung des Verfahrens ist vorgesehen, sowohl den Druck in dem ersten Fluidkanalabschnitt als auch in dem zweiten Fluidkanalabschnitt zu ermitteln, wobei die Ventilkanalabschnitte in Abhängigkeit von einer Funktionsstellung des Ventilelements fluidisch getrennt voneinander oder fluidisch kommunizierend miteinander verbunden sind. Vorzugsweise ist vorgesehen, dass das Ventilelement in Abhängigkeit von einer Bereitstellung von Energie, insbesondere elektrischer oder fluidischer Energie, an eine Betätigungseinrichtung frei, insbesondere proportional zur bereitgestellten Energiemenge, zwischen einer Schließstellung mit getrennter Verbindung der beiden Fluidkanalabschnitte und einer Öffnungsstellung mit freier kommunizierender Verbindung der beiden Fluidkanalabschnitte, bewegt werden kann.
Nachdem eine Ermittlung des ersten Fluiddrucks und des zweiten Fluiddrucks erfolgt ist, wird in einem nachfolgenden Schritt anhand der Fluiddrücke und einer Durchflussfunktion ein Durchflusswert ermittelt. Bei der Durchflussfunktion handelt es sich beispielsweise um eine Kurvenschar oder ein Kennfeld, in der/in dem Strömungseigenschaften des Ventilelements für ein Fluid, das das Ventilelement durchströmt, in Abhängigkeit von den Druckbedingungen vor und nach dem Ventilelement und in weiterer Abhängigkeit von einer Ventilstellung des Ventilelements hinterlegt sind. Der ermittelte
Durchflusswert wird anschließend mit einem vorgebbaren Fluid- volumenstrom oder Fluidmassenstrom für das druckbeaufschlagte Fluids verknüpft, um einen Leitwert zu bilden. Dieser Leitwert wird dazu benötigt, eine Betätigungsenergie für die Betätigungseinrichtung, die für die Betätigung des Ventilelements ausgebildet ist, zu ermitteln. Anschließend erfolgt die Bereitstellung der ermittelten Betätigungsenergie an die Betätigungseinrichtung zur Einstellung des vorgebbaren Fluidvo- lumenstroms oder Fluidmassenstroms .
Vorzugsweise ist vorgesehen, das vorstehend näher beschriebenen Verfahren zyklisch zu wiederholen, um hierüber zu einer Regelung des Fluidvolumenstroms oder Fluidmassenstroms für den Druckluftverbraucher zu gelangen.
Bei dieser Vorgehensweise wird die Ventileinrichtung in der Art eines Durchflussregelventils betrieben, wobei im Unterschied zu einem Durchflussregelventil auf einen aufwändigen und kostenintensiven Massenstromsensor verzichtet werden kann, da die gesamte Ermittlung des Fluidvolumenstroms oder Fluidmassenstroms durch die Ventileinrichtung auf Basis der Druckwerte erfolgt, die von den Drucksensoren am oder im Flu- idkanal bereitgestellt werden.
Vorteilhafthafte Weiterbildungen der Erfindung sind Gegenstand der Unteransprüche.
Zweckmäßig ist es, wenn der Durchflusswert aus der Durchflussfunktion ermittelt wird, die in Beziehung zu einem Quotienten des ersten Fluiddrucks und des zweiten Fluiddrucks gesetzt wird und/oder dass die Betätigungsenergie anhand des Leitwerts und einer, insbesondere experimentell ermittelten, Ventilkennlinie ermittelt wird. Das Druckverhältnis über dem Ventilelement, das als Quotient des ersten Fluiddrucks und des zweiten Fluiddrucks ermittelt werden kann, ist diejenige Größe, anhand derer unabhängig von einem Niveau des Fluid- drucks im Fluidkanal eine präzise Zuordnung zu Strömungseigenschaften des Ventilelements für ein Fluid, das das Ventilelement durchströmt, geschaffen werden kann. Die Ventilkennlinie stellt einen Zusammenhang zwischen einer Bereitstellung von Energie, insbesondere elektrischer oder fluidischer Energie, an das Ventilelement und einer daraus resultierenden Funktionsstellung für das Ventilelement her. Bevorzugt ist vorgesehen, die Ventilkennlinie in Beziehung zu dem ermittelten Leitwert zu setzen, um daraus die zur Erzielung einer angestrebten Funktionsstellung des Ventilelements notwendige Energie für die Betätigungseinrichtung ermitteln zu können.
Bevorzugt ist vorgesehen, dass zwei unabhängig voneinander ansteuerbare Ventilanordnungen vorgesehen sind, deren jeweilige zweite Abschnitte der jeweiligen Fluidkanäle zu einem gemeinsamen Ausgangsanschluss verbunden sind und deren Eingangsanschlüsse mit unterschiedlichen Fluidquellen oder Flu- idsenken verbunden sind, wobei eine wahlweise Ansteuerung einer der beiden Ventilanordnungen in Abhängigkeit von einer Druckdifferenz zwischen dem jeweiligen Eingangsanschluss und dem gemeinsamen Ausgangsanschluss und dem vorgebbaren Fluid- volumenstrom oder Fluidmassenstrom erfolgt. Mit einer derartigen Vorgehensweise kann ein Druckluftverbraucher wechselweise mit unterschiedlichen Fluidquellen oder Fluidsenken verbunden werden, wobei stets ein Fluidvolumenstrom oder Fluidmassenstrom vorgegebenen werden kann, der im Zuge