EP3421885B1 - Combustion chamber of a gas turbine, gas turbine and method for operating the same - Google Patents

Combustion chamber of a gas turbine, gas turbine and method for operating the same Download PDF

Info

Publication number
EP3421885B1
EP3421885B1 EP18176189.1A EP18176189A EP3421885B1 EP 3421885 B1 EP3421885 B1 EP 3421885B1 EP 18176189 A EP18176189 A EP 18176189A EP 3421885 B1 EP3421885 B1 EP 3421885B1
Authority
EP
European Patent Office
Prior art keywords
combustor
atomisation
liquid fuel
fuel
lance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18176189.1A
Other languages
German (de)
French (fr)
Other versions
EP3421885A1 (en
Inventor
Frank Reiss
Bernhard Cosic
Gabrielle Tea-Kempf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MAN Energy Solutions SE
Original Assignee
MAN Energy Solutions SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MAN Energy Solutions SE filed Critical MAN Energy Solutions SE
Publication of EP3421885A1 publication Critical patent/EP3421885A1/en
Application granted granted Critical
Publication of EP3421885B1 publication Critical patent/EP3421885B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/286Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply having fuel-air premixing devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D17/00Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel
    • F23D17/002Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel gaseous or liquid fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/04Air inlet arrangements
    • F23R3/10Air inlet arrangements for primary air
    • F23R3/12Air inlet arrangements for primary air inducing a vortex
    • F23R3/14Air inlet arrangements for primary air inducing a vortex by using swirl vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/34Feeding into different combustion zones
    • F23R3/343Pilot flames, i.e. fuel nozzles or injectors using only a very small proportion of the total fuel to insure continuous combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/36Supply of different fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00014Reducing thermo-acoustic vibrations by passive means, e.g. by Helmholtz resonators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00015Trapped vortex combustion chambers

Definitions

  • the invention relates to a combustion chamber of a gas turbine according to the preamble of claim 1.
  • the invention also relates to a gas turbine with such a combustion chamber and a method for operating such a gas turbine.
  • Gas turbines have a combustion chamber and a turbine downstream of the combustion chamber. Fuel is burned in the combustion chamber of a gas turbine, producing hot exhaust gas. The hot exhaust gas is expanded in the turbine of the gas turbine in order to gain energy that can be used to provide drive power, for example to drive a generator to generate electricity.
  • Gas turbines designed as dual-fuel gas turbines are already known from practice, such dual-fuel gas turbines comprising a dual-fuel combustion chamber in which a gaseous fuel is burned in a gaseous fuel operating mode and a liquid fuel is burned in a liquid fuel operating mode.
  • a mixture of a gaseous fuel and combustion air can be supplied to the combustion chamber via a swirl body.
  • the combustion chamber of the gas turbine can be supplied with the liquid fuel via an atomization device and the combustion air via the swirl body.
  • US2015/0082770A1 discloses a dual fuel combustor.
  • This dual-fuel combustion chamber has an atomization device with a central atomization nozzle and a number of decentralized atomization nozzles.
  • Liquid fuel is introduced into the combustion chamber via both the central atomizing nozzle and the decentralized atomizing nozzles into the combustion chamber.
  • Gaseous fuel is introduced into the combustion chamber exclusively via the decentralized atomization devices.
  • DE 198 39 085 A1 discloses a burner assembly having primary and secondary pilot burners.
  • Fuel gas and/or fuel oil can be supplied to a main burner.
  • the fuel gas for the main burner is mixed with combustion air in the area of a swirl generator.
  • the fuel oil for the main burner is added to the air directly in the area of the main swirl generator.
  • the pilot burner which serves to ignite and/or stabilize the main flame in the main burner, is supplied with fuel via additional fuel channels.
  • the present invention is based on the object of creating a novel combustion chamber of a gas turbine, a gas turbine of such a combustion chamber and a method for operating such a gas turbine.
  • the atomizing device has an atomizing lance with at least one atomizing nozzle which is central in relation to a longitudinal center axis of the combustion chamber or in relation to a longitudinal center axis of an antechamber of the combustion chamber.
  • the atomizing device also has a plurality of atomizing nozzles which are decentralized relative to the longitudinal center axis of the combustion chamber or relative to the longitudinal center axis of the antechamber of the combustion chamber.
  • the liquid fuel can be optimally introduced into the combustion chamber via the central atomizing lance, which comprises at least one atomizing nozzle, and via the multiple decentralized atomizing nozzles, in order to ensure effective combustion of the liquid fuel.
  • the liquid fuel can be introduced directly into a central recirculation zone within the combustion chamber or the antechamber of the combustion chamber via the central atomization lance, as a result of which stable combustion can be achieved.
  • the introduction of the fuel via the central atomizing lance is not homogeneous with the combustion air, there is no premixing of liquid fuel and combustion air.
  • the liquid fuel can be distributed homogeneously in the combustion air via the decentralized atomizing nozzles.
  • a partial pre-mixing of liquid fuel and combustion air is achieved by the decentralized atomizing nozzles.
  • exhaust gas emissions in particular nitrogen oxide emissions, can be reduced in comparison to the central atomizing lance.
  • the central atomizing lance has at least two, preferably two, atomizing nozzles which, alone and together, each provide an atomizing cone with a maximum spray angle of 60°, preferably a maximum of 55°.
  • Each of the decentralized atomizing nozzles provides an atomizing cone with a maximum spray angle of 50°, preferably a maximum of 40°. This can be avoided that walls of the combustion chamber and the antechamber of the combustion chamber are wetted with liquid fuel. In particular, this serves to effectively burn the liquid fuel while reducing exhaust emissions.
  • the decentralized atomizing nozzles are positioned on a circular path extending around the longitudinal center axis of the combustion chamber or around the longitudinal center axis of the antechamber of the combustion chamber.
  • a center point of the circular path on which the decentralized atomizing nozzle is positioned is preferably positioned on the longitudinal central axis of the combustion chamber or the antechamber of the combustion chamber.
  • a radius of the circular path on which the decentralized atomizing nozzles are positioned is preferably between 0.4 times and 1.1 times an inner radius of the swirl body.
  • the liquid fuel can be optimally introduced into the combustion chamber, providing a homogeneous distribution of the same with the combustion air and with a view to premixing it with the combustion air, in order to reduce exhaust gas emissions such as nitrogen oxide emissions as much as possible.
  • the central atomizing lance is surrounded at least in sections radially on the outside by an adjacent component, forming a radial gap, with combustion air being able to be supplied to the combustion chamber via the radial gap, bypassing the swirl body.
  • the central atomizing lance for introducing the liquid fuel into the combustion chamber or antechamber of the combustion chamber, effective combustion of the liquid fuel in the liquid fuel operating mode can be ensured with a reduction in nitrogen oxide emissions in particular.
  • the gas turbine according to the invention is defined in claim 8 and the method of operating the same according to the invention is defined in claim 9.
  • both the central atomizing lance and the decentralized atomizing nozzles are used in the entire operating range between idling and full load in order to supply the liquid fuel to the combustion chamber.
  • This operating variant of the invention is suitable when the gas turbine to be operated is to carry out rapid load changes, since individual injection nozzles then do not have to be switched on or off. Rinsing procedures that are required when switching off individual atomizing nozzles can thus be avoided. Exhaust emissions can be reduced compared to gas turbines, whose combustion chambers only have a central atomization lance.
  • both the central atomizing lance (and the decentralized atomizing nozzles are used to supply liquid fuel to the combustion chamber, whereas in an operating range above the predetermined load limit only the decentralized atomizing nozzles are used in order to supply the liquid fuel to the combustion chamber.
  • This operating variant of the invention serves to further reduce exhaust gas emissions, in particular nitrogen oxide emissions.
  • the central atomization lance is no longer used for introducing the liquid fuel, rather the liquid fuel is introduced in the upper load range Fuel exclusively using the decentralized atomizing nozzles friction area of high loads.
  • the invention relates to a combustion chamber of a gas turbine, a gas turbine with such a combustion chamber and a method for operating such a gas turbine.
  • combustion chamber 1 shows a schematic section from a gas turbine in the area of a combustion chamber 1.
  • the combustion chamber 1 is delimited by a wall 2, with a fuel being burned in the combustion chamber 1.
  • Exhaust gas produced during the combustion of the fuel in the combustion chamber 1 can be supplied to a turbine of the gas turbine (not shown) in order to expand the exhaust gas in the turbine and thereby gain energy.
  • Combustion chamber 1 is designed as a dual-fuel combustion chamber, which can be operated in a gas fuel operating mode on the one hand and in a liquid fuel operating mode on the other.
  • a gaseous fuel is burned in the same, a mixture of the gaseous fuel and combustion air of the combustion chamber 1, in 1 an antechamber 9 of the combustion chamber 1, via a swirl body 3 is supplied.
  • the swirler 3 is preferably designed as a radial swirler and generates a defined swirl of the mixture of combustion air and gaseous fuel entering the prechamber 9 of the combustion chamber 1 .
  • the mixture of the gaseous fuel and the combustion air is ignited in the gaseous fuel operating mode by means of an electric ignition device, not shown.
  • liquid fuel operating mode of the combustion chamber 1 a liquid fuel is burned in the same, the liquid fuel of the combustion chamber 1, in 1 the antechamber 9 of the combustion chamber 1, with the aid of an atomizing device 4 is supplied.
  • the atomizing device 4 has a central atomizing lance 17, which is positioned approximately in the middle of the antechamber 9 of the combustion chamber 1 or on a longitudinal center axis 20 of the antechamber 9 of the combustion chamber 1 or on a longitudinal center axis 20 of the combustion chamber 1 and which emits the liquid fuel in Direction of the longitudinal center axis 20 to form an atomization cone or spray cone 8a in the antechamber 9 of the combustion chamber 1 injected.
  • the atomizing device 4 has a plurality of atomizing nozzles 18 which are decentralized in relation to the longitudinal center axis 20 of the combustion chamber 1 or the antechamber 9 and which spray liquid fuel can also inject into the antechamber 9 of the combustion chamber 1, with the formation of a respective spray cone 8b.
  • the atomizing device 4 therefore has the central atomizing lance 17 and several decentralized atomizing nozzles 18.
  • the central atomizing lance 17 has at least one atomizing nozzle, preferably several atomizing nozzles 15, 16 (see 2 ).
  • FIG. 2 shows a detail of the central atomizing lance 17 of the atomizing device 4.
  • a radial gap 6 is formed, via which combustion air can also be fed to the combustion chamber 1, namely the antechamber 9, specifically bypassing the swirl body 3.
  • That component 15 which defines the annular gap 6 together with the atomizing lance 17 of the atomizing device 4 is preferably designed as a separate sleeve which is accommodated in the mounting wall 12 .
  • the mounting wall 12 itself to provide the component 5 which adjoins the atomizing lance 17 radially on the outside and which together with the atomizing lance 17 defines the radial gap 6 .
  • the atomizing nozzles 8 of the atomizing device 4, which are decentralized with respect to the longitudinal center axis 20 of the combustion chamber 1 or antechamber 9, are preferably on a circular path 19 (see FIG 3 ) positioned, which extends around the longitudinal center axis 20 of the combustion chamber 1 or the longitudinal center axis 20 of the antechamber 9 of the combustion chamber 1 .
  • the decentralized atomizing nozzles 18 accordingly surround the central atomizing lance 17 preferably concentrically.
  • this radius d 18 of the circular path 19 on which the decentralized atomizing nozzles 18 are arranged is between 0.4 times and 1.1 times an inner diameter d 3 of the swirl body 3 .
  • the radius d 18 of the circular path 19 on which the decentralized atomizing nozzles 18 are arranged is between 1.0 and 1.1 times the inner diameter d 3 of the swirler 3, the decentralized atomizing nozzles 18 at least partially overlap the swirl body 3 in the area of its exit area.
  • the decentralized atomizing nozzles 18 can also be arranged on a plurality of preferably concentric circular paths or on an elliptical path or a polygon.
  • the central atomizing lance 17 of the atomizing device 4 preferably comprises a plurality of atomizing nozzles, in the exemplary embodiment of FIG 2 two atomizing nozzles 15, 16, which are preferably swirl atomizing nozzles.
  • the liquid fuel can be supplied in the liquid fuel operating mode starting from a common liquid fuel supply 21, with the fuel guided by the liquid fuel supply 21 being able to be divided into two liquid fuel partial supplies 21a, 21b in order to have both atomizing nozzles 15, 16 of the central atomizing lance 17 to supply liquid fuel.
  • the central atomizing lance 17 with its two atomizing nozzles 15, 16 sprays the liquid fuel in the direction of the combustion chamber 1 at the spray angle ⁇ , which is a maximum of 60°, preferably a maximum of 55°.
  • the spray angle ⁇ is a maximum of 60°, preferably a maximum of 55°. This ensures that neither the walls 2a of the prechamber 9 nor the walls 2 of the combustion chamber 1 are wetted with liquid fuel, as a result of which more effective combustion of the liquid fuel can be provided.
  • combustion air can be supplied to the combustion chamber 1 , in particular to the antechamber 9 , via the gap 6 .
  • the air flow 14, which is guided through this annular gap 6, serves on the one hand to cool the central atomizing lance 17 of the atomizing device 4, and on the other hand this air flow 14 at least partially surrounds the spray cone 8a of the liquid fuel of the atomizing lance 17 on the outside and thus bundles it.
  • the combustion air 14 which the combustion chamber 1, in 1 of the antechamber 9, bypassing the swirl body 3 via the radial gap 6, is in particular between 1% and 10% of the combustion air, which can be supplied to the combustion chamber via the swirl body 3.
  • the combustion air flow 14 can be supplied not only to the combustion chamber 1 in the liquid fuel operating mode, but also to the combustion chamber 1 in the gaseous fuel operating mode via the radial gap 6, with the atomizing device 4, i.e. in particular the atomizing lance 17 of the same, being inactive in the gaseous fuel operating mode, so that then in the gaseous fuel operating mode via the atomizing device 4 no fuel is introduced, only via the swirl body 3.
  • the atomizing lance 17 is aligned centrally, in relation to the longitudinal central axis 20.
  • Liquid fuel can be introduced into a central recirculation zone via the atomizing lance 17 in the liquid fuel operating mode. This ensures a very stable combustion.
  • the introduction of the liquid fuel via the central atomization lance 17 in relation to the longitudinal center axis 20 therefore takes place locally, that is to say not homogeneously with respect to the combustion air, so that no premixing of liquid fuel and combustion air takes place.
  • the combustion chamber 1 comprises, in addition to the central atomizing lance 17, a plurality of decentralized atomizing nozzles 18 which are preferably arranged on the circular path 19.
  • These decentralized atomizing nozzles 18 are connected via a separate liquid fuel supply 22 (see 1 ) can be supplied with liquid fuel, with the decentralized atomizing nozzles 18 introducing the liquid fuel into the antechamber 9 or combustion chamber 1 in approximately the same direction as the central atomizing lance 17, but with a spray angle ⁇ that is smaller than the spray angle ⁇ , the spray angle ⁇ of the decentralized atomizing nozzles 18 preferably being at most 50°, preferably at most 40°.
  • the fuel is introduced into the combustion chamber 1, in particular into the antechamber 9, forming a homogeneous distribution with the combustion air; at the same time, a partial premixing of combustion air and liquid fuel is provided, in particular supported by the fact that the decentralized atomizing nozzles 18 are arranged adjacent to the outlet of the swirl body 3 .
  • This partial premixing can be improved if the radius d 18 is larger than the radius d 3 .
  • the radius d 18 can be between 1.0 times and 1.1 times the radius d 3 .
  • Double jet nozzles or so-called plain jets are preferably used as decentralized atomizing nozzles 18 .
  • a homogeneous supply of the liquid fuel to the combustion air is achieved via the decentralized atomizing nozzles 18, and also a partial premixing of liquid fuel and combustion air.
  • Combustion air can also be routed via the annular gap 6 in the gaseous fuel operating mode.
  • the combustion air flow 14 conducted via the annular gap 6 is branched off in the region of an air space, a so-called plenum 10, upstream of the swirl body 3.
  • combustion chamber 1 When combustion chamber 1 is operated in liquid fuel operating mode with active atomization device 4, liquid fuel is supplied to combustion chamber 1 or prechamber 9 via atomization device 4, combustion air via swirl body 3 and preferably via annular gap 6 between central atomization lance 17 and the component 5
  • both the central atomizing lance 17 and the decentralized atomizing nozzles 18 of the atomizing device 4 are used in the liquid fuel operating mode in the entire operating range between idle and full load to supply the combustion chamber 1 with the liquid fuel.
  • the power modulation then takes place by changing the liquid fuel introduced into the combustion chamber 1 via the decentralized atomizing nozzles 18 (see curve 22), so that as the load requirement L increases, the load component 23 of the central atomizing lance 17 falls compared to the load component of the decentralized atomizing nozzles 18 or the corresponding load component 24 of the decentralized atomizing nozzles 18 increases.
  • both the central atomizing lance 17 and the decentralized atomizing nozzles 18 are used in the entire load range or operating range between idle and full load in order to supply the liquid fuel to the combustion chamber, it is provided in particular that to ignite the combustion in the combustion chamber 1, fuel is introduced into the combustion chamber 1 exclusively via one of the two atomizing nozzles 15, 16 of the atomizing lance 17, and that after ignition and after a defined speed of the gas turbine has been reached, both atomizing nozzles 15, 16 of the atomizing lance 17 are used to inject the fuel via to introduce the atomizing lance 17 into the combustion chamber 1.
  • the power modulation takes place exclusively via the variation of the amount of fuel provided via the decentralized atomizing nozzles 18 .
  • This operating concept is particularly suitable for rapid load changes on the gas turbine, since then, apart from the ignition process, no atomizing nozzles have to be switched on or off. Also it is not necessary after turning off atomizing nozzles to rinse the same.
  • This operating concept serves a very robust and stable combustion of the liquid fuel.
  • low fuel emissions can be realized, in particular nitrogen oxide emissions of less than 150 vppm.
  • figure 5 illustrates a second operating concept of the combustion chamber according to the invention or of the gas turbine according to the invention comprising the combustion chamber according to the invention. So shows figure 5 that the load range L between idle (0%) and full load (100%) is divided into two load ranges, namely a load range between idle (0%) and a limit value GW, and a load range between a limit value GW and Full load (100%).
  • both the central atomizing lance 17 and the decentralized atomizing nozzles 18 are used in the operating range or load range below the specified load limit GW in order to supply liquid fuel to the combustion chamber 1 .
  • the amount of fuel introduced via the central atomizing lance 17 is preferably constant in this load range, and the power modulation then takes place exclusively via the change in the amount of liquid fuel introduced via the decentralized atomizing nozzles 18 (see curve 22).
  • the central atomizing lance 17 is switched off, so that no more fuel is then supplied via the same, so that in the upper load range between the load limit GW and full load (100%) liquid fuel is supplied exclusively via the decentralized atomizing nozzles 18 of the combustion chamber 1 is supplied.
  • One advantage of this second operating concept according to the invention is that at loads above the defined load limit GW, the liquid fuel is not introduced centrally into the recirculation zone of the combustion chamber 1, but exclusively decentralized, so that all liquid fuel introduced is introduced homogeneously with the combustion air and is partially premixed can be guaranteed with combustion air, whereby exhaust emissions, especially nitrogen oxide emissions, compared to the operating concept of 4 can be further reduced. In particular, nitrogen oxide emissions of less than 90 vppm can be realized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)

