EP3437825B1 - Computerimplementiertes verfahren zur erzeugung eines formmodells zur herstellung von prädiktiver steuerung und computerprogrammprodukte dafür - Google Patents

Computerimplementiertes verfahren zur erzeugung eines formmodells zur herstellung von prädiktiver steuerung und computerprogrammprodukte dafür Download PDF

Info

Publication number
EP3437825B1
EP3437825B1 EP17382532.4A EP17382532A EP3437825B1 EP 3437825 B1 EP3437825 B1 EP 3437825B1 EP 17382532 A EP17382532 A EP 17382532A EP 3437825 B1 EP3437825 B1 EP 3437825B1
Authority
EP
European Patent Office
Prior art keywords
parameters
mold
molding machine
injection molding
injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17382532.4A
Other languages
English (en)
French (fr)
Other versions
EP3437825A1 (de
Inventor
Francesc Xavier BONADA BO
Francisco Javier Planta Torralba
Gabriel Amilcar ANZALDI VARAS
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fundacio Eurecat
Original Assignee
Fundacio Eurecat
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fundacio Eurecat filed Critical Fundacio Eurecat
Priority to ES17382532T priority Critical patent/ES2842301T3/es
Priority to EP17382532.4A priority patent/EP3437825B1/de
Priority to PCT/EP2018/070349 priority patent/WO2019025292A2/en
Priority to US16/635,497 priority patent/US11220033B2/en
Publication of EP3437825A1 publication Critical patent/EP3437825A1/de
Application granted granted Critical
Publication of EP3437825B1 publication Critical patent/EP3437825B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • B29C45/766Measuring, controlling or regulating the setting or resetting of moulding conditions, e.g. before starting a cycle
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/0265Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76003Measured parameter
    • B29C2945/76006Pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76003Measured parameter
    • B29C2945/7604Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76003Measured parameter
    • B29C2945/7611Velocity
    • B29C2945/7612Velocity rotational movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76822Phase or stage of control
    • B29C2945/76913Parameter setting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76929Controlling method
    • B29C2945/76936The operating conditions are corrected in the next phase or cycle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76929Controlling method
    • B29C2945/76939Using stored or historical data sets
    • B29C2945/76943Using stored or historical data sets compare with thresholds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76929Controlling method
    • B29C2945/76939Using stored or historical data sets
    • B29C2945/76949Using stored or historical data sets using a learning system, i.e. the system accumulates experience from previous occurrences, e.g. adaptive control

