EP3417959B1 - Secondary cooling of a strand in a strand casting assembly - Google Patents

Secondary cooling of a strand in a strand casting assembly Download PDF

Info

Publication number
EP3417959B1
EP3417959B1 EP18179585.7A EP18179585A EP3417959B1 EP 3417959 B1 EP3417959 B1 EP 3417959B1 EP 18179585 A EP18179585 A EP 18179585A EP 3417959 B1 EP3417959 B1 EP 3417959B1
Authority
EP
European Patent Office
Prior art keywords
coolant
strand
nozzle
line
switchover valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18179585.7A
Other languages
German (de)
French (fr)
Other versions
EP3417959A1 (en
Inventor
Christian ENZINGER
Thomas Fuernhammer
Thomas Stepanek
Helmut Wahl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Primetals Technologies Austria GmbH
Original Assignee
Primetals Technologies Austria GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Primetals Technologies Austria GmbH filed Critical Primetals Technologies Austria GmbH
Priority claimed from PCT/EP2016/070441 external-priority patent/WO2017042059A1/en
Publication of EP3417959A1 publication Critical patent/EP3417959A1/en
Application granted granted Critical
Publication of EP3417959B1 publication Critical patent/EP3417959B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/22Controlling or regulating processes or operations for cooling cast stock or mould
    • B22D11/225Controlling or regulating processes or operations for cooling cast stock or mould for secondary cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/02Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to produce a jet, spray, or other discharge of particular shape or nature, e.g. in single drops, or having an outlet of particular shape
    • B05B1/08Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to produce a jet, spray, or other discharge of particular shape or nature, e.g. in single drops, or having an outlet of particular shape of pulsating nature, e.g. delivering liquid in successive separate quantities ; Fluidic oscillators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/124Accessories for subsequent treating or working cast stock in situ for cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/124Accessories for subsequent treating or working cast stock in situ for cooling
    • B22D11/1246Nozzles; Spray heads

