EP3433396B1 - Coated valve for combustion engines - Google Patents

Coated valve for combustion engines Download PDF

Info

Publication number
EP3433396B1
EP3433396B1 EP17711607.6A EP17711607A EP3433396B1 EP 3433396 B1 EP3433396 B1 EP 3433396B1 EP 17711607 A EP17711607 A EP 17711607A EP 3433396 B1 EP3433396 B1 EP 3433396B1
Authority
EP
European Patent Office
Prior art keywords
valve
coating
ceramic high
temperature
temperature coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17711607.6A
Other languages
German (de)
French (fr)
Other versions
EP3433396A1 (en
Inventor
Carsten Strübbe
Guido Bayard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Federal Mogul Valvetrain GmbH
Original Assignee
Federal Mogul Valvetrain GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=58358573&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP3433396(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Federal Mogul Valvetrain GmbH filed Critical Federal Mogul Valvetrain GmbH
Priority to PL17711607T priority Critical patent/PL3433396T3/en
Publication of EP3433396A1 publication Critical patent/EP3433396A1/en
Application granted granted Critical
Publication of EP3433396B1 publication Critical patent/EP3433396B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L3/00Lift-valve, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces; Parts or accessories thereof
    • F01L3/02Selecting particular materials for valve-members or valve-seats; Valve-members or valve-seats composed of two or more materials
    • F01L3/04Coated valve members or valve-seats
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/046Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material with at least one amorphous inorganic material layer, e.g. DLC, a-C:H, a-C:Me, the layer being doped or not
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L3/00Lift-valve, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces; Parts or accessories thereof
    • F01L3/12Cooling of valves
    • F01L3/14Cooling of valves by means of a liquid or solid coolant, e.g. sodium, in a closed chamber in a valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2301/00Using particular materials
    • F01L2301/02Using ceramic materials

Definitions

  • the present invention relates to cooled valves for internal combustion engines. More particularly, the present invention relates to a method for coating a valve head of a sodium-cooled intake or exhaust valve for an internal combustion engine, which is provided with an outer coating in order to reduce or influence heat transfer to the valve.
  • the outer coating can further help to reduce corrosion and deposits of combustion residues on the valve or the valve head.
  • a method for coating a valve head of an intake and / or exhaust valve comprises preparing the surfaces of the valve to be coated for a coating and coating the valve head with a ceramic high-temperature coating.
  • the ceramic high-temperature coating is applied as a lacquer to the prepared areas of the valve, at least in the head area, and cured.
  • the ceramic high-temperature coating is not a vapor deposition, a nitriding or a plasma deposition process.
  • the ceramic high-temperature coating is applied as a varnish by spraying, brushing or dipping or by overflowing on the valve head or on parts of the valve head. It is also envisaged to use a so-called "spin coating” or “spin coating” in order to apply the ceramic high-temperature coating to the valve head or to parts of the valve head. After application, the coating in the head area is cured.
  • the preparation of the surfaces of the valve to be coated comprises sandblasting / shot peening, cleaning and / or etching or etching of the surfaces to be coated.
  • the ceramic high-temperature coating has a temperature resistance between 950 ° C. and 1100 ° C., preferably between 970 ° C. and 1050 ° C., and more preferably between 990 ° C. and 1020 ° C.
  • the coating must be able to withstand the temperatures of the combustion gases, taking into account that the valve itself is cooled and the high temperature load on one side of the coating and on the other side is absorbed by the cooled valve.
  • the high temperature coating is also cooled by the cooled valve and can therefore also withstand exhaust gas temperatures which are above the strength temperatures of the coating. This enables the High temperature coating can also be used for exhaust temperatures above the temperature resistance of the coating, since the cooled valve surface keeps the temperature of the coating below the strength temperature.
  • the ceramic high-temperature coating is an air-drying ceramic high-temperature coating.
  • the method comprises the step of air drying the ceramic high-temperature coating.
  • the ceramic high-temperature coating is an oven-drying ceramic high-temperature coating.
  • the method comprises the step of oven drying the high-temperature ceramic coating.
  • the hardened ceramic high-temperature coating has a thickness of 10 ⁇ m to 50 ⁇ m, preferably 15 ⁇ m to 40 ⁇ m, and further preferably 20 ⁇ m to 30 ⁇ m.
  • the method comprises the application of a lacquer layer with a thickness which, after hardening, gives the above-mentioned thicknesses of the hardened lacquer layer.
  • the ceramic high-temperature coating is carried out as a multi-layer coating which comprises at least one primer and at least one topcoat.
  • the method therefore comprises at least twice the steps of applying a ceramic high-temperature coating, first as applying a primer and curing the primer and then applying a ceramic high-temperature coating as a topcoat.
  • the ceramic high-temperature coating is designed as a multi-layer coating which comprises at least one primer and at least one top coat.
  • the method comprises at least coating the valve head with a primer and one then coat the primer with at least one top coat. It can also be provided that the already applied primer is processed before the topcoat is applied in order to achieve a desired thickness of the primer or a desired surface roughness of a surface of the primer. It can also be provided that the topcoat is applied before the primer is completely cured by drying or oven drying.
  • valve seat of the valve is provided with a DLC coating.
  • the valve seat is the part of the valve head which, when the valve is closed, bears against the valve seat ring in the cylinder head and thus seals the combustion chamber against an inlet duct or an outlet duct in the cylinder head.
  • valve seat is used here only in connection with an essentially conical surface on the valve plate or valve head, if reference is made to the associated surface on the cylinder head, the expression “valve seat ring" is used.
  • this further comprises coating a valve head of the valve with the ceramic high-temperature coating with the exception of the valve seat.
  • the valve seat of the valve head can have been coated beforehand with a DLC layer, it also being possible to later apply this to an uncoated part of a DLC layer. It can also be provided that the valve head is completely coated with the ceramic high-temperature coating and then removed in the region of the valve seat. With this version it is also possible to apply a DLC layer beforehand in the area of the valve seat.
  • the ceramic high-temperature coating can serve as an insulation layer, which additionally reduce heat transfer from the combustion chamber via the plate surface and, in the case of an exhaust valve, from combustion gases via the valve head to the valve.
  • the cooling performance of the valve via the valve stem on the cooled cylinder head is not affected by the ceramic high-temperature coating, since the valve stem is not coated with the ceramic high-temperature coating.
  • By a lesser Heat input and an unchanged heat output can reduce the overall temperature of the valve during operation.
  • intake valves it will be sufficient to coat only the surface of the valve plate on the combustion chamber side, since the intake air or the intake mixture is at a low temperature, and thus the rear of the valve can be used to cool the valve head.
  • a coating of the valve head on the side facing away from the combustion chamber would only lead to an increase in the valve temperature here.
  • the ceramic high-temperature coating is applied only to the underside of a valve plate in the method.
  • This method is particularly suitable for intake valves or intake valves of an engine.
  • only the valve head, but not the underside of a valve plate, is coated with the ceramic high-temperature coating.
  • the exhaust duct can have a higher temperature than the combustion chamber, since it is cooled at least during the intake stroke by the inflowing fresh air or by the inflowing mixture.
  • the ceramic high-temperature coating is also applied to the valve stem or only to the valve stem.
  • an inlet or outlet valve that was produced according to one of the methods described above, wherein a valve head of the valve is coated with a ceramic high-temperature coating.
  • the ceramic high-temperature coating is applied to a prepared surface on the valve head that has a certain roughness.
  • the surface that is coated with the ceramic high-temperature coating was pretreated by sand / shot peening, cleaning and / or etching or etching of the surfaces to be coated and therefore has a particularly good adhesion of the ceramic high-temperature coating on the Valve head open. At least part of the valve head is coated.
  • the ceramic high-temperature coating of the valve can have a temperature resistance between 950 ° C and 1100 ° C, preferably between 970 ° C and 1050 ° C, and more preferably between 990 ° C and 1020 ° C.
  • the ceramic high-temperature coating is an air-dried ceramic high-temperature coating. This allows easy drying without additional energy expenditure.
  • the ceramic high-temperature coating is an oven-dried ceramic high-temperature coating.
  • An oven-dried ceramic high-temperature coating can have a higher strength because the drying process can be better controlled.
  • the ceramic high-temperature coating has a thickness of 10 ⁇ m to 50 ⁇ m, preferably of 15 ⁇ m to 40 ⁇ m, and more preferably of 20 ⁇ m to 30 ⁇ m.
  • the relatively thin ceramic high-temperature coating should on the one hand represent an insulation layer in order to reduce the heat transfer on the metal body of the valve, but the insulation effect should not be so pronounced that a surface temperature of the ceramic high-temperature coating can exceed a strength temperature during operation which destroys the ceramic high-temperature coating. Only the thermal resistance should be increased, but not to the extent that the surface of the ceramic high-temperature coating can be destroyed by excessive heating by the combustion gases.
  • the ceramic high-temperature coating is designed as a multi-layer coating which comprises at least one primer and at least one top coat.
  • a multi-layer coating can allow better control of the overall properties of the coating.
  • the primer can serve as an adhesion promoter.
  • the primer can also have a slightly lower strength temperature because it is covered by the ceramic High temperature coating is protected and is applied to a cooled valve surface.
  • the valve is not coated with the ceramic high-temperature coating in the region of the valve seat and can also be armored in the region of the valve seat, provided with another coating or with a nitriding.
  • the entire valve head was coated with the ceramic high-temperature coating, the valve head being provided with a DLC layer in the region of the valve seat, and the ceramic high-temperature coating was removed in the region of the valve seat in a subsequent step.
  • the coating is both a protective layer and a thermal insulation that is intended to reduce the heat input into the valve. Due to the reduced heat input with constant cooling conditions via the valve stem, the overall temperature of the valve can be reduced compared to an uncoated valve
  • the ceramic high-temperature coating is only applied to the underside of a valve plate.
  • the ceramic high-temperature coating is only applied to the back of the valve plate.
  • the ceramic high-temperature coating is applied to the valve stem or only to the valve stem.
  • FIG. 1 shows a partial sectional view of a conventional internally cooled valve 2.
  • a conventional internally cooled valve 2 comprises a valve stem 8 and a valve head 6.
  • the valve head 8 extends essentially to the valve stem 8, a portion of the length of a valve stroke between the valve stem 8 and the valve head can be provided.
  • the valve head 6 has a tapered part and the valve plate 10.
  • the valve plate 10 comprises the valve plate surface 16 directed towards a combustion chamber, the frustoconical valve seat 20 and the valve plate rear side 18, which is arranged in an intake duct or an exhaust duct.
  • the conventional internally cooled valve 2 has no coatings.
  • the inside of the conventional internally cooled valve 2 is provided with a cavity in which a coolant 14, usually sodium, is arranged.
  • the sodium transports heat from the valve head 6 to the valve stem 8, which is embedded in a cooled cylinder head.
  • the heat of the sodium is released via the valve stem 8 to the cooled cylinder head. Since the sodium or the coolant moves up and down, this is called "shaker cooling".
  • the valve stem 8 ends in a valve stem end 32, on which the valve is held by wedge pieces.
  • Valve parts subject to high temperatures are produced from austenitic materials or from materials based on nickel.
  • austenitic materials or from materials based on nickel.
  • hard chrome plating may no longer be used, since chromium (VI), which is produced during hard chrome plating due to the process, is a hazardous substance.
  • FIG 2 shows a partial sectional view of an internally cooled valve 4 according to the invention with a ceramic high-temperature coating 22, which is arranged on the entire valve head 6.
  • the valve head 6 is coated in particular on the valve plate surface 16, the valve seat 20 and the valve plate rear side 18 with a ceramic high-temperature coating 22.
  • the ceramic high-temperature coating 22 achieves an improvement in the temperature and corrosion resistance of the valves on the valve plate surface 16 and on the valve plate rear side 18 in the so-called fillet area.
  • the coating can improve the tribological properties (friction and wear) as well as the corrosion protection in the stem area of valves.
  • the use of the ceramic high-temperature coating 22 can serve as an alternative to the hard chrome plating of valves in the stem area.
  • the ceramic high-temperature coating 22 can be a Cerakote Ceramic coating from PBN (Powder Coating North GmbH), which enables a temperature stability of 650 ° C up to 1,100 ° C.
  • Cerakote Ceramic Coatings are temperature stable up to over 1,100 ° C and are characterized by a hard and abrasion-resistant surface. These coatings enable temperature stability up to over 1,100 ° C, excellent corrosion protection and excellent thermal insulation. This coating can also be applied to the valve head 6 and the valve stem 8.
  • Ceramic-based high-temperature lacquers as a liquid coating material can easily generate a thermal barrier layer or insulation and corrosion protection.
  • the paint can be applied after pretreatment of the valves to be coated by blasting, cleaning or etching, for example using a paint spray gun. It is also possible to immerse the valves in a paint.
  • the layer thickness should be between 10 and 50 ⁇ m.
  • the paint can be dried or baked in an oven at temperatures below 200 ° C or air-dried in up to 5 days.
  • the coating can make it possible to use inexpensive materials for the valve body instead of expensive substrate materials (e.g. nickel-based).
  • the ceramic high-temperature coating 22 has a very high abrasion resistance, with detachable particles having a size in the micrometer range, so that no damage to turbochargers from detached particles must be expected.
  • the ceramic high-temperature coating 22 has a very high hardness and thus a very high scratch resistance.
  • the ceramic high temperature coating 22 is chemical resistant and can achieve a very high surface quality. No complex coating systems are required to apply the coating.
  • FIG 3 is a partially sectioned illustration of a valve 4 according to the invention with a ceramic high-temperature coating 22, which is arranged on the valve plate surface 16 and a valve plate rear side 18.
  • Figure 3 shows a valve 4, in which the shaft is designed as a full shaft 34.
  • the full stem being chosen here only to emphasize the coating more clearly.
  • the ceramic high temperature coating 22 is at Figure 3 applied both on the valve plate surface 16 and on the valve plate back 18.
  • the area of the valve seat 20 was not coated because the strength of the ceramic high-temperature coating 22 could not be able to cope with the strong alternating load on the valve seat 20.
  • the valve seat 20 can be armored, as in the case of conventional valves.
  • FIG. 4 shows a partial sectional view of an internally cooled valve 4 according to the invention, a valve seat 20 being provided with a DLC layer 30 and a ceramic high-temperature coating 22 being arranged on the valve plate surface and on the rear side of the valve plate.
  • DLC stands for Diamond Like Carbon, a coating with some properties of diamond.
  • the valve seat 20 is provided with the DLC layer. This version can withstand the higher loads, especially the loads on the valve seat, for longer.
  • Figure 5 shows a partial sectional view of an internally cooled valve 4, wherein a ceramic high-temperature coating 22 is only applied to the valve plate surface 16.
  • a ceramic high-temperature coating 22 is only applied to the valve plate surface 16.
  • Figure 6 shows a partial sectional view of an internally cooled valve 5, a ceramic high-temperature coating 22 being applied to the back of the valve plate 18.
  • the thermal load on the back of the valve plate is higher than that of the valve plate surface 16, since the valve plate surface 16 is cooled at least during the intake stroke by an inflowing mixture, while the exhaust duct is only in contact with the hot combustion gases.
  • FIG Figure 7 shows a partial sectional view of the internally cooled valve 4 of FIG Figure 4 , wherein a ceramic high temperature coating 22 is also applied to the valve stem. It is also possible to provide only the valve stem 8 with the ceramic high-temperature coating 22.
  • the ceramic high-temperature coating 22 mainly serves to reduce the abrasion compared to the valve guides, which is possible in particular in engines with low output.
  • the disadvantage of the insulating effect of the ceramic high-temperature coating 22 on the stem is not particularly pronounced, since the small diameter of the valve stem 8, compared to the relatively small volume to be cooled, results in an excellent surface-to-volume ratio, which in spite of an insulation layer only a slight deterioration in cooling can be expected.

