EP3430679B1 - Protective antenna cover for vehicles - Google Patents

Protective antenna cover for vehicles Download PDF

Info

Publication number
EP3430679B1
EP3430679B1 EP17720805.5A EP17720805A EP3430679B1 EP 3430679 B1 EP3430679 B1 EP 3430679B1 EP 17720805 A EP17720805 A EP 17720805A EP 3430679 B1 EP3430679 B1 EP 3430679B1
Authority
EP
European Patent Office
Prior art keywords
antenna
protective
antenna cover
electrically conductive
accordance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17720805.5A
Other languages
German (de)
French (fr)
Other versions
EP3430679A1 (en
Inventor
Stefan Lindenmeier
Heinz Lindenmeier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuba Automotive Electronics GmbH
Original Assignee
Fuba Automotive Electronics GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuba Automotive Electronics GmbH filed Critical Fuba Automotive Electronics GmbH
Publication of EP3430679A1 publication Critical patent/EP3430679A1/en
Application granted granted Critical
Publication of EP3430679B1 publication Critical patent/EP3430679B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • H01Q1/325Adaptation for use in or on road or rail vehicles characterised by the location of the antenna on the vehicle
    • H01Q1/3275Adaptation for use in or on road or rail vehicles characterised by the location of the antenna on the vehicle mounted on a horizontal surface of the vehicle, e.g. on roof, hood, trunk
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/40Radiating elements coated with or embedded in protective material
    • H01Q1/405Radome integrated radiating elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop

Definitions

  • the invention relates to a shell-shaped antenna protection hood (ESD hood) designed as a ring line radiator, in particular made of dielectric plastic, for the reception of circularly polarized satellite radio signals.
  • ESD hood shell-shaped antenna protection hood
  • the signals are emitted from different satellites with an electromagnetic wave that is circularly polarized in one direction. Similar satellite broadcast systems are currently being planned. Accordingly, circularly polarized antennas in the corresponding direction of rotation are used for reception.
  • the satellites of the Global Positioning System (GPS) also emit circularly polarized waves in one direction at a frequency of around 1575 MHz, so that the antenna shapes mentioned can also be designed for this service.
  • GPS Global Positioning System
  • antennas are preferably used on the vehicle roof.
  • the metallic vehicle roof often serves as an extended electrically conductive base for such antennas.
  • an antenna for receiving circularly polarized satellite radio signals is accommodated under a dish-shaped antenna protection hood made of dielectric plastic.
  • the shell opening side is covered with an electrically conductive base plate that is mechanically connected to the antenna protective hood and can be positioned on the outer skin of a motor vehicle in an essentially horizontally oriented manner.
  • Such a ring line radiator is known from DE 10 2009 040 910 and in Fig. 1 presented as prior art.
  • the ring line radiator shown is cut from sheet metal and then bent into the shape shown.
  • the arrangement of such an antenna under a bowl-shaped antenna protection hood made of plastic material is known from DE 10 2013 005 001 .
  • the bowl-shaped antenna protection hood serves to protect the antenna from moisture as well as from electrostatic discharge (ESD protection).
  • ESD protection electrostatic discharge
  • the satellite antenna described there is designed in the shape of a ring and is attached to the base plate which closes the opening of the protective antenna cover.
  • a similar type of fastening on the base plate is common when using patch antennas as circularly polarized satellite antennas.
  • the arrangement of a vehicle antenna on the surface of an antenna hood is known.
  • the EP 2 424 036 A2 shows a further known loop antenna for receiving circularly polarized satellite radio signals.
  • the known satellite antenna shown comprises a ring line radiator 1 formed by a closed ring line 3, which is arranged in particular at a distance h ⁇ / 10 and running parallel to a conductive base plate 6, with a ring line radiator 1 distributed around the circumference of the ring line radiator 1 and connected to the conductive base plate 6 extending, linear, substantially vertical radiators 4a-4d.
  • at least one of the linear radiators is connected at its lower end via a capacitance 5a-5c to the electrically conductive base plate 6 and another essentially vertical radiator 4d is connected to an antenna connection 5e via a capacitance 5d.
  • the present invention is therefore associated with the task of designing an antenna for receiving circularly polarized satellite radio signals which, with little economic outlay, enables simpler implementation on the vehicle with high functional reliability.
  • the antenna protective hood can be positioned over an electrically conductive base plate that is mechanically connected to it, covers the opening of the antenna protective hood and is to be positioned on an outer skin of a motor vehicle in an essentially horizontally oriented manner.
  • the opening of the antenna protective hood can also be closed with an in particular dielectric film or plate, which is in particular positioned in the reference plane.
  • the antenna protection hood can be provided with at least one ring line radiator, formed by a closed ring line running parallel to the conductive base plate at a distance h, with linear, substantially vertical radiators distributed around the circumference of the ring line and running towards the conductive base plate.
  • a linear radiator or a vertical radiator is understood according to the invention to be a linear radiator connected to the ring line, which does not necessarily extend at an angle of 90 ° from the plane of the ring line. Rather, the vertical radiators according to the invention can also extend at an angle different from 90 ° in the direction of the electrically conductive base plate or in the direction of the reference plane formed by the opening of the protective antenna hood.
  • a linear radiator according to the invention also does not necessarily have to have the shape of a straight line.
  • linear radiator is seen according to the invention as a distinction to the ring radiator, which forms a closed (round or angular) ring shape.
  • the linear radiators according to the invention extend away from the ring line in the direction of the opening of the protective antenna hood. It is therefore understood that the linear Radiators can also be curved if the antenna protective hood has, for example, a dome-shaped design.
  • the antenna protection hood can in principle be designed as desired, for example shell-shaped, dome-shaped or pyramid-shaped or as a combination of these shapes.
  • the antenna protective hood has partial surfaces on its inside which are coated in an electrically conductive manner and whose shape is adapted to the function of the components of the ring line radiator.
  • At least one of the linear radiators can be capacitively connected at its lower end to the electrically conductive base plate via a capacitance and another linear radiator can be capacitively connected to an antenna connection via a capacitance.
  • a particular advantage of the invention is given by the fact that the dimensional accuracy can easily be maintained due to the form of the antenna protective hood 1a pressed in plastic.
  • Modern plastics are long-term stable in their properties even under extreme weather conditions.
  • the conductive applied with modern laser technologies or imprinting techniques on the inner surfaces of the corresponding pre-formed, shell-shaped antenna protection hood 1a Surfaces therefore have constant electrical properties over the long term.
  • Laser or printing techniques have already proven suitable for mass production.
  • the electrically conductive layer can be imprinted, for example, by a pressure pen for the direct application of the conductive layer or, for example, by a laser beam. The tip of the pressure pen or the diameter of the laser beam determines the fine grain of the print and thus the fineness of the structures to be designed.
  • the inner surface of the antenna protection hood can be covered over a large area with an electrically conductive layer and above it with a laser-sensitive layer, which cures when exposed to laser light in such a way that the electrically conductive layer underneath is retained and the unexposed layer in a subsequent etching process Places of the conductive layer are removed.
  • the necessary firm form fit between the antenna protective hood 1a and the conductive base surface 6 can always be established.
  • the complexity in the production of known ring line radiators 1 cut from sheet metal, then bent, correctly mounted and correctly mounted on the conductive base surface 6 is extremely reduced in the case of a ring line radiator according to the invention.
  • the capacitances 5a, 5b, 5c, 5d can each be formed in pairs opposite one another by a flat electrode 5a, 5b, 5c, 5d and a flat counter-electrode parallel thereto.
  • a flat electrode 5d which is connected to the lower end of the relevant, essentially vertical radiator 4d, is applied as an electrically conductive flat structure on an expression of the inner surface of the protective antenna hood 1 running parallel at a distance 11 from the conductive base plate 6.
  • the capacitance value of the capacities is determined by the distance 11.
  • the coating of the correspondingly shaped inside of the protective antenna hood 1a can be done extremely time-effectively and the production of the satellite antenna by attaching the protective antenna hood 1a to the electrically conductive base 6 can be done in a few simple steps. It is precisely here that a great advantage of the present invention becomes apparent.
  • a flat counter-electrode 5e electrically insulated from this is formed, which is connected to the antenna connection 5.
  • the edge line of the opening of the bowl-shaped antenna protection hood 1a and the conductive base surface 6 run in a plane which is used as reference plane 16 for the following description in a horizontal position ( Fig. 4 ) is defined.
  • the antenna protective hood 1 a thus extends above this reference plane 16.
  • all surface parts lying inside the shell-shaped antenna protective hood 1 and all surface parts lying on the outer surface of the dish-shaped antenna protective hood 1 can assume an angle of no more than 89.5 ° as a draft angle to the horizontal reference plane 16.
  • All of the surfaces to be coated in the interior of the shell-shaped antenna protection hood can have a so-called processing direction 17 Take a coating angle 19 of at least 5 ° to ensure a sharply contoured coating.
  • the electrically conductive coated surfaces of horizontal parts of the ring line radiator, and optionally also the capacitance electrodes can each lie parallel to the reference plane 16 and essentially perpendicular to the processing direction 17.
  • the surfaces of the essentially vertical radiators that are to be coated in an electrically conductive manner can assume a coating angle 19 of at least 5 °, in particular more than 45 °, with respect to the machining direction 17, in order to ensure a sharply contoured coating.
  • the dish-shaped antenna protection hood 1a can have the shape of a stepped pyramid hollowed out from below, the lower side walls of which rest on the electrically conductive base area, the hood parallel to this base area having two substantially horizontal partial areas located above it in the form of a first circumferential step and one above it has lying, substantially flat roof surface.
  • four capacitance electrodes can be located on the underside of a horizontal partial surface of a circumferential step, each in four corners.
  • the ring line 3 can be located on the underside of an upper roof surface, in particular following the contour of this roof surface.
  • the four capacitance electrodes 5a, 5b, 5c, 5d can each be connected to an overlying corner of the ring line 3 via an essentially vertical radiator 4, 4a-d.
  • the particularly shell-shaped antenna protection hood 1a can be constructed in the form of a truncated pyramid hollowed out from below, which comprises four side walls and a roof surface, these side walls resting on the electrically conductive base surface and the ring line 3 being on the underside of the Roof area is located in the course of the contour of this roof area following.
  • the ring line 3 can be connected at each of its four corners to an essentially vertical radiator 4, 4a-d, which, starting from the relevant corner, leads along the inner edge between side walls adjacent to the corner, until it ends at a distance 11 from the base 6.
  • the vertical radiators 4, 4a-d can each be connected at a distance 11 from the base area with a capacitance electrode 5a, 5b, 5c, 5d, which is embodied by embossing at the respective corner in the form of a horizontal area running at a distance 11 parallel to the base area 6 which is created by grading the inside of the side walls.
  • the surfaces to be coated in an electrically conductive manner can be constructed in the form of electrically conductive grid structures, the mesh size of which is, in particular, essentially less than 1/8 of the wavelength.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Details Of Aerials (AREA)