Definitions

  • the present invention is directed, in general, to process monitoring and optimization techniques applied to the manufacturing industry.
  • the invention relates to a computer implemented method, and computer program products thereof, for generating a mold model for production predictive control.
  • Patent application US-A1-20080102147 discloses an apparatus for supporting a worker involved in operating an injection-molding machine that includes a neural network in which a prediction function is determined based on test molding.
  • the worker enters a portion of a plurality of molding conditions in the form of a fixed value using a first input apparatus, thereby obtaining a relational graph of the remaining portion of the plurality of molding conditions and the predicted quality value in which the quality of a molded article is predicted.
  • Patent application US-A1-2002019674 relates to an intelligent control method for injection machine to transplant the intelligent control and prediction techniques of a neural network to an injection machine, which has been exemplified capable of deciding the quasi best machine parameters rapidly in couple processing cycles for increasing yield with least loss, and for detecting and adjusting conditions until a desired operation environment is obtained.
  • Patent US-B2-7632438 describes an injection molding system including a hot runner comprising a memory device configured to contain at least one process control parameter.
  • the memory device may transmit a signal representative of the process control parameter to a machine controller associated with the injection molding system.
  • the machine controller may generate control signal to operate the injection molding machine based on, at least in part, the signal from the memory device.
  • Patent application US-A1-20130245807 describes an iterative method for controlling and optimizing a production process of at least one of a material and a product formed out of the compound material.
  • a production control unit is provided and three different parameter groups, namely indicating parameters, nominal parameters and correcting parameters are defined, wherein the indicating and nominal parameters may be selected out of a group comprising process parameters, material recipe parameters and product property parameters.
  • the correcting parameters may be selected out of the group comprising process parameters and recipe parameters.
  • nominal parameters are provided to the production control unit.
  • at least one indicating parameter is measured and the measured values are provided to the unit. If the values deviate to much from the nominal parameters, the unit afterwards sets at least one correcting parameter on basis of the indicating parameter and on basis of the nominal parameter, thereby concerning any interaction between different parameters due to changes of any parameter.
  • US-A1-20020055806 discloses an injection moulding system that optimizes the injection moulding process by removing selected articles from a plurality of articles produced cyclically and tests a plurality of physical properties of the removed articles including dimensions, weight and gloss, together with a plurality of process parameters such as nozzle pressure and nozzle temperature. Adjustment of the process is made automatically on the basis of up to three optimizers, including a case based reasoning optimizer, a fuzzy optimizer and a rule based reasoning optimizer, in order to achieve pre-set article properties.
  • the optimizers can have confidence factors associated therewith, determined on the effect of previous process adjustments.
  • JP-A-2017081071 relates to a molding support method for an injection molding machine suitable for use in optimizing molding conditions by using a neural network.
  • US-A1-20160274561 discloses a method of controlling a manufacturing process having a machine to form a material in to a component.
  • the method comprises the steps of establishing an initial set of operating parameters for the machine, producing an initial component from the machine, inspecting the component to determine its acceptability relative to a desired component, determining a variation in the operating parameters to improve the acceptability of the component, effecting changes in the operating parameters and inspecting subsequent components to determine their acceptability.
  • ES-A1-2532750 discloses a method and system based on the use of an intelligent module (computational) permanently installed in a production tool with the capacity to acquire and store production data and expert evaluation of results in each cycle in a learning stage, which generates an expert model to evaluate each production cycle in the autonomous manufacturing phase and orders the necessary control actions to the production machinery that incorporates this tool for the continuous optimization of the process.
  • US-A1-20160121532 relates to a method which is used to operate an injection molding machine for processing plastics, which has a mold closing unit for opening and closing an injection mold having at least one mold cavity in order to produce an injection molded part, an injection molding unit for plasticizing and injecting new plasticizable material into the mold cavity, and a control system for operating the injection molding machine.
  • a control system for operating the injection molding machine.
  • Stored in the control system is expert knowledge about the operation of the injection molding machine and the peripheral devices of the latter which may possibly be present and about the production of injection molded parts using injection molding technology, in order to produce an injection molded part using interactive contact as needed by an operator by using injection molding parameters.
  • control system means that the plant and process parameters required for the production of the injection molded part can be calculated by the control system before the first injection molded part is produced, such that an alternative procedure for the operator-friendly setting of a machine for processing plastics is made available.
  • Present invention has developed a tool for improving and speed-up the required tuning process when a mold is installed in a non-preferred injection molding machine.
  • An object of the method proposed by present invention is to use the knowledge gained through the motorization of the mold in production, correlating mold cavity data and machine parameters through a generated extended mold model for providing tuning recommendations when the mold is installed in a non-preferred machine.
  • the generated extended mold model can work in the first injection machine providing both quality prediction and process optimization tips.