Description

Die vorliegende Erfindung betrifft gekühlte Ventile für Verbrennungsmotoren. Spezieller betrifft die vorliegende Erfindung ein Verfahren zum Beschichten eines Ventilkopfes eines natriumgekühlten Ein- oder Auslassventils für einen Verbrennungsmotor, das mit einer Außenbeschichtung versehen ist, um einen Wärmeübertrag auf das Ventil zu verringern bzw. zu beeinflussen. Die Außenbeschichtung kann weiter dazu beitragen, eine Korrosion und eine Ablagerung von Verbrennungsrückständen auf dem Ventil bzw. dem Ventilkopf zu verringern.The present invention relates to cooled valves for internal combustion engines. More particularly, the present invention relates to a method for coating a valve head of a sodium-cooled intake or exhaust valve for an internal combustion engine, which is provided with an outer coating in order to reduce or influence heat transfer to the valve. The outer coating can further help to reduce corrosion and deposits of combustion residues on the valve or the valve head.

Innengekühlte bzw. natriumgekühlte Abgasventile sind spätestens seit 1935 bekannt.Internally cooled or sodium cooled exhaust valves have been known since 1935 at the latest.

Natriumkühlung und deren Effekte sind im Stand der Technik wohlbekannt und die technischen Weiterentwicklungen der letzten Jahre betrafen hauptsächlich ein vergrößertes Kühlmittelvolumen im Bereich des Ventiltellers und vereinfachte Herstellungsverfahren, um natriumgekühlte Ventile kostengünstiger herstellen zu können.Sodium cooling and its effects are well known in the art and the technical developments in recent years have mainly concerned an increased volume of coolant in the area of the valve plate and simplified manufacturing processes in order to be able to produce sodium-cooled valves more cheaply.

