EP3426926B1 - Pumpengruppe mit elektrischem antrieb und mechanischem antrieb mit einer gelenkgruppe - Google Patents
Pumpengruppe mit elektrischem antrieb und mechanischem antrieb mit einer gelenkgruppe Download PDFInfo
- Publication number
- EP3426926B1 EP3426926B1 EP17709175.8A EP17709175A EP3426926B1 EP 3426926 B1 EP3426926 B1 EP 3426926B1 EP 17709175 A EP17709175 A EP 17709175A EP 3426926 B1 EP3426926 B1 EP 3426926B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- shaft
- impeller
- joint end
- electric
- mechanical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000008878 coupling Effects 0.000 claims description 31
- 238000010168 coupling process Methods 0.000 claims description 31
- 238000005859 coupling reaction Methods 0.000 claims description 31
- 238000001816 cooling Methods 0.000 claims description 19
- 238000005096 rolling process Methods 0.000 claims description 12
- 238000005461 lubrication Methods 0.000 claims description 3
- 239000000314 lubricant Substances 0.000 claims description 2
- 238000007789 sealing Methods 0.000 claims description 2
- 239000007788 liquid Substances 0.000 description 10
- 239000002826 coolant Substances 0.000 description 8
- 230000009471 action Effects 0.000 description 5
- 238000002485 combustion reaction Methods 0.000 description 4
- 230000009977 dual effect Effects 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 230000001276 controlling effect Effects 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000000110 cooling liquid Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D13/00—Pumping installations or systems
- F04D13/02—Units comprising pumps and their driving means
- F04D13/021—Units comprising pumps and their driving means containing a coupling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P5/00—Pumping cooling-air or liquid coolants
- F01P5/10—Pumping liquid coolant; Arrangements of coolant pumps
- F01P5/12—Pump-driving arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D13/00—Pumping installations or systems
- F04D13/02—Units comprising pumps and their driving means
- F04D13/06—Units comprising pumps and their driving means the pump being electrically driven
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P5/00—Pumping cooling-air or liquid coolants
- F01P5/10—Pumping liquid coolant; Arrangements of coolant pumps
- F01P5/12—Pump-driving arrangements
- F01P2005/125—Driving auxiliary pumps electrically
Definitions
- the present invention relates to a pump group for a cooling circuit of a vehicle, preferably for cooling a motor, such as an internal combustion engine.
- an intense cooling is appropriate when the motor is working at full capacity or in towing conditions or on an uphill road or with high ambient temperatures.
- cooling it is appropriate for the cooling not to be accentuated, for example when starting the motor or after use.
- Cooling pumps are in fact known of for electrically operated vehicles, in which the speed of rotation of the impeller is regulated by means of an electric drive and thus the amount of coolant liquid moved by it in circulation in the cooling circuit.
- these pumps do not have the "fail-safe" feature in case of failure, i.e. the possibility to function in an emergency configuration when the electric motor has suffered a breakage.
- dual driven pumps are also known of, i.e. comprising both an electric drive and a mechanical drive.
- the purpose of the present invention is to provide a pump group for a cooling circuit of a vehicle, for example for an internal combustion engine, which meets the requirements mentioned, overcoming the drawbacks spoken of.
- the aim is to provide a dual action pump group, with simplified management of the two drives, and with a simple and compact structure.
- reference numeral 1 globally denotes a pump group for a cooling circuit of a motor, preferably an internal combustion engine, according to an embodiment variant of the invention.
- the pump group 1 of the present invention comprises an impeller 2 rotatable around an axis X-X so that the rotation of the impeller 2 corresponds to the movement of a predetermined quantity of coolant liquid in the circuit.
- the impeller 2 is of the radial type, i.e. provides that the incoming flow of liquid has an overall substantially axial direction and the flow of liquid in output has a radial direction.
- the pump group 1 comprises an impeller shaft 200 which extends along said axis X-X, and comprises an impeller end 202 on which the impeller 2 is mounted integral in rotation.
- the rotation action of the impeller shaft 200 corresponds to a rotation of the impeller 2.
