EP3430249A1 - Verfahren zum ermitteln eines korrigierten stickoxidwerts und ammoniakwerts in einer brennkraftmaschine - Google Patents

Verfahren zum ermitteln eines korrigierten stickoxidwerts und ammoniakwerts in einer brennkraftmaschine

Info

Publication number
EP3430249A1
EP3430249A1 EP17703718.1A EP17703718A EP3430249A1 EP 3430249 A1 EP3430249 A1 EP 3430249A1 EP 17703718 A EP17703718 A EP 17703718A EP 3430249 A1 EP3430249 A1 EP 3430249A1
Authority
EP
European Patent Office
Prior art keywords
ammonia
nitrogen oxide
value
sensor
determining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP17703718.1A
Other languages
English (en)
French (fr)
Inventor
Hong Zhang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Continental Automotive GmbH
Original Assignee
Continental Automotive GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Automotive GmbH filed Critical Continental Automotive GmbH
Publication of EP3430249A1 publication Critical patent/EP3430249A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • F01N3/208Control of selective catalytic reduction [SCR], e.g. dosing of reducing agent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/146Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration
    • F02D41/1463Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration of the exhaust gases downstream of exhaust gas treatment apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/021Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting ammonia NH3
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/026Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting NOx
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/14Exhaust systems with means for detecting or measuring exhaust gas components or characteristics having more than one sensor of one kind
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/14Parameters used for exhaust control or diagnosing said parameters being related to the exhaust gas
    • F01N2900/1402Exhaust gas composition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D2041/1468Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an ammonia content or concentration of the exhaust gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a method for determining a corrected nitrogen oxide value and ammonia value in an internal combustion engine, more particularly to a method of determining a corrected nitrogen oxide value and ammonia value in an internal combustion engine having an SCR catalyst in which a nitrogen oxide sensor and an ammonia sensor are disposed downstream of the SCR catalyst ,
  • SCR selective catalytic reduction
  • a urea upstream of the SCR catalyst is injected into the exhaust gas, which then at least partially decomposes into ammonia, which can rea ⁇ greieren with the exhaust gas to water and nitrogen within the SCR catalyst ⁇ .
  • nitrogen oxide sensors and ammonia sensors are used to determine the respective proportions in the outlet tract of the
  • SCR catalyst arranged urea sensor by the combination of both signals to adapt.
  • a method for determining a corrected nitrogen oxide value in an internal combustion engine which comprises an SCR catalytic converter, downstream of the
  • the method according to the invention comprises determining that the internal combustion engine is in a fuel cut-off phase, interrupting the fuel injection injection of urea by means of the urea injection device during the fuel cut-off phase, determining a nitrogen oxide reference value from a nitrogen oxide signal generated by the nitrogen oxide sensor during the fuel cut-off phase and determining a corrected nitrogen oxide value from one of
  • fuel injection into the cylinders of the internal combustion engine is interrupted, thereby substantially passing air through the engine.
  • urea injection for example AdBlue dosing
  • urea injection is also interrupted, as a result of which nitrogen oxide emissions and urea emissions fall.
  • the respective signals from both the nitrogen oxide sensor upstream of the SCR catalyst and the signals from the nitrogen oxide sensor downstream of the SCR catalyst are also reduced.
  • the signal of the sensor reduces ammonia downstream of the SCR catalyst.
  • the downstream of the SCR catalyst disposed nitrogen oxide sensor is cross-sensitive to ammonia, that is, the signal (hereinafter referred to as "nitrogen oxide signal”) of the embroidery ⁇ oxidsensors the sum of NOx and Ammoni ⁇ ak Indicates concentrations.
  • According to the invention is another method for determining a corrected value ammonia in an internal combustion engine of ⁇ fenbart that an SCR catalyst, an upstream of the SCR catalyst disposed urea injection device, and a arranged downstream of the SCR catalyst Ammoni ⁇ aksensor.
  • the inventive method according to this aspect of the present invention comprises determining that the internal combustion engine is in a fuel cut-off phase, interrupting the injection of urea by means of the urea injection device during Schubabschal ⁇ tion phase, determining an ammonia reference value from one of the ammonia sensor during the fuel cut-off phase generated ammonia signal and determining a corrected ammonia value from a generated by the ammonia sensor during normal operation of the ⁇ combustion ⁇ ammonia signal, taking into account the ammonia reference value.
  • the two methods according to the invention are combined, that is to say that the method for determining a corrected nitrogen oxide value and the method for determining a corrected ammonia value run simultaneously.
  • the respective processes are preferably executed only when the nitrogen oxide reference value is smaller than a certain nitrogen oxide before ⁇ threshold or if the ammonia reference value is smaller than a predetermined Ammoniakschwel ⁇ lenwert.
  • an absolute change gradient describes the change in time within a predetermined time interval briefly in succession detected signals.
  • the method further comprises determining an ammonia difference between an ammonia value determined during the normal operation of the internal combustion engine from the ammonia signal generated by the ammonia sensor and a further ammonia value determined during normal operation of the internal combustion engine from the nitrogen oxide signal generated by the nitrogen oxide sensor.
  • the ammonia difference may be an indication of drift of the ammonia sensor.
  • the following steps during a subsequent fuel cut phase are executed when that is, during normal operation of the internal ⁇ combustion engine ammonia difference is higher than a predetermined ammonia difference threshold value: activating the urea injector for injecting a predetermined amount of urea during a predetermined period, determining at least a first ammonia value of from Ammonia sensor generated ammonia signals, determining at least a second ammonia value from signals generated by the nitrogen oxide sensor, determining that the change gradient of the first ammonia signals is less than a first change ⁇ threshold, determining that the change gradient of the second ammonia values is less than a second change threshold and Adaptation of a slope of the characteristic curve of the ammonia sensor by means of the second ammonia values, if the gradients of change of the first and second ammonia w each are smaller than the associated change threshold.
  • the nitrogen oxide sensor is cross-sensitive to ammonia, that is, the signal of the nitrogen oxide sensor indicative of the sum of nitrogen oxide and Ammoni ⁇ ak concentrations.
  • the signal of the downstream of the nitrogen oxide sensor is cross-sensitive to ammonia, that is, the signal of the nitrogen oxide sensor indicative of the sum of nitrogen oxide and Ammoni ⁇ ak concentrations.
  • such a design from ⁇ from a functioning SCR catalyst and at high Ammonia slip is preferred, in which the signal of the downstream of the
  • SCR catalyst arranged nitrogen oxide sensor substantially indicates an ammonia value, since the nitrogen oxides are converted in the SCR catalyst and the concentration downstream of the
  • the nitrogen oxide reference value is determined as follows:
  • Nitrogen oxide reference value for the correction nitrogen oxide reference value of a previous correction
  • Weighting factor between 0 and 1 depending on the operating time of the internal combustion engine between two corrections
  • Ammonia reference value for the correction NH 3 ammonia reference value of a previous correction
  • Weighting factor between 0 and 1 depending on the
  • the weighting factors Ki (T t i t 2) and K 2 (T t i t 2) are dependent on the engine operating state and the engine operating time between two adaptations and are preferably in a range between 0 and 1.
  • the internal combustion engine comprises a further nitrogen oxide sensor, which is arranged upstream of the SCR catalytic converter.
  • the method further comprises determining another
  • NO Xnetto corrected and adjusted ammonia nitrogen oxide value NO x nitrogen oxide determined from a value produced by the nitrogen oxide sensor nitric oxide signal, and NH 3 determined from a signal generated from the ammonia sensor signal ammonia ammonia value.
  • an exhaust duct for an internal combustion engine is disclosed, to produce the one SCR catalyst, a downstream of the SCR catalyst at ⁇ parent nitrogen oxide sensor which is adapted to a nitrogen oxide value indicative of nitric oxide signal, upstream of the SCR Catalyst disposed urea injection device, which is designed to inject a predetermined amount of urea, one downstream of the
  • the SCR catalyst arranged ammonia sensor, which is formed to the ammonia value downstream of the
  • SCR catalyst indicating ammonia signal
  • control unit which is adapted to receive the nitrogen oxide signal and the ammonia signal and to carry out a method according to the present disclosure.
  • the outlet tract further comprises a further nitrogen oxide sensor, which is arranged upstream of the SCR catalytic converter, and which is designed to accommodate the nitrogen oxide sensor