Aus der DE 19647099 A1 ist ein Verfahren zur Erhöhung der Widerstandsfähigkeit von Ventilen in Verbrennungsmotoren bekannt. Aus den Dokumenten EP 1614946 A und DE2856232 werden auch Verfahren zum Herstellen von Ventilen für Verbrennungsmotoren offenbart. Das Dokument DE 10 2009042545 A offenbart ein Motorventil mit einer Wärmeisolierschicht an der Stirnoberfläche eines Kopfventils.From the DE 19647099 A1 a method for increasing the resistance of valves in internal combustion engines is known. From the documents EP 1614946 A and DE2856232 Methods of manufacturing valves for internal combustion engines are also disclosed. The document DE 10 2009042545 A discloses an engine valve with a heat insulating layer on the front surface of a head valve.

Es besteht jedoch immer noch ein Bedarf, die Kühlung bzw. die Kühleigenschaften, insbesondere von Abgasventilen, weiter zu verbessern. Es besteht zudem ein Bedarf, ein Ventil zur Verfügung zu haben, das gegen Korrosion geschützt ist und die tribologischen Hochtemperatur- und Korrosionsbeständigkeits-Eigenschaften verbessert. Es ist weiterhin wünschenswert, die Menge von Ablagerungen zu verringern, die sich auf einem Ventil ablagern kann.However, there is still a need to further improve the cooling or the cooling properties, in particular of exhaust valves. There is also a need to have a valve that is protected against corrosion and that improves high temperature and corrosion resistance properties. It is also desirable to reduce the amount of debris that can deposit on a valve.

Gemäß der vorliegenden Erfindung wird ein Verfahren zum Beschichten eines Ventilkopfes eines Ein- und/oder Auslassventils gemäß Anspruch 1 bereitgestellt. Das Verfahren umfasst dabei ein Vorbereiten der zu beschichtenden Flächen des Ventils für eine Beschichtung und ein Beschichten des Ventilkopfes mit einer keramischen Hochtemperatur-Beschichtung. Die keramische Hochtemperatur-Beschichtung wird dabei als Lack auf die vorbereiteten Stellen des Ventils zumindest im Kopfbereich aufgetragen und ausgehärtet. Es handelt sich bei der keramischen Hochtemperaturbeschichtung nicht um ein Aufdampfen, ein Nitrieren oder ein Plasma-Abscheidungsverfahren. Die keramische Hochtemperatur-Beschichtung wird dabei als Lack durch Sprühen, durch Aufpinseln oder durch Tauchen oder auch durch Überfließen auf den Ventilkopf oder auf Teile des Ventilkopfes aufgetragen. Es ist ebenfalls vorgesehen, ein sogenanntes "Spin coating" oder "Rotationsbeschichten" zu verwenden, um die keramische Hochtemperaturbeschichtung auf dem Ventilkopf oder auf Teilen des Ventilkopfes aufzutragen. Nach dem Auftragen wird die Beschichtung im Kopfbereich ausgehärtet.According to the present invention, a method for coating a valve head of an intake and / or exhaust valve according to claim 1 is provided. The method comprises preparing the surfaces of the valve to be coated for a coating and coating the valve head with a ceramic high-temperature coating. The ceramic high-temperature coating is applied as a lacquer to the prepared areas of the valve, at least in the head area, and cured. The ceramic high-temperature coating is not a vapor deposition, a nitriding or a plasma deposition process. The ceramic high-temperature coating is applied as a varnish by spraying, brushing or dipping or by overflowing on the valve head or on parts of the valve head. It is also envisaged to use a so-called "spin coating" or "spin coating" in order to apply the ceramic high-temperature coating to the valve head or to parts of the valve head. After application, the coating in the head area is cured.

Bei einer beispielhaften Ausführungsform des Verfahrens umfasst das Vorbereiten der zu beschichtenden Flächen des Ventils ein Sand-/Kugelstrahlen, ein Reinigen und/oder ein Anätzen bzw. Ätzen der zu beschichtenden Flächen. Durch diese Verfahren kann sichergestellt werden, dass die Haftung zwischen der keramischen Hochtemperaturbeschichtung und der Metalloberfläche des Ventils für die Belastung ausreichend hoch ist, um ein Ablösen des Lacks zu vermeiden.In an exemplary embodiment of the method, the preparation of the surfaces of the valve to be coated comprises sandblasting / shot peening, cleaning and / or etching or etching of the surfaces to be coated. These methods can ensure that the adhesion between the ceramic high-temperature coating and the metal surface of the valve is sufficiently high for the load to prevent the paint from coming off.

Bei einer weiteren Ausführung des vorliegenden Verfahrens weist die keramische Hochtemperatur-Beschichtung eine Temperaturfestigkeit zwischen 950°C und 1100°C, bevorzugt zwischen 970°C und 1050°C, und weiter bevorzugt zwischen 990°C und 1020°C auf. Die Beschichtung muss dabei den Temperaturen der Verbrennungsgase widerstehen können, wobei berücksichtigt werden muss, dass das Ventil selbst gekühlt wird, und die hohe Temperaturbelastung auf der einen Seite der Beschichtung und auf deren anderer Seite von dem gekühlten Ventil aufgenommen wird. Die Hochtemperaturbeschichtung wird durch das gekühlte Ventil ebenfalls gekühlt, und kann daher auch Abgastemperaturen widerstehen, die oberhalb der Festigkeitstemperaturen der Beschichtung liegen. Dies ermöglicht die Hochtemperaturbeschichtung auch bei Abgastemperauren oberhalb der Temperaturfestigkeit der Beschichtung einzusetzen, da die gekühlte Ventiloberfläche die Temperatur der Beschichtung unterhalb der Festigkeitstemperatur hält.In a further embodiment of the present method, the ceramic high-temperature coating has a temperature resistance between 950 ° C. and 1100 ° C., preferably between 970 ° C. and 1050 ° C., and more preferably between 990 ° C. and 1020 ° C. The coating must be able to withstand the temperatures of the combustion gases, taking into account that the valve itself is cooled and the high temperature load on one side of the coating and on the other side is absorbed by the cooled valve. The high temperature coating is also cooled by the cooled valve and can therefore also withstand exhaust gas temperatures which are above the strength temperatures of the coating. This enables the High temperature coating can also be used for exhaust temperatures above the temperature resistance of the coating, since the cooled valve surface keeps the temperature of the coating below the strength temperature.

Gemäß einer weiteren Variante des Verfahrens ist die keramische Hochtemperatur-Beschichtung eine lufttrocknende keramische Hochtemperatur-Beschichtung. Das Verfahren umfasst dabei den Schritt des Lufttrocknens der keramischen Hochtemperaturbeschichtung.According to a further variant of the method, the ceramic high-temperature coating is an air-drying ceramic high-temperature coating. The method comprises the step of air drying the ceramic high-temperature coating.

Gemäß einer anderen weiteren Variante des Verfahrens ist die keramische Hochtemperatur-Beschichtung eine ofentrocknende keramische Hochtemperatur-Beschichtung. Das Verfahren umfasst dabei den Schritt des Ofentrocknens der keramischen Hochtemperaturbeschichtung.According to another further variant of the method, the ceramic high-temperature coating is an oven-drying ceramic high-temperature coating. The method comprises the step of oven drying the high-temperature ceramic coating.

In einer weiteren zusätzlichen beispielhaften Ausführungsform des Verfahrens weist die ausgehärtete keramische Hochtemperatur-Beschichtung eine Dicke von 10µm bis 50µm, bevorzugt von 15µm bis 40µm, und weiter bevorzugt von 20µm bis 30µm auf. Das Verfahren umfasst dabei das Auftragen einer Lackschicht mit einer Dicke, die nach dem Aushärten die vorstehend genannten Dicken der ausgehärteten Lackschicht ergibt.In a further additional exemplary embodiment of the method, the hardened ceramic high-temperature coating has a thickness of 10 μm to 50 μm, preferably 15 μm to 40 μm, and further preferably 20 μm to 30 μm. The method comprises the application of a lacquer layer with a thickness which, after hardening, gives the above-mentioned thicknesses of the hardened lacquer layer.

Bei einer weiteren Ausführungsform der vorliegenden Erfindung wird die keramische Hochtemperatur-Beschichtung als eine Mehrschicht-Beschichtung ausgeführt, die mindestens eine Grundierung und mindestens einen Decklack umfasst. Das Verfahren umfasst daher mindestens zweimal die Schritte des Auftragens einer keramischen Hochtemperatur-Beschichtung, zuerst als Auftragen einer Grundierung und einem Aushärten der Grundierung und einem nachfolgenden Auftragen einer keramischen Hochtemperatur-Beschichtung als Decklack.In a further embodiment of the present invention, the ceramic high-temperature coating is carried out as a multi-layer coating which comprises at least one primer and at least one topcoat. The method therefore comprises at least twice the steps of applying a ceramic high-temperature coating, first as applying a primer and curing the primer and then applying a ceramic high-temperature coating as a topcoat.