Description

Die Erfindung betrifft eine als Ringleitungsstrahler ausgebildete, beispielsweise schalenförmige Antennenschutzhaube (ESD-Haube), insbesondere aus dielektrischem Kunststoff, für den Empfang zirkular polarisierter Satellitenfunksignale.The invention relates to a shell-shaped antenna protection hood (ESD hood) designed as a ring line radiator, in particular made of dielectric plastic, for the reception of circularly polarized satellite radio signals.

Ein solcher Empfang geschieht im Beispiel des SDARS-Satellitenrundfunks bei einer Frequenz von circa 2,33 GHz mit der Freiraum-Wellenlänge λ = 12,8 cm in zwei benachbarten Frequenzbändern jeweils mit einer Bandbreite von 4 MHz mit einem Abstand der Mittenfrequenzen von 8 MHz. Die Signale werden von unterschiedlichen Satelliten mit einer in einer Richtung zirkular polarisierten elektromagnetischen Welle abgestrahlt. Ähnliche Satelliten-Rundfunksysteme befinden sich zurzeit in der Planung. Demzufolge werden zum Empfang zirkular polarisierte Antennen in der entsprechenden Drehrichtung verwendet. Die Satelliten des Global Positioning System (GPS) strahlen bei der Frequenz von etwa 1575 MHz ebenfalls in einer Richtung zirkular polarisierte Wellen aus, so dass die genannten Antennenformen grundsätzlich u.a. auch für diesen Dienst gestaltet werden können.In the example of SDARS satellite broadcasting, such reception occurs at a frequency of approximately 2.33 GHz with the free space wavelength λ = 12.8 cm in two adjacent frequency bands, each with a bandwidth of 4 MHz with a spacing of the center frequencies of 8 MHz. The signals are emitted from different satellites with an electromagnetic wave that is circularly polarized in one direction. Similar satellite broadcast systems are currently being planned. Accordingly, circularly polarized antennas in the corresponding direction of rotation are used for reception. The satellites of the Global Positioning System (GPS) also emit circularly polarized waves in one direction at a frequency of around 1575 MHz, so that the antenna shapes mentioned can also be designed for this service.

Für den mobilen Empfang von zirkular polarisierten Satellitensignalen der Satelliten-Rundfunkdienste SDARS bzw. XM oder z.B. dem Navigationssystem GPS auf Fahrzeugen werden solche Antennen bevorzugt auf dem Fahrzeugdach eingesetzt. Häufig dient dabei das metallische Fahrzeugdach als erweiterte elektrisch leitende Grundfläche für derartige Antennen. Ebenfalls ist es vorgesehen, eine Antenne für den Empfang zirkular polarisierter Satellitenfunksignale unter einer schalenförmigen Antennenschutzhaube aus dielektrischem Kunststoff unterzubringen. Hierbei ist die Schalen-Öffnungsseite mit einer mit der Antennenschutzhaube mechanisch verbundenen elektrisch leitenden Grundplatte abgedeckt, welche auf der Außenhaut eines Kraftfahrzeugs im Wesentlichen horizontal orientiert positionierbar ist.For mobile reception of circularly polarized satellite signals from the satellite broadcasting services SDARS or XM or e.g. the GPS navigation system on vehicles, such antennas are preferably used on the vehicle roof. The metallic vehicle roof often serves as an extended electrically conductive base for such antennas. There is also provision for an antenna for receiving circularly polarized satellite radio signals to be accommodated under a dish-shaped antenna protection hood made of dielectric plastic. Here, the shell opening side is covered with an electrically conductive base plate that is mechanically connected to the antenna protective hood and can be positioned on the outer skin of a motor vehicle in an essentially horizontally oriented manner.

Eine derartiger Ringleitungsstrahler ist bekannt aus der DE 10 2009 040 910 und in Fig. 1 als Stand der Technik dargestellt. Der dargestellte Ringleitungsstrahler ist aus Blech geschnitten und anschließend durch Biegung in die dargestellte Form gebracht. Die Anordnung einer derartigen Antenne unter einer schalenförmigen Antennenschutzhaube aus Plastikmaterial ist bekannt aus der DE 10 2013 005 001 . Die schalenförmige Antennenschutzhaube dient sowohl als Schutz der Antenne vor Feuchtigkeit als auch vor elektrostatischer Entladung (ESD-Schutz). Die dort beschriebene Satellitenantenne ist ringförmig gestaltet und auf der Bodenplatte, welche die Öffnung der Antennenschutzhaube abschließt, befestigt. Eine ähnliche Art der Befestigung auf der Bodenplatte ist bei der Verwendung von Patchantennen als zirkular polarisierte Satellitenantennen üblich. Des Weiteren ist aus der WO 2010/114336 A2 die Anordnung einer Fahrzeugantenne auf der Oberfläche einer Antennenhaube bekannt. Die EP 2 424 036 A2 zeigt eine weitere bekannte Ringleitungsantenne für den Empfang zirkular polarisierter Satellitenfunksignale.Such a ring line radiator is known from DE 10 2009 040 910 and in Fig. 1 presented as prior art. The ring line radiator shown is cut from sheet metal and then bent into the shape shown. The arrangement of such an antenna under a bowl-shaped antenna protection hood made of plastic material is known from DE 10 2013 005 001 . The bowl-shaped antenna protection hood serves to protect the antenna from moisture as well as from electrostatic discharge (ESD protection). The satellite antenna described there is designed in the shape of a ring and is attached to the base plate which closes the opening of the protective antenna cover. A similar type of fastening on the base plate is common when using patch antennas as circularly polarized satellite antennas. Furthermore, from the WO 2010/114336 A2 the arrangement of a vehicle antenna on the surface of an antenna hood is known. The EP 2 424 036 A2 shows a further known loop antenna for receiving circularly polarized satellite radio signals.

Die in Fig. 1 dargestellte bekannte Satellitenantenne umfasst einen, durch eine insbesondere in einem mit dem Bezugszeichen 10 versehenen Abstand h<λ/10 parallel zu einer leitenden Grundplatte 6 verlaufend angeordnete geschlossene Ringleitung 3 gebildeten Ringleitungsstrahler 1 mit am Umfang des Ringleitungsstrahlers 1 verteilt angeschlossenen und zur leitenden Grundplatte 6 hin verlaufenden, linearen im Wesentlichen vertikalen Strahlern 4a-4d. Hierbei ist mindestens einer der linearen Strahler an seinem unteren Ende über eine Kapazität 5a-5c mit der elektrisch leitenden Grundplatte 6 und ein anderer im Wesentlichen vertikaler Strahler 4d über eine Kapazität 5d mit einem Antennenanschluss 5e verbunden.In the Fig. 1 The known satellite antenna shown comprises a ring line radiator 1 formed by a closed ring line 3, which is arranged in particular at a distance h <λ / 10 and running parallel to a conductive base plate 6, with a ring line radiator 1 distributed around the circumference of the ring line radiator 1 and connected to the conductive base plate 6 extending, linear, substantially vertical radiators 4a-4d. Here at least one of the linear radiators is connected at its lower end via a capacitance 5a-5c to the electrically conductive base plate 6 and another essentially vertical radiator 4d is connected to an antenna connection 5e via a capacitance 5d.

Ausschlaggebend für die Akzeptanz der Technologie einer Antenne für Fahrzeuge ist neben der Funktionalität der Antenne vor allem der wirtschaftliche Aufwand, der sowohl mit der Herstellung der Antenne als auch deren Implementierung auf dem Fahrzeug verbunden ist.In addition to the functionality of the antenna, the economic outlay associated with both the manufacture of the antenna and its implementation on the vehicle is decisive for the acceptance of the technology of an antenna for vehicles.