  • Embodiments of the present invention provide a computer implemented method for generating a mold model for production predictive control.
  • the proposed method in order to obtain injected given parts, also known as molded pieces, once a mold has been inserted in a first injection molding machine, comprises performing the following steps by a computing device having one or more processors and at least one memory:
  • the extended mold model can be generated by using mold cavity data and/or machine data. Therefore, it is not necessary to have both data sources, although having both will improve the accuracy/performance of the method.
  • the injection cycles, in step a), are performed with the first injection molding machine in a set of configurations providing different qualities of the injected given parts or different operation points of the first molding machine.
  • the method further comprises using the generated extended mold model for further monitoring and control of the mold in further injection processes in at least one second injection molding machine (different to the first injection molding machine), and comparing an evolution of said first and/or second group of parameters in said at least one second injection molding machine with the generated extended mold model and further providing recommendations to obtain injected given parts of a given quality based on a result of said comparison.
  • the provided recommendations allow reaching a good quality part, or molded piece, in a shorter period of time, i.e. the process is speed up, so that, the proposed method optimizes the fine tuning of the mold.
  • steps a) to e) are also executed and used to refine the generated extended mold model.
  • said step a) further comprises receiving a third group of parameters about additional sensors of the first injection molding machine such as hot runners, shop floor sensors, or humidity sensors, among others.
  • the reception of the first, second and also of the third group of parameters can be made at different periods of time or alternatively at the same time.
  • the classification involves an additional evaluation of each injection cycle, indicating the first injection molding machine configuration.
  • injected given parts having a quality above or below a given quality threshold are taken into account. That is, the proposed method takes into account both the pieces that have good quality and those having poor quality.
  • injected given parts including defects related for example to dimension or weight can be also considered.
  • the number of injection cycles used in said classifying step involves from three to twenty cycles.
  • the method performs five injection cycles.
  • the machine learning algorithm can comprise a Random Forest Tree algorithm, a Gradient Boosting algorithm, a Logistic Regression algorithm, a Support Vector Machine algorithm, an Adaboost algorithm, a KNN algorithm, a Decision Tree algorithm, a Na ⁇ ve Bayes algorithm, a Gaussian Process Classifier, Ensemble models, or even a Neural network, among others.
  • the one or more algorithms of step c) can include several mathematical operations at least comprising: compression techniques, noise filtering, derivation, feature selection, entropy analysis, complexity reduction, Discrete Cosine transformation, fast Fourier transform techniques, or other base functions representations at least including cFsm or Fourier series.
  • said compression techniques involve operations being performed in a frequency domain.
  • the computer device automatically calculates the best mold model and selects the better algorithm to boost the system performance. Moreover, the computer device automatically detects if a sensor is not connected (or if it is wrongly connected) and recalculates the extended mold model.
  • a computer program product is one embodiment that has a computer-readable medium including computer program instructions encoded thereon that when executed on at least one processor in a computer system causes the processor to perform the operations indicated herein as embodiments of the invention.
  • present invention applies novel Al and Machine Learning techniques applied to the plastic manufacturing process to overcome the traditional approaches based on SPC/SQC that are now available in the market.
  • Current solutions are mainly based on statistical analysis defining process operation windows.
  • the invention can also be applied to other injection processes for other materials such as light alloys.
  • present invention applies state of the art signal processing and data representation techniques to boost the performance of the machine learning algorithms.
  • Present invention can work with both mold and machine data.
  • present invention combines state of the art signal processing techniques, data fusion and machine learning algorithms.
  • injection molding machines and molds can be controlled/monitored in parallel, all being processed in a computing device, or centralized server.
  • the proposed method provides a machine learning supervised approach that performs a training phase were a computing device, or server, (not shown in the figures), having one or more processors and at least one memory or database, learns and establishes hidden correlations to obtain, once a mold has been inserted in a first injection molding machine (preferred machine), injected given parts, also known as molded pieces.
  • a computing device or server, (not shown in the figures) having one or more processors and at least one memory or database, learns and establishes hidden correlations to obtain, once a mold has been inserted in a first injection molding machine (preferred machine), injected given parts, also known as molded pieces.
  • the proposed method works with different groups of parameters about performance of injection cycles of a first injection molding machine 101 and about a mold cavity features 102 (and optionally about other sensors of the first injection molding machine 103); performs signal processing techniques and data fusion 104 on the received group of parameters; and applies machine learning algorithms 105. Therefore, an enhanced Al model including both mold cavity parameters and injection molding machine parameters is modelled and encoded that can be exported and updated.
  • the extended mold model can be generated by only considering one of said group of parameters 101, 102. That is, it is not mandatory for the method to work to have both data sources (mold cavity data and machine data).
  • Fig. 2 illustrates an embodiment of the proposed method.
  • the computing device receives the first group of parameters about the performance of injection cycles in the first injection molding machine.
  • the method works with the cycle evolution of the hydraulic pressure, screw position, screw speed and rotational speed, not limitative as other type of available parameters in the injection molding machine can be also used.