- the pump group 1 provides a dual drive, i.e. it is operable both mechanically and electrically.
- the pump group 1 comprises a mechanical drive 3 and an electric drive 4.
- T he pump group 1 comprises a mechanical shaft 300 rotatable by the mechanical drive 3 and operationally connected to the impeller shaft 200.
- the movement of the mechanical shaft 300 induces the movement of the impeller shaft 200.
- the mechanical drive 3 comprises a pulley for a drive belt connected, for example by using a kinematic chain, to the drive shaft.
- the pulley is an electromagnetic pulley 33.
- this is normally engaged and only when it is actuated (i.e. the coil in it is electrically excited) does the release mechanism disengage the pulley from the mechanical shaft 300.
- the electromagnetic pulley 33 comprises an outer ring on which the drive belt is mounted, an inner ring and an intermediate release mechanism which comprises an intermediate coil.
- the inner ring is, in this embodiment, the drive ring operationally connected to the mechanical shaft 300, which by means of a first one-way coupling 51 (described below) is operatively connected to the impeller shaft 200.
- the outer ring is integral in rotation with the inner ring.
- the mechanical shaft 300 is dragged in rotation mechanically.
- the electromagnetic pulley 33 is activated (i.e. the coil is electrically energised)
- the release mechanism releases the outer ring from the inner ring, so that the outer ring, while driven in rotation by the belt, does not transmit any rotation to the inner ring and thus to the mechanical shaft 300.
- the pump group 1 comprises an electric shaft 400 rotatable by the electric drive 4 and operationally connected to the impeller shaft 200.
- T he electric drive 4 comprises an electric motor 40 comprising an impeller 41 mounted on a motor end 401 of the electric shaft 400 and a stator 42 fixed coaxial to the rotor 41.
- the pump group 1 further comprises an electronic control device for controlling the electric drive 4 and/or electromagnetic pulley 33; preferably, said control device is placed on board the pump group 1.
- the pump group 1 of the present invention further comprises a joint group 5 suitable to place in connection the impeller shaft 200 with the mechanical shaft 300 and electric shaft 400.
- the joint group 5, as described below, is also suitable to place in motion the impeller shaft 200 as a function of the action of the mechanical shaft 300 and/or of the electric shaft 400.
- the joint group 5 comprises respectively an impeller shaft joint end 205, a mechanical shaft joint end 305 and an electric shaft joint end 405.
- impeller shaft joint end 205 is operatively connected with the mechanical shaft joint end 305 by means of a first one-way coupling 51; while the impeller shaft joint end 205 is operatively connected with the electric shaft joint end 405 by means of a second one-way coupling 52.
- the first one-way coupling 51 comprises a rolling bearing for the support in rotation of the mechanical shaft joint end 305 to the impeller shaft joint end 205.
- the rolling bearing is of the type with rollers or needle rollers, having rolling elements placed between the driven ring and the drive ring.
- the second one-way coupling 52 comprises a rolling bearing for the support in rotation of the electric shaft joint end 405 to the impeller shaft joint end 205.
- the rolling bearing is of the type with rollers or needle rollers, having rolling elements placed between the driven ring and the drive ring.
- the mechanical shaft 305 and the electric shaft 405 extend along said rotation shaft X-X.
- the impeller 2, mechanical drive 3 and electric drive 4 are aligned along the rotation shaft X-X.
- the mechanical drive 3 is placed between the impeller and the electric drive 4.
- the joint group 5 is positioned along the axis X-X between the impeller 2 and the mechanical drive 3.
- the one-way couplings 51, 52 comprised in the joint group 5 are suitable to operate in conditions of lubrication; preferably, the joint group 5 comprises sealing elements 55 suitable to operate radially with the respective shafts to sealingly contain the lubrication lubricant of the first one-way coupling 51 and the second one-way coupling 52.
- T he impeller shaft joint end 205 is hollow and defines therein an impeller shaft housing 205' suitable to house the second one-way coupling 52 and the electrical shaft joint end 405. While the impeller shaft joint end 205, outside, supports the first one-way coupling 51 and the mechanical shaft joint end 305, the latter defining a mechanical shaft housing 305'.