Aufgrund der sehr eng tolerierten Strahlungs-Richtdiagramme von Satellitenantennen sind die Toleranzen zur Herstellung solcher Antennen extrem klein. Ebenso ist bei zirkular polarisierten Antennen, welche nach einem anderen Wirkungsprinzip arbeiten, wie zum Beispiel Patchantennen, die Einhaltung nicht nur der der mechanischen Abmessungen sondern auch der dielektrischen Eigenschaften des Antennenkörpers ein Problem. Bei dem vorliegenden Ringleitungsstrahler ist insbesondere die Einhaltung der mechanischen Maße von besonderer Bedeutung. Problematisch ist auch die Aufbewahrung des aus Blech geschnittenen und anschließend gebogenen Ringleitungsstrahlers als Massengut bei der Serienherstellung. Eine die Form bewahrende Lagerung der Blechstruktur ist extrem aufwändig und eine schädliche Verformung der Struktur durch das Handling aufgrund der extrem engen Toleranzen ist nur sehr schwer zu vermeiden. Naturgemäß führen diese Forderungen an die Genauigkeit zu erhöhten Herstellungskosten der Antennen.Due to the very tightly tolerated radiation directional diagrams of satellite antennas, the tolerances for manufacturing such antennas are extremely small. Likewise, in the case of circularly polarized antennas which work according to a different operating principle, such as patch antennas, for example, compliance not only with the mechanical dimensions but also the dielectric properties of the antenna body is a problem. With the present ring line radiator, it is particularly important to maintain the mechanical dimensions. The storage of the ring line radiator cut from sheet metal and then bent as a bulk product in series production is also problematic. A shape-retaining storage of the sheet metal structure is extremely complex and a damaging deformation of the structure due to the handling due to the extremely narrow tolerances is very difficult to avoid. Naturally, these demands on accuracy lead to increased manufacturing costs for the antennas.

Mit der vorliegenden Erfindung ist deshalb die Aufgabe verbunden, eine Antenne für den Empfang zirkular polarisierter Satellitenfunksignale zu gestalten, welche bei kleinem wirtschaftlichen Aufwand eine einfachere Implementierung auf dem Fahrzeug bei hoher Funktionssicherheit ermöglicht.The present invention is therefore associated with the task of designing an antenna for receiving circularly polarized satellite radio signals which, with little economic outlay, enables simpler implementation on the vehicle with high functional reliability.

Diese Aufgabe wird durch die Merkmale des Patentanspruchs 1 gelöst.This object is achieved by the features of claim 1.

Vorteilhafte Ausführungsformen der Erfindung sind in den Unteransprüchen und der Beschreibung beschrieben.Advantageous embodiments of the invention are described in the subclaims and the description.

Die Antennenschutzhaube kann über einer mit dieser mechanisch verbundenen, die Öffnung der Antennenschutzhaube abdeckenden und auf einer Außenhaut eines Kraftfahrzeugs im Wesentlichen horizontal orientiert zu positionierenden elektrisch leitenden Grundplatte positioniert sein. Auch kann die Öffnung der Antennenschutzhaube mit einer insbesondere dielektrischen Folie oder Platte verschlossen sein, die insbesondere in der Bezugsebene positioniert ist.The antenna protective hood can be positioned over an electrically conductive base plate that is mechanically connected to it, covers the opening of the antenna protective hood and is to be positioned on an outer skin of a motor vehicle in an essentially horizontally oriented manner. The opening of the antenna protective hood can also be closed with an in particular dielectric film or plate, which is in particular positioned in the reference plane.

Die Antennenschutzhaube kann wenigstens einen, durch eine in einem Abstand h parallel zur leitenden Grundplatte verlaufend angeordnete geschlossene Ringleitung gebildeten Ringleitungsstrahler mit am Umfang der Ringleitung verteilt angeschlossenen und zur leitenden Grundplatte hin verlaufenden, linearen im Wesentlichen vertikalen Strahlern versehen sein. Hierbei wird unter einem linearen Strahler bzw. einem vertikalen Strahler erfindungsgemäß ein an die Ringleitung angeschlossener linearer Strahler verstanden, der sich nicht notwendigerweise unter einem Winkel von 90° von der Ebene der Ringleitung weg erstreckt. Vielmehr können sich die erfindungsgemäßen vertikalen Strahler auch unter einem zu 90° verschiedenen Winkel in Richtung der elektrisch leitenden Grundplatte bzw. in Richtung der durch die Öffnung der Antennenschutzhaube gebildeten Bezugsebene erstrecken. Auch muss ein erfindungsgemäßer linearer Strahler nicht notwendigerweise die Form einer Geraden aufweisen. Vielmehr wird der Begriff linearer Strahler erfindungsgemäß in Abgrenzung zu dem Ringstrahler gesehen, der eine geschlossene (runde oder eckige) Ringform bildet. Demgegenüber erstrecken sich die erfindungsgemäßen linearen Strahler von der Ringleitung weg in Richtung der Öffnung der Antennenschutzhaube. Es versteht sich deshalb, dass die linearen Strahler auch gekrümmt ausgebildet sein können, wenn die Antennenschutzhaube beispielsweise eine domförmige Gestaltung besitzt.The antenna protection hood can be provided with at least one ring line radiator, formed by a closed ring line running parallel to the conductive base plate at a distance h, with linear, substantially vertical radiators distributed around the circumference of the ring line and running towards the conductive base plate. Here, a linear radiator or a vertical radiator is understood according to the invention to be a linear radiator connected to the ring line, which does not necessarily extend at an angle of 90 ° from the plane of the ring line. Rather, the vertical radiators according to the invention can also extend at an angle different from 90 ° in the direction of the electrically conductive base plate or in the direction of the reference plane formed by the opening of the protective antenna hood. A linear radiator according to the invention also does not necessarily have to have the shape of a straight line. Rather, the term linear radiator is seen according to the invention as a distinction to the ring radiator, which forms a closed (round or angular) ring shape. In contrast, the linear radiators according to the invention extend away from the ring line in the direction of the opening of the protective antenna hood. It is therefore understood that the linear Radiators can also be curved if the antenna protective hood has, for example, a dome-shaped design.

Die Antennenschutzhaube kann grundsätzlich beliebig, beispielsweise schalenförmige, domförmig oder pyramidenförmig oder auch als eine Kombination dieser Formen ausgebildet sein. Bevorzugt weist jedoch die Antennenschutzhaube auf ihrer Innenseite Teilflächen auf, die elektrisch leitend beschichtet und in ihrer Formgebung an die Funktion der Komponenten des Ringleitungsstrahlers angepasst sind.The antenna protection hood can in principle be designed as desired, for example shell-shaped, dome-shaped or pyramid-shaped or as a combination of these shapes. Preferably, however, the antenna protective hood has partial surfaces on its inside which are coated in an electrically conductive manner and whose shape is adapted to the function of the components of the ring line radiator.

Mindestens einer der linearen Strahler kann an seinem unteren Ende über eine Kapazität mit der elektrisch leitenden Grundplatte und ein anderer linearer Strahler kann über eine Kapazität mit einem Antennenanschluss kapazitiv verbunden sein.At least one of the linear radiators can be capacitively connected at its lower end to the electrically conductive base plate via a capacitance and another linear radiator can be capacitively connected to an antenna connection via a capacitance.

Einzelne Merkmale der Erfindung können lauten:

  • Auf der Innenfläche der Antennenschutzhaube 1a ist der Ringleitungsstrahler 1, bestehend aus der Ringleitung 3 sowie aus den an diese angeschlossenen und zur leitenden Grundplatte 6 hin verlaufenden linearen bzw. vertikalen Strahlern 4, 4a-d als elektrisch leitend zusammenhängende Antennenstruktur beschichtet aufgebracht.
  • Die Kontur der Innenfläche der schalenförmigen Antennenschutzhaube 1a ist durch Formgebung ihrer Innenfläche für die Gestaltung der elektrisch leitenden Flächen bzw. streifenförmigen Leiterbahnen 12 in der Weise gestaltet, dass die geschlossene Ringleitung als eine auf einer zur leitenden Grundfläche 6 parallelen, elektrisch leitend beschichteten Fläche verläuft und die zur leitenden Grundfläche 6 im Wesentlichen vertikalen Strahler 4, 4a-d auf im wesentlich vertikalen, elektrisch leitend beschichteten Flächen ausgebildet sind.
Individual features of the invention can be:
  • The ring line radiator 1, consisting of the ring line 3 and the linear or vertical radiators 4, 4a-d connected to it and extending towards the conductive base plate 6, is applied as an electrically conductive cohesive antenna structure coated on the inner surface of the antenna protective hood 1a.
  • The contour of the inner surface of the shell-shaped antenna protection hood 1a is designed by shaping its inner surface for the design of the electrically conductive surfaces or strip-shaped conductor tracks 12 in such a way that the closed ring line runs as an electrically conductive coated surface parallel to the conductive base surface 6 and the radiators 4, 4a-d which are essentially vertical to the conductive base area 6 are formed on essentially vertical, electrically conductive coated surfaces.