  • the computing device receives the second group of parameters relating to the mold cavity.
  • step 203 the method performs an iterative classification step which includes classifying each injection cycle considering the received first and second group of parameters and quality or characteristics (defects, weight, dimension, etc.) of the injected given parts of the mold.
  • the computer device step 204, processes it by implementing one or more algorithms. This may include noise filtering; derivation; feature selection; entropy analysis; complexity reduction such as Principal Components Analysis (PCA), Partial Least Squares (PLS), etc.; Discrete Cosine transformation (DCT) which performs an inherent low band pass filtering, removing the undesired high frequency noise or other base functions representations (frequency domain and others) such as the FFT, the cFSM, etc.
  • PCA Principal Components Analysis
  • PLS Partial Least Squares
  • DCT Discrete Cosine transformation
  • the output of the DCT has exactly the same number of coefficient as time stamps on the time domain data.
  • the coefficients are truncated to 10-50 depending on the case. This means a reduction on the data up to a factor of 10 3 . It should be noted that these numbers are only illustrative as they depend on the particular case. For instance, the reduction can be bigger 10 4 if the cycle time or the sampling rate increases.
  • the computing device performs the data fusion to combine the different sensor data, meaning combining the different machine data streams and/or mold cavity, providing a global group of processed parameters.
  • the computing device has the data ready to be modelled by the machine learning algorithm, step 206, to generate the extended mold model.
  • the machine learning algorithm For instance, a Random Forest Trees algorithm can be used.
  • Other algorithms usable could be the Gradient Boosting, a Logistic Regression, Support Vector Machines, LDA, Ensemble models, among many others.
  • the extended mold model is generated by fitting the algorithm. This fitted algorithm together with relevant process data (mold id, machine id, number of sensors, type of sensors, material id, etc.) is stored in a file of the extended mold model.
  • step 207 When the extended mold model is generated, it is used, step 207, for further monitoring and control of the mold in further injection processes in the first injection molding machine and/or for optimizing a production process of the mold in the first molding machine.
  • Fig. 3 illustrates another embodiment of the proposed method.
  • the extended mold model is generated, it is used, step 307, for further monitoring and control of the mold in further injection processes in a second injection molding machine (non-preferred machine).
  • a second injection molding machine non-preferred machine.
  • an evolution of the first and second group of parameters in the second molding machine is compared with the generated extended mold model, step 308, using a result of said comparison to provide further recommendations, step 309.
  • the Production Control System is the module in charge of monitoring and control the machine/mold performance in soft real time for ensuring an optimal productivity performance.
  • the PCS evaluates the performance of the mold at injection cycle time, ensuring full traceability and a prediction of the quality of the injected part or the presence of the defects for which the system has been trained.
  • the PCS analyses the whole evolution of the mold cavity pressure and/or temperature and/or the key machine parameters: injection speed and hydraulic pressure. Comparing them with the generated extended mold model by means of Al solutions allows for a near real time prediction of the quality of the part and allows for launching predictive and early alarms when the production suffers from undesired deviations.
  • PCS relays on supervised Machine Learning algorithms, meaning that a training phase where the raw data from the cycles plus the quality controls must be provided to the system in order to learn the hidden correlations that allow creating the extended mold model. Once the model is created, the system is ready to go into production where an automatic prediction of the quality is performed. This prediction improves the manufacturing process by triggering early alarms or warnings (e.g. for a given bad part or a given defect, etc.) when production deviations are detected in an early stage and thus improving productivity and decreasing downtimes and material waste.
  • early alarms or warnings e.g. for a given bad part or a given defect, etc.
  • the PCS :
  • the Setup Predictive System is the module in charge on helping an operator when a mold is installed in a different injection molding machine (second machine). The goal is to speed up it and thus reduce the scrap production and increasing and improving the scheduling flexibility of the injector.
  • the SPS can provide machine tuning hints when production deviations occur even on the preferred injection molding machine, providing machine tuning recommendations both explicit and graphically. For instance: "increase the injection speed in a 10% for optimizing the setup”. SPS requires from mold cavity sensors for an optimal performance and can work with both mold cavity parameters and machine parameters.
  • the SPS :
  • the computer device automatically calculates the best mold model and selects the better algorithm to boost the system performance. Moreover, the computer device automatically detects if a sensor is not connected and recalculates the generated extended mold model.
  • the proposed invention may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored on or encoded as one or more instructions or code on a computer-readable medium.
  • Computer-readable media includes computer storage media.
  • Storage media may be any available media that can be accessed by a computer.
  • such computer-readable media can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer.
  • Disk and disc includes compact disc (CD), laser disc, optical disc, digital versatile disc (DVD), floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above should also be included within the scope of computer-readable media.
  • Any processor and the storage medium may reside in an ASIC.
  • the ASIC may reside in a user terminal.
  • the processor and the storage medium may reside as discrete components in a user terminal.
  • computer program products comprising computer-readable media including all forms of computer-readable medium except, to the extent that such media is deemed to be non-statutory, transitory propagating signals.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Artificial Intelligence (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Claims (14)