der Verfahrensdurchführung durch geeignete Ansteuerung jeweils einer der beiden Ventilanordnungen beibehalten wird. Dabei kann der Fluidvolumenstrom oder Fluidmassenstrom beispielhaft über eine vorgebbare Zeitdauer konstant sein oder einem vorgegebenen Profil folgen, um beispielhaft eine konstante Bewegung eines als Druckluftaktor ausgebildeten Druckluftverbrauchers oder eine vorgegebene variable Bewegung des Druckluf verbrauchers herbeizuführen. Beispielhaft kann die Druckluftquelle als lokaler Druckluftkompressor oder zentrales Druckluftnetz ausgebildet sein. Bei der Druckluftsenke kann es sich beispielsweise um einen Druckluftauslass in eine Umgebung der Ventilanordnung handeln, der insbesondere mit einem Schalldämpfer ausgerüstet ist.
Bei einer Weiterbildung der Erfindung ist vorgesehen, dass der Druckluftverbraucher zwei fluidisch getrennte, kinematisch gekoppelte Arbeitsräume aufweist und jedem der Arbeitsräume zwei unabhängig voneinander ansteuerbare Ventilanordnungen zugeordnet sind, deren jeweilige zweite Abschnitte der jeweiligen Fluidkanäle zu einem gemeinsamen Ausgangsanschluss verbunden sind und deren jeweilige Eingangsanschlüsse mit unterschiedlichen Fluidquellen oder Fluidsenken verbunden sind, wobei eine synchrone Druckluftversorgung der beiden Arbeits - räume mit vorgebbaren Fluidvolumenströmen durch wahlweise An- steuerung der jeweiligen Ventilanordnungen erfolgt. Bei einem derartigen Druckluftverbraucher, der insbesondere als Pneumatikzylinder oder pneumatischer Schwenkantrieb ausgebildet sein kann, werden zwei Arbeitsräume von einer beweglichen Wand, insbesondere einem Arbeitskolben, fluidisch abdichtend voneinander getrennt und sind aufgrund der Beweglichkeit der Wand größenvariabel . Da eine Bewegung der Wand zeitgleich zu einer Vergrößerung des einen Arbeitsraums und zu einer Verkleinerung des anderen Arbeitsraums führt, kann auch von einer kinematischen Kopplung der beiden Arbeitsräume gesprochen werden, wobei die bewegliche Wand das kinematische Koppelglied bildet. Für eine Vielzahl von Bewegungsaufgaben ist es vorteilhaft, wenn in beiden Arbeitsräumen eine synchrone Druckluftversorgung vorgenommen wird, wobei unter dem Begriff der Druckluftversorgung sowohl ein Zustrom von Druckluft in den Arbeitsraum als auch ein Abstrom von Druckluft aus dem Arbeitsraum verstanden wird. Bei der Durchführung des erfindungsgemäßen Verfahrens sind synchrone Fluidvolumenstrome für beide Arbeitsräume des Druckluftverbrauchers vorgesehen. Beispielhaft findet in einem der beiden Arbeitsräume ein Zustrom von Druckluft statt, während im anderen Arbeitsraum ein
Abstrom von Druckluft vorgesehen ist. Hierdurch wird die bewegliche Wand zwischen den beiden Arbeitsräumen mit einer vorgebbaren Bewegungsgeschwindigkeit bewegt .
In vorteilhafter Ausgestaltung der Erfindung ist vorgesehen, dass ein erster Fluidvolumenstrom oder Fluidmassenstrom für einen ersten Arbeitsraum des Druckluftverbrauchers und ein zweiter Fluidvolumenstrom oder Fluidmassenstrom für einen zweiten Arbeitsraum des Druckluftverbrauchers zur Erzielung eines Bewegungsprofils für den angeschlossenen Druckluftverbraucher vorgegeben wird und/oder dass ein erstes Druckverlaufsprofil für den ersten Arbeitsraum und ein zweites Druckverlaufsprofil für den zweiten Arbeitsraum vorgegeben wird. Durch Vorgabe der beiden Fluidvolumenstrome für die beiden Arbeitsräume des Druckluftverbrauchers können präzise Vorgaben für die Bewegung der Wand zwischen den beiden Arbeitsräumen gemacht werden. Dies gilt insbesondere dann, wenn während der Bewegung der Wand stets ein konstantes Verhältnis zwischen dem ersten Fluidvolumenstrom oder Fluidmassenstrom und dem zweiten Fluidvolumenstrom oder Fluidmassenstrom vorliegt. Besonders vorteilhaft ist es, wenn die Bewegung der Wand anhand eines vorgegebenen Druckverlaufsprofils beeinflusst wird, wobei sich die Drücke in den beiden Arbeitsräumen aus den bereitgestellten Fluidvolumenstromen und der Bewegung der Wand ergeben. Die Aufgabe der Erfindung wird für eine Ventileinrichtung der eingangs genannten Art, die zum Betreiben eines Druckluftverbrauchers ausgebildet ist, mit den Merkmalen des Anspruchs 6 gelöst. Hierbei umfasst die Ventileinrichtung, bei der ein Fluidkanal zwischen einem Eingangsanschluss für eine fluidisch kommunizierende Verbindung mit einer Fluidquelle oder Fluidsenke und einem Ausganganschluss für eine fluidisch kommunizierende Verbindung mit einem Druckluftverbraucher ausgebildet ist, sowie ein Ventilelement, das für eine Beeinflussung eines Querschnitts des Fluidkanals beweglich im Fluidkanal angeordnet ist und dem eine Betätigungseinrichtung zur Veränderung einer Funktionsposition zugeordnet ist, und eine Verarbeitungseinrichtung für eine Bereitstellung von Betätigungsenergie an die Betätigungseinrichtung, wobei einem ersten Abschnitt des Fluidkanals zwischen dem Eingangsanschluss und dem Ventilelement ein erster Drucksensor zugeordnet ist und wobei einem zweiten Abschnitt des Fluidkanals zwischen dem Ventilelement und dem Ausganganschluss ein zweiter Drucksensor zugeordnet ist, wobei die Verarbeitungseinrichtung für eine Durchführung eines Verfahrens nach Anspruch 1 oder 2 ausgebildet ist.