Bei einer weiteren beispielhaften Ausführung des Verfahrens ist die keramische Hochtemperatur-Beschichtung als eine Mehrschicht-Beschichtung ausgeführt, die mindestens eine Grundierung und mindestens einen Decklack umfasst. Das Verfahren umfasst dabei zumindest ein Beschichten des Ventilkopfes mit einer Grundierung, und einem anschließenden Beschichten der Grundierung mit mindestens einem Decklack. Es kann ebenfalls vorgesehen sein, die bereits aufgebrachte Grundierung vor dem Aufbringen des Decklacks zu bearbeiten, um eine gewünschte Dicke der Grundierung oder eine gewünschte Oberflächenrauigkeit einer Oberfläche der Grundierung zu erreichen. Es kann ebenfalls vorgesehen sein, dass der Decklack aufgebracht wird, bevor die Grundierung vollständig durch Trocken oder Ofentrocknen ausgehärtet ist.In a further exemplary embodiment of the method, the ceramic high-temperature coating is designed as a multi-layer coating which comprises at least one primer and at least one top coat. The method comprises at least coating the valve head with a primer and one then coat the primer with at least one top coat. It can also be provided that the already applied primer is processed before the topcoat is applied in order to achieve a desired thickness of the primer or a desired surface roughness of a surface of the primer. It can also be provided that the topcoat is applied before the primer is completely cured by drying or oven drying.

Nach dem Verfahren der Erfindung wird mindestens ein Ventilsitz des Ventils mit einer DLC-Beschichtung versehen. Der Ventilsitz ist der Teil des Ventilkopfes, der bei geschlossenem Ventil gegen den Ventilsitzring im Zylinderkopf anliegt und so den Brennraum gegenüber einem Einlasskanal oder einem Auslasskanal im Zylinderkopf abdichtet. Der Begriff "Ventilsitz" wird hier lediglich in Verbindung mit einer im Wesentlichen konischen Fläche an dem Ventilteller bzw. Ventilkopf verwendet, wenn auf die zugehörige Fläche an dem Zylinderkopf Bezug genommen wird, wird der Ausdruck "Ventilsitzring" verwendet.According to the method of the invention, at least one valve seat of the valve is provided with a DLC coating. The valve seat is the part of the valve head which, when the valve is closed, bears against the valve seat ring in the cylinder head and thus seals the combustion chamber against an inlet duct or an outlet duct in the cylinder head. The term "valve seat" is used here only in connection with an essentially conical surface on the valve plate or valve head, if reference is made to the associated surface on the cylinder head, the expression "valve seat ring" is used.

Erfindungsgemäss umfasst dieses weiter ein Beschichten eines Ventilkopfes des Ventils mit der keramischen Hochtemperatur-Beschichtung mit Ausnahme des Ventilsitzes. Der Ventilsitz des Ventilkopfes kann vorher mit einer DLC-Schicht beschichtet worden sein, wobei es ebenfalls möglich ist, diese später auf einem unbeschichteten Teil eine DLC-Schicht aufzutragen. Es kann ebenfalls vorgesehen sein, den Ventilkopf vollständig mit der keramischen Hochtemperatur-Beschichtung zu beschichten und diese dann im Bereich des Ventilsitzes wieder zu entfernen. Auch bei dieser Ausführung ist es möglich, vorher im Bereich Ventilsitzes eine DLC-Schicht aufzubringen.According to the invention, this further comprises coating a valve head of the valve with the ceramic high-temperature coating with the exception of the valve seat. The valve seat of the valve head can have been coated beforehand with a DLC layer, it also being possible to later apply this to an uncoated part of a DLC layer. It can also be provided that the valve head is completely coated with the ceramic high-temperature coating and then removed in the region of the valve seat. With this version it is also possible to apply a DLC layer beforehand in the area of the valve seat.

Die keramische Hochtemperatur-Beschichtung kann als Isolationsschicht dienen, die einen Wärmeübertrag von dem Brennraum über die Tellerfläche und bei einem Auslassventil zusätzlich von Verbrennungsgasen über den Ventilkopf auf das Ventil verringern. Die Kühlleistung des Ventils über den Ventilschaft auf den gekühlten Zylinderkopf wird durch die keramische Hochtemperatur-Beschichtung nicht beeinflusst, da der Ventilschaft nicht mit der keramischen Hochtemperatur-Beschichtung beschichtet wird. Durch einen geringeren Wärmeeintrag, und einen unveränderten Wärmeaustrag kann die Gesamttemperatur des Ventils im Betrieb gesenkt werden. Bei Ansaugventilen wird es ausreichen, lediglich die brennraumseitige Fläche des Ventiltellers zu beschichten, da die angesaugte Luft bzw. das angesaugte Gemisch eine geringe Temperatur aufweist, und somit die Rückseite des Ventils zum Kühlen des Ventilkopfes verwendet werden kann. Eine Beschichtung des Ventilkopfes auf der dem Brennraum abgewandten Seite würde hier lediglich zu einer Erhöhung der Ventiltemperatur führen.The ceramic high-temperature coating can serve as an insulation layer, which additionally reduce heat transfer from the combustion chamber via the plate surface and, in the case of an exhaust valve, from combustion gases via the valve head to the valve. The cooling performance of the valve via the valve stem on the cooled cylinder head is not affected by the ceramic high-temperature coating, since the valve stem is not coated with the ceramic high-temperature coating. By a lesser Heat input and an unchanged heat output can reduce the overall temperature of the valve during operation. With intake valves, it will be sufficient to coat only the surface of the valve plate on the combustion chamber side, since the intake air or the intake mixture is at a low temperature, and thus the rear of the valve can be used to cool the valve head. A coating of the valve head on the side facing away from the combustion chamber would only lead to an increase in the valve temperature here.

Gemäß einer weiteren Ausführung der vorliegenden Erfindung wird bei dem Verfahren die keramische Hochtemperatur-Beschichtung nur auf der Unterseite eines Ventiltellers aufgetragen. Dieses Verfahren ist insbesondere für Ansaugventile bzw. Einlass-Ventile eines Motors geeignet. Bei einer weiteren Ausführung wird lediglich der Ventilkopf, nicht jedoch die Unterseite eines Ventiltellers, mit der keramischen Hochtemperatur-Beschichtung beschichtet. Der Abgaskanal kann eine höhere Temperatur aufweisen als der Verbrennungsraum, da dieser zumindest bei dem Ansaugtakt durch die einströmende Frischluft bzw. durch das einströmende Gemisch gekühlt wird.According to a further embodiment of the present invention, the ceramic high-temperature coating is applied only to the underside of a valve plate in the method. This method is particularly suitable for intake valves or intake valves of an engine. In a further embodiment, only the valve head, but not the underside of a valve plate, is coated with the ceramic high-temperature coating. The exhaust duct can have a higher temperature than the combustion chamber, since it is cooled at least during the intake stroke by the inflowing fresh air or by the inflowing mixture.

Bei einer weiteren Ausführungsform des Verfahrens wird die keramische Hochtemperatur-Beschichtung ebenfalls auf dem Ventilschaft oder nur auf dem Ventilschaft aufgetragen.In a further embodiment of the method, the ceramic high-temperature coating is also applied to the valve stem or only to the valve stem.

Gemäß einem weiteren Aspekt der vorliegenden Erfindung wird ein Ein- oder Auslassventil bereitgestellt, das gemäß einem der vorstehend beschriebenen Verfahren hergestellt wurde, wobei ein Ventilkopf des Ventils mit einer keramischen Hochtemperatur-Beschichtung beschichtet ist. Die keramische Hochtemperatur-Beschichtung ist dabei auf eine vorbereitete Oberfläche am Ventilkopf aufgetragen, die eine bestimmte Rauigkeit aufweist. Die Oberfläche, die mit der keramischen Hochtemperatur-Beschichtung beschichtet ist, wurde dabei durch Sand-/Kugelstrahlen, ein Reinigen und/oder ein Anätzen bzw. Ätzen der zu beschichtenden Flächen vorbehandelt und weist daher eine besonders gute Adhäsion der keramischen Hochtemperatur-Beschichtung auf dem Ventilkopf auf. Es ist dabei mindestens ein Teil des Ventilkopfes beschichtet.According to a further aspect of the present invention, there is provided an inlet or outlet valve that was produced according to one of the methods described above, wherein a valve head of the valve is coated with a ceramic high-temperature coating. The ceramic high-temperature coating is applied to a prepared surface on the valve head that has a certain roughness. The surface that is coated with the ceramic high-temperature coating was pretreated by sand / shot peening, cleaning and / or etching or etching of the surfaces to be coated and therefore has a particularly good adhesion of the ceramic high-temperature coating on the Valve head open. At least part of the valve head is coated.

Die keramische Hochtemperatur-Beschichtung des Ventils kann dabei eine Temperaturfestigkeit zwischen 950°C und 1100°C, bevorzugt zwischen 970°C und 1050°C, und weiter bevorzugt zwischen 990°C und 1020°C aufweisen.The ceramic high-temperature coating of the valve can have a temperature resistance between 950 ° C and 1100 ° C, preferably between 970 ° C and 1050 ° C, and more preferably between 990 ° C and 1020 ° C.

Bei einer Ausführung des Ventils ist die keramische Hochtemperatur-Beschichtung eine luftgetrocknete keramische Hochtemperatur-Beschichtung. Dies gestattet eine einfache Trocknung ohne zusätzlichen Energieaufwand.In one version of the valve, the ceramic high-temperature coating is an air-dried ceramic high-temperature coating. This allows easy drying without additional energy expenditure.