  1. Computerimplementiertes Verfahren zur Erzeugung eines Formmodells für eine vorausschauende Produktionssteuerung, wobei das Verfahren die Durchführung der folgenden Schritte durch eine Computervorrichtung umfasst, sobald eine Form zur Herstellung gegebener Spritzgussteile oder Formstücke in eine erste Spritzgießmaschine eingesetzt wurde:
    a) Empfangen
    i. einer ersten Gruppe von Parametern von einer Vielzahl von Spritzgießmaschinen-Sensoren über die Ausführung einer Vielzahl von Einspritzzyklen der genannten ersten Spritzgießmaschine,
    wobei die genannten Einspritzzyklen mit der ersten Spritzgießmaschine in einem Satz von Konfigurationen erfolgen, der mindestens unterschiedliche Eigenschaften der gegebenen Spritzgussteile oder unterschiedliche Betriebspunkte bereitstellt, und
    wobei die genannten Parameter der ersten Gruppe mindestens einen der Parameter Hydraulikdruck, Schneckenposition, Schneckengeschwindigkeit oder Rotationsgeschwindigkeit umfassen; und
    ii. einer zweiten Gruppe von Parametern von einer Vielzahl von Formsensoren bezogen auf einen zum Formen eines gegebenen Spritzgussteils in der genannten ersten Spritzgießmaschine geformten Formhohlraum, wobei die genannten Parameter der zweiten Gruppe mindestens die Druck- und/oder Temperaturentwicklung des Formhohlraums und der Form über die Dauer der einzelnen Einspritzzyklen des Formhohlraums umfassen;
    b) Klassifizieren jedes Einspritzzyklus der genannten Vielzahl von Einspritzzyklen unter Berücksichtigung von mindestens der empfangenen ersten und/oder zweiten Gruppe von Parametern und der Qualität oder der Eigenschaften der gegebenen Spritzgussteile;
    c) Verarbeiten der empfangenen ersten und zweiten Gruppe von Parametern durch Implementieren eines oder mehrerer Algorithmen an diesen, um unerwünschte oder ungeeignete Datenwerte der genannten Parameter zu entfernen;
    d) Zusammenführen der verarbeiteten ersten Gruppe von Parametern mit der verarbeiteten zweiten Gruppe von Parametern unter Bildung einer Gesamtgruppe von verarbeiteten Parametern;
    e) Ausführen eines Machine-Learning-Algorithmus an der Gesamtgruppe verarbeiteter Parameter unter Generierung eines erweiterten Formmodells; und
    f) Verwendung des genannten generierten erweiterten Formmodells zur weiteren Überwachung und Steuerung der Form in weiteren Spritzgießprozessen in der ersten Spritzgießmaschine und/oder zur Optimierung eines Produktionsprozesses der Form in der ersten Spritzgießmaschine.
  2. Verfahren nach Anspruch 1, ferner umfassend:
    g) Verwendung des genannten generierten erweiterten Formmodells zur weiteren Überwachung und Steuerung der Form in weiteren Spritzgießprozessen mindestens einer zweiten, sich von der ersten Spritzgießmaschine unterscheidenden Spritzgießmaschine und/oder zur Optimierung des Produktionsprozesses der Form in der zweiten Spritzgießmaschine; und
    h) Vergleichen einer Entwicklung der genannten ersten und/oder zweiten Gruppe von Parametern in der genannten mindestens einen zweiten Spritzgießmaschine mit dem generierten erweiterten Formmodell und ferner Erstellen von Empfehlungen basierend auf dem Ergebnis des genannten Vergleichs, um gegebene Spritzgussteile einer vorgegebenen Qualität zu erzielen.
  3. Verfahren nach Anspruch 1, wobei der genannte Schritt a) ferner das Empfangen einer dritten Gruppe von Parametern von zusätzlichen Sensoren der ersten Spritzgießmaschine einschließlich Heißkanalsysteme, Werkbodensensoren oder Feuchtigkeitssensoren umfasst.
  4. Verfahren nach Anspruch 3, wobei die erste, zweite und dritte Gruppe von Parametern gleichzeitig empfangen werden.
  5. Verfahren nach Anspruch 1, wobei die Klassifizierung im genannten Schritt b) eine zusätzliche Bewertung jedes Einspritzzyklus unter Angabe der Konfiguration der ersten Spritzgießmaschine beinhaltet.