Definitions

  • the invention relates to a line end segment of a cooling device for secondary cooling of a strand in a strand guide of a continuous casting plant.
  • the invention also relates to a cooling device for secondary cooling of a strand in a strand guide of a continuous caster.
  • a metallic strand is formed in a mold and then guided in a strand guide and cooled further in the process.
  • the cooling of the strand in the strand guide is called secondary cooling, while cooling of the strand in the mold is called primary cooling.
  • secondary cooling a coolant, for example water or a water-air mixture, is usually applied to the strand by means of a cooling device.
  • a secondary cooling device and a cooling method for secondary cooling of a strand in a continuous casting plant are known, in which the cooling power is set by PWM control of the duty cycle of a switching valve. How the ratio between the maximum and the minimum individual coolant flow is increased and, in addition, the formation of a suitable jet profile (in particular the opening angle of the coolant jet from the coolant outlet) can be achieved even with small individual coolant flows, does not emerge from the document.
  • the invention is based on the object of specifying an improved line end segment and an improved cooling device for secondary cooling of a strand in a continuous casting plant.
  • a line end segment and a cooling device for secondary cooling of a strand should be specified, with which or which a for Strand cooling particularly suitable jet profile of a coolant jet can be realized.
  • the cooling device according to the invention for secondary cooling of a strand in a strand guide of a continuous casting plant comprises at least one line end segment according to the invention.
  • a pneumatically or electrically or electromagnetically or hydraulically switchable valve is suitable as the switching valve of the line end segment.
  • a switching valve designed in this way is advantageously commercially available and enables an inexpensive implementation of an individual coolant flow that can be switched on and off.
  • control line is a pneumatic compressed air line in the case of a pneumatically switchable switching valve, an electrical line in the case of an electrically or electromagnetically switchable switching valve and a hydraulic fluid line in the case of a hydraulically switchable switching valve.
  • a further development of the invention provides that the outlet nozzle has an exchangeable nozzle tip.
  • An exchangeable nozzle tip advantageously enables a jet profile of a coolant jet emitted by the coolant outlet to be changed, if necessary, in a simple manner by exchanging the nozzle tip.
  • the switching valve is screwed onto the segment tube, in particular by a tube-valve screw connection which is formed by an external thread on an outer surface of the segment tube and a corresponding internal thread of the switching valve.
  • the outlet nozzle can have a nozzle tip with the coolant outlet and a nozzle base body.
  • the The nozzle base body is screwed onto the switching valve, in particular by a valve-nozzle screw connection which is formed by an external thread on an outer surface of the switching valve and a corresponding internal thread of the nozzle base body.
  • the nozzle tip can be screwed to the nozzle base body, in particular through an internal thread of the nozzle body and a corresponding external thread of the nozzle tip.
  • the connecting flange has a centering bolt arranged between the flange openings.
  • cooling device provides at least one longitudinal row of several coolant outlets arranged one behind the other along a transport direction of the strand and / or at least one transverse row of several coolant outlets arranged next to one another transversely to a transport direction of the strand.
  • cooling device provides a pressure detection device for detecting a coolant pressure or a flow meter for detecting a coolant flow in a coolant distribution system of the cooling device.
  • Such a pressure detection device advantageously enables functions of the cooling device to be analyzed and checked, for example the determination of a degree of blockage of coolant outlets by a Evaluation of the signals detected by the pressure detection device.
  • an actual value of a coolant pressure or coolant flow for regulating the coolant pressure or coolant flow in the coolant distribution system can be recorded.
  • Figure 1 shows schematically a section of a continuous caster 1 in a side view. Shown are a mold 3, an oscillation device 4 for moving the mold 3 relative to a strand 9, a strand guide 5 downstream of the mold 3 and a cooling device 7 of the continuous casting plant 1.
  • the strand guide rollers 13 above the Line 9 and the line segments 17.1 and the coolant outlets 21 below the line 9 are not shown. It is known to the person skilled in the art that after exiting a mold in the secondary cooling, a strand is typically guided by strand guide rollers above and below the strand and the broad sides of the strand lying above and below are cooled.
  • a metallic melt is fed to the mold 3, from which the metallic strand 9 is formed with the mold 3, which is guided with the strand guide 5 and transported along a transport direction 11.
  • movements of the mold 4, in particular oscillating movements (the direction of movement is shown by an arrow) of the mold 4 are generated, so that the strand 9 does not adhere to an inner surface of the mold.
  • the strand guide 5 has several strand guide rollers 13 to support the strand 9.
  • the mold 3 has a width adjustment for setting a width of the strand 9, so that strands 9 of different widths can be produced with the mold 3.
  • the strand guide 5 has a casting thickness adjustment for setting a thickness of the strand 9, so that strands 9 of different thicknesses can be produced with the strand guide 5.
  • the cooling device 7 is used for secondary cooling of the strand 9 in the strand guide 5.
  • the cooling device 7 comprises a coolant distribution system 15 with line segments 17.1 to 17.4 for conveying a coolant 19 and several coolant outlets 21 distributed over the strand guide 5 for outputting coolant 19 onto the strand 9.
  • the coolant 19 is, for example, water.
  • the continuous casting installation 1 shown is designed for what is known as horizontal continuous casting, in which the strand 9 is output horizontally from the mold 3 to the strand guide 5.
  • the invention in particular a cooling device 7 according to the invention, is not limited to continuous casting plants 1 for horizontal continuous casting, but in particular also relates to continuous casting plants 1 which are designed for so-called vertical continuous casting, in which the strand 9 emerges vertically through a bottom opening of the mold 3 Mold 3 is issued to the strand guide 5 and the strand guide 5 is designed to be curved, so that the strand 9 is brought along the strand guide 5 from a horizontal to a vertical position.
  • FIG. 2 shows schematically an exemplary embodiment according to the invention of a cooling device 7 for secondary cooling of a strand 9 in a continuous casting plant 1 in a perspective illustration. Only a section of the strand 9 is shown, which is located in the area of the cooling device 7. Furthermore, of this section of the strand 9 and of the coolant distribution system 15 of the cooling device 7, only one area is shown, which extends over half a width of the strand 9 from a lateral strand edge 9.1 of the strand 9 to a central axis 9.2 running parallel to the transport direction 11 of the strand 9 extends.
  • a further area of the coolant distribution system 15 extends, which is designed in the same way as that in FIG Figure 2 area shown, these two areas being mirror-symmetrical with respect to a reflection on a mirror plane which contains the central axis 9.2 and is perpendicular to a strand surface 9.3 of the strand 9.
  • the coolant outlets 21 of the coolant distribution system 15 form several longitudinal rows of coolant outlets 21 arranged one behind the other along the transport direction 11 of the strand 9 Form coolant outlets 21.