- the mechanical shaft housing 305' extends in length to contain the electric shaft joint end 405, the first one-way coupling 51, the impeller shaft joint end 205 and the second one-way coupling 52.
- the impeller shaft joint end 205 is hollow and defines therein an impeller shaft housing 205' suitable to house the first one-way coupling 51 and the mechanical shaft joint end 305. While the impeller shaft joint end 205, outside, supports the second one-way coupling 52 and the electric shaft joint end 405, the latter defining an electric shaft housing 305'.
- the electric shaft housing 405' extends in length to contain the mechanical shaft joint end 305, the second one-way coupling 52, the impeller shaft joint end 205 and the first one-way coupling 51.
- the pump unit 1 comprises a pump body 10 housing the impeller 2 in a specially shaped, impeller chamber 120.
- the pump body 10 in particular, is designed to be suitable to rotatably support the impeller shaft 200 and the joint element 5.
- the pump group 1 in fact comprises rotation means 60 suitable to rotatably support the impeller shaft 200 and joint group 5 to the pump body 10.
- the rotation means 60 comprise at least a first rolling element 61 operatively connected to the impeller shaft 200; in addition, preferably, the rotation means 60 comprise at least a second rolling element 62 operationally connected to the joint group 5.
- the rotation means 60 further comprise at least one dynamic seal 65 engaging the pump body 10 and impeller shaft 200 to sealingly close the impeller chamber 120.
- the pump group 1 comprises a throttle valve (not shown), fitted in the pump body so as to be placed along the outlet duct from the impeller chamber 120.
- the valve is controllable using an actuator (not shown), for example electric, hydraulic or vacuum, preferably controllable by the control device.
- an actuator for example electric, hydraulic or vacuum, preferably controllable by the control device.
- the pump group 1 comprises, upstream of the impeller 2, an adjustment cartridge (not shown) suitable to adjust the amount of coolant liquid towards the impeller.
- an adjustment cartridge (not shown) suitable to adjust the amount of coolant liquid towards the impeller.
- the electric drive 4 and/or any electromagnetic pulley 33 are controlled electronically depending on the occurrence of certain conditions during use of the vehicle.
- the electromagnetic pulley 33 is not energised and the electric drive 4 is off, so that the impeller shaft 200 is moved only by the electromagnetic pulley 33, i.e. by the rotation of the mechanical shaft 300.
- the electromagnetic pulley 33 is activated, in order to disengage the action on the mechanical shaft 300 while the electric drive 4 is left off.
- the impeller 2 remains stationary, the liquid does not circulate in the circuit and the motor warms up faster.
- the electric drive 4 is activated in order to place the impeller shaft 200 in rotation at a speed greater than that induced by the mechanical drive 3.
- the first one-way coupling 51 disengages in rotation the impeller 200 from the mechanical shaft 300 reducing the masses dragged in rotation by the electric drive 4.
- the electric drive 4 is activated so as to rotate the impeller shaft 2 (this stage is therefore called "post run”).
- the impeller 2 rotates at a predetermined rotation speed, while the mechanical drive 3 is completely inactive, since the vehicle engine is off.
- the electromagnetic pulley 33 is not energized, it not being necessary for the movement of the rotation shaft.
- the first one-way coupling 51 disengages in rotation the impeller shaft 200 from the mechanical shaft 300 reducing the masses dragged in rotation by the electric drive 4.
- the electric drive 4 is activated whenever it is necessary to increase the cooling capacity, regardless of the mechanical drive 3, related to the engine speed.
- the pump group 1 comprises a mechanical drive 3 which has a "classic pulley", of the mechanical type, therefore not controlled electronically
- the above described throttle valve in the above-described "warm-up phase in which the engine is still cold and heating as fast as possible is desired, the quantity of coolant in circulation is regulated by controlling the positioning of the throttle valve.
- the pump group according to the present invention satisfies the cooling requirements of the engine and overcomes the drawbacks referred to above.