  • FIG. 2 shows a flow chart according to an example method for determining a corrected nitrogen oxide value or a corrected ammonia value
  • Fig. 3 is a Flussidagramm for adjusting the slope of a
  • the exhaust tract 10 has an SCR catalytic converter 20, which is designed to carry out a chemical reaction so that the nitrogen oxides in the exhaust gas can be reduced.
  • SCR catalytic converter 20 Upstream of the SCR catalyst 20 is a particulate filter, such as a diesel particulate filter. Downstream of the SCR catalyst 20
  • SCR catalyst 20 a nitrogen oxide sensor 22 and a Am ⁇ moniaksensor 24 are arranged, which are adapted to generate ent ⁇ speaking signals.
  • the stick ⁇ oxide sensor 22 is adapted to generate a nitrogen oxide value to a ⁇ pointing nitric oxide signal.
  • the ammonia sensor 24 is configured to generate an ammonia signal indicative of ammonia value.
  • the nitrogen oxide sensor 22 and the ammonia sensor 24 are integrated in a sensor.
  • a urea injection device 26 Upstream of the SCR catalyst 20 is disposed a urea injection device 26 adapted to inject a predetermined amount of urea at predetermined times.
  • the urea solution is designed to be from Exhaust gas to be decomposed so that at least partially ammonia is formed, which can react chemically in the SCR catalyst 20 and thus reduce the nitrogen oxides in the exhaust gas.
  • a further nitrogen oxide sensor 32 is additionally provided upstream of the particle filter 20, which is designed to generate a further nitrogen oxide signal indicating a nitrogen oxide value.
  • a control unit 40 which may be part of the control of the internal combustion engine, for example, is with the
  • Nitrous oxide sensor 22 the ammonia sensor 24, the urea injection device 26 and the other nitrogen oxide sensor 32 connected and adapted to receive signals from these devices or to send them to control the same.
  • the controller 40 is configured to execute a method according to FIG. 2.
  • the method according to FIG. 2 begins at step 200 and determines at step 210 whether the internal combustion engine is in a fuel cut-off phase . If it is determined at step 200 that the focal ⁇ combustion engine is in a normal operation with thrust, the procedure moves to step 270 where it is terminated.
  • step 210 determines that the focal ⁇ combustion engine is in a fuel cut-off phase, downhill at ⁇ play, at a drive
  • the method moves to step 220, at the next interruption of the Kraftstoffe- the urea feed inspritzung additionally by means of the urea injection device 26 during the fuel cut-off phase is interrupted.
  • a reference value nitric oxide from a nitric oxide produced by the sensor 22 during the overrun cut-off phase reference signal nitric oxide and / or a Ammoniakrefe be at step 230 ⁇ Limit value of one from the ammonia sensor 24 during the
  • step 240 it is checked whether the nitrogen oxide value and the ammonia value downstream of the SCR catalyst 20 are smaller than a nitrogen oxide threshold value and smaller than a predetermined ammonia threshold, respectively. If only one of the two values is above the respective threshold value, the process goes to step 270, where it is terminated.
  • the linear sensor characteristics at step 240 instead of comparing the values with a predetermined threshold, the signals produced by the respective sensors may be directly compared to a corresponding predetermined threshold signal. However, the two values are less than their associated predetermined threshold, then the method proceeds to step 250, at which it is queried whether an absolute change ⁇ gradient of the respective values is smaller than a threshold value are associated.
  • step 270 If only one of the two absolute change gradients is above its corresponding predetermined change Threshold, the process proceeds to step 270, where the process is terminated.
  • step 250 determines that both change ⁇ gradient is smaller than their respective change threshold value.
  • step 260 both of the nitrogen oxide reference value according to the formula (1) and the Ammo ⁇ niakreferenzschwellenwert according to the following formula (2 ) be adjusted.
  • Ki (T tl _ t2 ) Weighting factor between 0 and 1 depending on the
  • Fuel cut-off phase of the internal combustion engine is determined from a nitrogen oxide signal generated by the nitrogen oxide sensor
  • a query is made as to whether the internal combustion engine is in normal operation. It is meant with the normal operation that the
  • step 310 If it is determined at step 310 that no normal operation of the internal combustion engine, such as a fuel cut ⁇ phase is present, the process moves to step 390 and ends there.
  • step 310 it is determined at step 310 whether the ammonia slip of the SCR catalyst is above a predetermined threshold, for example, above 40 ppm. Since the nitric oxide sensor is cross-sensitive to ammonia, the nitric oxide sensor measures the sum of nitrogen oxides and ammonia. Accordingly, it can be assumed with a sufficiently high ammonia slip that the signal of the ammonia sensor 24 is substantially equal to the signal of the nitrogen oxide sensor 32, provided that the SCR catalyst is operating properly and can decorate the nitrogen oxide significantly redu ⁇ . If it is determined at step 310 that the engine is in normal operation and that the ammonia slip is greater than a predetermined threshold, at step 320, both the nitrogen oxide sensor 22 and the ammonia sensor 24 generate corresponding signals.
  • a predetermined threshold for example, above 40 ppm. Since the nitric oxide sensor is cross-sensitive to ammonia, the nitric oxide sensor measures the sum of nitrogen oxides and ammonia. Accordingly, it can be assumed with a sufficiently high ammoni
  • step 330 an ammonia difference between the ammonia value determined from the nitrogen oxide signal and the ammonia value determined from the ammonia signal is formed.
  • step 330 it is further queried whether this ammonia difference exceeds a predetermined ammonia difference threshold. If it is determined at step 330 that the ammonia difference threshold value is not exceeded, ge ⁇ reached the process to step 390 and is ended. However, if at step 330 determines that the ammonia difference exceeds the ammonia difference threshold value, the process proceeds to step reaches 340.
  • determining whether the signal generated by the ammonia sensor 24 sig ⁇ cantly is oxidsignal of the generated from the nitrogen oxide sensor 22 of nitrogen, at step 330, which during indicates the prevailing operating state of the internal combustion engine substantially ammonia, deviates. This deviation can be checked, for example, with the ammonia difference.
  • step 340 it is determined whether the engine has changed from the normal operation to the fuel cut operation. If it is determined at step 340 that the internal combustion engine continues ⁇ in normal operation, the process moves to step 390 and is ended.
  • step 340 determines that the internal combustion engine from normal operation is open ⁇ changes to a fuel cut operation
  • the process moves to step 350 at which the urea injection device 26 is controlled such that it despite the overrun cut-off phase for a predetermined period (for example a few seconds ) injects a predetermined amount of urea, so that at a position downstream of the SCR catalyst 20, an ammonia concentration from above a threshold, for example greater than about 40 ppm.
  • a predetermined period for example a few seconds
  • the nitrogen oxide sensor 22 and the ammonia sensor 24 produce corresponding signals during the Schubab ⁇ shifting phase at step 360th It should be noted that due to the fuel cut-off phase, the signals of the nitrogen oxide sensor 22 substantially indicate an ammonia value, since there are essentially no nitrogen oxides.
  • step 370 it is determined that the first ammonia values determined from the signals of the nitrogen oxide sensor 22 and the second ammonia values determined from the ammonia signals of the ammonia sensor 24 are at least partially stable, ie that the gradients of the first and second ammonia values are each less than a predetermined first or second ammonia value second change threshold. If at step 370 be true ⁇ that the first and second ammonia levels are at least partly unstable, the process moves to step 390 and is ended.
  • step 370 determines that the first and second ammonia levels are at least partially stable
  • the process moves to step 380 at which the signals of the embroidery ⁇ oxidsensors 22, indicating the levels of ammonia, used for adapting the slope of the characteristic of the ammonia sensor 24 becomes.
  • the fact is taken into account that the nitrogen oxide sensor 22 can measure more accurately than the ammonia sensor 24.
  • the activated at step 350 the urine ⁇ fuel injection is then terminated, and the method for adapting the characteristic of the ammonia sensor 24 by means of the signals of the nitrogen oxide sensor 22 is completed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zum Ermitteln eines korrigierten Stickoxidwerts bzw. korrigierten Ammoniakwerts in einer Brennkraftmaschine, die einen SCR-Katalysator (20), einen Stickoxidsensor (22), eine Harnstoffeinspritzvorrichtung (26) und einen Ammoniaksensor (24) aufweist. Das Verfahren umfasst ein Bestimmen, dass sich die Brennkraftmaschine in einer Schubabschaltungsphase befindet, ein Unterbrechen der Harnstoffeinspritzung, ein Ermitteln eines Stickoxidreferenzwerts aus einem vom Stickoxidsensor (22) erzeugten Stickoxidreferenzsignals bzw. ein Ermitteln eines Ammoniakreferenzwerts aus einem vom Ammoniaksensor (24) erzeugten Ammoniakreferenzsignals, und ein Ermitteln eines korrigierten Stickoxidwerts aus einem vom Stickoxidsensor (22) während eines Normalbetriebs der Brennkraftmaschine erzeugten Stickoxidsignal unter Berücksichtigung des Stickoxidreferenzwerts bzw. ein Ermitteln eines korrigierten Ammoniakwerts aus einem vom Ammoniaksensor (24) während eines Normalbetriebs der Brennkraftmaschine erzeugten Ammoniaksignals unter Berücksichtigung des Ammoniakreferenzwerts.