Ein besonderer Vorteil der Erfindung ist dadurch gegeben, dass die Maßhaltigkeit durch die in Kunststoff gepresste Form der Antennenschutzhaube 1a leicht einzuhalten ist. Moderne Kunststoffe sind in ihren Eigenschaften auch unter extremen Witterungsbedingungen langzeitig stabil. Die mit modernen Lasertechnologien bzw. Aufdrucktechniken auf die Innenflächen der entsprechend vorgeformten schalenförmigen Antennenschutzhaube 1a aufgebrachten leitenden Flächen besitzen somit langzeitig konstante elektrische Eigenschaften. Laser- oder Aufdrucktechniken haben sich bereits für die Massenherstellung als geeignet erwiesen. Der Aufdruck der elektrisch leitenden Schicht kann beispielhaft durch einen Druckstift zur unmittelbaren Aufbringung der leitenden Schicht oder zum Beispiel durch einen Laserstrahl realisiert werden. Die Spitze des Druckstifts bzw. der Durchmesser des Laserstrahls bestimmt jeweils die Feinkörnigkeit des Drucks und damit die Feinheit der zu gestaltenden Strukturen.A particular advantage of the invention is given by the fact that the dimensional accuracy can easily be maintained due to the form of the antenna protective hood 1a pressed in plastic. Modern plastics are long-term stable in their properties even under extreme weather conditions. The conductive applied with modern laser technologies or imprinting techniques on the inner surfaces of the corresponding pre-formed, shell-shaped antenna protection hood 1a Surfaces therefore have constant electrical properties over the long term. Laser or printing techniques have already proven suitable for mass production. The electrically conductive layer can be imprinted, for example, by a pressure pen for the direct application of the conductive layer or, for example, by a laser beam. The tip of the pressure pen or the diameter of the laser beam determines the fine grain of the print and thus the fineness of the structures to be designed.

Bei Anwendung eines Lasers kann die Innenfläche der Antennenschutzhaube z.B. großflächig mit einer elektrisch leitenden Schicht und darüber mit einer laserempfindlichen Schicht überzogen sein, welche bei Belichtung mit Laserlicht in der Weise aushärtet, dass in einem anschließenden Ätzvorgang die darunterliegende elektrisch leitende Schicht erhalten bleibt und die unbelichteten Stellen der leitenden Schicht entfernt sind.When using a laser, the inner surface of the antenna protection hood can be covered over a large area with an electrically conductive layer and above it with a laser-sensitive layer, which cures when exposed to laser light in such a way that the electrically conductive layer underneath is retained and the unexposed layer in a subsequent etching process Places of the conductive layer are removed.

Schließlich ist es auch möglich, bei Vorhandensein einer großflächig aufgebrachten elektrisch leitenden Schicht, diese mit einem energiereichen Laserstrahl in der Weise zu behandeln, dass die nicht leitenden Flächenteile von der Schicht "freigelasert" werden.Finally, if an electrically conductive layer is present over a large area, it is possible to treat it with a high-energy laser beam in such a way that the non-conductive surface parts are "lasered free" from the layer.

Der notwendige feste Formschluss zwischen der Antennenschutzhaube 1a und der leitenden Grundfläche 6 ist stets herstellbar. Die Komplexität bei der Herstellung bekannter, aus Blech geschnittener, anschließend gebogener, formgerecht gelagerter und formgerecht auf der leitenden Grundfläche 6 montierter Ringleitungsstrahler 1 ist bei einem Ringleitungsstrahler nach der Erfindung extrem reduziert.The necessary firm form fit between the antenna protective hood 1a and the conductive base surface 6 can always be established. The complexity in the production of known ring line radiators 1 cut from sheet metal, then bent, correctly mounted and correctly mounted on the conductive base surface 6 is extremely reduced in the case of a ring line radiator according to the invention.

Die Kapazitäten 5a, 5b, 5c ,5d können jeweils durch eine flächige Elektrode 5a, 5b, 5c ,5d und einer hierzu jeweils parallelen flächigen Gegenelektrode paarig einander gegenüberliegend gebildet sein. Dabei ist jeweils eine flächige Elektrode 5d, welche mit dem unteren Ende des betreffenden im Wesentlichen vertikalen Strahlers 4d verbunden ist, als elektrisch leitende flächige Struktur auf einer parallel in einem Abstand 11 zur leitenden Grundplatte 6 verlaufend gebildeten Ausprägung der Innenfläche der Antennenschutzhaube 1 beschichtet aufgebracht. Der Kapazitätswert der Kapazitäten ist durch den Abstand 11 bestimmt.The capacitances 5a, 5b, 5c, 5d can each be formed in pairs opposite one another by a flat electrode 5a, 5b, 5c, 5d and a flat counter-electrode parallel thereto. In each case, a flat electrode 5d, which is connected to the lower end of the relevant, essentially vertical radiator 4d, is applied as an electrically conductive flat structure on an expression of the inner surface of the protective antenna hood 1 running parallel at a distance 11 from the conductive base plate 6. The capacitance value of the capacities is determined by the distance 11.

Bei einem Ringleitungsstrahler 1 nach dem Stand der Technik in Fig. 1 ist die Einhaltung der Kapazitätswerte durch die Elektroden 5a, 5b, 5c ,5d im Hinblick auf die Antennenimpedanz und das Strahlungsdiagramm von großer Bedeutung. Bei der Erfindung ist die hierfür notwendige Sicherstellung des richtigen Abstands 11 (siehe Fig. 2c) der Elektroden 5a, 5b, 5c ,5d von der leitenden Grundfläche 6 bzw. von der den Antennenanschluss 5 bildenden Gegenelektrode ist durch die Maßhaltigkeit der Antennenschutzhaube 1a auf einfache Weise gegeben. Mit modernen Verfahren kann die Beschichtung der entsprechend geformten Innenseite der Antennenschutzhaube 1a äußerst zeiteffektiv geschehen und die Herstellung der Satellitenantenne durch Aufbringen der Antennenschutzhaube 1a auf die elektrisch leitende Grundfläche 6 kann mit wenigen Handgriffen erfolgen. Gerade hier zeigt sich ein großer Vorteil der vorliegenden Erfindung.In a ring line radiator 1 according to the prior art in Fig. 1 Compliance with the capacitance values by the electrodes 5a, 5b, 5c, 5d is of great importance with regard to the antenna impedance and the radiation diagram. In the case of the invention, the necessary securing of the correct distance 11 (see Figure 2c ) of the electrodes 5a, 5b, 5c, 5d from the conductive base 6 or from the counter-electrode forming the antenna connection 5 is given in a simple manner by the dimensional accuracy of the antenna protective hood 1a. With modern methods, the coating of the correspondingly shaped inside of the protective antenna hood 1a can be done extremely time-effectively and the production of the satellite antenna by attaching the protective antenna hood 1a to the electrically conductive base 6 can be done in a few simple steps. It is precisely here that a great advantage of the present invention becomes apparent.

Zur kapazitiven Verbindung des mindestens einen der im Wesentlichen vertikalen Strahler 4, 4a-d an seinem unteren Ende mit dem Antennenanschluss 5 in der Ebene der Grundplatte 6 ist eine von dieser elektrisch isolierte flächige Gegenelektrode 5e gebildet, welche mit dem Antennenanschluss 5 verbunden ist.For the capacitive connection of the at least one of the essentially vertical radiators 4, 4a-d at its lower end to the antenna connection 5 in the plane of the base plate 6, a flat counter-electrode 5e electrically insulated from this is formed, which is connected to the antenna connection 5.

Die Randlinie der Öffnung der schalenförmigen Antennenschutzhaube 1a sowie die leitende Grundfläche 6 verlaufen in einer Ebene, welche für die folgende Beschreibung in horizontaler Lage als Bezugsebene 16 (Fig. 4) definiert wird. Die Antennenschutzhaube 1a erstreckt sich somit oberhalb dieser Bezugsebene 16.The edge line of the opening of the bowl-shaped antenna protection hood 1a and the conductive base surface 6 run in a plane which is used as reference plane 16 for the following description in a horizontal position ( Fig. 4 ) is defined. The antenna protective hood 1 a thus extends above this reference plane 16.

Zur Sicherstellung einer fehlerfreien Entformung beim Pressen der schalenförmigen Haube können alle im Inneren der schalenförmigen Antennenschutzhaube 1 liegenden Flächenteile sowie alle auf der Außenfläche der schalenförmigen Antennenschutzhaube 1 liegenden Flächenteile zu der horizontalen Bezugsebene 16 einen Winkel von nicht mehr als 89,5° als Entformungsschräge einnehmen.To ensure error-free removal from the mold when the shell-shaped hood is pressed, all surface parts lying inside the shell-shaped antenna protective hood 1 and all surface parts lying on the outer surface of the dish-shaped antenna protective hood 1 can assume an angle of no more than 89.5 ° as a draft angle to the horizontal reference plane 16.

In einem Herstellverfahren kann die Beschichtung aller elektrisch leitend zu beschichtenden Flächen mit Hilfe eines die Beschichtung herstellenden nadelförmigen Strahls aus nur einer Richtung (= Bearbeitungsrichtung 17) erfolgen, welche im Wesentlichen senkrecht zu der Bezugsebene 16 verläuft. Alle im Inneren der schalenförmigen Antennenschutzhaube liegenden und zu beschichtenden Flächen können zu dieser Bearbeitungsrichtung 17 einen so genannten Beschichtungswinkel 19 von mindestens 5° zur Sicherstellung einer scharf konturierbaren Beschichtung einnehmen.In a manufacturing process, all surfaces to be coated in an electrically conductive manner can be coated with the aid of a needle-shaped beam producing the coating from only one direction (= processing direction 17) which runs essentially perpendicular to the reference plane 16. All of the surfaces to be coated in the interior of the shell-shaped antenna protection hood can have a so-called processing direction 17 Take a coating angle 19 of at least 5 ° to ensure a sharply contoured coating.