Bei einer Weiterbildung der Ventileinrichtung ist vorgesehen, dass zwei unabhängig voneinander ansteuerbare Ventilanordnungen vorgesehen sind, deren jeweilige zweite Abschnitte der jeweiligen Fluidkanäle zu einem gemeinsamen Ausgangsanschluss verbunden sind und deren Eingangsanschlüsse mit unterschiedlichen Fluidquellen oder Fluidsenken verbunden sind, und dass die Verarbeitungseinrichtung für eine Durchführung eines Verfahrens nach Anspruch 3 ausgebildet ist.
In weiterer Ausgestaltung der Ventileinrichtung ist vorgesehen, dass die Verarbeitungseinrichtung mit zwei Paaren von jeweils zwei unabhängig voneinander ansteuerbaren Ventilanordnungen verbunden ist, wobei die zweiten Abschnitte der jeweiligen Fluidkanäle jeweils paarweise zu einem gemeinsamen Ausgangsanschluss verbunden sind und wobei ein erster Ein- gangsanschluss jedes Paars mit einer Fluidquelle und ein zweiter Eingangsanschluss jedes Paars mit einer Fluidsenke verbunden ist, dadurch gekennzeichnet, dass die Verarbeitungseinrichtung für eine synchrone Druckluftversorgung der beiden Arbeitsräume mit vorgebbaren Fluidvolumenstromen durch wahlweise Ansteuerung der jeweiligen Ventilanordnungen ausgebildet ist.
Vorzugsweise ist die Ventilanordnung als Proportionalventil, insbesondere als fluidisch vorgesteuertes Proportionalventil, ausgebildet .
Die Aufgabe der Erfindung wird durch einen Datenträger mit einem Computerprogramm, das zur Speicherung in einer Verarbeitungseinrichtung einer Ventileinrichtung ausgebildet ist, gelöst, wobei das Computerprogramm bei Verarbeitung in einem Prozessor der Verarbeitungseinrichtung ein Verfahren nach einem der Ansprüche 1 bis 5 bewirkt. Dabei kann es sich bei dem Datenträger portables Trägermedium wie beispielsweise eine CD, eine DVD oder einen USB-Speicher handeln. Alternativ kann der Datenträger als Laufwerk oder Festkörperspeicher eines Datenservers ausgebildet sein, in dem eine Vielzahl von unterschiedlichen Daten abgespeichert sind, auf die über einen Fernzugriff von der Verarbeitungseinrichtung zugegriffen werden kann, insbesondere auf eine Datenwolke/Cloud .
Vorteilhafte Ausführungsformen der Erfindung sind in der Zeichnung dargestellt. Hierbei zeigt: eine schematische Darstellung einer ersten Ausführungsform eines fluidischen Systems mit einer Ventileinrichtung und einem Druckluftverbraucher, der zwei kinematisch miteinander gekoppelte Arbeitsräu me aufweist, eine schematische Darstellung einer zweiten Ausfüh rungsform eines fluidischen Systems mit einer Ventileinrichtung, die ein Ventilelement umfasst, und einem Druckluftverbraucher, der einen Arbeitsraum aufweist, und eine schematische Darstellung einer dritten Ausfüh rungsform eines fluidischen Systems mit einer Ventileinrichtung, die zwei Ventilelemente umfasst, und einem Druckluftverbraucher, der einen Arbeits - räum aufweist.
Ein in der Figur 1 gezeigtes fluidisches System 1 ist rein exemplarisch zur Bereitstellung einer Linearbewegung ausgebildet und umfasst hierzu eine Ventileinrichtung 2 und einen Druckluftverbraucher 3. Beispielhaft ist die Ventileinrichtung 2 als pneumatische Vollbrückenschaltung mit insgesamt vier jeweils als 2/2 -Wege-Proportionalventile ausgebildeten Ventilelementen 4, 5, 6 und 7 verwirklicht, wobei jedes der Ventilelemente 4, 5, 6 und 7 rein exemplarisch als Magnetventil mit einem Magnetantrieb 8, 9, 10 und 11 als Betätigungseinrichtung ausgebildet ist. Bei einer alternativen, nicht näher dargestellten Ausführungsform kann die Betätigungseinrichtung auch als Piezoantrieb oder magnetostriktiver oder anderweitig geeigneter Antrieb ausgebildet sein.
Jedes der Ventilelemente 4, 5, 6 und 7 kann bei geeigneter Beaufschlagung der zugeordneten Magnetantriebe 8, 9, 10 und 11 mit elektrischer Energie zwischen zwei Funktionsstellungen, insbesondere einer Sperrstellung und einer Öffnungsstellung, umgeschaltet werden. Hierzu sind die Magnetantriebe 8, 9, 10 und 11 über Steuerleitungen 15, 16, 17 und 18 mit einer Verarbeitungseinrichtung 19 elektrisch verbunden, die einen Bestandteil der Ventileinrichtung 2 bildet und beispielhaft einen Mikroprozessor oder Mikrocontroller umfasst.