Description

Beschreibung
Verfahren zum Ermitteln eines korrigierten Stickoxidwerts und Ammoniakwerts in einer Brennkraftmaschine
Die vorliegende Erfindung betrifft ein Verfahren zum Ermitteln eines korrigierten Stickoxidwerts und Ammoniakwerts in einer Brennkraftmaschine, insbesondere ein Verfahren zum Ermitteln eines korrigierten Stickoxidwerts und Ammoniakwerts in einer einen SCR-Katalysator aufweisenden Brennkraftmaschine, bei der ein Stickoxidsensor und ein Ammoniaksensor stromabwärts des SCR-Katalysators angeordnet sind.
Bei Brennkraftmaschinen, insbesondere Diesel-Brennkraft- maschinen, ist bekannt, sogenannte SCR ( selektive katalytische Reduktion) -Katalysatoren einzusetzen, die zur Reduktion von Stickoxiden in den Abgasen der Brennkraftmaschine eingesetzt werden. Dabei ist die chemische Reaktion am SCR-Katalysator selektiv, das heißt, dass bevorzugt die Stickoxide (NO, O2) reduziert werden, während unerwünschte Nebenreaktionen, wie die Oxidation von Schwefeldioxid zu Schwefeltrioxid, weitgehend unterdrückt werden.
Für die chemische Reaktion wird ein Harnstoff stromaufwärts des SCR-Katalysators in das Abgas eingespritzt, der sich daraufhin zumindest teilweise in Ammoniak zersetzt, welches mit dem Abgas zu Wasser und Stickstoff innerhalb des SCR-Katalysators rea¬ gieren kann. Zur Steuerung der einzuspritzenden Harnstoffmenge werden beispielsweise Stickoxidsensoren und Ammoniaksensoren eingesetzt, um die jeweiligen Anteile im Auslasstrakt der
Brennkraftmaschine zu messen und daraufhin die korrekte Menge des einzuspritzenden Harnstoffs zu steuern. Es ist eine Aufgabe der Erfindung, ein Verfahren bereitzustellen, mit dem die Stickoxidwerte und Ammoniakwerte fahrzeugindividuell und möglichst genau ermittelt werden können. Diese Aufgabe wird gemäß dem Verfahren der unabhängigen Ansprüche 1 und 2 sowie dem Auslasstrakt gemäß Anspruch 9 gelöst. Vor¬ teilhafte Ausgestaltungen sind in den abhängigen Ansprüchen angegeben . Der vorliegenden Erfindung liegt der Gedanke zugrunde, während einer Schubabschaltungsphase der Brennkraftmaschine die
Stickoxidsensoren und den Ammoniaksensor zu kalibrieren, d. h. dass mit dem erfindungsgemäßen Verfahren ein möglich auftretender Alterungseffekt der Sensoren reduziert werden kann. Insbesondere wird die Kalibrierung während eines Betriebszu¬ stands der Brennkraftmaschine durchgeführt, nämlich während der Schubabschaltungsphase, während dem im Auslasstrakt keine bzw. nahezu keine Stickoxide vorliegen. Folglich kann der sogenannte Nulloffset der jeweiligen Stickoxidsensoren, aber auch des Ammoniaksensors, kalibriert und eingestellt werden . Ferner liegt der vorliegenden Erfindung der Gedanken zugrunde, die Kennlinien eines stromabwärts des SCR-Katalysators angeordneten Stick¬ oxidsensors und die Kennlinie eines stromabwärts des
SCR-Katalysators angeordneten Harnstoffsensors durch die Kombination beider Signale zu adaptieren.
Erfindungsgemäß ist ein Verfahren zum Ermitteln eines korrigierten Stickoxidwerts in einer Brennkraftmaschine vorgesehen, die einen SCR-Katalysator, einen stromabwärts des
SCR-Katalysators angeordneten Stickoxidsensor und eine stromaufwärts des SCR-Katalysators angeordnete Harnstoffein- spritzanordnung aufweist. Das erfindungsgemäße Verfahren um- fasst ein Bestimmen, dass sich die Brennkraftmaschine in einer Schubabschaltungsphase befindet, ein Unterbrechen der Ein- spritzung von Harnstoff mittels der Harnstoffeinspritzvor- richtung während der Schubabschaltungsphase, Ermitteln eines Stickoxidreferenzwerts aus einem vom Stickoxidsensor während der Schubabschaltungsphase erzeugten Stickoxidsignals und ein Ermitteln eines korrigierten Stickoxidwerts aus einem vom
Stickoxidsensor während eines Normalbetriebs der Brennkraft¬ maschine erzeugten Stickoxidsignals unter Berücksichtigung des Stickoxidreferenzwerts . Während der Schubabschaltungsphase, beispielsweise bei einer Bergabfahrt, ist die Kraftstoffeinspritzung in die Zylinder der Brennkraftmaschine unterbrochen, wodurch im Wesentlichen Luft durch die Brennkraftmaschine strömt. Zudem wird auch die Harnstoffeinspritzung (beispielsweise AdBlue-Dosierung) un- terbrochen, so dass infolgedessen die Stickoxidemissionen als auch die Harnstoffemissionen sinken. Infolge dieser Senkung der Stickoxidemissionen und Harnstoffemissionen reduzieren sich ebenfalls die jeweiligen Signale von sowohl dem Stickoxidsensor stromaufwärts des SCR-Katalysators als auch die Signale des Stickoxidsensors stromabwärts des SCR-Katalysators. In ähn¬ licher Weise reduziert sich das Signal des Ammoniaksensors stromabwärts des SCR-Katalysators.
Die vorliegende Offenbarung macht sich ferner zunutze, dass der stromabwärts des SCR-Katalysators angeordnete Stickoxidsensor querempfindlich zu Ammoniak ist, das heißt, dass das Signal (im Folgenden als „Stickoxidsignal" bezeichnet) des Stick¬ oxidsensors die Summe aus Stickoxid- und Ammoni¬ ak-Konzentrationen anzeigt.
Erfindungsgemäß ist ein weiteres Verfahren zum Ermitteln eines korrigierten Ammoniakwerts in einer Brennkraftmaschine of¬ fenbart, die einen SCR-Katalysator, eine stromaufwärts des SCR-Katalysators angeordnete Harnstoffeinspritzvorrichtung und einen stromabwärts des SCR-Katalysators angeordneten Ammoni¬ aksensor aufweist. Das erfindungsgemäße Verfahren gemäß diesem Aspekt der vorliegenden Erfindung weist ein Bestimmen, dass sich die Brennkraftmaschine in einer Schubabschaltungsphase be- findet, ein Unterbrechen der Einspritzung von Harnstoff mittels der Harnstoffeinspritzvorrichtung während der Schubabschal¬ tungsphase, ein Ermitteln eines Ammoniakreferenzwerts aus einem vom Ammoniaksensor während der Schubabschaltungsphase erzeugten Ammoniaksignals und ein Ermitteln eines korrigierten Ammoni- akwerts aus einem vom Ammoniaksensor während eines Normalbe¬ triebs der Brennkraftmaschine erzeugten Ammoniaksignal unter Berücksichtigung des Ammoniakreferenzwerts auf.