- the pump group according to the invention is very flexible, as it responds to the cooling needs of the vehicle depending on the actual demand and not on the engine speed or availability of electric power of the system. That is to say that, advantageously, the pump group proves particularly suitable for entirely managing the quantity of cooling liquid in the cooling system, for example by managing the cooling of further vehicle components besides the engine, such as the turbo group, obviating the need to have specific electrical pumps to move the predetermined quantities of coolant liquid in such components, permitting extra space to be gained in the engine compartment.
- the pump group is particularly compact and small in dimensions, making it particularly suitable to be housed in the engine compartment of a motor vehicle.
- the impeller (and the impeller chamber with the volute) is more compact and not oversized, and always operating under optimum performance conditions compared to the known pump groups, where the impeller is often oversized to compensate for the poor flexibility of the mechanical pumps and limited power of the electric pumps.
- a further advantageous aspect lies in the fact that the joint group simplifies the structure of the pump group, which is more compact in size compared to solutions of the prior art.
- yet a further advantageous aspect consists of the fact that the pump group requires a limited number of dynamic seals.
- the design of the electric drive is simplified and is optimizable by the designer.
- the transition from the electric drive to the mechanical drive and vice versa is operated mechanically by the one-way couplings. Therefore, advantageously, the electronic management of the pump group is very simple.
- the pump group is able to avoid the cooling action, even though the engine is in gear, when, for example, in conditions of "warm-up", it is appropriate to heat the motor.
- the pump group has the "fail-safe" features; in fact, in the event of a failure of the electric drive the pump group, thanks to the mechanical drive and the second one-way coupling, continues to ensure the movement of the impeller.
- the pump group is operative in "after-run” conditions, i.e. with the engine off.
- the pump group is operative in "after-run” conditions, i.e. with the engine off.
- a further advantageous aspect consists in the fact that the pump group has a more limited power absorption compared to standard mechanical pumps.
- the second one-way coupling allows, in a configuration in which the impeller is made to rotate by the mechanical drive, the rotor not to be rotated by the shaft; magnetic friction is thus not produced (or nor does the rotor-stator group work as an electric generator).
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Claims (11)
- Pumpengruppe (1) für einen Kühlkreislauf des Motors eines Fahrzeugs, die Folgendes umfasst:- ein Laufrad (2), das um eine Achse (X-X) drehbar ist, und eine Laufradwelle (200), die sich entlang der Achse (X-X) erstreckt und ein Laufradende (202), an dem das Laufrad (2) einstückig drehbar angebracht ist, und ein Laufradwellen-Gelenkende (205) umfasst, das dem Laufradende (202) gegenüberliegt;- einen mechanischen Antrieb (3) und eine mechanische Welle (300), die sich entlang der Achse (X-X) erstreckt und ein Gelenkende (305) der mechanischen Welle umfasst, wobei die mechanische Welle (300) mittels des mechanischen Antriebs (3) drehbar ist und betriebsfähig mit der Laufradwelle (200) verbunden ist;- einen elektrischen Antrieb (4) und eine elektrische Welle (400), die sich entlang der Achse (X-X) erstreckt und ein Gelenkende (405) der elektrischen Welle umfasst, wobei die elektrische Welle (400) mittels des elektrischen Antriebs (4) drehbar ist und betriebsfähig mit der Laufradwelle (200) verbunden ist, wobei der elektrische Antrieb (4) einen Elektromotor (40) umfasst;wobei die Pumpengruppe (1) dadurch gekennzeichnet ist, dass sie darüber hinaus Folgendes umfasst:- eine Gelenkgruppe (5), jeweils umfassend das Laufradwellen-Gelenkende (205), das Gelenkende (305) der mechanischen Welle und das Gelenkende (405) der elektrischen Welle, und eine erste Einweg-Kopplung (51), die das Laufradwellen-Gelenkende (205) betriebsfähig mit dem Gelenkende (305) der mechanischen Welle verbindet, und eine zweite Einweg-Kopplung (52), die das Laufradwellen-Gelenkende (205) betriebsfähig mit dem Gelenkende (405) der elektrischen Welle verbindet;wobei das Laufradwellen-Gelenkende (205) hohl ist und in sich ein Laufradwellengehäuse (205') definiert, das geeignet ist, Folgendes aufzunehmen:- die zweite Einweg-Kopplung (52) und das Gelenkende (405) der elektrischen Welle, wobei das Laufradwellen-Gelenkende (205) an der Außenseite die erste Einweg-Kopplung (51) und das Gelenkende (305) der mechanischen Welle stützt, wobei das Letztere ein Gehäuse (305') der mechanischen Welle definiert; oder- die erste Einweg-Kopplung (51) und das Gelenkende (405) der mechanischen Welle, wobei das Laufradwellen-Gelenkende (205) an der Außenseite die zweite Einweg-Kopplung (52) und das Gelenkende (405) der elektrischen Welle stützt, wobei das Letztere ein Gehäuse der elektrischen Welle definiert.