Jedes der Ventilelemente 4, 5, 6 und 7 ist über zugeordnete Fluidleitungen 20 bis 27 mit fluidischen Knotenpunkten 28 bis 31 verbunden und bildet mit den jeweils paarweise zugeordneten Fluidleitungen 20 bis 27 jeweils eine nicht näher bezeichnete Ventilanordnung. Dabei werden die Fluidleitungen 20 bis 23 jeweils als erster Abschnitt eines Fluidkanals des jeweiligen Ventilelements 4, 5, 6 und 7 bezeichnet. Die Fluidleitungen 24 bis 27 werden hingegen als zweite Abschnitte eines Fluidkanals des jeweiligen Ventilelements 4, 5, 6 und 7 bezeichnet. Dabei münden die Fluidleitungen 20 und 21 gemeinsam an einem fluidischen Knotenpunkt 28 aus, die Fluidleitungen 22 und 23 münden gemeinsam an dem fluidischen Knotenpunkt 30 aus, die Fluidleitungen 24 und 25 münden gemeinsam an dem fluidischen Knotenpunkt 29 aus und die Fluidleitungen 26 und 27 münden gemeinsam an dem fluidischen Knotenpunkt 31 aus.
Rein exemplarisch ist der fluidische Knotenpunkt 28 über eine Versorgungsleitung 36 mit einer Fluidquelle 32 verbunden, während der fluidische Knotenpunkt 30 über eine Abluftleitung 37 mit einem Fluidauslass verbunden ist, dem ein Schalldämpfer 33 zugeordnet ist. Der fluidische Knotenpunkt 29 bildet einen ersten Arbeitsanschluss der Ventileinrichtung 2 und ist über eine erste Anschlussleitung 38 mit einem Fluidanschluss 39 des Druckluftverbrauchers 3 verbunden, während der fluidische Knotenpunkt 31 einen zweiten Arbeitsanschluss der Venti- leinrichtung 2 bildet und über eine zweite Anschlussleitung 40 mit einem Fluidanschluss 41 des Druckluftverbrauchers 3 verbunden ist.
Rein exemplarisch ist vorgesehen, dass der Versorgungsleitung 36, der Abluftleitung 37, der ersten Anschlussleitung 38 sowie der zweiten Anschlussleitung 40 jeweils ein Drucksensor 42 bis 45 zugeordnet ist, der jeweils für eine Erfassung des jeweiligen Fluiddrucks in der zugeordneten Leitung 36, 37, 38 und 40 sowie für eine Bereitstellung eines druckabhängigen Sensorsignals über eine jeweils zugeordnete Sensorleitung 46 bis 49 an die Verarbeitungseinrichtung 19 ausgebildet ist. Bei einer nicht näher dargestellten Ausführungsform ist wenigstens einer der Drucksensoren in einem Gehäuse für die Ventileinrichtung oder außerhalb eines solchen Gehäuses angeordnet .
Der Druckluftverbraucher 3 ist rein exemplarisch als doppeltwirkender Pneumatikzylinder ausgebildet, bei dem ein auch als bewegliche Wand bezeichneter Arbeitskolben 50 linearbeweglich in einer Zylinderausnehmung 51 eines Zylindergehäuses 52 aufgenommen ist und dadurch einen ersten größenvariablen Arbeitsraum 53 von einem zweiten größenvariable Arbeitsraum 54 trennt. Beispielhaft ist der Arbeitskolben 50 mit einer Kolbenstange 55 verbunden, die das Zylindergehäuse 52 stirnseitig durchsetzt und zusammen mit dem Arbeitskolben 50 längs eines geradlinigen Bewegungswegs 56 relativ zum Zylindergehäuse 52 verschoben werden kann.
Rein exemplarisch soll nachstehend beschrieben werden, welche Schritte in dem fluidischen System 1 durchzuführen sind, um eine Bewegung des Arbeitskolbens 50 mit der gekoppelten Kolbenstange 55 gemäß einem vorgebbaren Bewegungsprofil zu be- wirken. Beispielhaft soll der Arbeitskolben 50 ausgehend von der Position gemäß der Darstellung der Figur 1 so bewegt werden, dass eine Stirnseite des Arbeitskolbens 50 in Anlage zu einer gegenüberliegend angeordneten Innenoberfläche 58 des Zylindergehäuses 52 kommt. Beispielhaft ist das vorgebbare Bewegungsprofil derart ausgebildet, das zunächst eine gleichförmige Beschleunigung des Arbeitskolbens 50 bis auf eine vorgebbare Zielgeschwindigkeit, anschließend eine gleichförmige Bewegung des Arbeitskolbens unter Beibehaltung der Zielgeschwindigkeit und zum Schluss eine Abbremsung des Arbeits - kolbens 50 bis auf eine verschwindende Geschwindigkeit erfolgt .
Für die geplante Bewegung des Arbeitskolbens 50 ist eine Zufuhr von druckbeaufschlagtem Fluid an den Arbeitsraum 54 erforderlich, während eine Abfuhr von Fluid aus dem Arbeitsraum 53 vorgesehen werden muss. Um das gewünschte Bewegungsprofil erzielen zu können, ist die Bereitstellung von vorgebbaren Fluidvolumenströmen zweckmäßig, da hierüber die Bewegungsgeschwindigkeit für den Arbeitskolben präzise eingestellt werden kann. Dementsprechend ist beispielhaft eine Ansteuerung des Ventilelements 4 sowie des Ventilelements 6 vorzusehen, wobei über das Ventilelement 4 eine fluidisch kommunizierende Verbindung zwischen der Fluidquelle 32, dem fluidischen Knotenpunkt 29 und dem zweiten Fluidanschluss 39 hergestellt wird und wobei über das Ventilelement 6 eine fluidisch kommunizierende Verbindung zwischen dem ersten Fluidanschluss 41, dem fluidischen Knotenpunkt 31 und dem Fluidauslass mit zugeordneten Schalldämpfer 33 hergestellt wird.