Bei einer anderen Ausführung des Ventils ist die keramische Hochtemperatur-Beschichtung eine ofengetrocknete keramische Hochtemperatur-Beschichtung. Eine ofengetrocknete keramische Hochtemperatur-Beschichtung kann eine höhere Festigkeit aufweisen, da der Trocknungsvorgang besser gesteuert werden kann.In another version of the valve, the ceramic high-temperature coating is an oven-dried ceramic high-temperature coating. An oven-dried ceramic high-temperature coating can have a higher strength because the drying process can be better controlled.

Bei einer zusätzlichen beispielhaften Ausführung des Ventils weist die keramische Hochtemperatur-Beschichtung eine Dicke von 10µm bis 50µm, bevorzugt von 15µm bis 40µm, und weiter bevorzugt von 20µm bis 30µm auf. Die relativ dünn gehaltene keramische Hochtemperatur-Beschichtung soll einerseits eine Isolationsschicht darstellen, um den Wärmeübertrag auf dem Metallkörper des Ventils zu verringern, die Isolationswirkung soll jedoch nicht so ausgeprägt sein, dass eine Oberflächentemperatur der keramischen Hochtemperatur-Beschichtung im Betrieb eine Festigkeitstemperatur überschreiten kann, bei der die keramische Hochtemperatur-Beschichtung zerstört wird. Es soll lediglich der thermische Wiederstand erhöht werden, jedoch nicht soweit, dass die Oberfläche der keramischen Hochtemperatur-Beschichtung durch eine zu starke Erhitzung durch die Verbrennungsgase zerstört werden kann.In an additional exemplary embodiment of the valve, the ceramic high-temperature coating has a thickness of 10 μm to 50 μm, preferably of 15 μm to 40 μm, and more preferably of 20 μm to 30 μm. The relatively thin ceramic high-temperature coating should on the one hand represent an insulation layer in order to reduce the heat transfer on the metal body of the valve, but the insulation effect should not be so pronounced that a surface temperature of the ceramic high-temperature coating can exceed a strength temperature during operation which destroys the ceramic high-temperature coating. Only the thermal resistance should be increased, but not to the extent that the surface of the ceramic high-temperature coating can be destroyed by excessive heating by the combustion gases.

Bei einer anderen beispielhaften Ausführung des Ventils ist die keramische Hochtemperatur-Beschichtung als eine Mehrschicht-Beschichtung ausgeführt, die mindestens eine Grundierung und mindestens einen Decklack umfasst. Eine mehrlagige Beschichtung kann es gestatten, die Gesamteigenschaften der Beschichtung besser zu steuern. Die Grundierung kann als Haftvermittler dienen. Die Grundierung kann ebenfalls eine leicht niedrigere Festigkeitstemperatur aufweisen, da sie durch die darüber liegende keramische Hochtemperatur-Beschichtung geschützt ist und auf einer gekühlten Ventiloberfläche aufgebracht ist.In another exemplary embodiment of the valve, the ceramic high-temperature coating is designed as a multi-layer coating which comprises at least one primer and at least one top coat. A multi-layer coating can allow better control of the overall properties of the coating. The primer can serve as an adhesion promoter. The primer can also have a slightly lower strength temperature because it is covered by the ceramic High temperature coating is protected and is applied to a cooled valve surface.

Das Ventil ist bei einer weiteren Ausführungsform der vorliegenden Erfindung im Bereich des Ventilsitzes nicht mit der keramischen Hochtemperatur-Beschichtung beschichtet und kann ebenfalls im Bereich des Ventilsitzes gepanzert, mit einer anderen Beschichtung oder mit einer Nitrierung versehen sein.In a further embodiment of the present invention, the valve is not coated with the ceramic high-temperature coating in the region of the valve seat and can also be armored in the region of the valve seat, provided with another coating or with a nitriding.

Erfindungsgemäss wurde der gesamte Ventilkopf mit der keramischen Hochtemperatur-Beschichtung beschichtet, wobei der Ventilkopf im Bereich des Ventilsitzes mit einer DLC-Schicht versehen war, und die keramische Hochtemperatur-Beschichtung wurde im Bereich des Ventilsitzes in einem nachfolgenden Arbeitsschritt entfernt.According to the invention, the entire valve head was coated with the ceramic high-temperature coating, the valve head being provided with a DLC layer in the region of the valve seat, and the ceramic high-temperature coating was removed in the region of the valve seat in a subsequent step.

Die Beschichtung ist sowohl eine Schutzschicht als auch eine thermische Isolation, die den Wärmeeintrag in das Ventil verringern soll. Durch den verringerten Wärmeeintrag bei gleichbleibenden Kühlbedingungen über den Ventilschaft kann die Gesamttemperatur des Ventils gegenüber einem unbeschichteten Ventil gesenkt werdenThe coating is both a protective layer and a thermal insulation that is intended to reduce the heat input into the valve. Due to the reduced heat input with constant cooling conditions via the valve stem, the overall temperature of the valve can be reduced compared to an uncoated valve

Bei einer Ausführungsform des Ventils ist die keramische Hochtemperatur-Beschichtung nur auf der Unterseite eines Ventiltellers aufgetragen.In one embodiment of the valve, the ceramic high-temperature coating is only applied to the underside of a valve plate.

Bei einer weiteren Ausführungsform des Ventils ist die keramische Hochtemperatur-Beschichtung nur auf der Rückseite des Ventiltellers aufgetragen.In a further embodiment of the valve, the ceramic high-temperature coating is only applied to the back of the valve plate.

Bei einer zusätzlichen Ausführungsform des Ventils ist die keramische Hochtemperatur-Beschichtung auf dem Ventilschaft oder nur auf dem Ventilschaft aufgetragen.In an additional embodiment of the valve, the ceramic high-temperature coating is applied to the valve stem or only to the valve stem.

Im Folgenden wird die vorliegende Erfindung anhand von Darstellungen beispielhafter Ausführungsformen näher verdeutlicht. Die Figuren stellen lediglich schematische Darstellungen dar.

  • Figur 1 stellt eine Teilschnittansicht eines herkömmlichen innengekühlten Ventils dar.
  • Figur 2 zeigt eine Teilschnittansicht eines erfindungsgemäßen innengekühlten Ventils mit einer keramischen Hochtemperatur-Beschichtung, die auf dem gesamten Ventilkopf angeordnet ist.
  • Figur 3 ist eine teilgeschnittene Darstellung eines erfindungsgemäßen Ventils mit einer keramischen Hochtemperatur-Beschichtung, die auf der Ventiltellerfläche und einer Ventiltellerrückseite angeordnet ist.
  • Figur 4 stellt eine Teilschnittansicht eines innengekühlten Ventils dar, wobei ein Ventilsitz mit einer DLC-Schicht versehen ist, und weiter eine keramische Hochtemperatur-Beschichtung auf der Ventiltellerfläche und der Ventiltellerrückseite angeordnet ist.
  • Figur 5 zeigt eine Teilschnittansicht eines innengekühlten Ventils, wobei eine keramische Hochtemperatur-Beschichtung auf der Ventiltellerfläche aufgebracht ist.
  • Figur 6 zeigt eine Teilschnittansicht eines innengekühlten Ventils, wobei eine keramische Hochtemperatur-Beschichtung auf der Ventilteller-Rückseite aufgebracht ist.
  • Figur 7 zeigt eine Teilschnittansicht eines innengekühlten Ventils, wobei eine keramische Hochtemperatur-Beschichtung ebenfalls auf dem Ventilschaft aufgebracht ist.
The present invention is explained in more detail below on the basis of illustrations of exemplary embodiments. The figures represent only schematic representations.
  • Figure 1 is a partial sectional view of a conventional internally cooled valve.
  • Figure 2 shows a partial sectional view of an internally cooled valve according to the invention with a ceramic high-temperature coating, which is arranged on the entire valve head.
  • Figure 3 is a partially sectioned view of a valve according to the invention with a ceramic high-temperature coating, which is arranged on the valve plate surface and a valve plate back.
  • Figure 4 shows a partial sectional view of an internally cooled valve, wherein a valve seat is provided with a DLC layer, and further a ceramic high-temperature coating is arranged on the valve plate surface and the valve plate rear side.
  • Figure 5 shows a partial sectional view of an internally cooled valve, wherein a ceramic high-temperature coating is applied to the valve plate surface.
  • Figure 6 shows a partial sectional view of an internally cooled valve, wherein a ceramic high-temperature coating is applied to the back of the valve plate.
  • Figure 7 shows a partial sectional view of an internally cooled valve, wherein a ceramic high-temperature coating is also applied to the valve stem.