Description

Die Erfindung betrifft eine Brennkammer einer Gasturbine nach dem Oberbergriff des Anspruch 1. Des Weiteren betrifft die Erfindung eine Gasturbine mit einer solchen Brennkammer und ein Verfahren zum Betreiben einer solchen Gasturbine.The invention relates to a combustion chamber of a gas turbine according to the preamble of claim 1. The invention also relates to a gas turbine with such a combustion chamber and a method for operating such a gas turbine.

Gasturbinen verfügen über eine Brennkammer sowie über eine der Brennkammer nachgeordnete Turbine. In der Brennkammer einer Gasturbine wird ein Kraftstoff verbrannt und hierbei heißes Abgas erzeugt. Das heiße Abgas wird in der Turbine der Gasturbine entspannt, um hierbei Energie zu gewinnen, die dazu dienen kann, Antriebsleistung bereitzustellen, um zum Beispiel zur Erzeugung von elektrischem Strom einen Generator anzutreiben. Aus der Praxis sind bereits als Dual-Fuel-Gasturbinen ausgebildete Gasturbinen bekannt, wobei solche Dual-Fuel-Gasturbinen eine Dual-Fuel-Brennkammer umfassen, in der in einem Gaskraftstoffbetriebsmodus ein gasförmiger Kraftstoff und in einem Flüssigkraftstoffbetriebsmodus ein flüssiger Kraftstoff verbrannt wird. In dem Gaskraftstoffbetriebsmodus ist ein Gemisch aus einem gasförmigen Kraftstoff und Verbrennungsluft über einen Drallkörper der Brennkammer zuführbar. In dem Flüssigkraftstoffbetriebsmodus ist der Brennkammer der Gasturbine der flüssige Kraftstoff über eine Zerstäubungseinrichtung und die Verbrennungsluft über den Drallkörper zuführbar.Gas turbines have a combustion chamber and a turbine downstream of the combustion chamber. Fuel is burned in the combustion chamber of a gas turbine, producing hot exhaust gas. The hot exhaust gas is expanded in the turbine of the gas turbine in order to gain energy that can be used to provide drive power, for example to drive a generator to generate electricity. Gas turbines designed as dual-fuel gas turbines are already known from practice, such dual-fuel gas turbines comprising a dual-fuel combustion chamber in which a gaseous fuel is burned in a gaseous fuel operating mode and a liquid fuel is burned in a liquid fuel operating mode. In the gaseous fuel operating mode, a mixture of a gaseous fuel and combustion air can be supplied to the combustion chamber via a swirl body. In the liquid fuel operating mode, the combustion chamber of the gas turbine can be supplied with the liquid fuel via an atomization device and the combustion air via the swirl body.