Um die Bewegung des Arbeitskolbens 50 gemäß dem vorstehend geschilderten Bewegungsprofil durchführen zu können, ermittelt die Verarbeitungseinrichtung 19 zunächst die Sensorsig- nale der Drucksensoren 42 bis 45, um Druckverhältnisse über den beiden Ventilelementen 4 und 6 berechnen zu können. Anhand dieser Druckverhältnisse kann in einem nachfolgenden Schritt in der Verarbeitungseinrichtung 19 für jedes der Ventilelemente 4 und 6 ein Durchflusswert für das jeweilige Ventilelement 4, 6 aus den beiden Fluiddrücken und einer Durchflussfunktion ermittelt werden. Anschließend erfolgt eine Verknüpfung des jeweils ermittelten Durchflusswerts mit einem vorgebbaren Fluidvolumenstrom oder Fluidmassenstrom, der dem jeweiligen Arbeitsraum 53, 54 zur Verfügung gestellt werden soll, um die gewünschte Bewegung des Arbeitskolbens 50 gemäß dem Bewegungsprofil zu erzielen. Das Ergebnis dieser Verknüpfung wird als Leitwert bezeichnet und wird zur Ermittlung einer benötigten Betätigungsenergie für den jeweiligen Magnetantrieb 8, 10 benötigt. Die Betätigungsenergie wird für jeden der Magnetantriebe 8, 10 durch Verknüpfung des Leitwerts mit einer, insbesondere experimentell ermittelten, Ventilkennlinie ermittelt. Anschließend wird die Betätigungsenergie an die jeweiligen Magnetantriebe 8, 10 bereitgestellt und führt dort zu einer Bewegung der jeweiligen, nicht näher bezeichneten Ventilschieber der jeweiligen Ventilelemente 4, 6 und somit zur einer Freigabe einer fluidisch kommunizierenden Verbindung zwischen den jeweiligen fluidischen Knotenpunkten 28 und 29 bzw. 31 und 30.
Durch die Ansteuerung der jeweiligen Ventilelemente der 4, 6 stellt sich jeweils ein Fluidvolumenstrom oder Fluidmassenstrom zwischen der Fluidquelle 32 und dem Arbeitsraum 54 sowie zwischen dem Arbeitsraum 53 und dem Schalldämpfer 33 ein, der mit einer Änderung der Drücke in den jeweiligen Fluidlei- tungen 20 bis 27 einhergeht. Durch zyklisch wiederkehrende Bestimmung der Sensorsignale der Drucksensoren 42 bis 45 sowie die nachfolgende Verarbeitung der Druckverhältnisse gemäß der vorstehenden Vorgehensweise kann die Verarbeitungseinrichtung 19 die Fluidvolumenströme für die beiden Arbeitsräume 53, 54 des Druckluftverbrauchers 3 so einstellen, dass das gewünschte Bewegungsprofil für den Arbeitskolben 50 eingehalten wird.
Die in den Figuren 2 und 3 dargestellten Ausführungsformen von fluidischen Systemen 61 und 91 unterscheiden sich von dem fluidischen System 1 gemäß der Figur 1 dadurch, dass der Druckluftverbraucher 63 rein exemplarisch als einfachwirkender Pneumatikzylinder ausgebildet ist, so dass in dem jeweiligen Zylindergehäuse 64 jeweils nur ein Arbeitsraum 65 ausgebildet ist.
Bei der Ausführungsform gemäß der Figur 2 ist die Ventileinrichtung 62 beispielhaft als proportionales 3/3 -Wegeventil ausgebildet, bei dem in der dargestellten Schaltstellung, die auch als Ruhestellung oder Neutralstellung bezeichnet werden kann, fluidisch kommunizierende Verbindungen zwischen einer Fluidquelle 66, einem Arbeitsanschluss 67 sowie einem Flu- idauslass 68 mit Schalldämpfer gesperrt sind. Der Ventilschieber 69 der Ventileinrichtung 62 kann mit Hilfe der zugeordneten Magnetantriebe 70, 71 in zwei unterschiedliche Funktionsstellungen gebracht werden. In der ersten Funktionsstellung wird eine fluidisch kommunizierende Verbindung zwischen der Fluidquelle 66 und dem Arbeitsraum 65 hergestellt. In der zweiten Funktionsstellung wird eine fluidisch kommunizierende Verbindung zwischen dem Arbeitsraum 65 und dem Fluidauslass 68 hergestellt. Die Verarbeitungseinrichtung 72 ist in gleicher Weise wie die Verarbeitungseinrichtung 19 gemäß der Figur 1 ausgebildet und ermöglicht somit anhand von Sensorsignalen der Drucksensoren 73, 74, 75 eine Bereitstellung von vorgebbaren Fluidvolumenströmen in den Arbeitsraum 65 und aus dem Arbeitsraum 65.
Bei der Ausführungsform gemäß der Figur 3 sind die Ventileinrichtungen 92 jeweils als proportionale 2/2 -Wegeventile 100,
101 mit Ventilschiebern 99 als Ventilelementen ausgebildet und können individuell von der zugeordneten Verarbeitungseinrichtung 102 angesteuert werden, um eine wahlweise Bereitstellung von druckbeaufschlagtem Fluid von der Fluidquelle 66 in den Arbeitsraum 65 oder aus dem Arbeitsraum 65 zum Flu- idauslass 68 zu gewährleisten. Die Verarbeitungseinrichtung
102 ist in gleicher Weise wie die Verarbeitungseinrichtung 19 gemäß der Figur 1 ausgebildet und ermöglicht somit anhand von Sensorsignalen der Drucksensoren 103, 104, 105 eine Bereitstellung von vorgebbaren Fluidströmen in den Arbeitsraum 65 und aus dem Arbeitsraum 65.

