EP3440416A1 - Unité frigorifique de transport dotée de renforcement de batterie - Google Patents

Unité frigorifique de transport dotée de renforcement de batterie

Info

Publication number
EP3440416A1
EP3440416A1 EP17718254.0A EP17718254A EP3440416A1 EP 3440416 A1 EP3440416 A1 EP 3440416A1 EP 17718254 A EP17718254 A EP 17718254A EP 3440416 A1 EP3440416 A1 EP 3440416A1
Authority
EP
European Patent Office
Prior art keywords
set forth
refrigeration unit
transport refrigeration
compressor
fan motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP17718254.0A
Other languages
German (de)
English (en)
Inventor
Robert A. Chopko
Yu H. Chen
Greg Deldicque
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carrier Corp
Original Assignee
Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carrier Corp filed Critical Carrier Corp
Publication of EP3440416A1 publication Critical patent/EP3440416A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/02Compressor arrangements of motor-compressor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/003Transport containers

Definitions

  • the present disclosure relates to transport refrigeration units and, more particularly, to all-electric transport refrigeration units.
  • Refrigeration systems typically include a compressor, a condenser, an expansion valve, and an evaporator serially connected by refrigerant lines in a closed refrigerant circuit in accord with known refrigerant vapor compression cycles.
  • a power unit such as a combustion engine, drives the compressor of the refrigeration unit, and may be diesel powered, natural gas powered, or other type of engine.
  • the compressor is driven by the engine shaft either through a belt drive or by a mechanical shaft-to- shaft link.
  • the engine of the refrigeration unit drives a generator that generates electrical power, which in- turn drives the compressor.
  • a transport refrigeration unit includes a compressor constructed and arranged to compress a refrigerant; an electric compressor motor configured to drive the compressor; a generator configured to provide electric power to the compressor motor during standard set point conditions; and an energy storage device configured to supplement the electric power to the compressor motor during temperature pulldown conditions.
  • the transport refrigeration unit includes at least one heat exchanger operatively coupled to the compressor; at least one fan configured to provide air flow over the at least one heat exchanger; and at least one electric fan motor configured to drive the at least one fan, and wherein the generator is configured to provide electric power to the at least one fan motor during standard set point conditions.
  • the transport refrigeration unit includes at least one heat exchanger operatively coupled to the compressor; at least one fan configured to provide air flow over the at least one heat exchanger; and at least one electric fan motor configured to drive the at least one fan, and wherein the energy storage device is configured to provide electric power to the at least one fan motor during standard set point conditions.
  • the energy storage device is configured to supplement the electric power to the at least one fan motor during temperature pulldown conditions.
  • the at least one heat exchanger includes an evaporator heat exchanger
  • the at least one fan includes an evaporator fan
  • the at least one electric fan motor includes an evaporator fan motor
  • the at least one heat exchanger includes a condenser heat exchanger
  • the at least one fan includes a condenser fan
  • the at least one electric fan motor includes a condenser fan motor
  • the refrigerant is a natural refrigerant.
  • the refrigerant is a natural refrigerant.
  • the energy storage device is a battery.
  • the battery has a voltage potential with a range of about 48V to 250V.
  • a method of operating a transport refrigeration unit includes utilizing one of an electric generator and an energy storage device to provide electric power generally during steady state conditions; and providing supplemental power from the other of the electric generator and the energy storage device during a temperature pull down state.
  • the energy storage device is a battery.
  • the supplemental power is provided to a compressor motor.
  • the compressor motor is an alternating current motor and the supplemental power is delivered through an inverter.
  • the electric generator has a maximum power output that is less than a system power load during the temperature pull down state.
  • the method includes charging the energy storage device by the electric generator during part load operating conditions.
  • the method includes driving the electric generator by a combustion engine.
  • an evaporator fan motor and a condenser fan motor of the transport refrigeration unit are direct current motors.
  • the electric generator provides the power to a compressor motor, an evaporator fan motor and a condenser fan motor during steady state conditions.
  • the energy storage device provides the power to a compressor motor, an evaporator fan motor and a condenser fan motor during steady state conditions.
  • FIG. 1 is a perspective view of a tractor trailer system having a transport refrigeration unit as one, non-limiting, embodiment of the present disclosure
  • FIG. 2 is a schematic of the transport refrigeration unit
  • FIG. 3 is an electrical schematic of the transport refrigeration unit illustrating power loads
  • FIG. 4 is a flow chart of a method of operating the transport refrigeration unit.