Aus der nachveröffentlichten EP 3 351 854 A1 ist eine Brennkammer einer Gasturbine nach dem Oberbergriff des Anspruch 1 bekannt.From the post-published EP 3 351 854 A1 a combustion chamber of a gas turbine according to the preamble of claim 1 is known.

US 2015/0082770 A1 offenbart eine Dual-Fuel-Brennkammer. Diese Dual-Fuel-Brennkammer weist eine Zerstäubungseinrichtung mit einer zentralen Zerstäubungsdüse und mehreren dezentralen Zerstäubungsdüsen auf. Flüssiger Kraftstoff wird in die Brennkammer sowohl über die zentrale Zerstäubungsdüse als auch über die dezentralen Zerstäubungsdüsen in die Brennkammer eingebracht. Gasförmiger Kraftstoff wird hingegen ausschließlich über die dezentralen Zerstäubungseinrichtungen in die Brennkammer eingebracht. US2015/0082770A1 discloses a dual fuel combustor. This dual-fuel combustion chamber has an atomization device with a central atomization nozzle and a number of decentralized atomization nozzles. Liquid fuel is introduced into the combustion chamber via both the central atomizing nozzle and the decentralized atomizing nozzles into the combustion chamber. Gaseous fuel, on the other hand, is introduced into the combustion chamber exclusively via the decentralized atomization devices.

DE 198 39 085 A1 offenbart eine Brenneranordnung mit primärem und sekundärem Pilotbrenner. Einem Hauptbrenner kann Brenngas und/oder Brennöl zugeführt werden. Das Brenngas für den Hauptbrenner wird im Bereich eines Drallerzeugers mit Verbrennungsluft gemischt. Das Brennöl für den Hauptbrenner wird unmittelbar im Bereich des Hauptdrallerzeugers der Luft zugeführt. Dem Pilotbrenner, welcher dem Zünden und/oder Stabilisieren der Hauptflamme im Hauptbrenner dient, wird Brennstoff über weitere Brennstoffkanäle zugeführt. DE 198 39 085 A1 discloses a burner assembly having primary and secondary pilot burners. Fuel gas and/or fuel oil can be supplied to a main burner. The fuel gas for the main burner is mixed with combustion air in the area of a swirl generator. The fuel oil for the main burner is added to the air directly in the area of the main swirl generator. The pilot burner, which serves to ignite and/or stabilize the main flame in the main burner, is supplied with fuel via additional fuel channels.

Es besteht Bedarf daran, als Dual-Fuel-Brennkammern ausgebildete Brennkammern einer Gasturbine dahingehend weiter zu verbessern, dass insbesondere im Flüssigkraftstoffbetriebsmodus der flüssige Kraftstoff effektiver verbrannt werden kann, und zwar unter Reduzierung von unerwünschten Abgasemissionen wie Stickoxidemissionen.There is a need to further improve combustion chambers of a gas turbine designed as dual-fuel combustion chambers to the effect that the liquid fuel can be burned more effectively, particularly in the liquid fuel operating mode, while reducing undesirable exhaust gas emissions such as nitrogen oxide emissions.

Hiervon ausgehend liegt der vorliegenden Erfindung die Aufgabe zugrunde, eine neuartige Brennkammer einer Gasturbine, eine Gasturbine einer solchen Brennkammer und ein Verfahren zum Betreiben einer solchen Gasturbine zu schaffen.Proceeding from this, the present invention is based on the object of creating a novel combustion chamber of a gas turbine, a gas turbine of such a combustion chamber and a method for operating such a gas turbine.

Diese Aufgabe wird durch eine Brennkammer einer Gasturbine nach Anspruch 1 gelöst.This object is achieved by a combustor of a gas turbine according to claim 1.

Die Zerstäubungseinrichtung weist eine bezogen auf eine Längsmittelachse der Brennkammer oder bezogen auf eine Längsmittelachse einer Vorkammer der Brennkammer zentrale Zerstäubungslanze mit mindestens einer Zerstäubungsdüse auf. Die Zerstäubungseinrichtung weist ferner mehrere bezogen auf die Längsmittelachse der Brennkammer oder bezogen auf die Längsmittelachse der Vorkammer der Brennkammer dezentrale Zerstäubungsdüsen auf.The atomizing device has an atomizing lance with at least one atomizing nozzle which is central in relation to a longitudinal center axis of the combustion chamber or in relation to a longitudinal center axis of an antechamber of the combustion chamber. The atomizing device also has a plurality of atomizing nozzles which are decentralized relative to the longitudinal center axis of the combustion chamber or relative to the longitudinal center axis of the antechamber of the combustion chamber.

Über die zentrale Zerstäubungslanze, die mindestens eine Zerstäubungsdüse umfasst, sowie über die mehreren dezentralen Zerstäubungsdüsen kann im Flüssigkraftstoff-Betriebsmodus der flüssige Kraftstoff optimal in die Brennkammer eingebracht werden, um eine effektive Verbrennung des flüssigen Kraftstoffs zu gewährleisten. Über die zentrale Zerstäubungslanze kann der flüssige Kraftstoff direkt in eine zentrale Rezirkulationszone innerhalb der Brennkammer oder der Vorkammer der Brennkammer eingebracht werden, wodurch eine stabile Verbrennung erreicht werden kann. Das Einbringen des Kraftstoffs über die zentrale Zerstäubungslanze erfolgt dabei nicht homogen zur Verbrennungsluft, es erfolgt hier keine Vormischung von flüssigem Kraftstoff und Verbrennungsluft. Über die dezentralen Zerstäubungsdüsen kann der flüssige Kraftstoff homogen in der Verbrennungsluft verteilt werden. Ferner wird durch die dezentralen Zerstäubungsdüsen eine Teilvormischung von flüssigem Kraftstoff und Verbrennungsluft erreicht. Durch die dezentralen Zerstäubungsdüsen können im Vergleich zur zentralen Zerstäubungslanze Abgasemissionen, insbesondere Stickoxidemissionen, reduziert werden.In the liquid fuel operating mode, the liquid fuel can be optimally introduced into the combustion chamber via the central atomizing lance, which comprises at least one atomizing nozzle, and via the multiple decentralized atomizing nozzles, in order to ensure effective combustion of the liquid fuel. The liquid fuel can be introduced directly into a central recirculation zone within the combustion chamber or the antechamber of the combustion chamber via the central atomization lance, as a result of which stable combustion can be achieved. The introduction of the fuel via the central atomizing lance is not homogeneous with the combustion air, there is no premixing of liquid fuel and combustion air. The liquid fuel can be distributed homogeneously in the combustion air via the decentralized atomizing nozzles. Furthermore, a partial pre-mixing of liquid fuel and combustion air is achieved by the decentralized atomizing nozzles. By means of the decentralized atomizing nozzles, exhaust gas emissions, in particular nitrogen oxide emissions, can be reduced in comparison to the central atomizing lance.

Die zentrale Zerstäubungslanze weist mindestens zwei, vorzugsweise zwei, Zerstäubungsdüsen auf, die alleine und gemeinsam jeweils einen Zerstäubungskegel mit einem maximalen Sprühwinkel von 60°, vorzugsweise von maximal 55°, bereitstellen. Jeder der dezentralen Zerstäubungsdüsen stellt jeweils einen Zerstäubungskegel mit einem maximalen Sprühwinkel von 50°, vorzugsweise von maximal 40°, bereit. Hiermit kann vermieden werden, dass Wände der Brennkammer sowie der Vorkammer der Brennkammer mit flüssigem Kraftstoff benetzt werden. Insbesondere dient dies der effektiven Verbrennung des flüssigen Kraftstoffs unter Reduzierung von Abgasemissionen.The central atomizing lance has at least two, preferably two, atomizing nozzles which, alone and together, each provide an atomizing cone with a maximum spray angle of 60°, preferably a maximum of 55°. Each of the decentralized atomizing nozzles provides an atomizing cone with a maximum spray angle of 50°, preferably a maximum of 40°. This can be avoided that walls of the combustion chamber and the antechamber of the combustion chamber are wetted with liquid fuel. In particular, this serves to effectively burn the liquid fuel while reducing exhaust emissions.

Nach einer Weiterbildung der Erfindung sind die dezentralen Zerstäubungsdüsen auf einer sich um die Längsmittelachse der Brennkammer oder um die Längsmittelachse der Vorkammer der Brennkammer erstreckenden Kreisbahn positioniert. Vorzugsweise ist ein Mittelpunkt der Kreisbahn, auf welcher die dezentrale Zerstäubungsdüse positioniert ist, auf der Längsmittelachse der Brennkammer oder der Vorkammer der Brennkammer positioniert. Vorzugsweise beträgt ein Radius der Kreisbahn, auf welcher die dezentralen Zerstäubungsdüsen positioniert sind, zwischen dem 0,4-fachen und 1,1-fachen eines Innenradius des Drallkörpers. Über solche dezentralen Zerstäubungsdüsen kann der flüssige Kraftstoff unter Bereitstellung einer homogene Verteilung desselben mit der Verbrennungsluft sowie im Hinblick auf eine Vormischung desselben mit der Verbrennungsluft optimal in die Brennkammer eingebracht werden, um Abgasemissionen wie Stickoxidemissionen möglichst stark zu reduzieren.According to a development of the invention, the decentralized atomizing nozzles are positioned on a circular path extending around the longitudinal center axis of the combustion chamber or around the longitudinal center axis of the antechamber of the combustion chamber. A center point of the circular path on which the decentralized atomizing nozzle is positioned is preferably positioned on the longitudinal central axis of the combustion chamber or the antechamber of the combustion chamber. A radius of the circular path on which the decentralized atomizing nozzles are positioned is preferably between 0.4 times and 1.1 times an inner radius of the swirl body. Via such decentralized atomizing nozzles, the liquid fuel can be optimally introduced into the combustion chamber, providing a homogeneous distribution of the same with the combustion air and with a view to premixing it with the combustion air, in order to reduce exhaust gas emissions such as nitrogen oxide emissions as much as possible.

Nach einer Weiterbildung der Erfindung ist die zentrale Zerstäubungslanze unter Ausbildung eines Radialspalts radial außen von einem angrenzenden Bauteil zumindest abschnittsweise umgeben, wobei der Brennkammer über den Radialspalt Verbrennungsluft unter Umgehung des Drallkörpers zuführbar ist. Auch hiermit kann bei Verwendung der zentralen Zerstäubungslanze für das Einbringen des flüssigen Kraftstoffs in die Brennkammer oder Vorkammer der Brennkammer eine effektive Verbrennung des flüssigen Kraftstoffs im Flüssigkraftstoffbetriebsmodus unter Reduzierung von insbesondere Stickoxidemissionen gewährleistet werden. Die erfindungsgemäße Gasturbine ist in Anspruch 8 und das erfindungsgemäße Verfahren zum Betreiben derselben ist in Anspruch 9 definiert.According to a development of the invention, the central atomizing lance is surrounded at least in sections radially on the outside by an adjacent component, forming a radial gap, with combustion air being able to be supplied to the combustion chamber via the radial gap, bypassing the swirl body. Here too, when using the central atomizing lance for introducing the liquid fuel into the combustion chamber or antechamber of the combustion chamber, effective combustion of the liquid fuel in the liquid fuel operating mode can be ensured with a reduction in nitrogen oxide emissions in particular. The gas turbine according to the invention is defined in claim 8 and the method of operating the same according to the invention is defined in claim 9.