Claims

Ansprüche
1. Verfahren zum Betreiben einer Ventileinrichtung (2; 62; 92) zur Druckluftversorgung eines Druckluftverbrauchers (3; 63) , mit den Schritten: Ermitteln eines ersten Fluiddrucks in einem ersten Abschnitt (20, 21, 22, 23) eines Fluidkanals der Ventilanordnung (2; 62; 92) , der sich zwischen einem Ein- gangsanschluss (28, 30) für eine fluidisch kommunizierende Verbindung mit einer Fluidquelle (32; 66) oder Fluidsenke (33; 68) und einem Ventilelement (4, 5, 6, 7; 69; 99) erstreckt, Ermitteln eines zweiten Fluiddrucks in einem zweiten Abschnitt (24, 25, 26, 27) des Fluidkanals der Ventilanordnung (2; 62; 92) , der sich zwischen dem Ventilelement (4, 5, 6, 7; 69; 99) und einem Ausgangsanschluss (29, 31) für eine fluidisch kommunizierende Verbindung mit einem Druckluftverbraucher (3; 63) erstreckt, Ermitteln eines Durchflusswerts für das Ventilelement (4, 5, 6, 7; 69; 99) aus den beiden Fluiddrücken und einer Durchflussfunktion, Verknüpfen des Durchflusswerts mit einem vorgebbaren Fluidvolumenstrom oder Fluidmassenstrom für das druckbeaufschlagte Fluid, der zur Durchströmung des Fluidkanals (20 bis 27) vorgesehen ist, zu einem Leitwert und Ermittlung einer benötigten Betätigungsenergie für eine Betätigungseinrichtung (8, 9, 10, 11; 70, 71; 100, 101) , die für eine Betätigung des Ventilelements (4, 5, 6, 7; 69; 99) ausgebildet ist, und Bereitstellen der Betätigungsenergie an die Betätigungseinrichtung (8, 9, 10, 11; 70, 71; 100, 101) zur Einstellung des vorgebbaren Fluidvolu- menstroms oder Fluidmassenstrom.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Durchflusswert aus der Durchflussfunktion ermittelt wird, die in Beziehung zu einem Quotienten des ersten Fluiddrucks und des zweiten Fluiddrucks gesetzt wird und/oder dass die Betätigungsenergie anhand des Leitwerts und einer, insbesondere experimentell ermittelten, Ventilkennlinie ermittelt wird .
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass zwei unabhängig voneinander ansteuerbare Ventilanordnungen (2; 62; 92) vorgesehen sind, deren jeweilige zweite Abschnitte (24, 25, 26, 27) der jeweiligen Fluidkanäle zu einem gemeinsamen Ausgangsanschluss (29, 31) verbunden sind und deren Eingangsanschlüsse (28, 30) mit unterschiedlichen Fluid- quellen (32) oder Fluidsenken (33) verbunden sind, dadurch gekennzeichnet, dass eine wahlweise Ansteuerung einer der beiden Ventilanordnungen (2; 62; 92) in Abhängigkeit von einer Druckdifferenz zwischen dem jeweiligen Eingangsanschluss (28, 30) und dem gemeinsamen Ausgangsanschluss (29, 31) und dem vorgebbaren Fluidvolumenstrom oder Fluidmassenstrom erfolgt .
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass der Druckluftverbraucher (3) zwei fluidisch getrennte, kinematisch gekoppelte Arbeitsräume (53, 54) aufweist und jedem der Arbeitsräume (53, 54) zwei unabhängig voneinander ansteuerbare Ventilanordnungen (2; 62; 92) zugeordnet sind, deren jeweilige zweite Abschnitte (24, 25, 26, 27) der jeweiligen Fluidkanäle zu einem gemeinsamen Ausgangsanschluss (29, 31) verbunden sind und deren jeweilige Eingangsanschlüsse (28, 30) mit unterschiedlichen Fluidquellen (32) oder Fluidsenken (33) verbunden sind, dadurch gekennzeichnet, dass eine synchrone Druckluftversorgung der beiden Arbeitsräume (53, 54) mit vorgebbaren Fluidvolumenstromen durch wahlweise Ansteue- rung der jeweiligen Ventilanordnungen (2; 62; 92) erfolgt.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass ein erster Fluidvolumenstrom oder Fluidmassenstrom für einen ersten Arbeitsraum (53) des Druckluftverbrauchers (3) und ein zweiter Fluidvolumenstrom oder Fluidmassenstrom für einen zweiten Arbeitsraum (54) des Druckluftverbrauchers (3) zur Erzielung eines Bewegungsprofils für den angeschlossenen Druckluftverbraucher (3) vorgegeben wird und/oder dass ein erstes Druckverlaufsprofil für den ersten Arbeitsraum (53) und ein zweites Druckverlaufsprofil für den zweiten Arbeitsraum (54) vorgegeben wird.
6. Ventileinrichtung zum Betreiben eines Druckluftverbrauchers, mit einer Ventilanordnung, bei der ein Fluidkanal zwischen einem Eingangsanschluss (28, 30) für eine fluidisch kommunizierende Verbindung mit einer Fluidquelle (32) oder Fluidsenke (33) und einem Ausganganschluss (29, 31) für eine fluidisch kommunizierende Verbindung mit einem Druckluftverbraucher (3) ausgebildet ist, sowie mit einem Ventilelement (4, 5, 6, 7; 69; 99) , das für eine Beeinflussung eines Querschnitts des Fluidkanals beweglich im Fluidkanal angeordnet ist und dem eine Betätigungseinrichtung (8, 9, 10, 11; 70, 71; 100, 101) zur Veränderung einer Funktionsposition zugeordnet ist, sowie mit einer Verarbeitungseinrichtung (19) für eine Bereitstellung von Betätigungsenergie an die Betätigungseinrichtung (8, 9, 10, 11; 70, 71; 100, 101) , wobei einem ersten Abschnitt (20, 21, 22, 23) des Fluidkanals zwischen dem Eingangsanschluss (28, 30) und dem Ventilelement (4, 5, 6, 7; 69; 99) ein erster Drucksensor (43, 44) zugeordnet ist und wobei einem zweiten Abschnitt (24, 25, 26, 27) des Fluidkanals zwischen dem Ventilelement (4, 5, 6, 7; 69; 99) und dem Ausganganschluss (29, 31) ein zweiter Drucksensor (42, 45) zugeordnet ist, dadurch gekennzeichnet, dass die Verarbeitungseinrichtung (19) für eine Durchführung eines Verfahrens nach Anspruch 1 oder 2 ausgebildet ist.
7. Ventileinrichtung nach Anspruch 6, dadurch gekennzeichnet, dass zwei unabhängig voneinander ansteuerbare Ventilanordnungen vorgesehen sind, deren jeweilige zweite Abschnitte
(24, 25, 26, 27) der jeweiligen Fluidkanäle zu einem gemeinsamen Ausgangsanschluss (29, 31) verbunden sind und deren Eingangsanschlüsse (28, 30) mit unterschiedlichen Fluidquellen
(32) oder Fluidsenken (33) verbunden sind, und dass die Verarbeitungseinrichtung (19) für eine Durchführung eines Verfahrens nach Anspruch 3 ausgebildet ist.
8. Ventileinrichtung nach Anspruch 6, dadurch gekennzeichnet, dass die Verarbeitungseinrichtung (19) mit zwei Paaren von jeweils zwei unabhängig voneinander ansteuerbaren Ven- tilanordnungen verbunden ist, wobei die zweiten Abschnitte
(24, 25, 26, 27) der jeweiligen Fluidkanäle jeweils paarweise zu einem gemeinsamen Ausgangsanschluss (29, 31) verbunden sind und wobei ein erster Eingangsanschluss (28) jedes Paars mit einer Fluidquelle (32) und ein zweiter Eingangsanschluss
(30) jedes Paars mit einer Fluidsenke (33) verbunden ist, dadurch gekennzeichnet, dass die Verarbeitungseinrichtung
(19) für eine synchrone Druckluftversorgung der beiden Arbeitsräume (53, 54) mit vorgebbaren Fluidvolumenströmen durch wahlweise Ansteuerung der jeweiligen Ventilanordnungen ausgebildet ist.
9. Ventileinrichtung nach Anspruch 7, dadurch gekennzeichnet, dass die Ventilanordnung als Proportionalventil, insbe- sondere als fluidisch vorgesteuertes Proportionalventil, ausgebildet ist.
10. Datenträger mit einem Computerprogramm, das zur Speicherung in einer Verarbeitungseinrichtung einer Ventileinrich- tung ausgebildet ist und das bei Verarbeitung in einem Prozessor der Verarbeitungseinrichtung (19) ein Verfahren nach einem der Ansprüche 1 bis 5 bewirkt.
EP17715710.4A 2016-04-21 2017-04-04 Verfahren zum betreiben einer ventileinrichtung, ventileinrichtung und datenträger mit einem computerprogramm Active EP3445976B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016206821.0A DE102016206821A1 (de) 2016-04-21 2016-04-21 Verfahren zum Betreiben einer Ventileinrichtung, Ventileinrichtung und Datenträger mit einem Computerprogramm
PCT/EP2017/058012 WO2017182268A1 (de) 2016-04-21 2017-04-04 Verfahren zum betreiben einer ventileinrichtung, ventileinrichtung und datenträger mit einem computerprogramm