- Pumpengruppe nach dem vorhergehenden Anspruch, wobei die Pumpengruppe (5) Dichtungselemente (55) umfasst, die geeignet sind, radial zu ihren jeweiligen Wellen betrieben zu werden, um abdichtend Schmiermittel der ersten Einfach-Kopplung (51) und der zweiten Einfach-Kopplung (52) zu enthalten.
- Pumpengruppe nach einem beliebigen der vorhergehenden Ansprüche, wobei sich das Gehäuse (30') der mechanischen Welle in die Länge erstreckt und in sich das Gelenkende (405) der elektrischen Welle aufnimmt.
- Pumpengruppe nach einem beliebigen der vorhergehenden Ansprüche, wobei die erste Einweg-Kopplung (51) ein Wälzlager zur Unterstützung der Drehung des Gelenkendes (305) der mechanischen Welle umfasst.
- Pumpengruppe nach einem beliebigen der vorhergehenden Ansprüche, wobei die zweite Einweg-Kopplung (52) ein Wälzlager zur Unterstützung der Drehung des Gelenkendes (405) der elektrischen Welle umfasst.
- Pumpengruppe (1) nach einem beliebigen der vorhergehenden Ansprüche, überdies umfassend einen Pumpenkörper (10), der das Laufrad (2) in einer Laufradkammer (120) aufnimmt, wobei der Pumpenkörper (10) die Laufradwelle (200) und das Gelenkelement (5) drehbar stützt.
- Pumpengruppe (1) nach Anspruch 6, umfassend Drehmittel (60), die geeignet sind, die Laufradwelle (200) und die Gelenkgruppe (5) drehbar zu dem Pumpenkörper (10) zu stützen, wobei die Drehmittel (60) mindestens ein erstes Wälzelement (61), das betriebsfähig mit der Laufradwelle (200) verbunden ist, und mindestens ein zweites Wälzelement (62) umfassen, das betriebsfähig mit der Gelenkgruppe (5) verbunden ist.
- Pumpengruppe (1) nach Anspruch 7, wobei die Drehmittel (60) überdies mindestens eine dynamische Dichtung (65) umfassen, die mit dem Pumpenkörper (10) und der Laufradwelle (200) in Eingriff ist, um die Laufradkammer (120) abdichtend zu schließen.
- Pumpengruppe (1) nach einem beliebigen der vorhergehenden Ansprüche, wobei der mechanische Antrieb (3) eine elektromagnetische Riemenscheibe (33) umfasst, die an einem Riemenscheibenende (303) der mechanischen Welle (300) angebracht ist, wobei die elektromagnetische Riemenscheibe normal in Eingriff und elektrisch anregbar ist, um den mechanischen Antrieb von der Welle zu lösen.
- Pumpengruppe (1) nach einem beliebigen der vorhergehenden Ansprüche, wobei der elektrische Antrieb (4) einen Rotor (41), der an einem Motorende (401) der elektrischen Welle (400) gegenüberliegend dem Gelenkende (405) der elektrischen Welle angebracht ist, und einen feststehenden Stator (42) koaxial zu dem Rotor umfasst.