Nach einer ersten Variante des erfindungsgemäßen Verfahrens werden in dem Flüssigkraftstoffbetriebsmodus sowohl die zentrale Zerstäubungslanze als auch die dezentralen Zerstäubungsdüsen im gesamten Betriebsbereich zwischen Leerlauf und Volllast genutzt, um der Brennkammer den flüssigen Kraftstoff zuzuführen. Diese Betriebsvariante der Erfindung eignet sich dann, wenn die zu betreibende Gasturbine schnelle Lastwechsel ausführen soll, da dann einzelne Einspritzdüsen nicht eingeschaltet bzw. ausgeschaltet werden müssen. Spülprozeduren, wie sie beim Ausschalten einzelner Zerstäubungsdüsen erforderlich sind, können so vermieden werden. Abgasemissionen können im Vergleich zu Gasturbienen, deren Brennkammern nur eine zentrale Zerstäubungslanze aufweisen, reduziert werden.According to a first variant of the method according to the invention, in the liquid fuel operating mode, both the central atomizing lance and the decentralized atomizing nozzles are used in the entire operating range between idling and full load in order to supply the liquid fuel to the combustion chamber. This operating variant of the invention is suitable when the gas turbine to be operated is to carry out rapid load changes, since individual injection nozzles then do not have to be switched on or off. Rinsing procedures that are required when switching off individual atomizing nozzles can thus be avoided. Exhaust emissions can be reduced compared to gas turbines, whose combustion chambers only have a central atomization lance.

Nach einer zweiten Variante des erfindungsgemäßen Verfahrens werden in dem Flüssigkraftstoffbetriebsmodus in einem Betriebsbereich unterhalb einer vorgegebenen Lastgrenze sowohl die zentrale Zerstäubungslanze(als auch die dezentralen Zerstäubungsdüsen genutzt, um der Brennkammer flüssigen Kraftstoff zuzuführen, wohingegen in einem Betriebsbereich oberhalb der vorgegebenen Lastgrenze ausschließlich die dezentralen Zerstäubungsdüsen genutzt werden, um der Brennkammer den flüssigen Kraftstoff zuzuführen. Diese Betriebsvariante der Erfindung dient der weiteren Reduzierung von Abgasemissionen, insbesondere Stickoxidemissionen. In einem oberen Lastbereich wird die zentrale Zerstäubungslanze zum Einbringen des flüssigen Kraftstoffs nicht weiter genutzt, vielmehr erfolgt im oberen Lastbereich des Einbringen des flüssigen Kraftstoffs ausschließlich unter Verwendung der dezentralen Zerstäubungsdüsen. Hierdurch können Abgasemissionen wie Stickoxidemissionen weiter reduziert werden, nämlich im Betriebsbereich hoher Lasten.According to a second variant of the method according to the invention, in the liquid fuel operating mode in an operating range below a predetermined load limit, both the central atomizing lance (and the decentralized atomizing nozzles are used to supply liquid fuel to the combustion chamber, whereas in an operating range above the predetermined load limit only the decentralized atomizing nozzles are used in order to supply the liquid fuel to the combustion chamber. This operating variant of the invention serves to further reduce exhaust gas emissions, in particular nitrogen oxide emissions. In an upper load range, the central atomization lance is no longer used for introducing the liquid fuel, rather the liquid fuel is introduced in the upper load range Fuel exclusively using the decentralized atomizing nozzles friction area of high loads.

Bevorzugte Weiterbildungen der Erfindung ergeben sich aus den Unteransprüchen und der nachfolgenden Beschreibung. Ausführungsbeispiele der Erfindung werden, ohne hierauf beschränkt zu sein, an Hand der Zeichnung näher erläutert. Dabei zeigt:

Fig. 1
einen stark schematisierten Ausschnitt aus einer erfindungsgemäßen Brennkammer einer erfindungsgemäßen Gasturbine;
Fig. 2
das Detail II der Fig. 1;
Fig. 3
ein Detail der Fig. 1 in Blickrichtung III;
Fig. 4
ein Diagramm zur Verdeutlichung eines ersten erfindungsgemäßen Verfahrens zum Betreiben der erfindungsgemäßen Gasturbine; und
Fig. 5
ein Diagramm zur Verdeutlichung eines zweiten erfindungsgemäßen Verfahrens zum Betreiben der erfindungsgemäßen Gasturbine.
Preferred developments of the invention result from the dependent claims and the following description. Exemplary embodiments of the invention are explained in more detail with reference to the drawing, without being limited thereto. It shows:
1
a highly schematic section of a combustion chamber according to the invention of a gas turbine according to the invention;
2
the detail II of 1 ;
3
a detail of 1 in line of sight III;
4
a diagram to illustrate a first method according to the invention for operating the gas turbine according to the invention; and
figure 5
a diagram to illustrate a second method according to the invention for operating the gas turbine according to the invention.

Die Erfindung betrifft eine Brennkammer einer Gasturbine, eine Gasturbine mit einer solchen Brennkammer und ein Verfahren zum Betreiben einer solchen Gasturbine.The invention relates to a combustion chamber of a gas turbine, a gas turbine with such a combustion chamber and a method for operating such a gas turbine.

Fig. 1 zeigt einen schematisierten Ausschnitt aus einer Gasturbine im Bereich einer Brennkammer 1. Die Brennkammer 1 wird von einer Wand 2 begrenzt, wobei in der Brennkammer 1 ein Kraftstoff verbrannt wird. Bei der Verbrennung des Kraftstoffs in der Brennkammer 1 entstehendes Abgas ist einer nicht gezeigten Turbine der Gasturbine zuführbar, um das Abgas in der Turbine zu entspannen und hierbei Energie zu gewinnen. 1 shows a schematic section from a gas turbine in the area of a combustion chamber 1. The combustion chamber 1 is delimited by a wall 2, with a fuel being burned in the combustion chamber 1. Exhaust gas produced during the combustion of the fuel in the combustion chamber 1 can be supplied to a turbine of the gas turbine (not shown) in order to expand the exhaust gas in the turbine and thereby gain energy.

Die Brennkammer 1 ist als Dual-Fuel-Brennkammer ausgebildet, die einerseits in einem Gaskraftstoffbetriebsmodus und andererseits in einem Flüssigkraftstoffbetriebsmodus betrieben werden kann.Combustion chamber 1 is designed as a dual-fuel combustion chamber, which can be operated in a gas fuel operating mode on the one hand and in a liquid fuel operating mode on the other.

Im Gaskraftstoffbetriebsmodus der Brennkammer 1 wird in derselben ein gasförmiger Kraftstoff verbrannt, wobei ein Gemisch aus dem gasförmigen Kraftstoff und Verbrennungsluft der Brennkammer 1, in Fig. 1 einer Vorkammer 9 der Brennkammer 1, über einen Drallkörper 3 zugeführt wird.In the gas fuel operating mode of the combustion chamber 1, a gaseous fuel is burned in the same, a mixture of the gaseous fuel and combustion air of the combustion chamber 1, in 1 an antechamber 9 of the combustion chamber 1, via a swirl body 3 is supplied.

Der Drallkörper 3 ist vorzugsweise als Radialdrallkörper ausgeführt und erzeugt einen definierten Drall des in die Vorkammer 9 der Brennkammer 1 eintretenden Gemischs aus Verbrennungsluft und gasförmigem Kraftstoff. Das Gemisch aus dem gasförmigen Kraftstoff und der Verbrennungsluft wird im Gaskraftstoffbetriebsmodus mit Hilfe einer nicht gezeigten elektrischen Zündeinrichtung gezündet.The swirler 3 is preferably designed as a radial swirler and generates a defined swirl of the mixture of combustion air and gaseous fuel entering the prechamber 9 of the combustion chamber 1 . The mixture of the gaseous fuel and the combustion air is ignited in the gaseous fuel operating mode by means of an electric ignition device, not shown.

Im Flüssigkraftstoffbetriebsmodus der Brennkammer 1 wird in derselben ein flüssiger Kraftstoff verbrannt, wobei der flüssige Kraftstoff der Brennkammer 1, in Fig. 1 der Vorkammer 9 der Brennkammer 1, mit Hilfe einer Zerstäubungseinrichtung 4 zugeführt wird.In the liquid fuel operating mode of the combustion chamber 1, a liquid fuel is burned in the same, the liquid fuel of the combustion chamber 1, in 1 the antechamber 9 of the combustion chamber 1, with the aid of an atomizing device 4 is supplied.

Die Zerstäubungseinrichtung 4 verfügt über eine zentrale Zerstäubungslanze 17, die in etwa in der Mitte der Vorkammer 9 der Brennkammer 1 bzw. auf einer Längsmittelachse 20 der Vorkammer 9 der Brennkammer 1 bzw. auf einer Längsmittelachse 20 der Brennkammer 1 positioniert ist und den flüssigen Kraftstoff in Richtung der Längsmittelachse 20 unter Ausbildung eines Zerstäubungskegels bzw. Sprühkegels 8a in die Vorkammer 9 der Brennkammer 1 einspritzt.The atomizing device 4 has a central atomizing lance 17, which is positioned approximately in the middle of the antechamber 9 of the combustion chamber 1 or on a longitudinal center axis 20 of the antechamber 9 of the combustion chamber 1 or on a longitudinal center axis 20 of the combustion chamber 1 and which emits the liquid fuel in Direction of the longitudinal center axis 20 to form an atomization cone or spray cone 8a in the antechamber 9 of the combustion chamber 1 injected.

Zusätzlich zu dieser bezogen auf die Längsmittelachse 20 der Brennkammer 1 oder der Vorkammer 9 zentralen Zerstäubungslanze 17 verfügt die Zerstäubungseinrichtung 4 über mehrere bezogen auf die Längsmittelachse 20 der Brennkammer 1 oder Vorkammer 9 dezentrale Zerstäubungsdüsen 18, die flüssigen Kraftstoff ebenfalls in die Vorkammer 9 der Brennkammer 1 einspritzen können, und zwar unter Ausbildung eines jeweiligen Sprühkegels 8b.In addition to this atomizing lance 17 which is central in relation to the longitudinal center axis 20 of the combustion chamber 1 or the antechamber 9, the atomizing device 4 has a plurality of atomizing nozzles 18 which are decentralized in relation to the longitudinal center axis 20 of the combustion chamber 1 or the antechamber 9 and which spray liquid fuel can also inject into the antechamber 9 of the combustion chamber 1, with the formation of a respective spray cone 8b.

Die Zerstäubungseinrichtung 4 verfügt demnach über die zentrale Zerstäubungslanze 17 sowie mehrere dezentrale Zerstäubungsdüsen 18. Die zentrale Zerstäubungslanze 17 weist mindestens eine Zerstäubungsdüse auf, vorzugsweise mehrere Zerstäubungsdüsen 15, 16 (siehe Fig. 2).The atomizing device 4 therefore has the central atomizing lance 17 and several decentralized atomizing nozzles 18. The central atomizing lance 17 has at least one atomizing nozzle, preferably several atomizing nozzles 15, 16 (see 2 ).