  • the coolant distribution system 15 has eight longitudinal rows of coolant outlets 21 arranged next to one another, each longitudinal row having four coolant outlets 21.
  • Alternative exemplary embodiments have one of eight different numbers of longitudinal rows of coolant outlets 21 arranged next to one another and / or at least one longitudinal row with one of four different numbers of coolant outlets 21.
  • Each coolant outlet 21 forms an end of a line end segment 17.1 facing the strand 9 and running perpendicular to the strand surface 9.3.
  • the coolant distribution system 15 has a line longitudinal segment 17.2 running parallel to the transport direction 11, which connects the line end segments 17.1 having these coolant outlets 21 to one another.
  • the coolant distribution system 15 also has a transverse line segment 17.4 running transversely to the transport direction 11, which is connected to each longitudinal line segment 17.2 via an intermediate line segment 17.3 running perpendicular to the strand surface 9.3.
  • Each line end segment 17.1 also has an outlet nozzle 33 with the coolant outlet 21 for outputting coolant 19, see in this regard Figure 3 .
  • a switching valve 23 is arranged in each line end segment 17.1, with which a coolant supply of coolant 19 to the coolant outlet 21 of this line end segment 17.1 can be interrupted.
  • Each switching valve 23 is designed as an on / off valve that has two operating states, the switching valve 23 releasing the coolant supply to the coolant outlet 21 in a first operating state and blocking the coolant supply to the coolant outlet 21 in the second operating state.
  • a change in the operating state of a switching valve 23 is referred to here as switching the switching valve 23; Switching from the first to the second operating state is referred to as closing the switching valve 23 and switching from the second to the first operating state is referred to as opening the switching valve 23.
  • Precisely one individual coolant flow Q, which is output from a coolant outlet 21, can therefore be switched on and off by each switching valve 23.
  • the switching valves 23 are connected to a control unit 27 via control lines 25.1 to 25.4 and can be switched by the control unit 27.
  • Each control line 25.1 to 25.4 connects the switching valves 23 of a longitudinal row of coolant outlets 21 with the control unit 27.
  • the control lines 25.1 to 25.4 can run at least in sections in pipes of line segments 17.1 to 17.4, see the description of FIG Figure 3 below.
  • the switching valves 23 are designed as pneumatically or electrically or electromagnetically or hydraulically switchable valves. Accordingly, the control lines 25.1 to 25.4 in the case of pneumatically switchable switching valves 23 are pneumatic compressed air lines, in the case of electrically or electromagnetically switchable switching valves 23 are electrical lines and in the case of hydraulically switchable switching valves 23 are hydraulic fluid lines.
  • the control unit 27 is designed to switch the switching valves 23 in a manner described below.
  • the cooling device 7 further comprises a pressure detection device 29 for detecting the coolant pressure P in the coolant distribution system 15.
  • the signals detected by the pressure detection device 29 are fed to the control unit 27 via a pressure signal line 31.
  • the control unit 27 evaluates these signals to analyze and check functions of the cooling device 7, for example to determine a degree of blockage of the coolant outlets 21.
  • Figure 3 shows a perspective view of a line end segment 17.1.
  • the line end segment 17.1 comprises a segment tube 35, a connecting flange 37, a switching valve 23 and an outlet nozzle 33.
  • the connecting flange 37 is arranged at a first end of the segment tube 35 and can be connected to a line longitudinal segment 17.2.
  • the switching valve 23 is arranged, which is attached to this end of the segment tube 35, for example by a pipe-valve screw connection 39, which is formed by an external thread on the outer surface of the segment tube 35 and a corresponding internal thread of the switching valve 23, can be screwed on.
  • the outlet nozzle 33 has a nozzle tip 33.1 with a coolant outlet 21 and a nozzle base body 33.2.
  • the nozzle body 33.2 is arranged on the switching valve 23 and can be screwed onto the switching valve 23, for example by a valve-nozzle screw connection 41, which is formed by an external thread on the outer surface of the switching valve 23 and a corresponding internal thread of the nozzle body 33.2.
  • the nozzle tip 33.1 is arranged on the nozzle base body 33.2.
  • the nozzle body 33.2 has an internal thread which corresponds to an external thread of the nozzle tip 33.1, so that the nozzle tip 33.1 can be detachably connected to the nozzle body 33.2.
  • a jet profile of a coolant jet emitted by the outlet nozzle 33 can advantageously be changed by changing the nozzle tip 33.1.
  • the segment tube 35 is used to guide coolant 19 to the coolant outlet 21 and to guide an end section of a control line 25.1 to 25.4 to the switching valve 23.
  • the segment tube 35 has, for example, an outer tube and an inner tube running in the outer tube, with between the outer tube and the inner tube coolant 19 is guided and the inner tube forms or surrounds the end section of a control line 25.1 to 25.4.
  • the connecting flange 37 has two flange openings 37.1, 37.2, a first flange opening 37.1 serving to feed coolant 19 into the segment tube 35 and the second flange opening 37.2 for guiding the control line 25.1 to 25.4 in the segment tube 35 is used.
  • the connecting flange 37 also has a centering bolt 42 arranged between the flange openings 37.1, 37.2 in order to be able to assemble and align the line end segment 17.1 more easily.
  • FIG 4 shows schematically an exemplary embodiment, not according to the invention, of a cooling device 7 for secondary cooling of a strand 9 in a continuous casting plant 1 in a to Figure 2 analog perspective representation.
  • This in Figure 4 The illustrated embodiment differs from that in the Figures 2 and 3rd illustrated embodiment in that a switching valve 23 for a coolant outlet 21 is not arranged in each of the line end segments 17.1, but that for each longitudinal row of coolant outlets 21 only one switching valve 23 connected to the control unit 27 via a control line 25.1 to 25.4 is arranged in an intermediate line segment 17.3 is, so that a coolant supply from the line cross segment 17.4 to a line longitudinal segment 17.2 and all the line end segments 17.1 connected to it can be interrupted by each of these switching valves 23.
  • a check valve 43 is arranged in order, after a coolant supply to the line end segment 17.1 has been blocked by the corresponding switching valve 23, an output of coolant 19, which is located in line segments 17.1 to 17.3 between the switching valve 23 and check valve 43, to the Strand 9 to prevent.
  • the cooling device 7 of the in Figure 4 illustrated embodiment analogous to that in the Figures 2 and 3rd illustrated embodiment formed.
  • the switching valves 23 are like the switching valves 23 in the Figures 2 and 3rd illustrated embodiment as on / off valves formed, which can be switched by the control unit 27 in a manner described in more detail below.
  • the line end segments 17.1 in turn each have an outlet nozzle 33, the nozzle tip 33.1 of which is preferably designed to be exchangeable.
  • the illustrated embodiment requires that in Figure 4
  • the illustrated embodiment advantageously has fewer switching valves 23.
  • a higher clock frequency of the pulse-width-modulated switching of the switching valves 23 (when using similar switching valves 23 in both embodiments) enables a more flexible control of the cooling with an individual control of the switching valves 23 and reduces the effects of a failure of an individual switching valve 23, since a such failure affects a smaller surface area of the strand 9.
  • FIGS Figures 5 to 7 illustrate a cooling method for secondary cooling of a strand 9 in a continuous casting installation 1 with a cooling device 7, which is like one of the in FIGS Figures 2 to 4 illustrated embodiments is formed.