Publications (2)

Publication Number Publication Date
EP3445976A1 true EP3445976A1 (de) 2019-02-27
EP3445976B1 EP3445976B1 (de) 2020-09-23

Family

ID=58489342

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17715710.4A Active EP3445976B1 (de) 2016-04-21 2017-04-04 Verfahren zum betreiben einer ventileinrichtung, ventileinrichtung und datenträger mit einem computerprogramm

Country Status (6)

Country Link
US (1) US10774857B2 (de)
EP (1) EP3445976B1 (de)
KR (1) KR102221570B1 (de)
CN (1) CN109154312B (de)
DE (1) DE102016206821A1 (de)
WO (1) WO2017182268A1 (de)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016206822A1 (de) * 2016-04-21 2017-10-26 Festo Ag & Co. Kg Verfahren zur Druckluftversorgung eines Druckluftverbrauchers, Ventileinrichtung und Datenträger mit einem Computerprogramm
DE102019211992B4 (de) * 2019-08-09 2023-09-28 Festo Se & Co. Kg Fluidisches System, Rückschlagventil und Verfahren zum Versetzen eines fluidischen Aktors in einen Sicherheitszustand
DE102019215436A1 (de) * 2019-10-09 2021-04-15 Zf Friedrichshafen Ag Steuern eines pneumatischen Aktuators
DE102019218485B4 (de) * 2019-11-28 2022-03-31 Festo Se & Co. Kg Arbeitseinrichtung
DE102020204484A1 (de) * 2020-04-07 2021-10-07 Festo Se & Co. Kg Druckluft-Bereitstellungseinrichtung, System und Verfahren
US11067102B1 (en) * 2020-04-13 2021-07-20 Mac Valves, Inc. Digital proportional pressure controller
DE102020204737B3 (de) * 2020-04-15 2021-07-01 Festo Se & Co. Kg System und Verfahren zur Endlagendämpfung
DE102020213982B3 (de) * 2020-11-06 2022-02-03 Festo Se & Co. Kg Verfahren zur Inbetriebnahme einer pneumatischen Aktorvorrichtung, Inbetriebnahmesystem und pneumatisches Steuermodul
SE545154C2 (en) * 2021-02-11 2023-04-18 Staccato Technoligies Ab Pneumatic cylinder system
CN113090604B (zh) * 2021-04-07 2023-07-04 海明液压技术有限公司 1d容腔式多功能智控转阀功能模块单元
US12092229B2 (en) 2021-10-12 2024-09-17 Parker-Hannifin Corporation Valve bank and smart control valve
DE102023109007A1 (de) 2023-04-11 2024-10-17 Festo Se & Co. Kg Pneumatisches System