Gemäß einem weiteren Aspekt der vorliegenden Erfindung sind die beiden erfindungsgemäßen Verfahren kombiniert, das heißt, dass gleichzeitig das Verfahren zum Ermitteln eines korrigierten Stickoxidwerts und das Verfahren zum Ermitteln eines korrigierten Ammoniakwerts ablaufen. Die jeweiligen Verfahren werden vorzugsweise erst dann ausgeführt, wenn der Stickoxidreferenzwert kleiner als ein vor¬ bestimmter Stickoxidschwellenwert ist bzw. wenn der Ammoniakreferenzwert kleiner als ein vorbestimmter Ammoniakschwel¬ lenwert ist. Noch bevorzugter ist es, wenn das Ermitteln eines korrigierten Stickoxidwerts bzw. das Ermitteln eines korrigierten Ammoniakwerts erst dann erfolgen, wenn ein absoluter Änderungsgradient der Referenzsignale des Stickoxidsensors kleiner als ein vorbestimmter Stickoxidänderungsschwellenwert ist bzw. wenn ein absoluter Änderungsgradient der Referenz- signale des Ammoniaksensors kleiner als ein vorbestimmter Ammoniakänderungsschwellenwert ist .
Im Rahmen der vorliegenden Offenbarung beschreibt ein absoluter Änderungsgradient die zeitlicher Änderung der innerhalb eines vorbestimmten Zeitintervalls kurzzeitig hintereinander er- fassten Signale.
Gemäß einer bevorzugten Ausgestaltung weist das Verfahren ferner ein Ermitteln einer Ammoniakdifferenz zwischen einem während des Normalbetriebs der Brennkraftmaschine aus dem vom Ammoniaksensor erzeugten Ammoniaksignal ermittelten Ammoniakwert und einem während des Normalbetriebs der Brennkraftmaschine aus dem vom Stickoxidsensor erzeugten Stickoxidsignal ermittelten weiteren Ammoniakwert auf. Die Ammoniakdifferenz kann ein Indiz für einen Drift des Ammoniaksensors sein. Daraufhin werden die folgenden Schritte während einer darauffolgenden Schubabschaltungsphase ausgeführt, wenn die während des Normalbetriebs der Brenn¬ kraftmaschine ermittelte Ammoniakdifferenz größer als ein vorbestimmter Ammoniakdifferenzschwellenwert ist: Aktivieren der Harnstoffeinspritzvorrichtung zum Einspritzen einer vorbestimmten Harnstoffmenge während einer vorbestimmten Zeitspanne, Ermitteln von wenigstens einem ersten Ammoniakwert aus vom Ammoniaksensor erzeugten Ammoniaksignalen, Ermitteln von wenigstens einem zweiten Ammoniakwert aus vom Stickoxidsensor erzeugten Signalen, Bestimmen, dass der Änderungsgradient der ersten Ammoniaksignale kleiner als ein erster Änderungs¬ schwellwert ist, Bestimmen, dass der Änderungsgradient der zweiten Ammoniakwerte kleiner als ein zweiter Änderungs- Schwellenwert ist und Adaption einer Steigung der Kennlinie des Ammoniaksensors mittels der zweiten Ammoniakwerte, wenn die Änderungsgradienten der ersten und zweiten Ammoniakwerte jeweils kleiner als der zugeordnete Änderungsschwellenwert sind. In einer solch bevorzugten Ausgestaltung ist der Stickoxidsensor querempfindlich zu Ammoniak, das heißt, dass das Signal des Stickoxidsensors die Summe aus Stickoxid- und Ammoni¬ ak-Konzentrationen anzeigt. Insbesondere ist eine solch Aus¬ gestaltung bei funktionierendem SCR-Katalysator und bei hohem Ammoniak-Schlupf (beispielsweise bei Ammoniak über 40 ppm) bevorzugt, in der das Signal des stromabwärts des
SCR-Katalysators angeordneten Stickoxidsensors im Wesentlichen einen Ammoniakwert anzeigt, da die Stickoxide im SCR-Katalysator umgewandelt sind und die Konzentration stromabwärts des
SCR-Katalysators deutlich reduziert ist. Somit kann durch die Ammoniakmessung mittels des Stickoxidsensors, der im Wesent¬ lichen genauer als der Ammoniaksensor messen kann, die Steigung der Kennlinie des Ammoniaksensors adaptiert werden.
Gemäß einer bevorzugten Ausgestaltung des erfindungsgemäßen Verfahrens wird der Stickoxidreferenzwert wie folgt ermittelt:
N0XRef,neu = N0XRef,aU ~ " NOx mit
Stickoxidreferenzwert für die Korrektur, Stickoxidreferenzwert einer vorhergehenden Korrektur,
Gewichtungsfaktor zwischen 0 und 1 abhängig von der Betriebszeit der Brennkraftmaschine zwischen zwei Korrekturen, und
aktuell ermittelter Stickoxidwert (während der Schubabschaltungsphase der Brennkraftmaschine aus einem vom Stickoxidsensor erzeugten Stickoxidsignal ermittelt) .
In ähnlicher Weise kann der Ammoniakreferenzwert bevorzugt wie folgt ermittelt werden: = NH3Reff,al,t - K2(TtZlL_-tΖ2Δ) NH35 mit : Ammoniakreferenzwert für die Korrektur, NH3 Ammoniakreferenzwert einer vorhergehenden Korrektur, Gewichtungsfaktor zwischen 0 und 1 abhängig von der
Betriebszeit der Brennkraftmaschine zwischen zwei Korrekturen, und
aktuell ermittelter Ammoniakwert (während Schubab¬ schaltungsphase der Brennkraftmaschine aus einem vom Ammoniaksensor erzeugten Ammoniaksignal ermittelt) .
Die Gewichtungsfaktoren Ki (Tti-t2) und K2 (Tti-t2) sind vom Mo- torbetriebszustand und der Motorbetriebszeit zwischen zwei Adaptionen abhängig und liegen bevorzugt in einem Bereich zwischen 0 und 1.
In einer weiteren Ausgestaltung des erfindungsgemäßen Verfahrens umfasst die Brennkraftmaschine einen weiteren Stickoxidsensor, der stromaufwärts des SCR-Katalysators angeordnet ist. Dabei umfasst das Verfahren ferner ein Ermitteln eines weiteren
Stickoxidreferenzwerts aus einem vom weiteren Stickoxidsensor während der Schubabschaltungsphase erzeugten Stickoxidsignals und ein Ermitteln eines korrigierten weiteren Stickoxidwerts aus einem vom weiteren Stickoxidsensor während eines Normalbetriebs der Brennkraftmaschine erzeugten Stickoxidsignals unter Be¬ rücksichtigung des Stickoxidreferenzwerts .
In einer weiteren vorteilhaften Ausgestaltung wird der korrigierte Stickoxidwert, der aus einem vom Stickoxidsensor erzeugten Stickoxidsignal ermittelt ist, mit dem Ammoniakwert, der aus einem vom Ammoniaksensor erzeugten Ammoniaksignal, wie folgt korrigiert: NOx ff = NOx - NH3 mit
NOXnetto korrigierter und ammoniakbereinigter Stickoxidwert, NOx aus einem vom Stickoxidsensor erzeugten Stickoxidsignal ermittelter Stickoxidwert, und NH3 aus einem vom Ammoniaksensor erzeugten Ammoniaksignal ermittelter Ammoniakwert.
Gemäß einem weiteren Aspekt der vorliegenden Offenbarung ist ein Auslasstrakt für eine Brennkraftmaschine offenbart, der einen SCR-Katalysator, einen stromabwärts des SCR-Katalysators an¬ geordneten Stickoxidsensor, der dazu ausgebildet ist, ein den Stickoxidwert anzeigendes Stickoxidsignal zu erzeugen, eine stromaufwärts des SCR-Katalysators angeordnete Harnstoffein- spritzvorrichtung, die dazu ausgebildet ist, eine vorbestimmte Harnstoffmenge einzuspritzen, einen stromabwärts des