Weiterhin können in einem Herstellverfahren die elektrisch leitend zu beschichtenden Flächen von horizontalen Teilen des Ringleitungsstrahlers, sowie optional auch die Kapazitätselektroden, jeweils parallel zur Bezugsebene 16 und im Wesentlichen senkrecht zur Bearbeitungsrichtung 17 liegen. Die elektrisch leitend zu beschichtenden Flächen der im Wesentlichen vertikalen Strahler können gegenüber der Bearbeitungsrichtung 17 einen Beschichtungswinkel 19 von mindestens 5°, insbesondere mehr als 45° einnehmen, um eine scharf konturierte Beschichtung sicherzustellen.Furthermore, in a manufacturing process, the electrically conductive coated surfaces of horizontal parts of the ring line radiator, and optionally also the capacitance electrodes, can each lie parallel to the reference plane 16 and essentially perpendicular to the processing direction 17. The surfaces of the essentially vertical radiators that are to be coated in an electrically conductive manner can assume a coating angle 19 of at least 5 °, in particular more than 45 °, with respect to the machining direction 17, in order to ensure a sharply contoured coating.

Weiterhin kann die schalenförmige Antennenschutzhaube 1a die Form einer von unten ausgehölten Stufen-Pyramide aufweisen, deren untere Seitenwände an der elektrisch leitenden Grundfläche aufliegen, wobei die Haube parallel zu dieser Grundfläche zwei darüber befindliche im Wesentlichen horizontale Teilflächen in Form einer ersten umlaufenden Stufe und einer darüber liegenden, im Wesentlichen ebenen Dachfläche aufweist.Furthermore, the dish-shaped antenna protection hood 1a can have the shape of a stepped pyramid hollowed out from below, the lower side walls of which rest on the electrically conductive base area, the hood parallel to this base area having two substantially horizontal partial areas located above it in the form of a first circumferential step and one above it has lying, substantially flat roof surface.

Erfindungsgemäß können sich vier Kapazitätselektroden auf der Unterseite einer horizontalen Teilfläche einer umlaufenden Stufe jeweils in vier Ecken befinden.According to the invention, four capacitance electrodes can be located on the underside of a horizontal partial surface of a circumferential step, each in four corners.

Die Ringleitung 3 kann sich - in einer vorteilhaften Ausgestaltung der Erfindung - auf der Unterseite einer oberen Dachfläche, insbesondere im Verlauf der Kontur dieser Dachfläche folgend, befinden.In an advantageous embodiment of the invention, the ring line 3 can be located on the underside of an upper roof surface, in particular following the contour of this roof surface.

Die vier Kapazitätselektroden 5a, 5b, 5c, 5d können jeweils mit einer darüber liegenden Ecke der Ringleitung 3 über jeweils einen im Wesentlichen vertikalen Strahler 4, 4a-d verbunden sein.The four capacitance electrodes 5a, 5b, 5c, 5d can each be connected to an overlying corner of the ring line 3 via an essentially vertical radiator 4, 4a-d.

Die insbesondere schalenförmige Antennenschutzhaube 1a kann in einer vorteilhaften Ausgestaltung der Erfindung in Form einer von unten ausgehölten stumpfen Pyramide aufgebaut sein, die vier Seitenwände und eine Dachfläche umfasst, wobei diese Seitenwände an der elektrisch leitenden Grundfläche aufliegen und wobei sich die Ringleitung 3 auf der Unterseite der Dachfläche im Verlauf der Kontur dieser Dachfläche folgend befindet.In an advantageous embodiment of the invention, the particularly shell-shaped antenna protection hood 1a can be constructed in the form of a truncated pyramid hollowed out from below, which comprises four side walls and a roof surface, these side walls resting on the electrically conductive base surface and the ring line 3 being on the underside of the Roof area is located in the course of the contour of this roof area following.

Die Ringleitung 3 kann in einer vorteilhaften Ausgestaltung der Erfindung an jeder ihrer vier Ecken jeweils mit einem im Wesentlichen vertikalen Strahler 4, 4a-d verbunden sein, welcher jeweils von der betreffenden Ecke ausgehend entlang der inneren Kante zwischen an der Ecke anliegenden Seitenwänden entlang führt, bis er im Abstand 11 von der Grundfläche 6 endet.In an advantageous embodiment of the invention, the ring line 3 can be connected at each of its four corners to an essentially vertical radiator 4, 4a-d, which, starting from the relevant corner, leads along the inner edge between side walls adjacent to the corner, until it ends at a distance 11 from the base 6.

Die vertikalen Strahler 4, 4a-d können im Abstand 11 von der Grundfläche jeweils mit einer Kapazitätselektrode 5a, 5b, 5c, 5d verbunden sein, welche durch Ausprägung an der jeweiligen Ecke in Form einer im Abstand 11 parallel zur Grundfläche 6 verlaufenden horizontalen Fläche ausgeführt ist, welche durch Abstufung der Innenseite der Seitenwände entsteht.The vertical radiators 4, 4a-d can each be connected at a distance 11 from the base area with a capacitance electrode 5a, 5b, 5c, 5d, which is embodied by embossing at the respective corner in the form of a horizontal area running at a distance 11 parallel to the base area 6 which is created by grading the inside of the side walls.

Die elektrisch leitend zu beschichtenden Flächen können in Form von elektrisch leitenden Gitterstrukturen aufgebaut sein, deren Maschenweite insbesondere im Wesentlichen kleiner als 1/8 der Wellenlänge ist.The surfaces to be coated in an electrically conductive manner can be constructed in the form of electrically conductive grid structures, the mesh size of which is, in particular, essentially less than 1/8 of the wavelength.

Die Erfindung wird im Folgenden an Hand von Ausführungsbeispielen näher erläutert. Die zugehörigen Figuren zeigen im Einzelnen:

  • Fig. 1.
    Ringleitungsstrahler 1 nach dem Stand der Technik mit vertikalen Strahlern 4, 4a-d und Kapazitäten 5a - d an deren unteren Enden, z.B. als Blechstruktur mit Halterung auf Kunststoffstützen.
  • Fig. 2.
    1. a) Ringleitungsstrahler als elektrisch leitende Beschichtung auf der Innenfläche einer schalenförmigen Antennenschutzhaube 1a aus einem dielektrischen Kunststoff nach der Erfindung. Die Schrägansicht auf den Innenraum der Antennenschutzhaube 1a zeigt die beschichteten Flächen als Netzstrukturen. Die Berandung auf der Unterseite der Antennenschutzhaube 1a (schraffiert) verläuft in einer Ebene (Bezugsebene 16) zur Verbindung mit der elektrisch leitenden Grundfläche 6 bei der Endmontage. Die Ringleitung 3 und die Elektroden 5a -d der Kapazitäten an den unteren Enden der im wesentlichen vertikalen Strahler 4a -d sind auf horizontalen Flächenteilen der entsprechend geformten Antennenschutzhaube 1a als leitende Beschichtung aufgebracht.
    2. b) Ringleitungsstrahler als elektrisch leitende Beschichtung auf der Innenfläche einer schalenförmigen Antennenschutzhaube 1a wie in a) jedoch mit Sicht auf den Innenraum von unten. Die strichpunktierte Schnittlinie Q beschreibt die Sicht auf den in Fig. 1c) dargestellten Querschnitt Q der Anordnung.
    3. c) Die Querschnittszeichnung zeigt den Abstand 11 zwischen den Kapazitätselektroden 5a, 5b, 5c, 5d und der elektrisch leitenden Grundfläche 6 bzw. der Gegenelektrode zur Bildung des Antennenanschlusses 5e. Die Einhaltung der geforderten Kapazitätswerte mithilfe der Konstanz dieses Abstands 11 ist durch die maßhaltige Form der Antennenschutzhaube 1a sowie deren zeitliche Beständigkeit gegeben. Der Neigungswinkel α der im Wesentlichen vertikalen Innenflächen der Antennenschutzhaube 1 gegenüber der zur leitenden Grundfläche 6 senkrechten Linie kann mindestens 5° betragen und sollte bei einer zu letzterer parallelen Bearbeitungsrichtung 17 den Beschichtungswinkel 19 (Fig.4) nicht unterschreiten.
  • Fig. 3
    Explosionszeichnung zur Darstellung des fiktiv von der Antennenschutzhaube 1a losgelösten Ringleitungsstrahlers mit der Ringleitung 3 und den vertikalen Strahlern 4 als elektrisch leitende Flächen (Gitternetz) über einer als elektrisch leitend beschichtete Leiterplatte 2 dargestellten elektrisch leitenden Grundfläche 6. Die Kapazitätselektrode 5d ist über die als Gegenelektrode gebildete isolierte leitende Fläche auf der beschichteten Leiterplatte, welche den Antennenanschluss 5e bildet, kapazitiv an diesen angekoppelt.
  • Fig. 4
    Antennenschutzhaube 1a mit elektrisch leitender Beschichtung als Ringleitungsantenne nach der Erfindung mit Sicht von schräg unten in die Öffnung der Antennenschutzhaube. Die Antennenschutzhaube ist in Form einer von unten ausgehöhlten stumpfen und insbesondere gestuften Pyramide gestaltet. Hierbei ist darauf geachtet, dass diese Form in einfacher Kunststoff-Spritzgusstechnik herstellbar ist. Die als Gitternetz gekennzeichneten Flächen zeigen die Elemente des Ringleitungsstrahler in dieser Projektion. Die Schalenränder verlaufen in der oben genannten Bezugsebene 16. Für den insbesondere punktförmig durchzuführenden Aufdruck einer elektrisch leitenden Schicht kann eine lang gestreckte Beschichtungseinrichtung 18 vorhanden sein, welche beispielhaft als ein Druckstift zum unmittelbaren Aufdrucken der leitenden Schicht oder zum Beispiel auch als Laserstrahl realisiert sein kann. Die Spitze des Druckstifts bzw. der Durchmesser des Laserstrahls bestimmt jeweils die Feinkörnigkeit des Drucks und damit die Feinheit der zu gestaltenden Strukturen. Die Beschichtungseinrichtung 18 ist in der Bearbeitungsrichtung 17 ausgerichtet. Der Beschichtungswinkel 17 zwischen dieser Richtung 17 und der zu bedruckenden Fläche ist zur Sicherstellung einer scharf konturierten Beschichtung mindestens 5° gewählt.
  • Fig. 5
    1. a) Sicht von unten in die Öffnung der Antennenschutzhaube 1a mit elektrisch leitender Beschichtung als Ringleitungsstrahler gemäß Fig. 4. Die strichpunktierten Linien Q1 bis Q5 zeigen die Schnittlinie für die Darstellung der entsprechenden Querschnitte in den nachfolgenden Figuren b) bis e).
    2. b) Die Darstellung des Querschnitts gemäß der Schnittlinie Q1 zeigt die steilen Seitenwände der Pyramide, die beispielsweise unter einem Winkel von kleiner 90° und größer 75° zur Bezugsebene 16 verlaufen. In dieser Position sind die Kapazitätselektroden 5b (links unten) und 5c (rechts unten) sowie die Gegenelektroden, welche durch die elektrisch leitende Grundfläche 6 einerseits und durch den Antennenanschluss 5e andererseits gebildet sind, dargestellt.
    3. c) Darstellung des Querschnitts gemäß der Schnittlinie Q2 analog zu b). Die Kapazitätselektroden sind hier nicht betroffen
    4. d) Darstellung des Querschnitts gemäß der Schnittlinie Q3. Die vertikalen Strahler 4, 4a-d sind unter einem Winkel α gegen die zur Grundfläche 6 senkrechte Bezugslinie geneigt, der zwischen 0° und 70° betragen kann.
    5. e) Darstellung des Querschnitts gemäß der Schnittlinie Q4
    6. f) Darstellung des Querschnitts gemäß der Schnittlinie Q5.
  • Fig. 6
    Beispielhafte Ausführung von zwei Ringleitungen 3 und 3' mit gemeinsamem Zentrum, aufgebracht auf die Antennenschutzhaube 1a, welche ähnlich wie in den Fig. 4 und 5 als eine von unten ausgehöhlte stumpfe Pyramide gestaltet ist. Die Darstellung zeigt in einer vorteilhaften Ausgestaltung der Erfindung die Sicht auf die Antennenschutzhaube 1a von unten mit den durch Gitternetz gekennzeichneten aufgebrachten elektrisch leitenden Flächen sowohl des inneren als auch des äußeren Ringleitungsstrahlers 3,3'. Beide Ringleitungsstrahler können z. B. jeweils durch geeignete Dimensionierung der Ringleitung 3 bzw. 3' und der Kapazitäten für die gleiche Frequenz für den kombinierten Einsatz bei Antennen-Diversity-Technologien gestaltet sein. Hierbei wird der innere Ringleitungsstrahler als Strahler 1. Ordnung, d.h. für eine azimutale Phasenverteilung von 2π über einen Umlauf und der äußere Ringleitungsstrahler als Strahler 2. Ordnung, d.h. für eine azimutale Phasenverteilung von 2*2π über einen Umlauf gestaltet. Ebenso kann in einer vorteilhaften Ausgestaltung der Erfindung der äußere Ringleitungsstrahler für den Empfang eines weiteren Satelliten-Funkdienstes bei einer niedrigeren Frequenz als der des inneren Ringleitungsstrahlers mit nur vier vertikalen Strahlern 4' ausgestattet werden.
  • Fig. 7
    In einer weiteren vorteilhaften Ausgestaltung der Erfindung ist der Ringleitungsstrahler mit einer terrestrischen Breitband-Kommunikationsantenne 15, zum Beispiel für die LTE- Kommunikation und mit einer terrestrischen Empfangsantenne 14, zum Beispiel für den AM/FM/DAB-Rundfunkempfang, kombiniert. Der besondere Vorteil der dargestellten Kombination besteht in der vollständigen elektromagnetischen Entkopplung der terrestrischen Antennen von dem Ringleitungsstrahler 1 für Satellitenempfang.
    1. a) Aus der Sicht auf die Antennenschutzhaube 1a in Fig. 7a von schräg unten geht die vorteilhafte Kombinierbarkeit der terrestrischen Antennen mit einem gemeinsamen terrestrischen Antennen-Anschluss 13 im Zentrum des Ringleitungsstrahlers hervor. Die terrestrische Breitband-Kommunikationsantenne 15 ist im Wesentlichen aus an der terrestrischen Antennen-Anschlussstelle 13 zusammenlaufenden streifenförmigen elektrisch leitenden Leiterbahnen 12 gebildet, welche auf V- förmig auf der Antennenschutzhaube 1a ausgebildeten Flächen eingelasert bzw. gedruckt sind. Auf ähnliche Weise ist die terrestrische Empfangsantenne 14 durch streifenförmige aufgedruckte bzw. eingelaserte elektrisch leitende Leiterbahnen 12 mit der gemeinsamen Antennen-Anschlussstelle 13 gestaltet.
    2. b) zeigt diese Anordnung mit Sicht von unten, woraus die Kombination der terrestrischen Empfangsantenne 14 - an deren oberen Ende eine Dachkapazität 16 ausgebildet ist - mit der Breitband-Kommunikationsantenne 15 ersichtlich ist.
  • Fig. 8
    Für die Anwendung derartiger Antennen auf dem Fahrzeugdach kommen Antennenschutzhauben 1a zur Anwendung, deren Breite quer zur Fahrtrichtung aus strömungstechnischen Gründen kleiner ist als längs zur Fahrtrichtung.
    1. a) Darstellung der beispielhaften Gestaltung des Querschnitts einer Antennenschutzhaube 1a nach der Erfindung (quer zur Fahrtrichtung) mit den für den Ringleitungsstrahler und der terrestrischen Breitband-Kommunikationsantenne 15 elektrisch leitend mit streifenförmigen Leiterbahnen 12 beschichteten Flächen. Diese Leiterbahnen sind insbesondere V- förmig in der Ebene quer zur Fahrtrichtung ausgewinkelt. Zur qualitativ hochwertigen Beschichtung der Antennenschutzhaube 1a von unten aus Richtung der senkrechten gestrichelten Linie ist es vorteilhaft, den Beschichtungswinkel 19 von a=5° zwischen dieser Linie und der zu beschichtenden Fläche an keiner Stelle zu unterschreiten.
    2. b) in der Darstellung eines Schnittes der Antennenschutzhaube 1a nach der Erfindung längs der Fahrtrichtung sind die streifenförmigen Leiterbahnen 12 der im Vergleich zur Breitband-Kommunikationsantenne 15 höheren terrestrischen Empfangsantenne 14 dargestellt. Diese Leiterbahnen 12 sind im Gegensatz zu denen der Breitband-Kommunikationsantenne 15 in der Ebene längs der Fahrtrichtung V-förmig ausgewinkelt. Beide Antennen treffen sich in der gemeinsamen terrestrischen Antennen-Anschlussstelle 13.
The invention is explained in more detail below on the basis of exemplary embodiments. The corresponding figures show in detail:
  • Fig. 1 .
    Ring line radiator 1 according to the prior art with vertical radiators 4, 4a-d and capacitors 5a-d at their lower ends, for example as a sheet metal structure with a holder on plastic supports.
  • Fig. 2 .
    1. a) Ring line radiator as an electrically conductive coating on the inner surface of a bowl-shaped antenna protection hood 1a made of a dielectric plastic according to the invention. The oblique view of the interior of the protective antenna hood 1a shows the coated surfaces as network structures. The border on the underside of the protective antenna hood 1a (hatched) runs in a plane (reference plane 16) for connection to the electrically conductive base surface 6 during final assembly. The ring line 3 and the electrodes 5a-d of the capacitances at the lower ends of the essentially vertical radiators 4a-d are applied as a conductive coating to horizontal surface parts of the correspondingly shaped protective antenna hood 1a.
    2. b) Ring line radiator as an electrically conductive coating on the inner surface of a bowl-shaped antenna protection hood 1a as in a) but with a view of the interior from below. The dash-dotted line Q describes the view of the in Figure 1c ) shown cross section Q of the arrangement.
    3. c) The cross-sectional drawing shows the distance 11 between the capacitance electrodes 5a, 5b, 5c, 5d and the electrically conductive base area 6 or the counter-electrode for forming the antenna connection 5e. Compliance with the required capacitance values with the help of the constancy of this distance 11 is given by the dimensionally stable shape of the antenna protective hood 1a and its stability over time. The angle of inclination α of the essentially vertical inner surfaces of the protective antenna hood 1 with respect to the line perpendicular to the conductive base surface 6 can be at least 5 ° and should, in the case of a processing direction 17 parallel to the latter, the coating angle 19 ( Fig. 4 ) do not fall below.
  • Fig. 3
    Exploded view to show the ring line radiator fictitiously detached from the antenna protection hood 1a with the ring line 3 and the vertical radiators 4 as electrically conductive surfaces (grid) over an electrically conductive base surface 6 shown as an electrically conductive coated circuit board 2 isolated conductive surface on the coated circuit board, which forms the antenna connection 5e, capacitively coupled to the latter.
  • Fig. 4
    Antenna protection hood 1a with an electrically conductive coating as a ring line antenna according to the invention with an oblique view from below into the opening of the antenna protection hood. The antenna protection hood is designed in the form of a truncated and, in particular, stepped pyramid hollowed out from below. Care is taken to ensure that this shape can be produced using a simple plastic injection molding technique. The areas marked as a grid show the elements of the ring line radiator in this projection. The shell edges run in the above-mentioned reference plane 16. For the printing of an electrically conductive layer, which is in particular punctiform, an elongated coating device 18 can be present, which can be used, for example, as a printing pin for directly printing the conductive layer or, for example, as Laser beam can be realized. The tip of the pressure pen or the diameter of the laser beam determines the fine grain of the print and thus the fineness of the structures to be designed. The coating device 18 is aligned in the machining direction 17. The coating angle 17 between this direction 17 and the surface to be printed is selected at least 5 ° to ensure a sharply contoured coating.
  • Fig. 5
    1. a) View from below into the opening of the protective antenna hood 1a with an electrically conductive coating as a ring line radiator according to FIG Fig. 4 . The dash-dotted lines Q1 to Q5 show the cutting line for the representation of the corresponding cross-sections in the following figures b) to e).
    2. b) The illustration of the cross-section along the section line Q1 shows the steep side walls of the pyramid, which for example run at an angle of less than 90 ° and greater than 75 ° to the reference plane 16. In this position, the capacitance electrodes 5b (bottom left) and 5c (bottom right) and the counter-electrodes, which are formed by the electrically conductive base surface 6 on the one hand and by the antenna connection 5e on the other, are shown.
    3. c) Representation of the cross section according to the section line Q2 analogous to b). The capacitance electrodes are not affected here
    4. d) Representation of the cross section according to the section line Q3. The vertical radiators 4, 4a-d are inclined at an angle α to the reference line perpendicular to the base 6, which can be between 0 ° and 70 °.
    5. e) Representation of the cross section according to the section line Q4
    6. f) Representation of the cross-section according to the section line Q5.
  • Fig. 6
    Exemplary embodiment of two ring lines 3 and 3 'with a common center, applied to the antenna protective hood 1a, which is similar to that in FIGS Fig. 4 and 5 is designed as a truncated pyramid hollowed out from below. In an advantageous embodiment of the invention, the illustration shows the view of the protective antenna hood 1 a from below with the electrically conductive surfaces of both the inner and the inner surface marked by a grid outer ring line radiator 3,3 '. Both ring line radiators can, for. B. each be designed by suitable dimensioning of the ring line 3 or 3 'and the capacities for the same frequency for combined use in antenna diversity technologies. The inner ring line radiator is designed as a 1st order radiator, ie for an azimuthal phase distribution of 2π over one revolution and the outer ring line radiator as a 2nd order radiator, ie for an azimuthal phase distribution of 2 * 2π over one revolution. Likewise, in an advantageous embodiment of the invention, the outer ring line radiator can be equipped with only four vertical radiators 4 'for receiving a further satellite radio service at a lower frequency than that of the inner ring line radiator.
  • Fig. 7
    In a further advantageous embodiment of the invention, the loop radiator is combined with a terrestrial broadband communication antenna 15, for example for LTE communication and with a terrestrial receiving antenna 14, for example for AM / FM / DAB radio reception. The particular advantage of the combination shown is the complete electromagnetic decoupling of the terrestrial antennae from the loop radiator 1 for satellite reception.
    1. a) From the view of the protective antenna hood 1a in Figure 7a The advantageous combinability of the terrestrial antennas with a common terrestrial antenna connection 13 in the center of the loop radiator can be seen obliquely from below. The terrestrial broadband communication antenna 15 is essentially formed from strip-shaped, electrically conductive conductor tracks 12 converging at the terrestrial antenna connection point 13, which are lasered or printed onto V-shaped surfaces on the protective antenna hood 1a. The terrestrial receiving antenna 14 is designed in a similar manner by means of strip-shaped printed or laser-etched electrically conductive conductor tracks 12 with the common antenna connection point 13.
    2. b) shows this arrangement with a view from below, from which the combination of terrestrial receiving antenna 14 - at the upper end of which a roof capacity 16 is formed - with the broadband communication antenna 15 can be seen.
  • Fig. 8
    For the use of such antennas on the vehicle roof, antenna protective hoods 1a are used, the width of which is smaller transversely to the direction of travel for reasons of flow technology than along to the direction of travel.
    1. a) Representation of the exemplary design of the cross section of an antenna protection hood 1 a according to the invention (transverse to the direction of travel) with the surfaces coated with strip-shaped conductor tracks 12 for the ring line radiator and the terrestrial broadband communication antenna 15. These conductor tracks are in particular angled in a V-shape in the plane transverse to the direction of travel. For high-quality coating of the protective antenna hood 1a from below from the direction of the vertical dashed line, it is advantageous not to fall below the coating angle 19 of a = 5 ° between this line and the surface to be coated at any point.
    2. b) in the representation of a section of the protective antenna hood 1 a according to the invention along the direction of travel, the strip-shaped conductor tracks 12 of the terrestrial receiving antenna 14, which is higher than the broadband communication antenna 15, are shown. In contrast to those of the broadband communication antenna 15, these conductor tracks 12 are angled in a V-shape in the plane along the direction of travel. Both antennas meet in the common terrestrial antenna connection point 13.