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6354185B1 (en) * 1999-06-17 2002-03-12 Sturman Industries, Inc. Flow manager module
ITTO20020440A1 (it) * 2002-05-23 2003-11-24 Fiat Ricerche Circuito elettroidraulico per il controllo di un attuatore a fluido.
US7021191B2 (en) 2003-01-24 2006-04-04 Viking Technologies, L.C. Accurate fluid operated cylinder positioning system
US20060090462A1 (en) * 2003-11-14 2006-05-04 Kazunori Yoshino Energy regeneration system for working machinery
US7406982B2 (en) * 2004-03-25 2008-08-05 Husco International, Inc. Hydraulic system control method using a differential pressure compensated flow coefficient
US7451685B2 (en) 2005-03-14 2008-11-18 Husco International, Inc. Hydraulic control system with cross function regeneration
US7380398B2 (en) * 2006-04-04 2008-06-03 Husco International, Inc. Hydraulic metering mode transitioning technique for a velocity based control system
DE102009017879A1 (de) 2009-04-17 2010-10-21 Festo Ag & Co. Kg Fluidtechnisches System
DE102009026608A1 (de) * 2009-05-29 2010-12-02 Metso Paper, Inc. Verfahren zum Entfernen von Fremdstoffen aus einem digitalhydraulischen Druckregler eines Hydrauliksystems
US9279236B2 (en) * 2012-06-04 2016-03-08 Caterpillar Inc. Electro-hydraulic system for recovering and reusing potential energy
US9290912B2 (en) * 2012-10-31 2016-03-22 Caterpillar Inc. Energy recovery system having integrated boom/swing circuits
DE102014004877B3 (de) * 2014-04-04 2015-09-17 Festo Ag & Co. Kg Antriebssystem und Verfahren zum Betreiben eines Antriebssystems
US10697476B2 (en) * 2014-08-14 2020-06-30 Festo Se & Co. Kg Actuator controller and method for regulating the movement of an actuator

Also Published As

Publication number Publication date
CN109154312B (zh) 2021-06-15
CN109154312A (zh) 2019-01-04
DE102016206821A1 (de) 2017-10-26
EP3445976B1 (de) 2020-09-23
US10774857B2 (en) 2020-09-15
KR102221570B1 (ko) 2021-02-26
KR20180133429A (ko) 2018-12-14
WO2017182268A1 (de) 2017-10-26
US20190136880A1 (en) 2019-05-09

Similar Documents

Publication Publication Date Title
WO2017182268A1 (de) Verfahren zum betreiben einer ventileinrichtung, ventileinrichtung und datenträger mit einem computerprogramm
EP3445977B1 (de) Verfahren zur druckluftversorgung eines druckluftverbrauchers
DE69916264T2 (de) Elektrisch regelbares ventil
DE3347000C2 (de)
WO2016023569A1 (de) Aktorsteuerung und verfahren zur bewegungsregelung eines aktors
DE10296738B4 (de) Ventilaufbau zum Steuern eines Hydraulikmotors
EP2526325A1 (de) Ventilvorrichtung
DE2543466B2 (de) Fluidgesteuertes Ventil
DE102020114071A1 (de) Antriebssystem und Steuerverfahren für Spannvorrichtung
DE202006020516U1 (de) Regeleinrichtung für einen druckmittelbetriebenen Stellantrieb
WO2017071753A1 (de) Fluidsteuereinrichtung und verfahren zum betreiben einer fluidsteuereinrichtung
DE102014004876B3 (de) Antriebssystem und Verfahren zum Betreiben eines Antriebssystems
DE102015210716A1 (de) Positionssensor sowie Verfahren zum Betreiben eines Positionssensors
DE3214845C2 (de)
DE102014004877B3 (de) Antriebssystem und Verfahren zum Betreiben eines Antriebssystems
DE102016201988B3 (de) Verfahren zum Ermitteln eines Funktionszustands eines Antriebssystems und Antriebssystem
DE1948928C3 (de) Fluidikschaltung für eine Servoeinrichtung mit einem doppelt wirkenden druckmittelbetätigten Arbeitskolben
DE102020200104A1 (de) Betriebsmaßdetektor für einen Fluiddruckantrieb
DE2754430A1 (de) Steuereinrichtung fuer mindestens zwei verstellbare pumpen
DE102023109007A1 (de) Pneumatisches System
EP3347634B1 (de) Fluidsystem und prozessventil
DE102019101632A1 (de) Antriebsvorrichtung
DE102017104792A1 (de) Systeme und Verfahren zur Kalibrierung elektrohydraulischer Ventile
DE3213135A1 (de) Elektrohydraulischer stellantrieb
DE2422593A1 (de) Impulsgesteuertes schieberventil

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20181121

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502017007398

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F15B0011000000

Ipc: F15B0015280000

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FESTO SE & CO. KG

RIC1 Information provided on ipc code assigned before grant

Ipc: F15B 15/28 20060101AFI20200311BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200515

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017007398

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1316652

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201015

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201224

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201223

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200923

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210125

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210123

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017007398

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

26N No opposition filed

Effective date: 20210624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210404

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1316652

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200923

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170404

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220404

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240423

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240418

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240430

Year of fee payment: 8

Ref country code: FR

Payment date: 20240422

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923