  • the tractor trailer system 20 may include a tractor or truck 22, a trailer 24 and a transport refrigeration unit 26.
  • the tractor 22 may include an operator's compartment or cab 28 and a combustion engine 42 which is part of the powertrain or drive system of the tractor 22.
  • the trailer 24 may be coupled to the tractor 22 and is thus pulled or propelled to desired destinations.
  • the trailer may include a top wall 30, a bottom wall 32 opposed to and space from the top wall 30, two side walls 34 space from and opposed to one-another, and opposing front and rear walls 36, 38 with the front wall 36 being closest to the tractor 22.
  • the trailer 24 may further include doors (not shown) at the rear wall 38, or any other wall.
  • the walls 30, 32, 34, 36, 38 together define the boundaries of a cargo compartment 40. It is contemplated and understood that the cargo compartment may also be divided into two or more smaller compartments for different temperature cargo requirements.
  • the trailer 24 is generally constructed to store a cargo (not shown) in the compartment 40.
  • the transport refrigeration unit 26 is generally integrated into the trailer 24 and may be mounted to the front wall 36.
  • the cargo is maintained at a desired temperature by cooling of the compartment 40 via the transport refrigeration unit 26 that circulates air into and through the cargo compartment 40 of the trailer 24.
  • the transport refrigeration unit 26 may be applied to any transport container and not necessarily those used in tractor trailer systems.
  • the transport container may be a part of the trailer 24 and constructed to be removed from a framework and wheels (not shown) of the trailer 24 for alternative shipping means (e.g., marine, rail, flight, and others).
  • the transport refrigeration unit 26 may be an all-electric transport refrigeration unit 26, and may include a compressor 58, an electric compressor motor 60, a condenser heat exchanger 64 that may be air cooled, a condenser fan assembly 66, a receiver 68, a filter dryer 70, a heat exchanger 72, a thermostatic expansion valve 74, an evaporator heat exchanger 76, an evaporator fan assembly 78, a suction modulation valve 80, and a controller 82 that may include a computer-based processor (e.g., microprocessor).
  • a computer-based processor e.g., microprocessor
  • Operation of the transport refrigeration unit 26 may best be understood by starting at the compressor 58, where the suction gas (i.e., natural refrigerant) enters the compressor at a suction port 84 and is compressed to a higher temperature and pressure.
  • the refrigerant gas is emitted from the compressor 58 at an outlet port 85 and may then flow into tube(s) 86 of the condenser heat exchanger 64.
  • the air flow across the condenser heat exchanger 64 may be facilitated by one or more fans 88 of the condenser fan assembly 66.
  • the condenser fans 88 may be driven by respective condenser fan motors 90 of the fan assembly 66 that may be electric.
  • the gas within the tubes 86 condenses to a high pressure and high temperature liquid and flows to the receiver 68 that provides storage for excess liquid refrigerant during low temperature operation.
  • the liquid refrigerant may pass through a subcooler heat exchanger 92 of the condenser heat exchanger 64, through the filter-dryer 70 that keeps the refrigerant clean and dry, then to the heat exchanger 72 that increases the refrigerant subcooling, and finally to the thermostatic expansion valve 74.
  • the evaporator fan assembly 78 includes one or more evaporator fans 96 that may be driven by respective fan motors 98 that may be electric.
  • the air flow across the evaporator heat exchanger 76 is facilitated by the evaporator fans 96.
  • the refrigerant in vapor form, may then flow through the suction modulation valve 80, and back to the compressor 58.
  • a thermostatic expansion valve bulb sensor 100 may be located proximate to an outlet of the evaporator tube 94. The bulb sensor 100 is intended to control the thermostatic expansion valve 74, thereby controlling refrigerant superheat at an outlet of the evaporator tube 94.
  • a bypass valve may facilitate the flash gas of the refrigerant to bypass the evaporator heat exchanger 76. This will allow the evaporator coil to be filled with liquid and completely 'wetted' to improve heat transfer efficiency. With C02 refrigerant, this bypass flash gas may be re-introduced into a mid- stage of a two- stage compressor.
  • the compressor 58 and the compressor motor 60 may be linked via an interconnecting drive shaft 102.
  • the compressor 58, the compressor motor 60 and the drive shaft 102 may all be sealed within a common housing 104.
  • the compressor motor 60 may be positioned outside of the compressor housing 104, and therefore the interconnecting drive shaft 102 may pass through a shaft seal located in the compressor housing.
  • the compressor 58 may be a single compressor.
  • the single compressor may be a two-stage compressor, a scroll-type compressor or other compressors adapted to compress natural refrigerants.
  • the natural refrigerant may be C02, propane, ammonia, or any other natural refrigerant that may include a global- warming potential (GWP) of about one (1).
  • GWP global- warming potential
  • the transport refrigeration unit 26 further includes a multiple energy source 50 configured to selectively power the compressor motor 60, the condenser fan motors 90, the evaporator fan motors 98, the controller 82, and other components 99 (see FIG. 3), which may include various solenoids and/or sensors.