SCR-Katalysators angeordneten Ammoniaksensor, der dazu aus- gebildet ist, ein den Ammoniakwert stromabwärts des
SCR-Katalysators anzeigendes Ammoniaksignal zu erzeugen, und eine Steuereinheit aufweist, die dazu ausgebildet ist, das Stickoxidsignal und das Ammoniaksignal zu empfangen und ein Verfahren gemäß der vorliegenden Offenbarung auszuführen.
In einer bevorzugten Ausgestaltung weist der Auslasstrakt ferner einen stromaufwärts des SCR-Katalysators angeordneten weiteren Stickoxidsensor auf, der dazu ausgebildet ist, ein den
Stickoxidwert anzeigendes weiteres Stickoxidsignal zu erzeugen.
Weitere Aufgaben und Merkmale der Erfindung wären dem Fachmann unter Berücksichtigung der beiliegenden Zeichnungen offensichtlich, in denen: Fig. 1 einen Teil eines beispielhaft offenbarten Auslass¬ trakts einer Brennkraftmaschine zeigt,
Fig. 2 ein Flussdiagramm gemäß einem beispielhaften Ver- fahren zur Ermittlung eines korrigierten Stickoxidwerts bzw. eines korrigierten Ammoniakwerts zeigt, und
Fig. 3 ein Flussidagramm zur Anpassung der Steigung einer
Kennlinie eines Ammoniaksensors gemäß der vorlie¬ genden Offenbarung zeigt.
Die Figur 1 zeigt schematisch einen Teil eines Auslasstrakts 10 einer Brennkraftmaschine (nicht näher dargestellt) . Der Aus- lasstrakt 10 weist einen SCR-Katalysator 20 auf, der dazu ausgebildet ist, eine chemische Reaktion durchzuführen, damit die Stickoxide im Abgas reduziert werden können. Stromaufwärts des SCR-Katalysators 20 ist ein Partikelfilter, beispielsweise ein Dieselpartikelfilter, angeordnet. Stromabwärts des
SCR-Katalysators 20 sind ein Stickoxidsensor 22 und ein Am¬ moniaksensor 24 angeordnet, die dazu ausgebildet sind, ent¬ sprechende Signale zu erzeugen. Insbesondere ist der Stick¬ oxidsensor 22 dazu ausgebildet, ein einen Stickoxidwert an¬ zeigendes Stickoxidsignal zu erzeugen. In ähnlicher Weise ist der Ammoniaksensor 24 dazu ausgebildet, ein einen Ammoniakwert anzeigendes Ammoniaksignal zu erzeugen.
In einer bevorzugten Ausgestaltung sind der Stickoxidsensor 22 und der Ammoniaksensor 24 in einem Sensor integriert.
Stromaufwärts des SCR-Katalysators 20 ist eine Harnstoffein- spritzvorrichtung 26 angeordnet, die dazu ausgebildet ist, zu vorbestimmten Zeitpunkten eine vorbestimmte Harnstoffmenge einzuspritzen. Die Harnstofflösung ist dazu ausgebildet, vom Abgas derart zersetzt zu werden, dass zumindest teilweise Ammoniak entsteht, welches in dem SCR-Katalysator 20 chemisch reagieren kann und somit die Stickoxide im Abgas reduzieren kann. Gemäß der in der Fig. 1 dargestellten beispielhaften Ausgestaltung des Auslasstrakts 10 ist ferner ein weiterer Stickoxidsensor 32 stromaufwärts des Partikelfilters 20 vorgesehen, der dazu ausgebildet ist, ein einen Stickoxidewert anzeigendes weiteres Stickoxidsignal zu erzeugen.
Eine Steuereinheit 40, die beispielsweise Bestandteil der Steuerung der Brennkraftmaschine sein kann, ist mit dem
Stickoxidsensor 22, dem Ammoniaksensor 24, der Harnstoffein- spritzvorrichtung 26 und dem weiteren Stickoxidsensor 32 verbunden und dazu ausgebildet, Signale von diesen Vorrichtungen zu empfangen bzw. an diese zur Steuerung derselben zu senden.
Beispielsweise ist die Steuerung 40 dazu ausgebildet, ein Verfahren gemäß der Fig. 2 auszuführen. Das Verfahren gemäß der Fig. 2 beginnt am Schritt 200 und bestimmt am Schritt 210, ob sich die Brennkraftmaschine in einer Schubabschaltungsphase be¬ findet. Wird am Schritt 200 bestimmt, dass sich die Brenn¬ kraftmaschine in einem Normalbetrieb mit Schub befindet, so gelangt das Verfahren zum Schritt 270, an dem es beendet wird.
Wird jedoch am Schritt 210 bestimmt, dass sich die Brenn¬ kraftmaschine in einer Schubabschaltungsphase befindet, bei¬ spielsweise bei einer Fahrt bergab, gelangt das Verfahren zum Schritt 220, an dem neben der Unterbrechung der Kraftstoffe- inspritzung zusätzlich die Harnstoffzufuhr mittels der Harnstoffeinspritzvorrichtung 26 während der Schubabschaltungsphase unterbrochen wird. Daraufhin werden am Schritt 230 ein Stickoxidreferenzwert aus einem vom Stickoxidsensor 22 während der Schubabschaltungsphase erzeugten Stickoxidreferenzsignal und/oder ein Ammoniakrefe¬ renzwert aus einem vom Ammoniaksensor 24 während der
Schubabschaltungsphase erzeugten Ammoniakreferenzsignal er¬ mittelt .
Am Schritt 240 wird überprüft, ob der Stickoxidwert bzw. der Ammoniakwert stromabwärts des SCR-Katalysators 20 kleiner als ein Stickoxidschwellenwert bzw. kleiner als ein vorbestimmter Ammoniakschwellenwert sind. Liegt nur einer der beiden Wert oberhalb des jeweiligen Schwellenwerts, gelangt das Verfahren zum Schritt 270, an dem es beendet wird. An dieser Stelle ist zu erwähnen, dass aufgrund der linearen Sensorkennlinien am Schritt 240 anstelle des Vergleichs der Werte mit einem vorbestimmten Schwellenwert direkt die von den jeweiligen Sensoren erzeugten Signale mit einem entsprechenden vorbestimmten Schwellensignal verglichen werden können. Sind jedoch beide Werte kleiner als ihr zugeordneter vorbestimmter Schwellenwert, so fährt das Verfahren mit dem Schritt 250 fort, an dem abgefragt wird, ob ein absoluter Änderungs¬ gradient der jeweiligen Werte kleiner als ein zugeordneter Schwellenwert sind. Insbesondere wird beim Wert 250 abgefragt, ob ein absoluter Änderungsgradient der Referenzsignale des Stickoxidsensors 22 kleiner als ein vorbestimmter Stickoxi- dänderungsschwellenwert ist bzw. ob ein absoluter Änderungs¬ gradient der Referenzsignale des Ammoniaksensors 24 kleiner als ein vorbestimmter Ammoniakänderungsschwellenwert ist. Auch hier kann die Abfrage am Schritt 250 direkt mit den von den Sensoren 22, 24 erzeugten Signalen erfolgen.
Liegt nur einer der beiden absoluten Änderungsgradienten oberhalb seines entsprechenden vorbestimmten Änderungs- Schwellenwerts, gelangt das Verfahren zum Schritt 270, an dem das Verfahren beendet wird.
Wird jedoch am Schritt 250 ermittelt, dass beide Änderungs¬ gradienten kleiner als ihr jeweiliger Änderungsschwellenwert ist, fährt das Verfahren mit dem Schritt 260 fort, an dem sowohl der Stickoxidreferenzwert gemäß der Formel (1) und der Ammo¬ niakreferenzschwellenwert gemäß der folgenden Formel (2) an- gepasst werden.