  6. Verfahren nach Anspruch 1, wobei im genannten Schritt b) gegebene Spritzgussteile mit einer Qualität über oder unter einem vorgegebenen Qualitätsschwellenwert sowie gegebene Spritzgussteile mit Abmessungs- oder Gewichtsfehlern berücksichtigt werden.
  7. Verfahren nach den vorstehenden Ansprüchen, wobei die Anzahl der in dem genannten Klassifizierungsschritt durchgeführten Einspritzzyklen mindestens drei beträgt.
  8. Verfahren nach Anspruch 1, wobei der genannte Machine-Learning-Algorithmus Random Forest Tree, Gradient Boosting, Logistische Regression, Support Vector Machine, Adaboost, KNN, Entscheidungsbaum, Naive-Bayes-Algorithmus, Gauß-Prozess-Klassifikator, Neuronales Netz oder Ensemble-Modelle umfasst.
  9. Verfahren nach Anspruch 1, wobei der eine bzw. die mehreren Algorithmen von Schritt c) mehrere mathematische Operationen einschließlich Kompressionstechniken, Rauschfilterung, Ableitung, Merkmalsauswahl, Entropieanalyse, Komplexitätsreduktion, Diskrete Kosinustransformation, Schnelle Fourier-Transformation oder andere Repräsentationsformen von Basisfunktionen, die mindestens cFsm- oder Fourier-Reihen enthalten, umfassen.
  10. Verfahren nach Anspruch 1, wobei die Verarbeitung in Schritt c) für jede Gruppe von Parametern getrennt durchgeführt wird.
  11. Verfahren nach Anspruch 2, wobei bei den genannten weiteren, in der genannten mindestens einen zweiten Spritzgießmaschine durchgeführten Spritzgießprozessen die Schritte a) bis e) weiter ausgeführt werden und zur Präzisierung des erzeugten erweiterten Formmodells dienen.
  12. Verfahren nach Anspruch 1, umfassend ferner die automatische und dynamische Erfassung der Tatsache, dass ein Sensor der ersten Spritzgießmaschine nicht angeschlossen ist, durch die Computervorrichtung, woraufhin die Computervorrichtung das generierte erweiterte Formmodell auf der Grundlage der genannten Erfassung neu berechnet.
  13. Verfahren nach Anspruch 9, wobei die genannten Kompressionstechniken von Schritt c) Operationen umfassen, die in einem Frequenzbereich ausgeführt werden.
  14. Computerprogrammprodukt, das physisch in einem nicht transitorischen maschinenlesbaren Speichermedium mit darin enthaltenen Codebefehlen eingebettet ist, das, wenn es von mindestens einem Prozessor eines Computersystems ausgeführt wird, das Verfahren nach einem der vorstehenden Ansprüche 1 bis 13 umsetzt.
EP17382532.4A 2017-02-08 2017-08-02 Computerimplementiertes verfahren zur erzeugung eines formmodells zur herstellung von prädiktiver steuerung und computerprogrammprodukte dafür Active EP3437825B1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
ES17382532T ES2842301T3 (es) 2017-08-02 2017-08-02 Procedimiento informático implementado para generar un modelo de molde para un control predictivo de producción y productos de programa informático del mismo
EP17382532.4A EP3437825B1 (de) 2017-08-02 2017-08-02 Computerimplementiertes verfahren zur erzeugung eines formmodells zur herstellung von prädiktiver steuerung und computerprogrammprodukte dafür
PCT/EP2018/070349 WO2019025292A2 (en) 2017-08-02 2018-07-26 COMPUTER-ASSISTED METHOD FOR GENERATING A MOLD MODEL FOR PREDICTIVE PRODUCTION CONTROL AND COMPUTER PROGRAM PRODUCTS THEREOF
US16/635,497 US11220033B2 (en) 2017-02-08 2018-07-26 Computer implemented method for generating a mold model for production predictive control and computer program products thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP17382532.4A EP3437825B1 (de) 2017-08-02 2017-08-02 Computerimplementiertes verfahren zur erzeugung eines formmodells zur herstellung von prädiktiver steuerung und computerprogrammprodukte dafür