  • the power may be transferred over various buses and/or electrical conductors 106.
  • the multiple energy source 50 may include an energy storage device 52, and a generator 54 mechanically driven by a combustion engine 56 that may be part of, and dedicated to, the transport refrigeration unit 26.
  • the energy storage device 52 may be at least one battery or battery bank. In one embodiment, the energy storage device 52 may be secured to the underside of the bottom wall 32 of the trailer 24 (see FIG. 1). It is further contemplated and understood that other examples of the energy storage device 52 may include fuel cells, and other devices capable of storing and outputting electric power.
  • power management relative to the multiple energy source 50 and controlled power distribution relative to the various power loads may be configured/arranged to minimize the size of the combustion engine 56 and minimize fossil fuel consumption while still providing enough electric power to meet temperature pulldown demands of the operating transport refrigeration unit 26.
  • the controller 82 through a series of data and command signals over various pathways 110 may, for example, control the electric motors 60, 90, 98 as dictated by the cooling needs of the refrigeration unit 26.
  • the controller 82 may further control the electric power output of the generator 54 and the batteries 52 in order to meet the varying load demands of transport refrigeration unit 26.
  • the generator 54 and the battery or battery bank 52 may be electrically arranged in series.
  • the electric power may be generally distributed through the bus 106, and may be direct current (DC).
  • a converter (not shown) may be arranged at the outlet of the generator 54.
  • the fan motors 90, 98 may be DC motors, and the compressor motor 60 may be an alternating current (AC) motor with an inverter (not shown) at the power input to the motor 60.
  • the generator 54 may have a maximum power output of about 15kW
  • the battery bank 52 may output electric power at about lOkW
  • the steady state compressor motor 60 load may be about lOkW
  • the evaporator fan motor 98 and condenser fan motor 90 load may be about 2kW.
  • various power conditioning devices may be configured throughout the transport refrigeration unit 26 depending upon the current type and voltage demands of any particular component.
  • the generator 54 may be configured or downsized to provide substantially all of the electric power demands of the transport refrigeration unit 26 including the motors 60, 90, 98 during standard set point conditions (i.e., steady state conditions). However, when the transport refrigeration unit 26 is operating in a temperature pulldown state, the batteries 52 are available as a 'battery boost' to increase or supplement the DC power through the bus 106 thereby satisfying the temporary increase in power demand of, for example, the compressor motor 60. In this embodiment, the voltage potential of the batteries 52 may be about 5kW to 7 kW.
  • the batteries 52 may be configured to provide substantially all of the electric power demands of the transport refrigeration unit 26 including the motors 60, 90, 98 during standard set point conditions (i.e., steady state conditions). However, when the transport refrigeration unit 26 is operating in a temperature pulldown state, the generator 54 is available as a 'battery boost' to increase or supplement the DC power through the bus 106 thereby satisfying the temporary increase or surge in power demand of, for example, the compressor motor 60. In this embodiment, the voltage potential of the batteries 52 may be about 15kW.
  • the transport refrigeration unit 26 may further include a battery charger 108 that may be powered by the generator 54 during part-load operating conditions of the transport refrigeration unit 26 (i.e., partial compressor load conditions), and controlled by the controller 82.
  • the battery charger 108 may be controlled by the controller 82 and is configured to charge the batteries 52 when needed and during ideal operating conditions. By charging the batteries 52 during reduced compressor load conditions, the size and weight of the generator 54 and driving engine 56 may be minimized.
  • a method of operating the transport refrigeration unit 26 may include a first block 200 of driving the electric generator 54 by the combustion engine 56.
  • the transport refrigeration unit 26 may utilize one of the electric generator 54 and the energy storage device 52 to provide power to the compressor motor 60, the evaporator fan motor 98, and the condenser fan motor 90 during steady state conditions.
  • supplemental power may be provided by the other of the electric generator 54 and the energy storage device 52 during a temperature pull down state which may typically require more power than steady state conditions.
  • the energy storage device 52 may be recharged by the generator 54 during part load operating conditions of the transport refrigeration unit 26.
  • Benefits of the present disclosure when compared to more traditional transport refrigeration units include lower fuel consumption, and a refrigeration unit that may emit less noise and may be lighter in weight. Yet further, the present disclosure includes an energy storage device that is conveniently and efficiently recharged to meet the power demands of the refrigeration unit while meeting combustion engine power and emission requirements that may be enforced by regulatory/government agencies.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