Sowohl in der Beschreibung als auch in den Figuren werden gleiche oder ähnliche Bezugszeichen verwendet, um auf gleiche oder ähnliche Komponenten und Elemente Bezug zu nehmen. Um unnötige Längen in der Beschreibung zu vermeiden, werden Elemente, die bereits in einer Figur beschrieben wurden, in weiteren Figuren nicht gesondert erwähnt.The same or similar reference numerals are used both in the description and in the figures to refer to the same or similar components and elements. In order to avoid unnecessary lengths in the description, elements that are have already been described in one figure, not mentioned separately in other figures.

Figur 1 stellt eine Teilschnittansicht eines herkömmlichen innengekühlten Ventils 2 dar. Ein herkömmliches innengekühltes Ventil 2 umfasst einen Ventilschaft 8 und einen Ventilkopf 6. Der Ventilkopf 8 erstreckt sich dabei im Wesentlichen bis zum Ventilschaft 8, wobei ein Abschnitt von der Länge eines Ventilhubes zwischen dem Ventilschaft 8 und dem Ventilkopf vorgesehen sein kann. Der Ventilkopf 6 weist einen verjüngten Teil und den Ventilteller 10 auf. Der Ventilteller 10 umfasst die zu einem Brennraum gerichtete Ventiltellerfläche 16, den kegelstumpfmantelförmigen Ventilsitz 20 und die Ventiltellerrückseite 18, die in einem Ansaugkanal bzw. einen Abgaskanal angeordnet ist. Das herkömmliche innengekühlte Ventil 2 weist keinerlei Beschichtungen auf. Innen ist das herkömmliche innengekühlte Ventil 2 mit einem Hohlraum versehen, in dem ein Kühlmittel 14, meist Natrium, angeordnet ist. Das Natrium transportiert Wärme von dem Ventilkopf 6 zu dem Ventilschaft 8, der in einem gekühlten Zylinderkopf eingelassen ist. Die Wärme des Natriums wird über den Ventilschaft 8 an den gekühlten Zylinderkopf abgegeben. Da sich das Natrium bzw. das Kühlmittel auf- und abbewegt, spricht man hier von einer "Shaker-Kühlung". Der Ventilschaft 8 endet in einem Ventilschaftende 32, an dem das Ventil über Keilstücke gehalten wird. Figure 1 shows a partial sectional view of a conventional internally cooled valve 2. A conventional internally cooled valve 2 comprises a valve stem 8 and a valve head 6. The valve head 8 extends essentially to the valve stem 8, a portion of the length of a valve stroke between the valve stem 8 and the valve head can be provided. The valve head 6 has a tapered part and the valve plate 10. The valve plate 10 comprises the valve plate surface 16 directed towards a combustion chamber, the frustoconical valve seat 20 and the valve plate rear side 18, which is arranged in an intake duct or an exhaust duct. The conventional internally cooled valve 2 has no coatings. The inside of the conventional internally cooled valve 2 is provided with a cavity in which a coolant 14, usually sodium, is arranged. The sodium transports heat from the valve head 6 to the valve stem 8, which is embedded in a cooled cylinder head. The heat of the sodium is released via the valve stem 8 to the cooled cylinder head. Since the sodium or the coolant moves up and down, this is called "shaker cooling". The valve stem 8 ends in a valve stem end 32, on which the valve is held by wedge pieces.

Hochtemperaturbelastete Ventilteile, insbesondere die Ventiltellerfläche 16 und die Ventilteller-Rückseite 18, werden aus austenitischen Werkstoffen oder aus Werkstoffen auf Basis von Nickel hergestellt. Bisher war es üblich, die Schäfte von hochbelasteten Ventilen durch Nitrieren oder Hartverchromen zu schützen. Inzwischen ist jedoch absehbar, dass Hartverchromen nicht mehr verwendet werden darf, da Chrom (VI), welches beim Hartverchromen prozessbedingt entsteht, ein Gefahrenstoff ist.Valve parts subject to high temperatures, in particular the valve plate surface 16 and the valve plate rear side 18, are produced from austenitic materials or from materials based on nickel. Until now, it was common to protect the stems of highly loaded valves by nitriding or hard chrome plating. In the meantime, however, it is foreseeable that hard chrome plating may no longer be used, since chromium (VI), which is produced during hard chrome plating due to the process, is a hazardous substance.

Figur 2 zeigt eine Teilschnittansicht eines erfindungsgemäßen innengekühlten Ventils 4 mit einer keramischen Hochtemperatur-Beschichtung 22, die auf dem gesamten Ventilkopf 6 angeordnet ist. Im Gegensatz zu dem Ventil der Figur 1 ist der Ventilkopf 6 insbesondere auf der Ventiltellerfläche 16, dem Ventilsitz 20 sowie der Ventilteller-Rückseite 18 mit einer keramischen Hochtemperatur-Beschichtung 22 beschichtet. Die keramische Hochtemperatur-Beschichtung 22 erreicht eine Verbesserung der Temperatur- und Korrosionsbeständigkeit der Ventile auf der Ventiltellerfäche 16 sowie der Ventilteller-Rückseite 18 im sogenannten Hohlkehlenbereich. Die Beschichtung kann die tribologischen Eigenschaften (Reibung und Verschleiß) sowie den Korrosionsschutz im Schaftbereich von Ventilen verbessern. Die Verwendung der keramischen Hochtemperatur-Beschichtung 22 kann eine Alternative zum Hartverchromen von Ventilen im Schaftbereich dienen. Figure 2 shows a partial sectional view of an internally cooled valve 4 according to the invention with a ceramic high-temperature coating 22, which is arranged on the entire valve head 6. In contrast to the valve of the Figure 1 the valve head 6 is coated in particular on the valve plate surface 16, the valve seat 20 and the valve plate rear side 18 with a ceramic high-temperature coating 22. The ceramic high-temperature coating 22 achieves an improvement in the temperature and corrosion resistance of the valves on the valve plate surface 16 and on the valve plate rear side 18 in the so-called fillet area. The coating can improve the tribological properties (friction and wear) as well as the corrosion protection in the stem area of valves. The use of the ceramic high-temperature coating 22 can serve as an alternative to the hard chrome plating of valves in the stem area.

Die keramische Hochtemperatur-Beschichtung 22 kann eine Cerakote Ceramic Beschichtung der Firma PBN (Pulverbeschichtung Nord GmbH) sein, welche eine Temperaturstabilität von 650°C, bis hin zu 1.100°C ermöglicht. Cerakote Ceramic Coatings sind temperaturstabil bis über 1.100°C und zeichnen sich durch eine harte und abriebfeste Oberfläche aus. Diese Beschichtungen ermöglichen eine Temperaturstabilität bis über 1.100°C, einen hervorragenden Korrosionsschutz sowie eine ausgezeichnete thermische Isolierung. Diese Beschichtung kann ebenfalls an dem Ventilkopf 6 sowie dem Ventilschaft 8 angewendet werden.The ceramic high-temperature coating 22 can be a Cerakote Ceramic coating from PBN (Powder Coating North GmbH), which enables a temperature stability of 650 ° C up to 1,100 ° C. Cerakote Ceramic Coatings are temperature stable up to over 1,100 ° C and are characterized by a hard and abrasion-resistant surface. These coatings enable temperature stability up to over 1,100 ° C, excellent corrosion protection and excellent thermal insulation. This coating can also be applied to the valve head 6 and the valve stem 8.

Keramikbasierte Hochtemperaturlacke als flüssiges Beschichtungsmaterial können auf einfache Weise eine thermische Sperrschicht bzw. Isolation und einen Korrosionsschutz erzeugen. Der Lack kann nach einer Vorbehandlung der zu beschichtenden Ventile durch Strahlen, Reinigen oder Anätzen, beispielsweise durch eine Farbspritzpistole, aufgetragen werden. Es ist ebenfalls möglich, die Ventile in einen Lack einzutauchen. Die Schichtstärke soll zwischen 10 und 50µm betragen. Der Lack kann in einem Ofen bei Temperaturen unter 200°C getrocknet bzw. eingebrannt werden oder in bis zu 5 Tagen an Luft trocknen. Durch die Beschichtung kann es möglich werden, anstelle von teuren Substratwerkstoffen (z.B. auf Nickel-Basis) preisgünstige Materialien für den Ventilkörper zu verwenden.Ceramic-based high-temperature lacquers as a liquid coating material can easily generate a thermal barrier layer or insulation and corrosion protection. The paint can be applied after pretreatment of the valves to be coated by blasting, cleaning or etching, for example using a paint spray gun. It is also possible to immerse the valves in a paint. The layer thickness should be between 10 and 50 µm. The paint can be dried or baked in an oven at temperatures below 200 ° C or air-dried in up to 5 days. The coating can make it possible to use inexpensive materials for the valve body instead of expensive substrate materials (e.g. nickel-based).