Fig. 2 zeigt ein Detail der zentralen Zerstäubungslanze 17 der Zerstäubungseinrichtung 4. Zwischen der Zerstäubungslanze 17, die in einer Montagewand 12 der Brennkammer 1 aufgenommen ist, und einem angrenzenden Bauteil 5, das ebenfalls in der Montagewand 12 aufgenommen ist, das sich radial außen an die Zerstäubungslanze 17 der Zerstäubungseinrichtung 4 anschließt und das die Zerstäubungslanze 17 der Zerstäubungseinrichtung 4 radial außen zumindest abschnittsweise umgibt, ist ein Radialspalt 6 ausgebildet, über den ebenfalls Verbrennungsluft der Brennkammer 1, nämlich der Vorkammer 9, zugeführt werden kann, und zwar unter Umgehung des Drallkörpers 3. So visualisiert ein Pfeil 13 (siehe Fig. 1) eine Strömung von Verbrennungsluft über den Drallkörper 3 und ein Pfeil 14 (siehe Fig. 2) eine Strömung von Verbrennungsluft über den Radialspalt 6 zwischen der Zerstäubungslanze 17 und dem Bauteil 5, wobei die Verbrennungsluftströmung über diesen Radialspalt 6 über ein Ventil 25 eingestellt werden. 2 shows a detail of the central atomizing lance 17 of the atomizing device 4. Between the atomizing lance 17, which is accommodated in a mounting wall 12 of the combustion chamber 1, and an adjoining component 5, which is also accommodated in the mounting wall 12 and which is radially outwardly attached to the atomizing lance 17 of the atomizing device 4 and which surrounds the atomizing lance 17 of the atomizing device 4 radially on the outside at least in sections, a radial gap 6 is formed, via which combustion air can also be fed to the combustion chamber 1, namely the antechamber 9, specifically bypassing the swirl body 3. So visualized an arrow 13 (see 1 ) a flow of combustion air over the swirl body 3 and an arrow 14 (see 2 ) a flow of combustion air over the radial gap 6 between the atomizing lance 17 and the component 5, the flow of combustion air over this radial gap 6 being adjusted via a valve 25.

Dasjenige Bauteil 15, welches zusammen mit der Zerstäubungslanze 17 der Zerstäubungseinrichtung 4 den Ringspalt 6 definiert, ist vorzugsweise als separate Hülse ausgeführt, die in der Montagewand 12 aufgenommen ist. Im Unterschied hierzu ist es auch möglich, dass die Montagewand 12 selbst das sich radial außen an die Zerstäubungslanze 17 angrenzende Bauteil 5, welches zusammen mit der Zerstäubungslanze 17 den Radialspalt 6 definiert, bereitstellt.That component 15 which defines the annular gap 6 together with the atomizing lance 17 of the atomizing device 4 is preferably designed as a separate sleeve which is accommodated in the mounting wall 12 . In contrast to this, it is also possible for the mounting wall 12 itself to provide the component 5 which adjoins the atomizing lance 17 radially on the outside and which together with the atomizing lance 17 defines the radial gap 6 .

Die bezogen auf die Längsmittelachse 20 der Brennkammer 1 oder Vorkammer 9 dezentralen Zerstäubungsdüsen 8 der Zerstäubungseinrichtung 4 sind vorzugsweise auf einer Kreisbahn 19 (siehe Fig. 3) positioniert, die sich um die Längsmittelachse 20 der Brennkammer 1 bzw. die Längsmittelachse 20 der Vorkammer 9 der Brennkammer 1 herum erstreckt.The atomizing nozzles 8 of the atomizing device 4, which are decentralized with respect to the longitudinal center axis 20 of the combustion chamber 1 or antechamber 9, are preferably on a circular path 19 (see FIG 3 ) positioned, which extends around the longitudinal center axis 20 of the combustion chamber 1 or the longitudinal center axis 20 of the antechamber 9 of the combustion chamber 1 .

Ein Mittelpunkt dieser Kreisbahn 19, auf welcher die dezentralen Zerstäubungsdüsen 18 positioniert sind, ist dabei auf der Längsmittelachse 20 positioniert. Die dezentralen Zerstäubungsdüsen 18 umgeben demnach die zentrale Zerstäubungslanze 17 vorzugsweise konzentrisch.A center point of this circular path 19, on which the decentralized atomizing nozzles 18 are positioned, is positioned on the longitudinal central axis 20. The decentralized atomizing nozzles 18 accordingly surround the central atomizing lance 17 preferably concentrically.

Fig. 3 zeigt einen Radius d18 der Kreisbahn 19, auf welcher die dezentralen Zerstäubungsdüsen 18 angeordnet sind. Dabei ist insbesondere vorgesehen, dass dieser Radius d18 der Kreisbahn 19, auf welcher die dezentralen Zerstäubungsdüsen 18 positioniert sind, zwischen dem 0,4-fachen und dem 1,1-fachen eines Innendurchmessers d3 des Drallkörpers 3 beträgt. Dann, wenn der Radius d18 der Kreisbahn 19, auf welchem die dezentralen Zerstäubungsdüsen 18 angeordnet sind, zwischen dem 1,0-fachen und dem 1,1-fachen des Innendurchmessers d3 des Drallkörpers 3 beträgt, überdecken die dezentralen Zerstäubungsdüsen 18 zumindest teilweise den Drallkörper 3 im Bereich seines Austrittsbereichs. 3 shows a radius d 18 of the circular path 19 on which the decentralized atomizing nozzles 18 are arranged. It is provided in particular that this radius d 18 of the circular path 19 on which the decentralized atomizing nozzles 18 are positioned is between 0.4 times and 1.1 times an inner diameter d 3 of the swirl body 3 . When the radius d 18 of the circular path 19 on which the decentralized atomizing nozzles 18 are arranged is between 1.0 and 1.1 times the inner diameter d 3 of the swirler 3, the decentralized atomizing nozzles 18 at least partially overlap the swirl body 3 in the area of its exit area.

Die dezentralen Zerstäubungsdüsen 18 können auch auf mehreren vorzugsweise konzentrischen Kreisbahnen oder auf einer Ellipsenbahn oder einem Polygon angeordnet sein.The decentralized atomizing nozzles 18 can also be arranged on a plurality of preferably concentric circular paths or on an elliptical path or a polygon.

Wie bereits ausgeführt, umfasst die zentrale Zerstäubungslanze 17 der Zerstäubungseinrichtung 4 vorzugsweise mehrere Zerstäubungsdüsen, im Ausführungsbeispiel der Fig. 2 zwei Zerstäubungsdüsen 15, 16, bei welchen es sich vorzugsweise um Drall-Zerstäubungsdüsen handelt. Diesen beiden Zerstäubungsdüsen 15, 16 der zentralen Zerstäubungslanze 17 kann der flüssige Kraftstoff im Flüssigkraftstoffbetriebsmodus ausgehend von einer gemeinsamen Flüssigkraftstoffzuführung 21 zugeführt werden, wobei der von der Flüssigkraftstoffzuführung 21 geführte Kraftstoff in zwei Flüssigkraftstoffteilzuführungen 21a, 21b aufteilbar ist, um beide Zerstäubungsdüsen 15, 16 der zentralen Zerstäubungslanze 17 mit flüssigem Kraftstoff zu versorgen.As already stated, the central atomizing lance 17 of the atomizing device 4 preferably comprises a plurality of atomizing nozzles, in the exemplary embodiment of FIG 2 two atomizing nozzles 15, 16, which are preferably swirl atomizing nozzles. These two atomizing nozzles 15, 16 of the central atomizing lance 17, the liquid fuel can be supplied in the liquid fuel operating mode starting from a common liquid fuel supply 21, with the fuel guided by the liquid fuel supply 21 being able to be divided into two liquid fuel partial supplies 21a, 21b in order to have both atomizing nozzles 15, 16 of the central atomizing lance 17 to supply liquid fuel.

Die zentrale Zerstäubungslanze 17 mit ihren beiden Zerstäubungsdüsen 15, 16 sprüht den flüssigen Kraftstoff in Richtung auf die Brennkammer 1 mit dem Sprühwinkel α ein, der maximal 60°, vorzugsweise maximal 55°, beträgt. Sowohl dann, wenn beide Zerstäubungsdüsen 15, 16 der Zerstäubungslanze 17 gemeinsam betrieben werden, als auch dann, wenn eine dieser Zerstäubungsdüsen 15, 16 alleine betrieben wird, beträgt der Sprühwinkel α jeweils maximal 60°, vorzugsweise maximal 55°. Dadurch wird sichergestellt, dass weder Wände 2a der Vorkammer 9 noch Wände 2 der Brennkammer 1 mit flüssigem Kraftstoff benetzt werden, wodurch eine effektivere Verbrennung des flüssigen Kraftstoffs bereitgestellt werden kann.The central atomizing lance 17 with its two atomizing nozzles 15, 16 sprays the liquid fuel in the direction of the combustion chamber 1 at the spray angle α, which is a maximum of 60°, preferably a maximum of 55°. Both when both atomizing nozzles 15, 16 of the atomizing lance 17 are operated together and when one of these atomizing nozzles 15, 16 is operated alone, the spray angle α is a maximum of 60°, preferably a maximum of 55°. This ensures that neither the walls 2a of the prechamber 9 nor the walls 2 of the combustion chamber 1 are wetted with liquid fuel, as a result of which more effective combustion of the liquid fuel can be provided.

Wie bereits ausgeführt, kann über den Spalt 6 Verbrennungsluft der Brennkammer 1, insbesondere der Vorkammer 9, zugeführt werden. Die Luftströmung 14, die über diesen Ringspalt 6 geführt wird, dient einerseits dazu, die zentrale Zerstäubungslanze 17 der Zerstäubungseinrichtung 4 zu kühlen, andererseits umgibt diese Luftströmung 14 zumindest teilweise außen den Sprühkegel 8a des flüssigen Kraftstoffs der Zerstäubungslanze 17 und bündelt so denselben.As already stated, combustion air can be supplied to the combustion chamber 1 , in particular to the antechamber 9 , via the gap 6 . The air flow 14, which is guided through this annular gap 6, serves on the one hand to cool the central atomizing lance 17 of the atomizing device 4, and on the other hand this air flow 14 at least partially surrounds the spray cone 8a of the liquid fuel of the atomizing lance 17 on the outside and thus bundles it.

Diejenige Verbrennungsluft 14, welche der Brennkammer 1, in Fig. 1 der Vorkammer 9, unter Umgehung des Drallkörpers 3 über den Radialspalt 6 zuführbar ist, beträgt insbesondere zwischen 1 % und 10 % der Verbrennungsluft, welche der Brennkammer über den Drallkörper 3 zuführbar ist.The combustion air 14 which the combustion chamber 1, in 1 of the antechamber 9, bypassing the swirl body 3 via the radial gap 6, is in particular between 1% and 10% of the combustion air, which can be supplied to the combustion chamber via the swirl body 3.