Liste der Bezeichnungen:List of names:

  • Ringleitungsstrahler 1Ring line radiator 1
  • Antennenschutzhaube 1aAntenna protection hood 1a
  • Elektrisch leitend beschichtete Leiterplatte 2Electrically conductive coated circuit board 2
  • Ringleitung 3Ring line 3
  • vertikale Strahler 4, 4a, 4b, 4c, 4dvertical radiators 4, 4a, 4b, 4c, 4d
  • Kapazitätselektroden 5a, 5b, 5c, 5dCapacitance electrodes 5a, 5b, 5c, 5d
  • Antennenanschluss 5,5eAntenna connection 5.5e
  • leitende Grundfläche 6conductive base 6
  • Ringleitungs-Koppelpunkte 7,7a,7b,7c,7dRing line coupling points 7,7a, 7b, 7c, 7d
  • vertikale Teile 8vertical parts 8
  • horizontale Teile 9horizontal parts 9
  • Abstand der Höhe h 10Distance of height h 10
  • Abstand 11Distance 11
  • streifenförmige Leiterbahnen 12strip-shaped conductor tracks 12
  • terrestrische Antennen -Anschlussstelle 13terrestrial antenna connection point 13
  • terrestrische Empfangsantenne 14terrestrial receiving antenna 14
  • terrestrische Breitband-Kommunikationsantenne 15broadband terrestrial communication antenna 15
  • Bezugsebene 16Reference plane 16
  • Bearbeitungsrichtung 17Processing direction 17
  • Beschichtungsvorrichtung 18Coating device 18
  • Beschichtungswinkel 19Coating angle 19

Claims (15)