Die keramische Hochtemperatur-Beschichtung 22 weist eine sehr hohe Abriebfestigkeit auf, wobei sich ablösende Partikel eine Größe im Mikrometerbereich aufweisen, sodass keinerlei Beschädigungen von Turboladern durch abgelöste Partikel erwartet werden müssen. Die keramische Hochtemperatur-Beschichtung 22 weist eine sehr hohe Härte und damit eine sehr hohe Kratzfestigkeit auf. Die keramische Hochtemperatur-Beschichtung 22 ist chemikalienbeständig und kann eine sehr hohe Oberflächenqualität erreichen. Es sind zum Auftrag der Beschichtung keine komplexen Beschichtungsanlagen erforderlich.The ceramic high-temperature coating 22 has a very high abrasion resistance, with detachable particles having a size in the micrometer range, so that no damage to turbochargers from detached particles must be expected. The ceramic high-temperature coating 22 has a very high hardness and thus a very high scratch resistance. The ceramic high temperature coating 22 is chemical resistant and can achieve a very high surface quality. No complex coating systems are required to apply the coating.

Figur 3 ist eine teilgeschnittene Darstellung eines erfindungsgemäßen Ventils 4 mit einer keramischen Hochtemperatur-Beschichtung 22, die auf der Ventiltellerfläche 16 und einer Ventiltellerrückseite 18 angeordnet ist. Figur 3 zeigt ein Ventil 4, bei dem der Schaft als Vollschaft 34 ausgeführt ist. Es ist bei allen Ausführungen ebenfalls möglich, anstelle von innengekühlten Ventilen Ventile mit einem Vollschaft 34 zu verwenden, wobei der Vollschaft hier nur gewählt wurde, um die Beschichtung deutlicher hervorzuheben. Die keramische Hochtemperatur-Beschichtung 22 ist bei Figur 3 sowohl auf der Ventiltellerfläche 16 als auch auf der Ventilteller-Rückseite 18 aufgetragen. Der Bereich des Ventilsitzes 20 wurde nicht beschichtet, da die Festigkeit der keramischen Hochtemperatur-Beschichtung 22 gerade der starken Wechselbelastung am Ventilsitz 20 nicht gewachsen sein könnte. Der Ventilsitz 20 kann wie im Falle herkömmlicher Ventile gepanzert ausgeführt sein. Figure 3 is a partially sectioned illustration of a valve 4 according to the invention with a ceramic high-temperature coating 22, which is arranged on the valve plate surface 16 and a valve plate rear side 18. Figure 3 shows a valve 4, in which the shaft is designed as a full shaft 34. In all versions it is also possible to use valves with a full stem 34 instead of internally cooled valves, the full stem being chosen here only to emphasize the coating more clearly. The ceramic high temperature coating 22 is at Figure 3 applied both on the valve plate surface 16 and on the valve plate back 18. The area of the valve seat 20 was not coated because the strength of the ceramic high-temperature coating 22 could not be able to cope with the strong alternating load on the valve seat 20. The valve seat 20 can be armored, as in the case of conventional valves.

Figur 4 stellt eine Teilschnittansicht eines erfindungsgemässen innengekühlten Ventils 4 dar, wobei ein Ventilsitz 20 mit einer DLC-Schicht 30 versehen ist und weiter eine keramische Hochtemperatur-Beschichtung 22 auf der Ventiltellerfläche und der Ventiltellerrückseite angeordnet ist. DLC steht für Diamond Like Carbon, einer Beschichtung mit einigen Eigenschaften von Diamant. Hier ist nur der Ventilsitz 20 mit der DLC-Schicht versehen. Diese Ausführung kann den höheren Belastungen, insbesondere den Belastungen des Ventilsitzes, länger standhalten. Figure 4 FIG. 4 shows a partial sectional view of an internally cooled valve 4 according to the invention, a valve seat 20 being provided with a DLC layer 30 and a ceramic high-temperature coating 22 being arranged on the valve plate surface and on the rear side of the valve plate. DLC stands for Diamond Like Carbon, a coating with some properties of diamond. Here only the valve seat 20 is provided with the DLC layer. This version can withstand the higher loads, especially the loads on the valve seat, for longer.

Figur 5 zeigt eine Teilschnittansicht eines innengekühlten Ventils 4, wobei eine keramische Hochtemperatur-Beschichtung 22 nur auf der Ventiltellerfläche 16 aufgebracht ist. Ein derartiges Ventil eignet sich insbesondere für Einlassventile da die thermische Belastung an der Ventilteller-Rückseite 18 viel geringer ist als im Falle der Abgas- bzw. Auslassventile. Figure 5 shows a partial sectional view of an internally cooled valve 4, wherein a ceramic high-temperature coating 22 is only applied to the valve plate surface 16. Such a valve is particularly suitable for intake valves since the thermal load on the back of the valve plate 18 is much lower than in the case of the exhaust gas or exhaust valves.

Figur 6 zeigt eine Teilschnittansicht eines innengekühlten Ventils 5, wobei eine keramische Hochtemperatur-Beschichtung 22 auf der Ventilteller-Rückseite 18 aufgebracht ist. Hier wird davon ausgegangen, dass die thermische Belastung der Ventilteller-Rückseite höher ist als die der Ventiltellerfläche 16, da die Ventiltellerfläche 16 zumindest beim Ansaugtakt durch ein einströmendes Gemisch gekühlt wird, während der Abgaskanal immer nur mit den heißen Verbrennungsgasen in Kontakt steht. Figure 6 shows a partial sectional view of an internally cooled valve 5, a ceramic high-temperature coating 22 being applied to the back of the valve plate 18. Here it is assumed that the thermal load on the back of the valve plate is higher than that of the valve plate surface 16, since the valve plate surface 16 is cooled at least during the intake stroke by an inflowing mixture, while the exhaust duct is only in contact with the hot combustion gases.

Figur 7 zeigt eine Teilschnittansicht des innengekühlten Ventils 4 von Figur 4, wobei eine keramische Hochtemperatur-Beschichtung 22 ebenfalls auf dem Ventilschaft aufgebracht ist. Es ist ebenfalls möglich, nur den Ventilschaft 8 mit der keramischen Hochtemperatur-Beschichtung 22 zu versehen. In diesem Fall dient die keramische Hochtemperatur-Beschichtung 22 hauptsächlich dazu, den Abrieb gegenüber den Ventilführungen zu verringern, was insbesondere bei Motoren mit geringer Leistung möglich ist. Der Nachteil der Isolationswirkung der keramischen Hochtemperatur-Beschichtung 22 am Schaft fällt jedoch nicht so besonders aus, da der geringe Durchmesser des Ventilschafts 8 im Vergleich zu dem relativ geringen zu kühlenden Volumen ein hervorragendes Verhältnis von Oberfläche zu Volumen ergibt, was insgesamt trotz einer Isolationsschicht nur eine geringe Verschlechterung der Kühlung erwarten lässt. Figure 7 shows a partial sectional view of the internally cooled valve 4 of FIG Figure 4 , wherein a ceramic high temperature coating 22 is also applied to the valve stem. It is also possible to provide only the valve stem 8 with the ceramic high-temperature coating 22. In this case, the ceramic high-temperature coating 22 mainly serves to reduce the abrasion compared to the valve guides, which is possible in particular in engines with low output. The disadvantage of the insulating effect of the ceramic high-temperature coating 22 on the stem, however, is not particularly pronounced, since the small diameter of the valve stem 8, compared to the relatively small volume to be cooled, results in an excellent surface-to-volume ratio, which in spite of an insulation layer only a slight deterioration in cooling can be expected.

Es ist vorgesehen, auch Kombinationen von einzelnen Beschichtungsarten als offenbart anzusehen, insbesondere alle Kombinationen der Beschichtungen der Figuren 5, 6 und 7 mit der DLC-Schicht an dem Ventilsitz gemäß Figur 4.It is envisaged that combinations of individual types of coating are also considered to be disclosed, in particular all combinations of the coatings of the Figures 5, 6 and 7 with the DLC layer according to the valve seat Figure 4 .

BezugszeichenlisteReference list

22nd
innengekühltes Ventil gemäß des Standes der Technikinternally cooled valve according to the prior art
44th
erfindungsgemäßes Ein- oder Auslassventilinlet or outlet valve according to the invention
66
VentilkopfValve head
88th
VentilschaftValve stem
1010th
VentiltellerValve plate
1212th
Hohlraumcavity
1414
KühlmittelCoolant
1616
VentiltellerflächeValve disc area
1818th
Ventilteller-RückseiteValve disc back
2020th
VentilsitzValve seat
2222
keramische Hochtemperatur-Beschichtung.ceramic high temperature coating.
2424th
Mehrschicht-BeschichtungMulti-layer coating
2626
Grundierungprimer
2828
DecklackTop coat
3030th
DLC-BeschichtungDLC coating
3232
SchaftendeShaft end
3434
VollschaftFull stock

Claims (8)