Dabei kann die Verbrennungsluftströmung 14 nicht nur im Flüssigkraftstoffbetriebsmodus der Brennkammer 1 sondern auch im Gaskraftstoffbetriebsmodus der Brennkammer 1 über den Radialspalt 6 zugeführt werden, wobei im Gaskraftstoffbetriebsmodus die Zerstäubungseinrichtung 4, also insbesondere die Zerstäubungslanze 17 derselben, inaktiv ist, sodass dann im Gaskraftstoffbetriebsmodus über die Zerstäubungseinrichtung 4 kein Kraftstoff eingebracht wird, sondern lediglich über den Drallkörper 3.The combustion air flow 14 can be supplied not only to the combustion chamber 1 in the liquid fuel operating mode, but also to the combustion chamber 1 in the gaseous fuel operating mode via the radial gap 6, with the atomizing device 4, i.e. in particular the atomizing lance 17 of the same, being inactive in the gaseous fuel operating mode, so that then in the gaseous fuel operating mode via the atomizing device 4 no fuel is introduced, only via the swirl body 3.

Wie bereits ausgeführt, ist die Zerstäubungslanze 17 zentrisch, bezogen auf die Längsmittelachse 20, ausgerichtet, über die Zerstäubungslanze 17 kann im Flüssigkraftstoff-Betriebsmodus flüssiger Kraftstoff in eine zentrale Rezirkulationszone eingebracht werden. Hierdurch kann eine sehr stabile Verbrennung gewährleistet werden. Das Einbringen des flüssigen Kraftstoffs über die bezogen auf die Längsmittelachse 20 zentrale Zerstäubungslanze 17 erfolgt demnach lokal, also nicht homogen zur Verbrennungsluft, sodass keine Vormischung flüssigem Kraftstoff und Verbrennungsluft erfolgt.As already explained, the atomizing lance 17 is aligned centrally, in relation to the longitudinal central axis 20. Liquid fuel can be introduced into a central recirculation zone via the atomizing lance 17 in the liquid fuel operating mode. This ensures a very stable combustion. The introduction of the liquid fuel via the central atomization lance 17 in relation to the longitudinal center axis 20 therefore takes place locally, that is to say not homogeneously with respect to the combustion air, so that no premixing of liquid fuel and combustion air takes place.

Wie bereits ausgeführt, umfasst die Brennkammer 1 zusätzlich zur zentralen Zerstäubungslanze 17 mehrere dezentrale Zerstäubungsdüsen 18, die vorzugsweise auf der Kreisbahn 19 angeordnet sind. Diese dezentralen Zerstäubungsdüsen 18 sind über eine separate Flüssigkraftstoffzuführung 22 (siehe Fig. 1) mit flüssigem Kraftstoff versorgbar, wobei die dezentralen Zerstäubungsdüsen 18 den flüssigen Kraftstoff in etwa in der gleichen Richtung in die Vorkammer 9 bzw. Brennkammer 1 einbringen, wie die zentrale Zerstäubungslanze 17, jedoch mit einem Sprühwinkel β, der kleiner als der Sprühwinkel α ist, wobei der Sprühwinkel β der dezentralen Zerstäubungsdüsen 18 vorzugsweise maximal 50°, bevorzugt maximal 40°, beträgt.As already stated, the combustion chamber 1 comprises, in addition to the central atomizing lance 17, a plurality of decentralized atomizing nozzles 18 which are preferably arranged on the circular path 19. These decentralized atomizing nozzles 18 are connected via a separate liquid fuel supply 22 (see 1 ) can be supplied with liquid fuel, with the decentralized atomizing nozzles 18 introducing the liquid fuel into the antechamber 9 or combustion chamber 1 in approximately the same direction as the central atomizing lance 17, but with a spray angle β that is smaller than the spray angle α, the spray angle β of the decentralized atomizing nozzles 18 preferably being at most 50°, preferably at most 40°.

Mithilfe der dezentralen Zerstäubungsdüsen 18, die über die Kreisbahn 19 vorzugsweise gleichverteilt sind, wird der Brennstoff unter Ausbildung einer homogenen Verteilung mit der Verbrennungsluft in die Brennkammer 1, insbesondere in die Vorkammer 9 eingebracht, gleichzeitig wird eine Teilvormischung von Verbrennungsluft und flüssigem Kraftstoff bereitgestellt, insbesondere unterstützt dadurch, dass die dezentralen Zerstäubungsdüsen 18 benachbart zum Austritt des Drallkörpers 3 angeordnet sind. Diese Teilvormischung kann verbessert werden, wenn der Radius d18 größer als der Radius d3 ist. So kann der Radius d18 zwischen dem 1,0-fachen und dem 1,1-fachen des Radius d3 betragen.With the help of the decentralized atomizing nozzles 18, which are preferably evenly distributed over the circular path 19, the fuel is introduced into the combustion chamber 1, in particular into the antechamber 9, forming a homogeneous distribution with the combustion air; at the same time, a partial premixing of combustion air and liquid fuel is provided, in particular supported by the fact that the decentralized atomizing nozzles 18 are arranged adjacent to the outlet of the swirl body 3 . This partial premixing can be improved if the radius d 18 is larger than the radius d 3 . Thus, the radius d 18 can be between 1.0 times and 1.1 times the radius d 3 .

Als dezentrale Zerstäubungsdüsen 18 finden vorzugsweise Doppelstrahl-Düsen bzw. sogenannten Plain Jets Verwendung. Über die dezentralen Zerstäubungsdüsen 18 wird eine homogene Zufuhr des flüssigen Kraftstoffs zur Verbrennungsluft erreicht, ferner eine Teilvormischung von flüssigem Kraftstoff und Verbrennungsluft.Double jet nozzles or so-called plain jets are preferably used as decentralized atomizing nozzles 18 . A homogeneous supply of the liquid fuel to the combustion air is achieved via the decentralized atomizing nozzles 18, and also a partial premixing of liquid fuel and combustion air.

Dann, wenn die Brennkammer 1 im Gaskraftstoffbetriebsmodus betrieben werden soll, wird der Brennkammer 1 ein Gas-Verbrennungsluft-Gemisch über den Drallkörper 3 zugeführt.When the combustion chamber 1 is to be operated in the gaseous fuel operating mode, a mixture of gas and combustion air is supplied to the combustion chamber 1 via the swirl body 3 .

Ebenfalls kann im Gaskraftstoffbetriebsmodus Verbrennungsluft über den Ringspalt 6 geführt werden. Die über den Ringspalt 6 geführte Verbrennungsluftströmung 14 wird im Bereich eines Luftraums, eines sogenannten Plenums 10, stromaufwärts des Drallkörpers 3 zweigt.Combustion air can also be routed via the annular gap 6 in the gaseous fuel operating mode. The combustion air flow 14 conducted via the annular gap 6 is branched off in the region of an air space, a so-called plenum 10, upstream of the swirl body 3.

So zeigt Fig. 1 eine Luftleitung 11, über die vom Plenum 10 Verbrennungsluft abgezweigt werden kann, wobei die vom Plenum 10 über die Luftleitung 11 abgezweigte Verbrennungsluft 14 einer von der Wand 12 ausgebildeten Luftkammer 7 zugeführt wird, um dann ausgehend von dieser Luftkammer 7 über den zwischen der Zerstäubungslanze 17 der Zerstäubungseinrichtung 4 und dem angrenzenden Bauteil 5 ausgebildeten Ringspalt 6 in die Vorkammer 9 der Brennkammer 1 eingebracht zu werden.So shows 1 an air line 11, via which combustion air can be branched off from the plenum 10, the combustion air 14 branched off from the plenum 10 via the air line 11 being supplied to an air chamber 7 formed by the wall 12, in order then, starting from this air chamber 7, via the between the annular gap 6 formed by the atomizing lance 17 of the atomizing device 4 and the adjacent component 5 into the antechamber 9 of the combustion chamber 1 .

Dann, wenn die Brennkammer 1 im Flüssigkraftstoffbetriebsmodus mit aktiver Zerstäubungseinrichtung 4 betrieben wird, wird der Brennkammer 1 bzw. Vorkammer 9 der flüssige Kraftstoff über die Zerstäubungseinrichtung 4 zugeführt, Verbrennungsluft über den Drallkörper 3 und vorzugsweise über den Ringspalt 6 zwischen der zentralen Zerstäubungslanze 17 und dem Bauteil 5.When combustion chamber 1 is operated in liquid fuel operating mode with active atomization device 4, liquid fuel is supplied to combustion chamber 1 or prechamber 9 via atomization device 4, combustion air via swirl body 3 and preferably via annular gap 6 between central atomization lance 17 and the component 5

In einer ersten vorteilhaften Betriebsart ist vorgesehen, dass im FlüssigkraftstoffBetriebsmodus sowohl die zentrale Zerstäubungslanze 17 als auch die dezentralen Zerstäubungsdüsen 18 der Zerstäubungseinrichtung 4 im gesamten Betriebsbereich zwischen Leerlauf und Volllast genutzt werden, um der Brennkammer 1 den flüssigen Kraftstoff zuzuführen.In a first advantageous operating mode, both the central atomizing lance 17 and the decentralized atomizing nozzles 18 of the atomizing device 4 are used in the liquid fuel operating mode in the entire operating range between idle and full load to supply the combustion chamber 1 with the liquid fuel.

Für diesen ersten Betriebsfall sind in Fig. 4 über der Last L der Gasturbine mehrere Kurvenverläufe 21, 22, 23 und 24 gezeigt, wobei der Kurvenverlauf 21 der Flüssigkraftstoffzuführung 21 über die zentrale Zerstäubungslanze 17 entspricht, wobei der Kurvenverlauf 22 die Flüssigkraftstoffzuführung 22 über die dezentrale Zerstäubungsdüsen 18 entspricht, wobei der Kurvenverlauf 23 den Lastanteil an der Gesamtlast L zeigt, der durch die Verbrennung des über die zentrale Zerstäubungslanze 17 eingebrachten Flüssigkraftstoffs bereitgestellt werden kann, und wobei der Kurvenverlauf 24 den Lastanteil an der Gesamtlast L zeigt, der durch die Verbrennung des Kraftstoffs bereitstellt werden kann, der über die dezentralen Zerstäubungsdüsen 18 in die Brennkammer eingebracht wird.For this first operating case, in 4 Several curves 21, 22, 23 and 24 are shown above the load L of the gas turbine, with curve 21 corresponding to the liquid fuel supply 21 via the central atomizing lance 17, with curve 22 corresponding to the liquid fuel supply 22 via the decentralized atomizing nozzle 18, with curve 23 corresponding to the Load portion of the total load L shows that can be provided by the combustion of the liquid fuel introduced via the central atomizing lance 17, and the curve 24 shows the load portion of the total load L that can be provided by the combustion of the fuel that can be provided via the decentralized Atomizing nozzles 18 is introduced into the combustion chamber.