  1. A protective antenna cover (1a) composed of dielectric plastic which is formed as a loop radiator for the reception of circularly polarized satellite radio signals and whose opening defines a reference plane (16), said protective antenna cover (1a) comprising a loop (3, 3') and at least one linear radiator (4, 4a - d) connected thereto and extending in the direction of the reference plane (16), wherein the loop (3) and the at least one linear radiator (4, 4a - d) are applied to the inner surface of the protective antenna cover (1a)as a coating and form an electrically conductive and contiguous antenna structure.
  2. A protective antenna cover in accordance with claim 1,
    characterized in that
    the contour of the inner surface of the protective antenna cover (1a) is configured by shaping the inner surface of the protective antenna cover (1a) for a design of electrically conductive surfaces in a manner such that the loop (3, 3') is formed on a surface in parallel with the reference plane (16); and/or in that the at least one linear radiator (4, 4a - d) extending toward the reference plane (16) is formed by an electrically conductively coated strip surface.
  3. A protective antenna cover in accordance with at least one of the preceding claims,
    characterized in that
    a flat capacitance electrode (5a, 5b, 5c, 5d) is applied in a coated manner as an electrically conductive areal structure on a formation of the inner surface of the protective antenna cover (1a) formed in parallel with and at a spacing (11) from the reference plane (16) and is electrically conductively connected to the lower end of the at least one linear radiator (4, 4a - d).
  4. A protective antenna cover in accordance with at least one of the preceding claims,
    characterized in that,
    for the connection of the at least one linear radiator (4, 4a - d) to an electrically conductive base plate (6), a counter-electrode is formed by the electrically conductive base plate (6) at the lower end of said at least one linear radiator (4, 4a - d).
  5. A protective antenna cover in accordance with at least one of the preceding claims,
    characterized in that,
    for the capacitive connection of a lower end of the at least one linear radiator (4, 4a - d) to an antenna connector (5) in the plane of an electrically conductive base plate (6), a flat counter-electrode (5e) electrically insulated therefrom is formed which is connected to the antenna connector (5).
  6. A protective antenna cover in accordance with at least one of the preceding claims,
    characterized in that,
    at least in the interior, it has the shape of a truncated pyramid or of an internally hollow stepped pyramid whose lower side walls are adjacent to the reference plane (16), with in particular: the stepped pyramid having in parallel with the reference plane (16) two substantially horizontal part surfaces located thereabove in the form of a first peripheral step and a planar top surface disposed thereabove, and with in particular four capacitance electrodes (5a, 5b, 5c, 5d) being located at the lower side of the lower horizontal part surface, in each case in its four corners, and/or with the loop (3) being located at the lower side of the upper top surface.
  7. A protective antenna cover in accordance with at least one of the preceding claims,
    characterized in that
    four of the linear radiators (4a, 4b, 4c, 4d) are provided and four capacitance electrodes (5a, 5b, 5c, 5d) are each connected via a respective one of the linear radiators (4a, 4b, 4c, 4d) to a corner of the loop (3, 3') disposed thereabove.
  8. A protective antenna cover in accordance with claim 1,
    characterized in that
    the loop (3, 3') is connected at each of its four corners to a respective linear radiator (4a, 4b, 4c, 4d) which leads, respectively starting from the respective corner, along an inner edge between side walls contacting the corner until it ends at a spacing (11) from the reference plane (16).
  9. A protective antenna cover in accordance with claim 1,
    characterized in that
    a plurality of the linear radiators (4a, 4b, 4c, 4d) are connected at a spacing (11) from the reference plane (16) to a respective capacitance electrode (5a, 5b, 5c, 5d) which is configured at a respective corner of the protective antenna cover (1a)in the form of a horizontal surface extending at a spacing (11) from and in parallel with the reference plane (16) and being formed by a gradation of the inner side of the side walls.
  10. A protective antenna cover in accordance with at least one of the preceding claims,
    characterized in that
    the electrically conductive coating is applied at least partly in the form of an electrically conductive lattice structure whose mesh is in particular substantially smaller than 1/8 of the wavelength.
  11. A protective antenna cover in accordance with at least one of the preceding claims,
    characterized in that
    the loop radiator is combined with at least one terrestrial vertical antenna (14, 15) for further radio services having a terrestrial antenna connector point (13) at the center of the loop (3, 3'), with in particular two terrestrial antennas having a common terrestrial antenna connector point (13) at the center of the loop (3, 3') being present in the protective antenna cover, of which the one is provided as a terrestrial broadband communication antenna (15) for LTE communication and the other terrestrial reception antenna (14) is provided for the coverage of frequency bands at a lower frequency such as LTE communication in the low band or AM/FM/DAB radio reception, with in particular both terrestrial antennas being formed from strip-shaped and electrically conductive conductor tracks (12) which converge cluster-like at the antenna connector point (13) and which are formed from surfaces formed in V shape in the interior of the protective antenna cover (1a).
  12. A protective antenna cover in accordance with at least one of the preceding claims,
    characterized in that
    the electrically conductive antenna structure is printed onto the inner jacket surface of the protective antenna cover or is applied using a laser.
  13. A protective antenna cover in accordance with at least one of the preceding claims,
    characterized in that
    it has a greater extent in a first direction (direction of travel) in the reference plane than in a second direction extending transversely thereto; and in that conductor tracks (12) of a terrestrial broadband communication antenna (15) are angled out of a plane extending in the first direction and conductor tracks (12) of a higher terrestrial reception antenna (14) are angled out of a plane extending in the first direction.
  14. A method of manufacturing a protective antenna cover in accordance with at least one of the preceding claims,
    characterized in that
    the production of the antenna structure takes place in the interior of the protective antenna cover (1a) from a direction (17) which extends substantially perpendicular to the reference plane (16).
  15. A method in accordance with claim 14,
    characterized in that
    the antenna structure is printed or is generated with the aid of a laser on the inner side of the protective antenna cover (1a), with in particular the direction (17) having an angle (19) of at least 5° with respect to all the surfaces to be provided with the antenna structure.
EP17720805.5A 2016-05-04 2017-05-03 Protective antenna cover for vehicles Active EP3430679B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102016005517 2016-05-04
DE102016010200.4A DE102016010200A1 (en) 2016-05-04 2016-08-22 Antenna under a cup-shaped antenna cover for vehicles
PCT/EP2017/060477 WO2017191161A1 (en) 2016-05-04 2017-05-03 Protective antenna cover for vehicles

Publications (2)

Publication Number Publication Date
EP3430679A1 EP3430679A1 (en) 2019-01-23
EP3430679B1 true EP3430679B1 (en) 2021-01-06

Family

ID=60119204

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17720805.5A Active EP3430679B1 (en) 2016-05-04 2017-05-03 Protective antenna cover for vehicles

Country Status (6)

Country Link
US (1) US10622710B2 (en)
EP (1) EP3430679B1 (en)
JP (1) JP2019515568A (en)
CN (1) CN109075433B (en)
DE (1) DE102016010200A1 (en)
WO (1) WO2017191161A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102551606B1 (en) 2019-10-14 2023-07-05 엘지전자 주식회사 Antenna systems mounted on vehicles

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101217213B (en) * 2007-12-26 2012-05-23 蒋小平 An upper laid aerial device of automobile
KR101080889B1 (en) 2009-04-02 2011-11-09 주식회사 에이스테크놀로지 Antenna device for vehicle
EP2296227B1 (en) * 2009-09-10 2018-02-21 Delphi Deutschland GmbH Antenna for receiving circular polarised satellite radio signals
DE102010035934A1 (en) 2010-08-31 2012-03-01 Heinz Lindenmeier Receiving antenna for circularly polarized satellite radio signals
CN103022638B (en) * 2012-12-13 2015-07-29 深圳市维力谷无线技术有限公司 A kind of method adopting laser direct structuring technique to make embedded antenna for mobile terminal
CN103094682B (en) * 2013-01-30 2015-07-01 苏州中兴联精密工业有限公司 Vehicle-mounted antenna and manufacturing method thereof
DE102013005001A1 (en) 2013-03-24 2014-09-25 Heinz Lindenmeier Broadband monopole antenna for two frequency bands separated by a frequency gap in the decimeter wave range for vehicles
DE102014108896A1 (en) * 2014-06-25 2015-12-31 Airbus Defence and Space GmbH Method of making a radome

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CN109075433A (en) 2018-12-21
US20190140345A1 (en) 2019-05-09
JP2019515568A (en) 2019-06-06
US10622710B2 (en) 2020-04-14
WO2017191161A1 (en) 2017-11-09
EP3430679A1 (en) 2019-01-23
DE102016010200A1 (en) 2017-11-09
CN109075433B (en) 2021-09-10

Similar Documents

Publication Publication Date Title
EP0841715B1 (en) Flat antenna
EP2784874B1 (en) Broadband monopole antenna for vehicles for two frequency bands separated by a frequency gap in the decimeter wavelength
DE102005054286B4 (en) antenna array
EP3178129B1 (en) Multi-structure broadband monopole antenna for two frequency bands in the decimeter wave range separated by a frequency gap, for motor vehicles
DE112008001263B4 (en) Vehicle Mirror Antenna Assembly
EP2052437A1 (en) Tunable antenna having a planar design
WO2010031459A1 (en) Multilayer antenna arrangement
EP2027626A1 (en) Multilayer antenna having a planar design
DE102008039125A1 (en) Beam shaping device for exterior and / or roof antennas on vehicles and associated antenna
WO2005043675A1 (en) Antenna assembly, in particular for radar applications in motor vehicles
DE112018004509T5 (en) ANTENNA DEVICE EMBEDDED IN VEHICLE BODY
DE68910728T2 (en) Stripline array antenna.
DE102016204868A1 (en) antenna device
EP3474374B1 (en) Antenna system for circular polarised satellite radio signals on a vehicle
DE102012217113A1 (en) Antenna structure of a circular polarized antenna for a vehicle
EP3430679B1 (en) Protective antenna cover for vehicles
DE10031255A1 (en) slot antenna
WO2007048258A1 (en) Antenna arrangement having a broadband monopole antenna
EP3430680B1 (en) Antenna array
EP4270647A1 (en) Combination antenna for mobile radio and satellite reception
DE19546010A1 (en) Combined flat antenna for vehicle global positioning system and mobile radio
CH718917A1 (en) Antenna module and antenna assembly.
DE102009058654A1 (en) Flat top antenna for use in or at mobile object, has flat carrier and antenna radiator arranged on carrier, where flat carrier is made of fiber glass
DE29502253U1 (en) Flat antenna
DE102015211384A1 (en) Antenna arrangement, method for producing an antenna arrangement and method for operating an antenna arrangement

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20181017

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200724

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1353370

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210115

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017008952

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210106

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210406

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210106

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210106

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210106

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210406

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210106

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210106

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210506

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017008952

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210106

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210106

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210106

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210106

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210106

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210106

26N No opposition filed

Effective date: 20211007

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210106

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210106

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210503

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210106

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210106

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210206

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210106

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1353370

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170503

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220503

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230526

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230519

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230524

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230727

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210106