- Pumpengruppe (1) nach einem beliebigen der vorhergehenden Ansprüche, umfassend eine elektronische Steuer- bzw. Regelvorrichtung zum Steuern bzw. Regeln des elektrischen Antriebs (4) und/oder der elektromagnetischen Riemenscheibe (33), wobei die Steuer- bzw. Regelvorrichtung in die Pumpengruppe (1) integriert platziert ist.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ITUA20161447 | 2016-03-08 | ||
PCT/IB2017/050307 WO2017153851A1 (en) | 2016-03-08 | 2017-01-20 | Pump group with electric drive and mechanical drive comprising a joint group |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3426926A1 EP3426926A1 (de) | 2019-01-16 |
EP3426926B1 true EP3426926B1 (de) | 2020-03-18 |
Family
ID=64604404
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17709175.8A Active EP3426926B1 (de) | 2016-03-08 | 2017-01-20 | Pumpengruppe mit elektrischem antrieb und mechanischem antrieb mit einer gelenkgruppe |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP3426926B1 (de) |
HU (1) | HUE048795T2 (de) |
-
2017
- 2017-01-20 EP EP17709175.8A patent/EP3426926B1/de active Active
- 2017-01-20 HU HUE17709175A patent/HUE048795T2/hu unknown
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
EP3426926A1 (de) | 2019-01-16 |
HUE048795T2 (hu) | 2020-08-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6811009B2 (en) | Magnet type fan clutch apparatus | |
WO2017153851A1 (en) | Pump group with electric drive and mechanical drive comprising a joint group | |
US9353743B2 (en) | Fixed and variable pumps with parallel flow | |
EP3353398B1 (de) | Pumpengruppe mit elektrischem antrieb und mit mechanischem antrieb | |
JP2013083259A (ja) | 冷媒圧送装置および冷媒圧送装置を駆動する方法 | |
EP3440361B1 (de) | Pumpengruppe mit elektrischem antrieb und mechanischem antrieb am laufrad | |
CN105940235B (zh) | 利用来自马达的磁力对离合装置进行控制 | |
US10094454B2 (en) | Axial through-shaft actuator arrangement | |
EP3426926B1 (de) | Pumpengruppe mit elektrischem antrieb und mechanischem antrieb mit einer gelenkgruppe | |
CN210622915U (zh) | 具有电驱动器和机械驱动器的泵组 | |
WO2017195056A1 (en) | Pump group with electric drive and mechanical drive in the impeller shaft | |
EP3455499B1 (de) | Pumpanordnung mit mechanischem antrieb und elektroantrieb | |
CN212584011U (zh) | 一种可变流量的水泵和具有其的车辆 | |
EP3583304B1 (de) | Pumpengruppe mit einem elektrischen antrieb und mechanischer antrieb mit einer kupplung | |
CN110621882B (zh) | 具有电驱动装置和包括传动装置的机械驱动装置的泵组件 | |
US10989099B2 (en) | Dual pump group with mechanical drive comprising a centrifugal clutch |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20180726 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
INTG | Intention to grant announced |
Effective date: 20191017 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602017013268 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1246196 Country of ref document: AT Kind code of ref document: T Effective date: 20200415 Ref country code: IE Ref legal event code: FG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200618 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200318 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200318 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20200318 |
|
REG | Reference to a national code |
Ref country code: HU Ref legal event code: AG4A Ref document number: E048795 Country of ref document: HU |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200318 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200619 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200318 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200318 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200618 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200318 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200318 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200318 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200812 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200318 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200318 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200318 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200318 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200718 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1246196 Country of ref document: AT Kind code of ref document: T Effective date: 20200318 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602017013268 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200318 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200318 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200318 |
|
26N | No opposition filed |
Effective date: 20201221 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200318 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20210128 Year of fee payment: 5 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200318 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: HU Payment date: 20210221 Year of fee payment: 5 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200318 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20210120 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210120 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20210131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210131 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210131 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210120 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210120 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220121 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220131 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230523 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200318 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200318 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240119 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240108 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200318 |