N0X«ef,neu = N0X«ef,aU ~ NOx (1)
NH, Ref.neu NH 3Ref lt-K2 Ttl_t2)-NH3 (2) mit:
NOx Ref.neu Stickoxidreferenzwert für die Korrektur,
NO xRef,alt Stickoxidreferenzwert einer vorhergehenden Korrektur,
Ki(Ttl_t2) Gewichtungsfaktor zwischen 0 und 1 abhängig von der
Betriebszeit der Brennkraftmaschine zwischen zwei Korrekturen,
NO> aktuell ermittelter Stickoxidwert (während der
Schubabschaltungsphase der Brennkraftmaschine aus einem vom Stickoxidsensor erzeugten Stickoxidsignal ermittelt) ,
NH ^Ref.ne Ammoniakreferenzwert für die Korrektur,
NH3 ^DReFf.a,lt Ammoniakreferenzwert einer vorhergehenden Korrektur, K2(Ttl-t2) Gewichtungsfaktor zwischen 0 und 1 abhängig von der
Betriebszeit der Brennkraftmaschine zwischen zwei Korrekturen, und NH3 aktuell ermittelter Ammoniakwert (während Schubab¬ schaltungsphase der Brennkraftmaschine aus einem vom Ammoniaksensor (24) erzeugten Ammoniaksignal ermittelt) .
Unter Verweis auf die Fig. 3 ist ein weiteres beispielhaftes Verfahren gemäß der vorliegenden Offenbarung als Flussdiagramm dargestellt, welches bei 300 beginnt. Am Schritt 310 wird abgefragt, ob sich die Brennkraftmaschine in einem Normalbetrieb befindet. Dabei ist mit dem Normalbetrieb gemeint, dass die
Brennkraftmaschine unter Verbrennung von Kraftstoff arbeitet und dementsprechend Schub leistet.
Wird am Schritt 310 bestimmt, dass kein Normalbetrieb der Brennkraftmaschine, beispielsweise eine Schubabschaltungs¬ phase, vorliegt, gelangt das Verfahren zum Schritt 390 und endet dort .
Ferner wird am Schritt 310 bestimmt, ob der Ammoniak-Schlupf des SCR-Katalysators oberhalb einer vorbestimmten Schwellenwerts liegt, beispielsweise oberhalb 40 ppm. Da der Stickoxidsensor querempfindlich zu Ammoniak ist, misst der Stickoxidsensor die Summe von Stickoxiden und Ammoniak. Dementsprechend kann bei ausreichend hohem Ammoniak-Schlupf angenommen werden, dass das Signal des Ammoniaksensors 24 im Wesentlichen gleich dem Signal des Stickoxidsensors 32 ist, vorausgesetzt der SCR-Katalysator arbeitet einwandfrei und kann die Stickoxide deutlich redu¬ zieren . Wird am Schritt 310 bestimmt, dass sich die Brennkraftmaschine im Normalbetrieb befindet und dass der Ammoniak-Schlupf größer als ein vorbestimmter Schwellenwert ist, erzeugen am Schritt 320 sowohl der Stickoxidsensor 22 als auch der Ammoniaksensor 24 entsprechende Signale. Im darauffolgenden Schritt 330 wird eine Ammoniakdifferenz zwischen dem aus dem Stickoxidsignal ermittelten Ammoniakwert und dem aus dem Ammoniaksignal ermittelten Ammoniakwert ge¬ bildet. Am Schritt 330 wird ferner abgefragt, ob diese Ammo- niakdifferenz einen vorbestimmten Ammoniakdifferenzschwellenwert überschreitet. Wird am Schritt 330 bestimmt, dass der Ammoniakdifferenzschwellenwert nicht überschritten wird, ge¬ langt das Verfahren zum Schritt 390 und wird beendet. Wird jedoch am Schritt 330 bestimmt, dass die Ammoniakdifferenz den Ammoniakdifferenzschwellenwert überschreitet, gelangt das Verfahren zum Schritt 340. Insbesondere wird am Schritt 330 bestimmt, ob das vom Ammoniaksensor 24 erzeugte Signal sig¬ nifikant von dem vom Stickoxidsensor 22 erzeugten Stick- oxidsignal, das während dem vorherrschenden Betriebszustand der Brennkraftmaschine im Wesentlichen Ammoniak anzeigt, abweicht. Diese Abweichung kann beispielsweise mit der Ammoniakdifferenz überprüft werden. Am Schritt 340 wird bestimmt, ob sich die Brennkraftmaschine aus dem Normalbetrieb in einen Schubabschaltungsbetrieb geändert hat. Wird am Schritt 340 bestimmt, dass sich die Brennkraft¬ maschine weiterhin im Normalbetrieb befindet, gelangt das Verfahren zum Schritt 390 und wird beendet.
Wird jedoch am Schritt 340 bestimmt, dass die Brennkraftmaschine aus dem Normalbetrieb in einen Schubabschaltungsbetrieb ge¬ wechselt ist, gelangt das Verfahren zum Schritt 350, an dem die Harnstoffeinspritzvorrichtung 26 derart gesteuert wird, dass diese trotz der Schubabschaltungsphase für einen vorbestimmten Zeitraum (beispielsweise wenige Sekunden) eine vorbestimmte Harnstoffmenge einspritzt, damit an einer Position stromabwärts des SCR-Katalysators 20 eine Ammoniakkonzentration von oberhalb eines Schwellenwerts erreicht wird, beispielsweise von mehr als ungefähr 40 ppm.
Dabei wird jedoch vorausgesetzt, dass stromabwärts der beiden Sensoren 22, 24 ein Ammoniak-Sperrkatalysator und/oder ein weiterer SCR-Katalysator zur Oxidation von Ammoniak oder zur Speicherung von SCR existieren, damit die Ammoniakemissionen nicht den gesetzlichen Grenzwert überschreiten. Daraufhin erzeugen am Schritt 360 der Stickoxidsensor 22 und der Ammoniaksensor 24 entsprechende Signale während der Schubab¬ schaltungsphase. Dabei ist zu beachten, dass aufgrund der Schubabschaltungsphase die Signale des Stickoxidsensors 22 im Wesentlichen einen Ammoniakwert anzeigen, da im Wesentlichen keine Stickoxide vorliegen.
Am darauffolgenden Schritt 370 wird bestimmt, dass die aus den Signalen des Stickoxidsensors 22 ermittelten ersten Ammoniakwerte und die aus den Ammoniaksignalen des Ammoniaksensors 24 ermittelten zweiten Ammoniakwerte zumindest teilweise stabil sind, d. h. dass die Änderungsgradienten der ersten und zweiten Ammoniakwerte jeweils kleiner als ein vorbestimmter erster bzw. zweiter Änderungsschwellenwert sind. Wird am Schritt 370 be¬ stimmt, dass die ersten bzw. zweiten Ammoniakwerte zumindest teilweise nicht stabil sind, gelangt das Verfahren zum Schritt 390 und wird beendet.
Wird jedoch am Schritt 370 bestimmt, dass die ersten und zweiten Ammoniakwerte zumindest teilweise stabil sind, gelangt das Verfahren zum Schritt 380, an dem die Signale des Stick¬ oxidsensors 22, die die Ammoniakwerte anzeigen, zur Adaption der Steigung der Kennlinie des Ammoniaksensors 24 verwendet wird. Dabei wird insbesondere der Tatsache Rechnung getragen, dass der Stickoxidsensor 22 genauer messen kann als der Ammoniaksensor 24. Am Schritt 390 wird dann die am Schritt 350 aktivierte Harn¬ stoffeinspritzung wieder beendet und das Verfahren zur Adaption der Kennlinie des Ammoniaksensors 24 mittels der Signale des Stickoxidsensors 22 ist abgeschlossen.