  • FIG. 11 shows a diagram for a coolant pressure P as a function of a single coolant flow Q through an outlet nozzle 33 of the cooling device 7, which, like one of the in FIGS Figures 2 and 4th illustrated embodiments is formed.
  • the individual coolant flow Q emitted from the outlet nozzle 33 through the coolant outlet 21 is in at least one flow range ⁇ Q for its mean value over time Q switched on and off by a pulse-width-modulated control of a switching valve 23 and thus itself pulse-width-modulated, see Figure 6 .
  • this Current range ⁇ Q limited by a threshold current Q S , which corresponds to a threshold pressure P S.
  • a maximum pressure P M and a corresponding maximum flow Q M for which the outlet nozzle 33 is designed, are also shown.
  • the threshold flow Q S is specified in such a way that the coolant pressure P below the corresponding threshold pressure P S is no longer sufficient to achieve an intended jet profile of a coolant jet emitted by the outlet nozzle 33, in particular an intended opening angle of the coolant jet, to achieve a sufficiently large area to cover the strand surface 9.3 with the coolant jet.
  • the individual coolant flows Q are output in the usual way, ie without pulse width modulation.
  • the switching valves 23 of the individual coolant flows Q to be generated are opened and the coolant pressure P or a coolant flow in the coolant distribution system 15 is regulated by means of a control circuit 45 to a setpoint dependent on the individual coolant flows Q to be generated, see Figure 9 .
  • Figure 6 shows a profile of a pulse-width-modulated individual coolant flow Q of an outlet nozzle 33 as a function of a time t.
  • the pulse width modulation has a clock period of the period length T or a clock frequency 1 / T.
  • the individual coolant flow Q has a constant, non-zero current pulse value Q P in a first half of each clock period and disappears in the second half of each clock period.
  • the time average is accordingly Q of the individual coolant flow Q in this example is half as large as the current pulse value Q P.
  • the pulse width modulation allows mean values with a current pulse value Q P that is greater than the threshold current Q S Q a single coolant flow Q can be realized, which is smaller than the threshold current Q S.
  • individual coolant flows Q can be realized, their mean values over time Q are smaller than the threshold flow Q S and which nevertheless generate an intended jet profile of a coolant jet emitted by the outlet nozzle 33.
  • Figure 7 shows diagrammatically temporal progressions of coolant flows Q 1 to Q 4 and a total coolant flow Q G , which are output by a cooling device 7 for secondary cooling of a strand 9 in a continuous casting plant 1 as a result of a pulse-width-modulated switching of the switching valves 23.
  • the cooling device 7 is like one of the in the Figures 2 or 4th illustrated embodiments formed, wherein Figure 7 to simplify the illustration of a cooling device 7 with only four longitudinal rows of coolant outlets 21 instead of as in the exemplary embodiments of FIG Figures 2 and 4th eight longitudinal rows refers to ( Figure 7 can also show temporal progressions of coolant flows Q 1 to Q 4 and a total coolant flow Q G in the Figures 2 or 4th represent the halves of the respective cooling devices 7 shown, the other halves (not shown) being controlled analogously).
  • the coolant flows Q 1 to Q 4 are each output from all coolant outlets 21 of a longitudinal row together and are therefore each a sum of the individual coolant flows Q of the coolant outlets 21 of a longitudinal row, the individual coolant flows Q each being analogous to Figure 6 are pulse width modulated.
  • the total coolant flow Q G is output from the coolant outlets 21 of all these longitudinal rows together and is the sum of the coolant flows Q 1 to Q 4 .
  • the switching valves 23 are switched by the control unit 27 in a pulse width modulated manner with a clock period of the period length T or with a clock frequency 1 / T.
  • the switching valves 23 for the various longitudinal rows of Coolant outlets 21 are switched with a time offset to one another, so that the total coolant flow Q G is constant over time.
  • the switching valves 23 are switched in such a way that a first coolant flow Q 1 disappears during a second half of each cycle period, a second coolant flow Q 2 disappears during a first and last quarter of each cycle period, and a third coolant flow Q 3 disappears during the first half of each cycle period , a fourth coolant flow Q 4 disappears during a second and third quarter of each cycle period and the coolant flows Q 1 to Q 4 in the remaining times assume a constant, non-zero value for all longitudinal rows, which is half the total coolant flow Q G is.
  • the total coolant flow Q G is regulated to a predetermined setpoint during the pulse width modulation.
  • an actual value of the total coolant flow Q G is determined and a duty cycle D and the period length T of the pulse width modulation are regulated as a function of a deviation of the determined actual value from the setpoint.
  • the duty cycle D of the pulse width modulation is understood to mean the ratio of a pulse duration during a clock period to the period length T. In the in the Figures 6 and 7th In the examples shown, the duty cycle D is, for example, 50% in each case.
  • coolant pressures P in line segments 17.1 to 17.4, via which individual coolant flows Q are output are recorded and the individual coolant flows Q output in each case are deduced from this by means of current-pressure characteristics.
  • the actual value of the total coolant flow Q G is then formed as the sum of these individual coolant flows Q, each multiplied by the respective duty cycle D of the pulse width modulation.
  • Figure 8 shows the duty cycle D of the pulse width modulation of an individual coolant flow Q as a function of the mean value Q of the individual coolant flow Q in the flow range ⁇ Q.
  • the duty cycle end value D m assumes the value 1, for example. If the coolant pressure P in the coolant distribution system 15 is set to a higher pressure value, the duty cycle end value D m is correspondingly smaller.
  • a selection of coolant outlets 21, through which individual coolant flows Q are output, is also made as a function of a width of the strand 9. Coolant outlets 21, which are not required to cool the strand 9 because they are located next to the strand surface 9.3, for example only release blow-out air in a pulse pause or a short water pulse to prevent these coolant outlets 21 from clogging.
  • Figure 9 shows a control circuit 45 for regulating a coolant pressure P or coolant flow in the coolant distribution system 15 in order to generate individual coolant flows Q which are greater than the threshold flow Q S.
  • the controlled variable R of the control loop 45 is therefore the coolant pressure P or coolant flow in the coolant distribution system 15.
  • a reference variable S of the control loop 45 is accordingly a setpoint value of the coolant pressure P or coolant flow in the which depends on the individual coolant flows Q Coolant distribution system 15.
  • the control circuit 45 comprises a controller 47, a controlled system 49 and a measuring element 51.
  • the controller 47 is a pump for the direct generation of a coolant pressure P or coolant flow in the coolant distribution system 15, or a pump with a downstream pressure or flow controller for Reduction of a coolant pressure P or coolant flow generated by the pump in the coolant distribution system 15.
  • the controlled system 49 is the coolant distribution system 15.
  • the measuring element 51 is a pressure detection device 29 for detecting the coolant pressure P or a flow detection device for detecting a coolant flow in the coolant distribution system 15
  • Controlled variable R, a system deviation E of the controlled variable R from the reference variable S is formed.
  • the controller 47 generates a manipulated variable U that is dependent on the control deviation E in order to reduce the control deviation B.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Description