Publications (2)

Publication Number Publication Date
EP3437825A1 EP3437825A1 (de) 2019-02-06
EP3437825B1 true EP3437825B1 (de) 2020-09-30

Family

ID=59558361

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17382532.4A Active EP3437825B1 (de) 2017-02-08 2017-08-02 Computerimplementiertes verfahren zur erzeugung eines formmodells zur herstellung von prädiktiver steuerung und computerprogrammprodukte dafür

Country Status (4)

Country Link
US (1) US11220033B2 (de)
EP (1) EP3437825B1 (de)
ES (1) ES2842301T3 (de)
WO (1) WO2019025292A2 (de)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020005478A1 (en) 2018-06-29 2020-01-02 iMFLUX Inc. Systems and approaches for autotuning an injection molding machine
JP6773740B2 (ja) * 2018-09-28 2020-10-21 ファナック株式会社 状態判定装置及び状態判定方法
TW202022633A (zh) * 2018-12-10 2020-06-16 財團法人資訊工業策進會 基於特徵擷取與機器學習的優化方法及其模組
EP3805883A1 (de) * 2019-10-08 2021-04-14 Siemens Aktiengesellschaft Verfahren und vorrichtungen zum bestimmen einer produktgüte
CN112590148A (zh) * 2020-11-12 2021-04-02 深圳富畅智能系统有限公司 模具与注射机的排机配对方法及装置
CN113059773B (zh) * 2021-03-15 2022-12-13 伯乐智能装备股份有限公司 一种保证注塑制品重量稳定的注射方法
CN113059774B (zh) * 2021-03-15 2022-08-30 伯乐智能装备股份有限公司 一种控制注塑成型保压过程的方法
CN113665079B (zh) * 2021-08-24 2023-06-30 武汉市衡德实业有限公司 一种塑料注塑成型工艺控制方法及系统
WO2023086466A1 (en) * 2021-11-10 2023-05-19 Sybridge Technologies U.S. Inc. System and method for monitoring injection molding
EP4190462A1 (de) * 2021-12-03 2023-06-07 Siemens Aktiengesellschaft Verfahren und beurteilungskomponente zur überwachung eines druckguss- oder spritzgussproduktionsprozesses einer mechanischen komponente mit einer zugehörigen produktionsmaschine
CN114563992B (zh) * 2022-03-01 2023-11-21 昆山缔微致精密电子有限公司 一种提高注塑模具的冲裁精度的方法及系统
CN114683504B (zh) * 2022-03-07 2023-10-31 佳睦拉索(上海)有限公司 一种注塑产品成型控制方法及控制设备
CN114770646B (zh) * 2022-04-06 2024-03-08 广州思茂信息科技有限公司 一种用于加工注塑板件的排料系统及方法
EP4338925A1 (de) * 2022-09-16 2024-03-20 Siemens Aktiengesellschaft Computerimplementiertes verfahren zur ermittlung einer vorhersage-gewichtsgrösse eines durch eine spritzguss-vorrichtung hergestellten produktes, sowie steuerungsverfahren und steuerungssystem

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW567132B (en) 2000-06-08 2003-12-21 Mirle Automation Corp Intelligent control method for injection molding machine
GB0015760D0 (en) * 2000-06-27 2000-08-16 Secretary Trade Ind Brit Injection moulding system
AU2001270624A1 (en) 2000-07-12 2002-01-21 Foboha Gmbh Device for injection moulding
US20030046382A1 (en) * 2001-08-21 2003-03-06 Sascha Nick System and method for scalable multi-level remote diagnosis and predictive maintenance
US7580771B2 (en) 2004-10-19 2009-08-25 Husky Injection Molding Systems Ltd. Intelligent molding environment and method of configuring a molding system
JP4167282B2 (ja) 2006-10-27 2008-10-15 日精樹脂工業株式会社 射出成形機の支援装置
US20080111264A1 (en) * 2006-11-15 2008-05-15 Husky Injection Molding Systems Ltd. Vibration Based Injection Molding Machine Damage Detection and Health Monitoring
US7632438B2 (en) 2007-05-25 2009-12-15 Husky Injection Molding Systems Ltd. Intelligent manifold and injection molding machine
CA2779694A1 (en) 2009-11-02 2011-05-05 Mold-Masters (2007) Limited A database for injection mold and integration with an injection molding machine and auxiliary components
EP2400358B1 (de) 2010-06-24 2016-03-30 Borealis AG Iterative Herstellungsverfahrenssteuerung
US8855804B2 (en) 2010-11-16 2014-10-07 Mks Instruments, Inc. Controlling a discrete-type manufacturing process with a multivariate model
DE102013008245A1 (de) * 2013-05-15 2014-11-20 Arburg Gmbh + Co. Kg Verfahren zum Betreiben einer Maschine zur Verarbeitung von Kunststoffen
CN103313421B (zh) 2013-05-22 2016-08-31 中国科学院上海微系统与信息技术研究所 多跳网络和无线传感网的介质访问控制协议中的退避算法
US10528024B2 (en) * 2013-06-17 2020-01-07 Ashley Stone Self-learning production systems with good and/or bad part variables inspection feedback
KR20160021869A (ko) 2013-06-21 2016-02-26 콘비다 와이어리스, 엘엘씨 컨텍스트 관리
ES2532750B1 (es) * 2013-09-30 2016-01-15 Plastiasite, Sa Método y sistema de control inteligente de un utillaje de producción
KR20150070637A (ko) 2013-12-17 2015-06-25 한국전자통신연구원 무선 센서 네트워크의 맥 계층에서의 센서 데이터 전송 제어 장치 및 방법
US10582521B2 (en) 2015-08-21 2020-03-03 Nokia Technologies Oy Apparatus, method and computer program product for medium access control in a wireless sensor network
JP6514622B2 (ja) * 2015-10-30 2019-05-15 日精樹脂工業株式会社 射出成形機の成形支援方法
WO2017127260A1 (en) * 2016-01-19 2017-07-27 Presenso, Ltd. System and method for allocating machine behavioral models