L'invention concerne une unité frigorifique de transport (26) comprenant un compresseur (58) fabriqué et conçu pour comprimer un fluide frigorigène et un moteur de compresseur électrique conçu pour entraîner le compresseur. Un générateur (54) de l'unité est conçu pour alimenter en énergie électrique le moteur du compresseur durant des conditions à la température de consigne standard, et un dispositif de stockage d'énergie de l'unité est conçu pour compléter l'énergie électrique alimentée au moteur de compresseur durant des conditions de baisse de température.
EP17718254.0A 2016-04-05 2017-04-04 Unité frigorifique de transport dotée de renforcement de batterie Withdrawn EP3440416A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662318602P 2016-04-05 2016-04-05
PCT/US2017/025911 WO2017176729A1 (fr) 2016-04-05 2017-04-04 Unité frigorifique de transport dotée de renforcement de batterie

Publications (1)

Publication Number Publication Date
EP3440416A1 true EP3440416A1 (fr) 2019-02-13

Family

ID=58549280

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17718254.0A Withdrawn EP3440416A1 (fr) 2016-04-05 2017-04-04 Unité frigorifique de transport dotée de renforcement de batterie

Country Status (3)

Country Link
US (1) US20190120530A1 (fr)
EP (1) EP3440416A1 (fr)
WO (1) WO2017176729A1 (fr)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3634793B1 (fr) * 2017-06-06 2024-03-06 Carrier Corporation Système de réfrigération de transport
US10723202B2 (en) 2018-03-30 2020-07-28 Thermo King Corporation Systems and methods for coordinated control of multiple transport refrigeration systems
US10596878B2 (en) * 2018-03-30 2020-03-24 Thermo King Corporation Systems and methods for management of eTRU
EP3626489A1 (fr) 2018-09-19 2020-03-25 Thermo King Corporation Procédés et systèmes de gestion d'énergie d'un système de régulation climatique dans un véhicule de transport
EP3626490A1 (fr) 2018-09-19 2020-03-25 Thermo King Corporation Procédés et systèmes de gestion d'alimentation et de charge d'un système de régulation climatique dans le transport
US11034213B2 (en) 2018-09-29 2021-06-15 Thermo King Corporation Methods and systems for monitoring and displaying energy use and energy cost of a transport vehicle climate control system or a fleet of transport vehicle climate control systems
US11273684B2 (en) 2018-09-29 2022-03-15 Thermo King Corporation Methods and systems for autonomous climate control optimization of a transport vehicle
US10926610B2 (en) 2018-10-31 2021-02-23 Thermo King Corporation Methods and systems for controlling a mild hybrid system that powers a transport climate control system
US10870333B2 (en) 2018-10-31 2020-12-22 Thermo King Corporation Reconfigurable utility power input with passive voltage booster
US11059352B2 (en) 2018-10-31 2021-07-13 Thermo King Corporation Methods and systems for augmenting a vehicle powered transport climate control system
US10875497B2 (en) 2018-10-31 2020-12-29 Thermo King Corporation Drive off protection system and method for preventing drive off
US11022451B2 (en) 2018-11-01 2021-06-01 Thermo King Corporation Methods and systems for generation and utilization of supplemental stored energy for use in transport climate control
US11554638B2 (en) 2018-12-28 2023-01-17 Thermo King Llc Methods and systems for preserving autonomous operation of a transport climate control system
EP3906174B1 (fr) 2018-12-31 2024-05-29 Thermo King LLC Méthodes et systèmes d'évaluation d' une grandeur de retour pour la commande d' un disposotif de climatisation d'un moyen de transport
US11072321B2 (en) 2018-12-31 2021-07-27 Thermo King Corporation Systems and methods for smart load shedding of a transport vehicle while in transit