Die Erfindung betrifft ein Leitungsendsegment einer Kühlungsvorrichtung zur Sekundärkühlung eines Strangs in einer Strangführung einer Stranggießanlage. Außerdem betrifft die Erfindung eine Kühlungsvorrichtung zur Sekundärkühlung eines Strangs in einer Strangführung einer Stranggießanlage.The invention relates to a line end segment of a cooling device for secondary cooling of a strand in a strand guide of a continuous casting plant. The invention also relates to a cooling device for secondary cooling of a strand in a strand guide of a continuous caster.

Beim Stranggießen in einer Stranggießanlage wird in einer Kokille ein metallischer Strang gebildet und anschließend in einer Strangführung geführt und dabei weiter abgekühlt. Die Abkühlung des Strangs in der Strangführung wird als Sekundärkühlung bezeichnet, während eine Kühlung des Strangs in der Kokille Primärkühlung genannt wird. Bei der Sekundärkühlung wird mittels einer Kühlungsvorrichtung auf den Strang in der Regel ein Kühlmittel, beispielsweise Wasser oder ein Wasser-Luft-Gemisch, aufgebracht.During continuous casting in a continuous caster, a metallic strand is formed in a mold and then guided in a strand guide and cooled further in the process. The cooling of the strand in the strand guide is called secondary cooling, while cooling of the strand in the mold is called primary cooling. In the case of secondary cooling, a coolant, for example water or a water-air mixture, is usually applied to the strand by means of a cooling device.