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3437825A1 (de) 2019-02-06
ES2842301T3 (es) 2021-07-13
US11220033B2 (en) 2022-01-11
WO2019025292A2 (en) 2019-02-07
US20200230857A1 (en) 2020-07-23
WO2019025292A3 (en) 2019-03-14

Similar Documents

Publication Publication Date Title
EP3437825B1 (de) Computerimplementiertes verfahren zur erzeugung eines formmodells zur herstellung von prädiktiver steuerung und computerprogrammprodukte dafür
US20180281256A1 (en) State determination apparatus
US11403535B2 (en) Model-based machine learning system
Ogorodnyk et al. Application of machine learning methods for prediction of parts quality in thermoplastics injection molding
Pareek et al. Optimization of injection moulding process using Taguchi and ANOVA
KR102379259B1 (ko) AIoT 기반 사출제조 설비의 통합관리 시스템 및 그 운용방법
US10761063B2 (en) Apparatus and method for presuming abnormality occurrence for telescopic cover
KR102287659B1 (ko) 플라스틱 사출 성형 공정의 불량 발생 예측 시스템 및 방법
KR102470836B1 (ko) 인공 지능 기반의 연속 공정 제어 장치, 이를 이용한 품질 예측 및 수율 개선 방법
CN111428329B (zh) 基于模型的机器学习系统
CN117719128A (zh) 得出产品的预测重量值的方法、控制方法和控制系统
Akırmak et al. Estimation of extrusion process parameters in tire manufacturing industry using random forest classifier
Baghbanpourasl et al. Virtual Quality control using bidirectional LSTM networks and gradient boosting
Zhao et al. Regression modeling and quality prediction for multiphase batch processes with inner-phase analysis
US20230023896A1 (en) Method of Transfer Learning for a Specific Production Process of an Industrial Plant
Liu et al. Application of nonlinear PCA for fault detection in polymer extrusion processes
Loftis et al. Online quality monitoring of plastic parts using real-time data from an injection molding machine
Khomenko et al. Parameters identification of injection plastic moulding heaters
Werner et al. Development of a digital assistance system for continuous quality assurance in the plastic injection moulding process with a focus on self-learning algorithms
EP4190462A1 (de) Verfahren und beurteilungskomponente zur überwachung eines druckguss- oder spritzgussproduktionsprozesses einer mechanischen komponente mit einer zugehörigen produktionsmaschine
CN117227122B (zh) 注塑机调机方法、装置、注塑机、电子设备及存储介质
CN118305980B (zh) 一种注塑机的控制方法及装置
Tripathi et al. Identifying key interactions between process variables of different material categories using mutual information-based network inference method
US20240227266A9 (en) Reinforcement Learning Method, Non-Transitory Computer Readable Recording Medium, Reinforcement Learning Device and Molding Machine
CN118418405A (zh) 基于能耗预测模型的停产策略确定方法、装置和设备

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190705

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200528

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1318343

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201015

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602017024538

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200930

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200930

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201231

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200930

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200930

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: VALIPAT S.A. C/O BOVARD SA NEUCHATEL, CH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200930

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200930

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200930

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200930

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210201

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210130

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200930

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200930

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602017024538

Country of ref document: DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2842301

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20210713

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200930

26N No opposition filed

Effective date: 20210701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200930

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210130

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210802

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170802

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230824

Year of fee payment: 7

Ref country code: ES

Payment date: 20230928

Year of fee payment: 7

Ref country code: CH

Payment date: 20230903

Year of fee payment: 7

Ref country code: AT

Payment date: 20230821

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200930

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240829

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200930

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240926

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240828

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240829

Year of fee payment: 8