Claims

Patentansprüche
1. Verfahren zum Ermitteln eines korrigierten Stickstoffoxidwerts in einer Brennkraftmaschine, die einen
SCR-Katalysator (20), einen stromabwärts des SCR-Katalysators (20) angeordneten Stickoxidsensor (22) und eine stromaufwärts des SCR-Katalysators (20) angeordnete Harnstoffeinspritzvor- richtung (26) aufweist, mit:
Bestimmen, dass sich die Brennkraftmaschine in einer Schubabschaltungsphase befindet,
Unterbrechen der Einspritzung von Harnstoff mittels der Harnstoffeinspritzvorrichtung (26) während der Schubabschaltungsphase,
Ermitteln eines Stickoxidreferenzwerts aus einem vom Stickoxidsensor (22) während der Schubabschaltungsphase er¬ zeugten Stickoxidreferenzsignals, und
Ermitteln eines korrigierten Stickoxidwerts aus einem vom Stickoxidsensor (22) während eines Normalbetriebs der Brennkraftmaschine erzeugten Stickoxidsignal unter Berück- sichtigung des Stickoxidreferenzwerts .
2. Verfahren zum Ermitteln eines korrigierten Ammoniakwerts in einer Brennkraftmaschine, die einen SCR-Katalysator (20), eine stromaufwärts des SCR-Katalysators (20) angeordnete Harn- stoffeinspritzvorrichtung (26) und einen stromabwärts des
SCR-Katalysators (20) angeordneten Ammoniaksensor (24) aufweist, mit:
Bestimmen, dass sich die Brennkraftmaschine in einer Schubabschaltungsphase befindet,
- Unterbrechen der Einspritzung von Harnstoff mittels der Harnstoffeinspritzvorrichtung (26) während der Schubabschaltungsphase, Ermitteln eines Ammoniakreferenzwerts aus einem vom Ammoniaksensor (24) während der Schubabschaltungsphase er¬ zeugten Ammoniakreferenzsignals, und
Ermitteln eines korrigierten Ammoniakwerts aus einem vom Ammoniaksensor (24) während eines Normalbetriebs der Brennkraftmaschine erzeugten Ammoniaksignals unter Berück¬ sichtigung des Ammoniakreferenzwerts.
3. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Ermitteln eines Stickoxidreferenzwertwerts bzw. das Er¬ mitteln eines Ammoniakreferenzwerts erst dann erfolgt, wenn der Stickoxidwert kleiner als ein vorbestimmter Stickoxidschwel¬ lenwert ist bzw. wenn der Ammoniakwert kleiner als ein vor¬ bestimmter Ammoniakschwellenwert ist.
4. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Ermitteln eines Stickoxidreferenzwerts bzw. das Ermitteln eines Ammoniakreferenzwerts erst dann erfolgt, wenn ein ab¬ soluter Änderungsgradient der Referenzsignale des Stick- oxidsensors (22) kleiner als ein vorbestimmter Stickoxidän- derungsschwellenwert ist bzw. wenn ein absoluter Änderungs¬ gradient der Referenzsignale des Ammoniaksensors (24) kleiner als ein vorbestimmter Ammoniakänderungsschwellenwert ist.
5. Verfahren nach einem der vorhergehenden Ansprüche, ferner mit :
Ermitteln einer Ammoniakdifferenz zwischen einem während des Normalbetriebs der Brennkraftmaschine aus dem vom Ammoniaksensor (24) erzeugten Ammoniaksignal ermittelten Am- moniakwert und einem während des Normalbetriebs der Brenn¬ kraftmaschine aus dem vom Stickoxidsensor erzeugten Stickoxidsignal ermittelten weiteren Ammoniakwert,
Ausführen der folgenden Schritte während einer darauffolgenden Schubabschaltungsphase, wenn die während des Normalbetriebs der Brennkraftmaschine ermittelte Ammoniak¬ differenz größer als ein vorbestimmter Ammoniakdifferenzschwellenwert ist:
Aktivieren der Harnstoffeinspritzvorrichtung zum Einspritzen einer vorbestimmten Harnstoffmenge während einer vorbestimmten Zeitspanne,
Ermitteln von wenigstens einem ersten Ammoniakwert aus vom Ammoniaksensor (24) erzeugten Ammoniaksignalen und Bestimmen, dass der Änderungsgradient des zumindest einen ersten Ammoniakwerts kleiner als ein vorbestimmter erster Änderungsschwellenwert ist,
Ermitteln von wenigstens einem zweiten Ammoniakwert aus vom Stickoxidsensor (22) erzeugten Signalen und Bestimmen, dass der Änderungsgradient des zumindest einen zweiten Ammo- niakwerts kleiner als ein vorbestimmter zweiter Änderungsschwellenwert ist, und
Adaption einer Steigung der Kennlinie des Ammoniaksensors mittels der zweiten Ammoniakwerte, wenn der Ände¬ rungsgradient des zumindest einen ersten bzw. zweiten Ammo- niakwerts kleiner als der vorbestimmter erste bzw. zweite Änderungsschwellenwert ist.
6. Verfahren nach einem der vorhergehenden Ansprüche, wobei der Stickoxidreferenzwert wie folgt ermittelt wird:
N0XRef,neu = N0XRef,aU ~ NOx mit :
Stickoxidreferenzwert für die Korrektur, Stickoxidreferenzwert einer vorhergehenden Korrektur, Ki(TrL-t2 Gewichtungsfaktor zwischen 0 und 1 abhängig von der Betriebszeit der Brennkraftmaschine zwischen zwei Korrekturen, und
NOx aktuell ermittelter Stickoxidwert (während der Schubabschaltungsphase der Brennkraft¬ maschine aus einem vom Stickoxidsensor (22) erzeugten Stickoxidsignal ermittelt) ; bzw. wobei der neue Ammoniakreferenzwert wie folgt ermittelt wird:
NH3 , = NH3 f , - K2( tl_t2) NH3 mit
NHs„ , Ammoniakreferenzwert für die Korrektur,
N 3Refalt Ammoniakreferenzwert einer vorhergehenden
Korrektur,
K2(Ttl_t2) Gewichtungsfaktor zwischen 0 und 1 abhängig von der Betriebszeit der Brennkraftmaschine zwischen zwei Korrekturen, und
NH3 aktuell ermittelter Ammoniakwert (während
Schubabschaltungsphase der Brennkraftma¬ schine aus einem vom Ammoniaksensor (24) erzeugten Ammoniaksignal ermittelt) .
7. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Brennkraftmaschine einen weiteren Stickoxidsensor (32) aufweist, der stromaufwärts des SCR-Katalysators (20) angeordnet ist, wobei das Verfahren ferner umfasst:
Ermitteln eines weiteren Stickoxidreferenzwerts aus einem vom weiteren Stickoxidsensor (32) während der Schubabschaltungsphase erzeugten Stickoxidsignals, und Ermitteln eines korrigierten weiteren Stickoxidwerts aus einem vom weiteren Stickoxidsensor (32) während eines Normalbetriebs der Brennkraftmaschine erzeugten Stickoxidsignal unter Berücksichtigung des Stickoxidreferenzwerts .
8. Verfahren nach einem der vorhergehenden Ansprüche, wobei der korrigierte Stickoxidwert, der aus einem vom Stickoxidsensor (22) erzeugten Stickoxidsignal ermittelt ist, mit dem Ammo¬ niakwert, der aus einem vom Ammoniaksensor (24) erzeugten Ammoniaksignal, wie folgt korrigiert wird:
NOx ff = NOx - NH3 mit
NOXnetto korrigierter und ammoniakbereinigter
Stickoxidwert,
NOx aus einem vom Stickoxidsensor (22) erzeugten
Stickoxidsignal ermittelter Stickoxidwert, und
NH3 aus einem vom Ammoniaksensor (24) erzeugten
Ammoniaksignal ermittelter Ammoniakwert.
9. Auslasstrakt (10) für eine Brennkraftmaschine, mit:
einem SCR-Katalysator (20),
einem stromabwärts des SCR-Katalysators (20) ange¬ ordneten Stickoxidsensor (22), der dazu ausgebildet ist, ein den Stickoxidwert stromabwärts des SCR-Katalysators (20) anzei¬ gendes Stickoxidsignal zu erzeugen,
einer stromaufwärts des SCR-Katalysators (20) an¬ geordneten Harnstoffeinspritzvorrichtung (26), die dazu ausgebildet ist, eine vorbestimmte Harnstoffmenge einzuspritzen, einem stromabwärts des SCR-Katalysators (20) ange¬ ordneten Ammoniaksensor (24), der dazu ausgebildet ist, ein den Ammoniakwert stromabwärts des SCR-Katalysators (20) anzeigendes Ammoniaksignal zu erzeugen, und
- einer Steuereinheit (40), die dazu ausgebildet ist, das Stickstoffoxidsignal und das Ammoniaksignal zu empfangen und ein Verfahren nach einem der vorhergehenden Ansprüche auszuführen .
10. Auslasstrakt (10) nach Anspruch 9, ferner mit einem stromaufwärts des SCR-Katalysators (20) angeordneten weiteren Stickoxidsensor (), der dazu ausgebildet ist, ein die Stickoxidmenge stromaufwärts des SCR-Katalysators () anzeigendes weiteres Stickoxidsignal zu erzeugen.
EP17703718.1A 2016-03-16 2017-02-02 Verfahren zum ermitteln eines korrigierten stickoxidwerts und ammoniakwerts in einer brennkraftmaschine Withdrawn EP3430249A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016204323.4A DE102016204323B4 (de) 2016-03-16 2016-03-16 Verfahren zum Ermitteln eines korrigierten Stickoxidwerts und Ammoniakwerts in einer Brennkraftmaschine
PCT/EP2017/052307 WO2017157569A1 (de) 2016-03-16 2017-02-02 Verfahren zum ermitteln eines korrigierten stickoxidwerts und ammoniakwerts in einer brennkraftmaschine

Publications (1)