Aus der EP 2 527 061 A1 ist eine Sekundärkühleinrichtung und ein Kühlungsverfahren zur Sekundärkühlung eines Strangs in einer Stranggießanlage bekannt, bei der die Kühlleistung durch eine PWM Ansteuerung des Tastgrads eines Schaltventils eingestellt wird. Wie das Verhältnis zwischen dem maximalen und dem minimalen Kühlmitteleinzelstrom erhöht und zusätzlich auch bei kleinen Kühlmitteleinzelströmen die Ausbildung eines geeigneten Strahlprofils (insbesondere des Öffnungswinkels des Kühlmittelstrahls aus dem Kühlmittelauslass) erreicht werden kann, geht aus der Schrift nicht hervor.From the EP 2 527 061 A1 a secondary cooling device and a cooling method for secondary cooling of a strand in a continuous casting plant are known, in which the cooling power is set by PWM control of the duty cycle of a switching valve. How the ratio between the maximum and the minimum individual coolant flow is increased and, in addition, the formation of a suitable jet profile (in particular the opening angle of the coolant jet from the coolant outlet) can be achieved even with small individual coolant flows, does not emerge from the document.

Der Erfindung liegt die Aufgabe zugrunde, ein verbessertes Leitungsendsegment und eine verbesserte Kühlungsvorrichtung zur Sekundärkühlung eines Strangs in einer Stranggießanlage anzugeben. Insbesondere sollen ein Leitungsendsegment und eine Kühlungsvorrichtung zur Sekundärkühlung eines Strangs angegeben werden, mit welchem bzw. welcher ein zur Strangkühlung besonders geeignetes Strahlprofil eines Kühlmittelstrahls realisiert werden kann.The invention is based on the object of specifying an improved line end segment and an improved cooling device for secondary cooling of a strand in a continuous casting plant. In particular, a line end segment and a cooling device for secondary cooling of a strand should be specified, with which or which a for Strand cooling particularly suitable jet profile of a coolant jet can be realized.

Die Aufgabe wird erfindungsgemäß hinsichtlich des Leitungsendsegments durch die Merkmale des Anspruchs 1 und hinsichtlich der Kühlungsvorrichtung durch die Merkmale des Anspruchs 10 gelöst.The object is achieved according to the invention with regard to the line end segment by the features of claim 1 and with regard to the cooling device by the features of claim 10.

Vorteilhafte Ausgestaltungen der Erfindung sind Gegenstand der weiteren Ansprüche.Advantageous embodiments of the invention are the subject of the further claims.