US11214118B2 (en) 2019-09-09 2022-01-04 Thermo King Corporation Demand-side power distribution management for a plurality of transport climate control systems
US10985511B2 (en) 2019-09-09 2021-04-20 Thermo King Corporation Optimized power cord for transferring power to a transport climate control system
US11376922B2 (en) 2019-09-09 2022-07-05 Thermo King Corporation Transport climate control system with a self-configuring matrix power converter
US11420495B2 (en) 2019-09-09 2022-08-23 Thermo King Corporation Interface system for connecting a vehicle and a transport climate control system
EP3789221A1 (fr) 2019-09-09 2021-03-10 Thermo King Corporation Distribution de puissance prioritaire pour faciliter la régulation climatique de transport
US11203262B2 (en) 2019-09-09 2021-12-21 Thermo King Corporation Transport climate control system with an accessory power distribution unit for managing transport climate control loads
US11794551B2 (en) 2019-09-09 2023-10-24 Thermo King Llc Optimized power distribution to transport climate control systems amongst one or more electric supply equipment stations
US11135894B2 (en) 2019-09-09 2021-10-05 Thermo King Corporation System and method for managing power and efficiently sourcing a variable voltage for a transport climate control system
US11458802B2 (en) 2019-09-09 2022-10-04 Thermo King Corporation Optimized power management for a transport climate control energy source
US11489431B2 (en) 2019-12-30 2022-11-01 Thermo King Corporation Transport climate control system power architecture
EP4197834B1 (fr) * 2021-12-20 2024-05-08 Schmitz Cargobull AG Machine à réfrigérer de transport, coffre et procédé de fonctionnement d'une machine à réfrigérer de transport

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0538933A (ja) * 1991-08-08 1993-02-19 Mitsubishi Heavy Ind Ltd 陸上輸送用冷凍装置
JP2001130250A (ja) * 1999-11-09 2001-05-15 Mitsubishi Heavy Ind Ltd 車両用空調装置
CN103502751B (zh) * 2011-04-04 2016-06-15 开利公司 运输制冷系统和操作方法
WO2012138497A1 (fr) * 2011-04-04 2012-10-11 Carrier Corporation Système réfrigéré mobile semi-électrique
EP2903860B1 (fr) * 2012-10-08 2021-03-31 Thermo King Corporation Systèmes et procédés d'alimentation d'un système de réfrigération de transport

Also Published As

Publication number Publication date
WO2017176729A1 (fr) 2017-10-12
US20190120530A1 (en) 2019-04-25

Similar Documents

Publication Publication Date Title
US20190120530A1 (en) Transport refrigeration unit with battery boost
US11898786B2 (en) Engineless transport refrigeration unit
EP3440417B1 (fr) Unité de réfrigération de transport
US20190105969A1 (en) Transport refrigeration unit
US20190255906A1 (en) High voltage system for a transport refrigeration unit
US11318807B2 (en) Transport refrigeration unit
US20200223291A1 (en) Transport refrigeration unit with a renewable wind-energy source
US11565568B2 (en) Transport refrigeration system
US10712068B2 (en) Transport refrigeration unit with a renewable energy source and method of operation
EP2694304B1 (fr) Système réfrigéré mobile semi-électrique
EP3856549A1 (fr) Architecture électrique pour alimenter une unité de réfrigération de transport
US11707962B2 (en) Trailer transport refrigeration unit assisted by a tractor auxiliary power unit
WO2014070633A1 (fr) Système d'alimentation électrique augmenté à cycle de rankine à fluide organique pour unités de réfrigération mobiles
US20180347864A1 (en) Natural refrigerant transport refrigeration unit

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20181102

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210511

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20210902