  1. Method for coating a valve head (6) of an inlet and/or outlet valve (4), comprising coating at least one valve seat of the valve (4) with a DLC coating (30),
    preparing a surface, which is to be coated, of the valve (4) for a coating with a ceramic high-temperature coating (22), and
    coating the prepared surface with a ceramic high-temperature coating (22) by means of varnishing, wherein the ceramic high-temperature coating (22) is applied to the entire valve head, and
    removing the ceramic high-temperature coating (22) from the DLC coating (30) on the valve seat,
    wherein the method further comprises a curing of the coating (22) after the application in the head area.
  2. Method according to claim 1, wherein the preparing of the surfaces to be coated of the valve (4) comprises a sand/shot blasting, a cleaning and/or a slight etching of the surfaces to be coated.
  3. Method according to claim 1 or 2, wherein the ceramic high-temperature coating (22) has a high-temperature stability between 950°C and 1100°C, preferred between 970°C and 1050°C, and further preferred between 990°C and 1020°C.
  4. Method according to claim 1, 2 or 3, wherein the ceramic high-temperature coating (22) is an air-drying ceramic high-temperature coating (22).
  5. Method according to claim 1, 2 or 3, wherein the ceramic high-temperature coating (22) is an oven-drying ceramic high-temperature coating (22).
  6. Method according to one of the preceding claims, wherein the cured ceramic high-temperature coating (22) has a thickness of 10µm to 50µm, preferred of 15µm to 40µm, and further preferred of 20µm to 30µm.
  7. Method according to one of the preceding claims, wherein the ceramic high-temperature coating (22) is embodied as a multi-layer coating (24), which comprises at least one primer (26) and at least one top coat (28).
  8. Method according to one of the preceding claims, wherein the ceramic high-temperature coating (22) is applied on a valve shaft (8) or only on a valve shaft.
EP17711607.6A 2016-06-27 2017-03-14 Coated valve for combustion engines Active EP3433396B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL17711607T PL3433396T3 (en) 2016-06-27 2017-03-14 Coated valve for combustion engines

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016111755.2A DE102016111755B4 (en) 2016-06-27 2016-06-27 Method for coating a valve head of an inlet or outlet valve and such an inlet or outlet valve
PCT/EP2017/055930 WO2018001578A1 (en) 2016-06-27 2017-03-14 Valve for internal combustion engines having a coating

Publications (2)

Publication Number Publication Date
EP3433396A1 EP3433396A1 (en) 2019-01-30
EP3433396B1 true EP3433396B1 (en) 2020-04-15

Family

ID=58358573

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17711607.6A Active EP3433396B1 (en) 2016-06-27 2017-03-14 Coated valve for combustion engines

Country Status (5)

Country Link
US (1) US11525376B2 (en)
EP (1) EP3433396B1 (en)
DE (1) DE102016111755B4 (en)
PL (1) PL3433396T3 (en)
WO (1) WO2018001578A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020105539B3 (en) * 2020-03-02 2021-05-20 Federal-Mogul Valvetrain Gmbh Method for armoring a valve seat of a gas exchange valve for an internal combustion engine and valve

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2568975A (en) * 2017-10-30 2019-06-05 Eaton Srl Poppet valve

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009042545A1 (en) * 2008-10-01 2010-04-08 AISAN KOGYO K.K., Obu-shi engine valves

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2856232A1 (en) * 1978-12-27 1980-07-17 Teves Thompson Gmbh Mushroom valve for exhaust gas turbocharger - has hard metal seat on base covered with corrosion and temp.-resistant layer
DE4303135C2 (en) * 1993-02-04 1997-06-05 Mtu Muenchen Gmbh Thermal insulation layer made of ceramic on metal components and process for their production
US5543029A (en) * 1994-04-29 1996-08-06 Fuji Oozx Inc. Properties of the surface of a titanium alloy engine valve
DE19647099A1 (en) * 1996-11-14 1998-05-28 Atag Kitchen Group Bv Increasing wear resistance especially of gas-powered engine valve
JP2002038912A (en) * 1999-12-09 2002-02-06 Sumitomo Electric Ind Ltd Opening/closing mechanism of valve for internal combustion engine
JP2002083712A (en) * 1999-12-09 2002-03-22 Sumitomo Electric Ind Ltd Electromagnetic actuator and valve opening and closing mechanism for internal combustion engine
JP4418571B2 (en) * 2000-04-11 2010-02-17 シーケーディ株式会社 High temperature gas control valve
US6904935B2 (en) * 2002-12-18 2005-06-14 Masco Corporation Of Indiana Valve component with multiple surface layers
DE102004033476A1 (en) * 2004-07-10 2006-02-23 Nanogate Coating Systems Gmbh Metallic valve
JP2006207490A (en) * 2005-01-28 2006-08-10 Aisan Ind Co Ltd Engine valve and surface treatment method for engine valve
US8006715B2 (en) * 2007-09-20 2011-08-30 Caterpillar Inc. Valve with thin-film coating
US20090255506A1 (en) * 2008-04-14 2009-10-15 Walker S Paul Rotary internal combustion engine
JP2010261473A (en) * 2009-04-30 2010-11-18 Yamaha Motor Co Ltd Sliding component for internal combustion engine, internal combustion engine, transporter, and method for producing the sliding component for internal combustion engine
DE102010052971A1 (en) 2010-11-30 2012-05-31 Amg Coating Technologies Gmbh Workpiece with Si-DLC coating and process for the production of coatings
GB2495314A (en) * 2011-10-06 2013-04-10 Rcv Engines Ltd A rotary valve internal combustion engine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009042545A1 (en) * 2008-10-01 2010-04-08 AISAN KOGYO K.K., Obu-shi engine valves

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020105539B3 (en) * 2020-03-02 2021-05-20 Federal-Mogul Valvetrain Gmbh Method for armoring a valve seat of a gas exchange valve for an internal combustion engine and valve

Also Published As

Publication number Publication date
DE102016111755B4 (en) 2018-05-24
EP3433396A1 (en) 2019-01-30
DE102016111755A1 (en) 2017-12-28
PL3433396T3 (en) 2020-07-27
US20200318504A1 (en) 2020-10-08
WO2018001578A1 (en) 2018-01-04
US11525376B2 (en) 2022-12-13

Similar Documents

Publication Publication Date Title
EP2905455B1 (en) Method for coating a bore and cylinder block of an internal combustion engine
DE60005416T2 (en) Thermal spray coating for valve seats and valve slide
DE102010049398A1 (en) Wear and oxidation resistant turbine blade
EP3030528B1 (en) Enamel powder, metal component having a surface portion provided with an enamel coating and method for producing such a metal component
EP1848839B1 (en) Protective layer against hot gas corrosion in the combustion chamber of an internal combustion engine
EP3433396B1 (en) Coated valve for combustion engines
DE69818769T2 (en) Multi-layer components of a combustion device close to the final dimensions, according to the vacuum plasma spraying process and process for its production
DE102007050141A1 (en) Wear-resistant coating
DE3307749A1 (en) COMPONENT WITH A COMPOSITE MATERIAL COVER AND METHOD FOR APPLYING THE COATING
EP3601629B1 (en) Piston ring with shot-peened running-in layer and method for the production thereof
DE10337094A1 (en) Inlet lining for gas turbines and method for producing the same
DE102015101364A1 (en) REDUCING WEAR IN A LOAD PRESSURE CONTROL VALVE ASSEMBLY OF A TURBOCHARGER
DE102006057839A1 (en) Cylinder for a combustion engine comprises a tapered section formed as a material coating applied on the running surface of the cylinder in the region above an upper annular mirror point
DE2856232A1 (en) Mushroom valve for exhaust gas turbocharger - has hard metal seat on base covered with corrosion and temp.-resistant layer
EP2215334B1 (en) Intake or discharge valve for a combustion engine, and method for the production thereof
DE102012113225A1 (en) Combustion chamber coating for engines
DE102019202031A1 (en) Bearing component
DE102014202135B4 (en) Method for coating a bore, cylinder lining and cylinder block of an internal combustion engine
DE10332938B4 (en) Thermally loaded component of a gas turbine
DE102015212305A1 (en) Impeller housing for an exhaust gas turbocharger with a valve seat ring having a bypass valve and exhaust gas turbocharger and method for producing a valve seat ring
DE3638807A1 (en) Cast iron exhaust manifold for cylinder internal combustion engines
DE202005015206U1 (en) Covering mask for plasma coating cylinder bores of a crankcase or I.C. engines comprises a pressure part in a hole with a thread and openings for a wear ring made from sheet steel strips whose ends are welded together
DE112017005103B4 (en) THERMAL INSULATION LAYER, TURBINE ELEMENT, AND THERMAL INSULATION PROCESS
DE102007026746A1 (en) High-speed flame spray powder useful for high-temperature stable coating, consists of zirconium oxide and a binding agent made of a metal differ from zirconium
CH648358A5 (en) Process for producing a protective layer, resistant to corrosion by hot gas, on metal components

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20181008

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20190904

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200103

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017004756

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1257374

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200515

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200415

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200817

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200716

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200815

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200715

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200715

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017004756

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

26N No opposition filed

Effective date: 20210118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210314

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210314

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210314

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210314

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230222

Year of fee payment: 7

Ref country code: CZ

Payment date: 20230224

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1257374

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220314

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230301

Year of fee payment: 7

Ref country code: PL

Payment date: 20230222

Year of fee payment: 7

Ref country code: IT

Payment date: 20230221

Year of fee payment: 7

Ref country code: DE

Payment date: 20230221

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170314

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220314