Das erfindungsgemäße Leitungsendsegment einer Kühlungsvorrichtung zur Sekundärkühlung eines Strangs in einer Strangführung einer Stranggießanlage umfasst

  • eine Auslassdüse mit einem Kühlmittelauslass zur Ausgabe von Kühlmittel,
  • ein Schaltventil zum Ein- und Ausschalten von einem Kühlmitteleinzelstrom,
  • ein Segmentrohr zur Führung von dem Kühlmittel zu dem Kühlmittelauslass der Auslassdüse und zur Führung eines Endabschnitts einer Steuerleitung zum Schalten des Schaltventils zu dem Schaltventil,
  • einen Verbindungsflansch mit einer ersten Flanschöffnung zur Zuführung des Kühlmittels in das Segmentrohr und einer zweiten Flanschöffnung zur Führung der Steuerleitung in das Segmentrohr,
wobei
  • der Verbindungsflansch an einem ersten Ende des Segmentrohrs und das Schaltventil an einem zweiten Ende des Segmentrohrs angeordnet ist,
  • die Auslassdüse an dem Schaltventil angeordnet ist und
  • das Segmentrohr ein Außenrohr und ein in dem Außenrohr verlaufendes Innenrohr aufweist, wobei zwischen dem Außenrohr und dem Innenrohr das Kühlmittel geführt wird und das Innenrohr den Endabschnitt der Steuerleitung bildet oder umgibt.
The line end segment according to the invention comprises a cooling device for secondary cooling of a strand in a strand guide of a continuous casting plant
  • an outlet nozzle with a coolant outlet for dispensing coolant,
  • a switching valve for switching a single coolant flow on and off,
  • a segment tube for guiding the coolant to the coolant outlet of the outlet nozzle and for guiding an end section of a control line for switching the switching valve to the switching valve,
  • a connecting flange with a first flange opening for feeding the coolant into the segment tube and a second flange opening for guiding the control line into the segment tube,
in which
  • the connecting flange is arranged at a first end of the segment tube and the switching valve is arranged at a second end of the segment tube,
  • the outlet nozzle is arranged on the switching valve and
  • the segment tube has an outer tube and an inner tube running in the outer tube, the coolant being guided between the outer tube and the inner tube and the inner tube forming or surrounding the end section of the control line.

Die erfindungsgemäße Kühlungsvorrichtung zur Sekundärkühlung eines Strangs in einer Strangführung einer Stranggießanlage umfasst zumindest ein erfindungsgemäßes Leitungsendsegment.The cooling device according to the invention for secondary cooling of a strand in a strand guide of a continuous casting plant comprises at least one line end segment according to the invention.

Als Schaltventile des Leitungsendsegments eignet sich beispielsweise ein pneumatisch oder elektrisch oder elektromagnetisch oder hydraulisch schaltbares Ventile. Ein derartig ausgebildetes Schaltventil ist vorteilhaft kommerziell verfügbar und ermöglicht eine kostengünstige Realisierung eines ein- und abschaltbaren Kühlmitteleinzelstroms.For example, a pneumatically or electrically or electromagnetically or hydraulically switchable valve is suitable as the switching valve of the line end segment. A switching valve designed in this way is advantageously commercially available and enables an inexpensive implementation of an individual coolant flow that can be switched on and off.

Bei einer bevorzugten Ausgestaltung ist vorgesehen, dass die Steuerleitung im Falle eines pneumatisch schaltbaren Schaltventils eine pneumatische Druckluftleitung, im Falle eines elektrisch oder elektromagnetisch schaltbaren Schaltventils eine elektrische Leitung und im Falle eines hydraulisch schaltbaren Schaltventils eine Hydraulikflüssigkeitsleitung ist.In a preferred embodiment, it is provided that the control line is a pneumatic compressed air line in the case of a pneumatically switchable switching valve, an electrical line in the case of an electrically or electromagnetically switchable switching valve and a hydraulic fluid line in the case of a hydraulically switchable switching valve.

Eine Weitergestaltung der Erfindung sieht vor, dass die Auslassdüse eine austauschbare Düsenspitze aufweist.A further development of the invention provides that the outlet nozzle has an exchangeable nozzle tip.

Eine austauschbare Düsenspitze ermöglicht vorteilhaft, ein Strahlprofil eines von dem Kühlmittelauslass abgegebenen Kühlmittelstrahls erforderlichenfalls in einfacher Weise durch den Austausch der Düsenspitze zu verändern.An exchangeable nozzle tip advantageously enables a jet profile of a coolant jet emitted by the coolant outlet to be changed, if necessary, in a simple manner by exchanging the nozzle tip.