So zeigt Fig. 4, dass dann, wenn über den gesamten Lastbereich zwischen 0 % (Leerlauf) und 100 % (Volllast) sowohl über die zentrale Zerstäubungslanze 17 als auch über die dezentralen Zerstäubungsdüsen 18 Kraftstoff der Brennkammer 1 zugeführt wird, im gesamten Betriebsbereich zwischen Leerlauf (0 %) und Volllast (100 %) über die zentrale Zerstäubungslanze 17 (siehe Kurvenverlauf21) vorzugsweise eine konstante Menge an flüssigem Kraftstoff der Brennkammer 1 zugeführt wird. Die Leistungsmodulation erfolgt dann durch Veränderung des über die dezentralen Zerstäubungsdüsen 18 (siehe Kurvenverlauf 22) in die Brennkammer 1 eingebrachten flüssigen Kraftstoffs, sodass mit zunehmender Lastanforderung L der Lastanteil 23 der zentralen Zerstäubungslanze 17 gegenüber dem Lastanteil der dezentralen Zerstäubungsdüsen 18 abfällt bzw. der entsprechende Lastanteil 24 der dezentralen Zerstäubungsdüsen 18 zunimmt.So shows 4 That if over the entire load range between 0% (idle) and 100% (full load) both via the central atomizing lance 17 as fuel is also supplied to the combustion chamber 1 via the decentralized atomizing nozzles 18, a constant quantity of liquid fuel is preferably supplied to the combustion chamber 1 in the entire operating range between idling (0%) and full load (100%) via the central atomizing lance 17 (see curve 21). The power modulation then takes place by changing the liquid fuel introduced into the combustion chamber 1 via the decentralized atomizing nozzles 18 (see curve 22), so that as the load requirement L increases, the load component 23 of the central atomizing lance 17 falls compared to the load component of the decentralized atomizing nozzles 18 or the corresponding load component 24 of the decentralized atomizing nozzles 18 increases.

Nach diesem Betriebskonzept, bei welchem im gesamten Lastbereich bzw. Betriebsbereich zwischen Leerlauf und Volllast sowohl die zentrale Zerstäubungslanze 17 als auch die dezentralen Zerstäubungsdüsen 18 genutzt werden, um der Brennkammer den flüssigen Kraftstoff zuzuführen, ist insbesondere vorgesehen, dass zum Zünden der Verbrennung in der Brennkammer 1 ausschließlich über eine der beiden Zerstäubungsdüsen 15, 16 der Zerstäubungslanze 17 Kraftstoff in die Brennkammer 1 eingebracht wird, und dass nach dem Zünden und nach dem Erreichen einer definierten Drehzahl der Gasturbine beide Zerstäubungsdüsen 15, 16 der Zerstäubungslanze 17 genutzt werden, um den Kraftstoff über die Zerstäubungslanze 17 in die Brennkammer 1 einzubringen.According to this operating concept, in which both the central atomizing lance 17 and the decentralized atomizing nozzles 18 are used in the entire load range or operating range between idle and full load in order to supply the liquid fuel to the combustion chamber, it is provided in particular that to ignite the combustion in the combustion chamber 1, fuel is introduced into the combustion chamber 1 exclusively via one of the two atomizing nozzles 15, 16 of the atomizing lance 17, and that after ignition and after a defined speed of the gas turbine has been reached, both atomizing nozzles 15, 16 of the atomizing lance 17 are used to inject the fuel via to introduce the atomizing lance 17 into the combustion chamber 1.

Wie bereits ausgeführt, ist über den gesamten Betriebsbereich und damit Lastbereich der Gasturbine nach dem Betriebskonzept der Fig. 4 die über die zentrale Zerstäubungslanze 17 bereitgestellte Kraftstoffmenge konstant, die Leistungsmodulation erfolgt ausschließlich über die Variation der über die dezentrale Zerstäubungsdüsen 18 bereitgestellten Kraftstoffmenge. Dieses Betriebskonzept ist besonders für schnelle Lastwechsel an der Gasturbine geeignet, da dann bis auf den Zündvorgang keine Zerstäubungsdüsen eingeschaltet bzw. ausgeschaltet werden müssen. Auch ist es nicht erforderlich, nach dem Ausschalten von Zerstäubungsdüsen dieselben zu spülen. Dieses Betriebskonzept dient einer sehr robusten und stabilen Verbrennung des flüssigen Kraftstoffs. Es können darüber hinaus geringe Kraftstoffemissionen realisiert werden, insbesondere Stickoxidemissionen von weniger als 150 vppm.As already stated, over the entire operating range and thus the load range of the gas turbine according to the operating concept 4 the amount of fuel provided via the central atomizing lance 17 is constant, the power modulation takes place exclusively via the variation of the amount of fuel provided via the decentralized atomizing nozzles 18 . This operating concept is particularly suitable for rapid load changes on the gas turbine, since then, apart from the ignition process, no atomizing nozzles have to be switched on or off. Also it is not necessary after turning off atomizing nozzles to rinse the same. This operating concept serves a very robust and stable combustion of the liquid fuel. In addition, low fuel emissions can be realized, in particular nitrogen oxide emissions of less than 150 vppm.

Fig. 5 verdeutlicht ein zweites Betriebskonzept der erfindungsgemäßen Brennkammer bzw. der die erfindungsgemäße Brennkammer umfassenden, erfindungsgemäßen Gasturbine. So zeigt Fig. 5, dass sich der Lastbereich L zwischen dem Leerlauf (0 %) und der Volllast (100 %) in zwei Lastbereiche untergliedert, und zwar in einen Lastbereich zwischen Leerlauf (0 %) und einem Grenzwert GW, sowie in einen Lastbereich zwischen einem Grenzwert GW und Volllast (100 %). figure 5 illustrates a second operating concept of the combustion chamber according to the invention or of the gas turbine according to the invention comprising the combustion chamber according to the invention. So shows figure 5 that the load range L between idle (0%) and full load (100%) is divided into two load ranges, namely a load range between idle (0%) and a limit value GW, and a load range between a limit value GW and Full load (100%).

Nach dem zweiten erfindungsgemäßen Betriebskonzept der Fig. 5 wird im Flüssigkraftstoffbetriebsmodus im Betriebsbereich bzw. Lastbereich unterhalb der vorgegebenen Lastgrenze GW sowohl die zentrale Zerstäubungslanze 17 als auch die dezentralen Zerstäubungsdüsen 18 genutzt, um flüssigen Kraftstoff der Brennkammer 1 zuzuführen. Dabei ist vorzugsweise in diesem Lastbereich die über die zentrale Zerstäubungslanze 17 eingebrachte Kraftstoffmenge (siehe Kurvenverlauf 21) konstant, die Leistungsmodulation erfolgt dann wiederum ausschließlich über die Änderung der über die dezentralen Zerstäubungsdüsen 18 eingebrachten Flüssigkraftstoffmenge (siehe Kurvenverlauf 22).After the second operating concept of the invention figure 5 In the liquid fuel operating mode, both the central atomizing lance 17 and the decentralized atomizing nozzles 18 are used in the operating range or load range below the specified load limit GW in order to supply liquid fuel to the combustion chamber 1 . The amount of fuel introduced via the central atomizing lance 17 (see curve 21) is preferably constant in this load range, and the power modulation then takes place exclusively via the change in the amount of liquid fuel introduced via the decentralized atomizing nozzles 18 (see curve 22).

Im Lastbereich oberhalb des definierten Grenzwerts GW wird die zentrale Zerstäubungslanze 17 abgeschaltet, sodass dann über dieselbe keinerlei Kraftstoff mehr zugeführt wird, sodass dann im oberen Lastbereich zwischen der Lastgrenze GW und Volllast (100 %) flüssiger Kraftstoff ausschließlich über die dezentralen Zerstäubungsdüsen 18 der Brennkammer 1 zugeführt wird.In the load range above the defined limit value GW, the central atomizing lance 17 is switched off, so that no more fuel is then supplied via the same, so that in the upper load range between the load limit GW and full load (100%) liquid fuel is supplied exclusively via the decentralized atomizing nozzles 18 of the combustion chamber 1 is supplied.

Ein Vorteil dieses zweiten erfindungsgemäßen Betriebskonzepts besteht darin, dass bei Lasten oberhalb der definierten Lastgrenze GW der flüssige Kraftstoff nicht zentral in die Rezirkulationszone der Brennkammer 1 eingebracht wird, sondern ausschließlich dezentral, sodass für den sämtlichen eingebrachten flüssigen Kraftstoff eine homogene Einbringung zur Verbrennungsluft und eine Teilvormischung mit Verbrennungsluft gewährleistet werden kann, wodurch Abgasemissionen, insbesondere Stickoxidemissionen, gegenüber dem Betriebskonzept der Fig. 4 weiter reduziert werden können. Insbesondere können Stickoxidemissionen von weniger als 90 vppm realisiert werden.One advantage of this second operating concept according to the invention is that at loads above the defined load limit GW, the liquid fuel is not introduced centrally into the recirculation zone of the combustion chamber 1, but exclusively decentralized, so that all liquid fuel introduced is introduced homogeneously with the combustion air and is partially premixed can be guaranteed with combustion air, whereby exhaust emissions, especially nitrogen oxide emissions, compared to the operating concept of 4 can be further reduced. In particular, nitrogen oxide emissions of less than 90 vppm can be realized.

BezugszeichenlisteReference List

11
Brennkammercombustion chamber
22
WandWall
2a2a
WandWall
33
Drallkörperswirler
44
Zerstäubungseinrichtungatomization device
55
Bauteilcomponent
66
Radialspaltradial gap
77
Luftraumairspace
8a8a
Zerstäubungskegelatomization cone
8b8b
Zerstäubungskegelatomization cone
99
Vorkammerantechamber
1010
Luftraum / PlenumAirspace / Plenum
1111
Luftleitungair line
1212
WandWall
1313
Verbrennungsluftströmungcombustion air flow
1414
Verbrennungsluftströmungcombustion air flow
1515
Zerstäubungsdüseatomizing nozzle
1616
Zerstäubungsdüseatomizing nozzle
1717
Zerstäubungslanzeatomizing lance
1818
Zerstäubungsdüseatomizing nozzle
1919
Kreisbahncircular path
2020
Längsmittelachselongitudinal central axis
2121
Flüssigkraftstoffzuführungliquid fuel delivery
21a21a
FlüssigkraftstoffteilzuführungLiquid fuel part feed
21b21b
FlüssigkraftstoffteilzuführungLiquid fuel part feed
2222
Flüssigkraftstoffzuführungliquid fuel delivery
2323
Lastanteilload share
2424
Lastanteilload share
2525
VentilValve

Claims (13)