Publication Number Publication Date
EP3430249A1 true EP3430249A1 (de) 2019-01-23

Family

ID=57984931

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17703718.1A Withdrawn EP3430249A1 (de) 2016-03-16 2017-02-02 Verfahren zum ermitteln eines korrigierten stickoxidwerts und ammoniakwerts in einer brennkraftmaschine

Country Status (5)

Country Link
US (1) US10738677B2 (de)
EP (1) EP3430249A1 (de)
CN (1) CN108779696B (de)
DE (1) DE102016204323B4 (de)
WO (1) WO2017157569A1 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6612711B2 (ja) 2016-10-20 2019-11-27 日本特殊陶業株式会社 濃度算出装置、濃度算出システムおよび濃度算出方法
JP6966348B2 (ja) * 2018-02-13 2021-11-17 日本碍子株式会社 特定ガス濃度測定装置及び特定ガス濃度測定システム
DE102019206680A1 (de) * 2019-05-09 2020-11-12 Robert Bosch Gmbh Verfahren zur Nullpunktkalibrierung eines Stickoxidsensors
DE102019210362A1 (de) * 2019-07-12 2021-01-14 Robert Bosch Gmbh Verfahren zum Überwachen mindestens einer Ammoniakmesszelle
CN110470800B (zh) * 2019-08-27 2022-08-16 武汉科技大学 一种用于氮氧化物传感器标定的配气系统及方法
DE102020106502B4 (de) 2020-03-10 2024-01-04 Audi Aktiengesellschaft Verfahren zum Betreiben einer Antriebseinrichtung mit einer Sensoreinrichtung sowie entsprechende Antriebseinrichtung
CN111810281A (zh) * 2020-07-17 2020-10-23 广西玉柴机器股份有限公司 一种用于自适应修正氮氧传感器信号控制的ecu策略
CN114263521B (zh) * 2021-12-31 2023-03-21 潍柴动力股份有限公司 一种传感器参数的修正方法及装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19810483A1 (de) 1998-03-11 1999-09-23 Bosch Gmbh Robert Verfahren zur Bestimmung des Sensor-Offsets bei HC- und/oder NOx-Sensoren
JP4462142B2 (ja) 2005-07-28 2010-05-12 株式会社デンソー 内燃機関用制御装置
DE102008039687B4 (de) 2008-08-26 2015-12-10 Volkswagen Ag Verfahren zur Nachbehandlung eines Abgasstroms eines Verbrennungsmotors
JP4692911B2 (ja) 2008-09-18 2011-06-01 トヨタ自動車株式会社 NOxセンサの出力較正装置及び出力較正方法
US8036814B2 (en) 2009-03-23 2011-10-11 Ford Global Technologies, Llc Calibration scheme for an exhaust gas sensor
EP2339136B1 (de) 2009-12-23 2013-08-21 FPT Motorenforschung AG Verfahren und Vorrichtung zur Steuerung eines SCR-Katalysatorwandlers eines Fahrzeugs
US9476338B2 (en) * 2010-05-03 2016-10-25 Cummins Inc. Ammonia sensor control, with NOx feedback, of an SCR aftertreatment system
US9097192B2 (en) 2011-03-15 2015-08-04 Delphi Technologies, Inc. Method and apparatus for identifying gas sensor faults
US8930121B2 (en) * 2011-04-07 2015-01-06 GM Global Technology Operations LLC Offset and slow response diagnostic methods for NOx sensors in vehicle exhaust treatment applications
US9714625B2 (en) 2011-07-28 2017-07-25 GM Global Technology Operations LLC System and method for controlling ammonia levels in a selective catalytic reduction catalyst using a nitrogen oxide sensor
WO2013161032A1 (ja) 2012-04-26 2013-10-31 トヨタ自動車株式会社 内燃機関の排気浄化装置の異常判定システム
DE102013014674A1 (de) * 2013-09-04 2015-03-05 Man Diesel & Turbo Se Verfahren zum Betreiben einer Brennkraftmaschine
US9003778B2 (en) * 2013-09-09 2015-04-14 GM Global Technology Operations LLC Exhaust fluid dosing control system and method

Also Published As

Publication number Publication date
DE102016204323A1 (de) 2017-09-21
CN108779696A (zh) 2018-11-09
WO2017157569A1 (de) 2017-09-21
DE102016204323B4 (de) 2018-03-08
CN108779696B (zh) 2021-05-11
US10738677B2 (en) 2020-08-11
US20190112955A1 (en) 2019-04-18

Similar Documents

Publication Publication Date Title
EP3430249A1 (de) Verfahren zum ermitteln eines korrigierten stickoxidwerts und ammoniakwerts in einer brennkraftmaschine
EP1352160B1 (de) Verfahren und vorrichtung zur steuerung eines abgasnachbehandlungssystems
DE102008024177B3 (de) Verfahren, Vorrichtung und System zur Diagnose eines NOx-Sensors für eine Brennkraftmaschine
DE112008000982T5 (de) Luft-Kraftstoff-Verhältnis-Steuervorrichtung und Luft-Kraftstoff-Verhältnis-Steuerungsverfahren für eine Brennkraftmaschine
EP2657478B1 (de) Verfahren und Vorrichtung zur Überprüfung der Funktionsfähigkeit eines NO-Oxidationskatalysators
EP1426575A1 (de) Verfahren und Vorrichtung zur Überwachung eines Abgasnachbehandlungssystems
DE102016211575A1 (de) Fehlererkennung in einem SCR-System mittels eines Ammoniak-Füllstands
DE102018132466A1 (de) Verfahren und Vorrichtung zur Abgasnachbehandlung eines Verbrennungsmotors
DE102008017543B4 (de) Dosiermodul und ein Verfahren zur Steuerung der Einspritzung von Reduktionsmittel
DE102005050709A1 (de) Verfahren zum Betrieb eines Abgasnachbehandlungssystems
DE102016200158A1 (de) Verfahren zur Überwachung einer Abgasnachbehandlungsanlage eines Verbrennungsmotors sowie Steuerungseinrichtung für eine Abgasnachbehandlungsanlage
DE102017115399A1 (de) Abgasnachbehandlungssystem und Verfahren zur Abgasnachbehandlung eines Verbrennungsmotors
EP1966468B1 (de) Verfahren und vorrichtung zur regeneration einer abgasreinigungsanlage
DE102017218314B4 (de) Verfahren zum Betreiben eines Dieselmotors und Dieselmotor mit Prüfung der NH3-Konzentration
EP3430248B1 (de) Verfahren zum anpassen der kennlinie eines stickoxidsensors in einer brennkraftmaschine
DE102015200751A1 (de) Verfahren zur Überwachung einer Abgasnachbehandlungsanlage eines Verbrennungsmotors sowie Steuerungseinrichtung für eine Abgasnachbehandlungsanlage
EP1960643B1 (de) Verfahren zur diagnose eines in einem abgasbereich einer brennkraftmaschine angeordneten katalysators und vorrichtung zur durchführung des verfahrens
DE102015200762A1 (de) Verfahren zur Überwachung einer Abgasnachbehandlungsanlage eines Verbrennungsmotors sowie Steuerungseinrichtung für eine Abgasnachbehandlungsanlage
DE102020215507A1 (de) Abgasnachbehandlungsanordnung und Verfahren zur Nachbehandlung eines Abgases einer Brennkraftmaschine
DE102011121099B4 (de) Verfahren zum Betreiben einer Abgasreinigungseinrichtung sowie entsprechende Abgasreinigunseinrichtung
DE10100613C1 (de) Abgasreinigungsanlage für eine Brennkraftmaschine
EP1434049B1 (de) Verfahren und Vorrichtung zur Überwachung des NOx-Signals eines NOx-Sensors
DE102018202645A1 (de) Verfahren und Vorrichtung zum Ermitteln eines korrigierten Stickoxidwerts einer Brennkraftmaschine
EP1331478B1 (de) Verfahren zur Bestimmung der NOx-Konzentration in Abgasen
DE102012221551A1 (de) Verfahren und Vorrichtung zum Betreiben einer Abgasanlage für eine Brennkraftmaschine

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20181016

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F01N 9/00 20060101ALI20190723BHEP

Ipc: F02D 41/14 20060101ALI20190723BHEP

Ipc: F01N 3/20 20060101AFI20190723BHEP

INTG Intention to grant announced

Effective date: 20190814

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20200103