  1. A combustor (1) of a gas turbine, for combusting a fuel in the presence of combustion air, wherein the combustor (1) is designed as a dual-fuel combustor,
    having a pre-chamber (9),
    having a swirl body (3),
    wherein the pre-chamber (9) of the combustor (1) designed as dual-fuel combustor (1) can be supplied in a gas fuel operating mode via the swirl body (3) with a mixture of a gaseous fuel and combustion air, and
    wherein the pre-chamber (9) of the combustor (1) designed as dual-fuel combustor can be supplied in a liquid fuel operating mode via an atomisation device (4) with a liquid fuel and via the swirl body (3) with combustion air, the atomisation device (4) comprises an atomisation lance (17) that is central based on a longitudinal centre axis (20) of the combustor (1) or based on a longitudinal centre axis (20) of a pre-chamber (9) of the combustor (1) having at least two atomisation nozzles (15, 16), which alone and jointly each provide an atomisation cone (8a) having a maximum spray angle (α) of 60°,
    wherein the atomisation device (4) comprises multiple atomisation nozzles (18) decentralised based on the longitudinal centre axis (20) of the combustor (1) or based on the longitudinal centre axis (20) of the pre-chamber (9) of the combustor (1),
    wherein each of the decentralised atomisation nozzles (18) provides an atomisation cone (8b) each having a maximum spray angle (β) of 50°, which is smaller than the spray angle (α) of the at least two atomisation nozzles (15, 16) of the central atomisation lance (17) .
  2. The combustor according to Claim 1, characterised in that the decentralised atomisation nozzles (18) are positioned on a circular path (19) extending about the longitudinal centre axis (20) of the combustor or about the longitudinal centre axis (20) of the pre-chamber of the combustor.
  3. The combustor according to Claim 2, characterised in that a centre point of the circular path (19), on which the decentralised atomisation nozzles (18) are positioned on the longitudinal centre axis (20) of the combustor (1) or the pre-chamber (9) of the combustor (1) .
  4. The combustor according to Claim 2 or 3, characterised in that a radius of the circular path (19), on which the decentralised atomisation nozzles (18) are positioned, amounts to between 0.4 times and 1.1 times of an inside radius of the swirl body (3).
  5. The combustor according to any one of the Claims 1 to 4, characterised in that the central atomisation lance (17), forming a radial gap (6) radially outside, is surrounded by an adjoining component (5) at least in portions, wherein the combustor (1) can be supplied via the radial gap (6) with combustion air, bypassing the swirl body (3).
  6. The combustor according to Claim 5, characterised in that the combustion airflow, which can be supplied to the combustor (1) bypassing the swirl body (3) via the radial gap (6) between the atomisation lance (17) of the atomisation device (4) and the adjoining component (5) amounts to between 1% and 10% of the combustion airflow, which can be supplied to the combustor via the swirl body (3).
  7. The combustor according to Claim 5 or 6, characterised in that the combustor, both in the gas fuel operating mode and also in the liquid fuel operating mode, can be supplied with combustion air via the radial gap (6) between the atomisation lance (17) of the atomisation device (4) and the adjoining component (5).
  8. A gas turbine,
    having a combustor (1) according to any one of the Claims 1 to 7 for combusting a fuel in the presence of combustion air,
    having a turbine for expanding the exhaust gas developing during the combustion.
  9. A method for operating a gas turbine according to Claim 8, characterised in that
    the combustor (1) in the gas fuel operating mode is supplied via the swirl body with a mixture of a gaseous fuel and combustion air (3),
    the combustor (1) in the liquid fuel operating mode is supplied via the atomisation device (4) with a liquid fuel and with combustion air at least via the swirl body (3).
  10. The method according to Claim 9, characterised in that in the liquid fuel operating mode both the central atomisation lance (17) as well as the decentralised atomisation nozzles (18) can be utilised throughout the operating range between no-load and full-load in order to supply the combustor (1) with the liquid fuel.
  11. The method according to Claim 10, characterised in that via the central atomisation lance (17) throughout the operating range between no-load and full-load a constant quantity of liquid fuel is supplied to the combustor (1), wherein the power modulation is carried out by changing a quantity of the liquid fuel supplied to the combustor (1) via the decentralised atomisation nozzles (18).
  12. The method according to Claim 9, characterised in that in the liquid fuel operating mode in an operating range below a predetermined load limit both the central atomisation lance (17) and also the decentralised atomisation nozzles (18) are utilised in order to supply the liquid fuel to the combustor (1), whereas in an operating range above the predetermined load limit exclusively the decentralised atomisation nozzles (18) are utilised in order to supply the combustor (1) with the liquid fuel.
  13. The method according to Claim 12, characterised in that in the operating range below the predetermined load limit a constant quantity of liquid fuel is supplied via the central atomisation lance (17), wherein the power modulation is carried out by changing a quantity of the liquid fuel supplied to the combustor (1) via the decentralised atomisation nozzles (18).
EP18176189.1A 2017-06-28 2018-06-06 Combustion chamber of a gas turbine, gas turbine and method for operating the same Active EP3421885B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102017114362.9A DE102017114362A1 (en) 2017-06-28 2017-06-28 Combustion chamber of a gas turbine, gas turbine and method for operating the same

Publications (2)

Publication Number Publication Date
EP3421885A1 EP3421885A1 (en) 2019-01-02
EP3421885B1 true EP3421885B1 (en) 2022-12-21

Family

ID=62715805

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18176189.1A Active EP3421885B1 (en) 2017-06-28 2018-06-06 Combustion chamber of a gas turbine, gas turbine and method for operating the same

Country Status (4)

Country Link
US (1) US20190003712A1 (en)
EP (1) EP3421885B1 (en)
JP (1) JP7128672B2 (en)
DE (1) DE102017114362A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018125848A1 (en) * 2018-10-18 2020-04-23 Man Energy Solutions Se Combustion chamber of a gas turbine, gas turbine and method for operating the same
CN113551259B (en) * 2021-07-19 2022-09-30 南昌航空大学 Wavy middle-slit type V-shaped flame stabilizer with lobe partition plate
CN113983496B (en) * 2021-09-23 2022-11-22 中国联合重型燃气轮机技术有限公司 Nozzle, combustion chamber and gas turbine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3121996A (en) * 1961-10-02 1964-02-25 Lucas Industries Ltd Liquid fuel combustion apparatus
US3648457A (en) * 1970-04-30 1972-03-14 Gen Electric Combustion apparatus
EP0902233B1 (en) * 1997-09-15 2003-03-12 ALSTOM (Switzerland) Ltd Combined pressurised atomising nozzle
US20090044537A1 (en) * 2007-08-17 2009-02-19 General Electric Company Apparatus and method for externally loaded liquid fuel injection for lean prevaporized premixed and dry low nox combustor

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4431403A (en) * 1981-04-23 1984-02-14 Hauck Manufacturing Company Burner and method
DE69617290T2 (en) * 1995-01-13 2002-06-13 Europ Gas Turbines Ltd Combustion device for gas turbine engine
GB2297151B (en) * 1995-01-13 1998-04-22 Europ Gas Turbines Ltd Fuel injector arrangement for gas-or liquid-fuelled turbine
GB2333832A (en) * 1998-01-31 1999-08-04 Europ Gas Turbines Ltd Multi-fuel gas turbine engine combustor
DE19839085C2 (en) * 1998-08-27 2000-06-08 Siemens Ag Burner arrangement with primary and secondary pilot burner
JP3712947B2 (en) * 2001-03-02 2005-11-02 川崎重工業株式会社 Liquid fuel-fired low NOx combustor for gas turbine engines
JP3940705B2 (en) * 2003-06-19 2007-07-04 株式会社日立製作所 Gas turbine combustor and fuel supply method thereof
US6973791B2 (en) * 2003-12-30 2005-12-13 General Electric Company Method and apparatus for reduction of combustor dynamic pressure during operation of gas turbine engines
EP1662202B1 (en) * 2004-11-30 2016-11-16 Siemens Aktiengesellschaft Burner for a gas turbine
US8313046B2 (en) * 2009-08-04 2012-11-20 Delavan Inc Multi-point injector ring
US8973366B2 (en) * 2011-10-24 2015-03-10 General Electric Company Integrated fuel and water mixing assembly for use in conjunction with a combustor
EP2629008A1 (en) * 2012-02-15 2013-08-21 Siemens Aktiengesellschaft Inclined fuel injection of fuel into a swirler slot
JP6210810B2 (en) * 2013-09-20 2017-10-11 三菱日立パワーシステムズ株式会社 Dual fuel fired gas turbine combustor
DE102015205069B4 (en) * 2015-03-20 2020-04-23 Deutsches Zentrum für Luft- und Raumfahrt e.V. Incinerator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3121996A (en) * 1961-10-02 1964-02-25 Lucas Industries Ltd Liquid fuel combustion apparatus
US3648457A (en) * 1970-04-30 1972-03-14 Gen Electric Combustion apparatus
EP0902233B1 (en) * 1997-09-15 2003-03-12 ALSTOM (Switzerland) Ltd Combined pressurised atomising nozzle
US20090044537A1 (en) * 2007-08-17 2009-02-19 General Electric Company Apparatus and method for externally loaded liquid fuel injection for lean prevaporized premixed and dry low nox combustor

Also Published As

Publication number Publication date
US20190003712A1 (en) 2019-01-03
JP2019007726A (en) 2019-01-17
EP3421885A1 (en) 2019-01-02
DE102017114362A1 (en) 2019-01-03
JP7128672B2 (en) 2022-08-31

Similar Documents

Publication Publication Date Title
DE69632111T2 (en) Premix burner for a gas turbine combustion chamber with low pollutant emission
EP2116766B1 (en) Burner with fuel lance
DE60310170T2 (en) Fuel injection device
DE4426351B4 (en) Combustion chamber for a gas turbine
DE60007946T2 (en) A combustion chamber
EP1110034B1 (en) Burner arrangement with primary and secondary pilot burners
DE102005054442B4 (en) Combustion chamber for a gas turbine
EP0571782B1 (en) Gasturbine combustor and operating method
EP0924470B1 (en) Premix combustor for a gas turbine
EP0401529B1 (en) Gas turbine combustion chamber
EP1504222B1 (en) Premix burner
CH698007A2 (en) Stepped Mehrringdüse with radial intake for lean premix and two-material ring tube combustor.
EP1659339A1 (en) Method of starting up a burner
CH698634B1 (en) Combustor liner cap.
EP0276696A2 (en) Hybrid burner for premix operation with gas and/or oil, particularly for gas turbine plants
CH710573A2 (en) Fuel nozzle for a gas turbine combustor.
EP2225488A1 (en) Premix burner for a gas turbine
EP3421885B1 (en) Combustion chamber of a gas turbine, gas turbine and method for operating the same
DE10160997A1 (en) Lean premix burner for a gas turbine and method for operating a lean premix burner
EP1754937B1 (en) Burner head and method of combusting fuel
EP3351854B1 (en) Combustion chamber of a gas turbine, gas turbine and method for operating the same
EP2288852B1 (en) Method for operating a premix burner, and a premix burner for carrying out the method
WO2019020350A1 (en) Gas turbine burner having premixed beam flames
DE10334228A1 (en) Operating premix burner involves selecting second, third further fuel nozzle opening groups, applying fuel to them independently of each other so second, third groups form premixing, diffusion stages
EP2151630A1 (en) Swirler and swirler assembly

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MAN ENERGY SOLUTIONS SE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190606

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200817

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220930

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018011256

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1539264

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20221221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230321

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221221

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221221

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221221

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221221

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221221

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221221

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230421

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221221

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221221

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221221

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230620

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221221

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221221

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230421

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221221

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230620

Year of fee payment: 6

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018011256

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221221

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230623

Year of fee payment: 6

Ref country code: GB

Payment date: 20230622

Year of fee payment: 6

26N No opposition filed

Effective date: 20230922

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221221

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221221

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230606

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230606

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230630