Ferner kann vorgesehen sein, dass das Schaltventil auf das Segmentrohr, insbesondere durch eine Rohr-Ventil-Schraubverbindung, die von einem Außengewinde an einer Außenoberfläche des Segmentrohrs und einem korrespondierenden Innengewinde des Schaltventils gebildet wird, aufgeschraubt ist.Furthermore, it can be provided that the switching valve is screwed onto the segment tube, in particular by a tube-valve screw connection which is formed by an external thread on an outer surface of the segment tube and a corresponding internal thread of the switching valve.

Die Auslassdüse kann eine Düsenspitze mit dem Kühlmittelauslass und einen Düsengrundkörper aufweisen. Weiterbildend kann vorgesehen sein, dass der Düsengrundkörper auf das Schaltventil, insbesondere durch eine Ventil-Düse-Schraubverbindung, die von einem Außengewinde an einer Außenoberfläche des Schaltventils und einem korrespondierenden Innengewinde des Düsengrundkörpers gebildet wird, aufgeschraubt ist.The outlet nozzle can have a nozzle tip with the coolant outlet and a nozzle base body. In a further development, it can be provided that the The nozzle base body is screwed onto the switching valve, in particular by a valve-nozzle screw connection which is formed by an external thread on an outer surface of the switching valve and a corresponding internal thread of the nozzle base body.

Die Düsenspitze kann mit dem Düsengrundkörper, insbesondere durch ein Innengewindes des Düsenkörpers und ein korrespondierendes Außengewinde der Düsenspitze, verschraubt sein.The nozzle tip can be screwed to the nozzle base body, in particular through an internal thread of the nozzle body and a corresponding external thread of the nozzle tip.

Bei einer bevorzugten Ausführungsvariante weist der Verbindungsflansch einen zwischen den Flanschöffnungen angeordneten Zentrierungsbolzen auf.In a preferred embodiment variant, the connecting flange has a centering bolt arranged between the flange openings.

Weitere Ausgestaltungen der Kühlungsvorrichtung sehen wenigstens eine Längsreihe mehrerer entlang einer Transportrichtung des Strangs hintereinander angeordneter Kühlmittelauslässe und/oder wenigstens eine Querreihe mehrerer quer zu einer Transportrichtung des Strangs nebeneinander angeordneter Kühlmittelauslässe vor.Further refinements of the cooling device provide at least one longitudinal row of several coolant outlets arranged one behind the other along a transport direction of the strand and / or at least one transverse row of several coolant outlets arranged next to one another transversely to a transport direction of the strand.

Diese Ausgestaltungen ermöglichen vorteilhaft eine über einen Abschnitt einer Strangführung gleichmäßig verteilte Sekundärkühlung eines Strangs, insbesondere wenn die Kühlungsvorrichtung jeweils mehrere Längs- und Querreihen von Kühlmittelauslässen aufweist.These configurations advantageously enable secondary cooling of a strand that is uniformly distributed over a section of a strand guide, in particular when the cooling device has a plurality of longitudinal and transverse rows of coolant outlets.

Eine weitere Ausgestaltung der Kühlungsvorrichtung sieht eine Druckerfassungsvorrichtung zur Erfassung eines Kühlmitteldrucks oder einen Durchflussmesser zur Erfassung eines Kühlmittelstroms in einem Kühlmittelverteilungssystem der Kühlungsvorrichtung vor.Another embodiment of the cooling device provides a pressure detection device for detecting a coolant pressure or a flow meter for detecting a coolant flow in a coolant distribution system of the cooling device.

Eine derartige Druckerfassungsvorrichtung ermöglicht vorteilhaft eine Analyse und Überprüfung von Funktionen der Kühlungsvorrichtung, beispielsweise die Ermittlung eines Verstopfungsgrades von Kühlmittelauslässen, durch eine Auswertung der von der Druckerfassungsvorrichtung erfassten Signale. Außerdem kann ein Ist-Wert eines Kühlmitteldrucks oder Kühlmittelstroms zur Regelung des Kühlmitteldrucks oder Kühlmittelstroms im Kühlmittelverteilungssystem erfasst werden.Such a pressure detection device advantageously enables functions of the cooling device to be analyzed and checked, for example the determination of a degree of blockage of coolant outlets by a Evaluation of the signals detected by the pressure detection device. In addition, an actual value of a coolant pressure or coolant flow for regulating the coolant pressure or coolant flow in the coolant distribution system can be recorded.

Die oben beschriebenen Eigenschaften, Merkmale und Vorteile dieser Erfindung sowie die Art und Weise, wie diese erreicht werden, werden klarer und deutlicher verständlich im Zusammenhang mit der folgenden Beschreibung eines erfindungsgemäßen Ausführungsbeispiels sowie eines nicht erfindungsgemäßen Ausführungsbeispiels, die im Zusammenhang mit den Zeichnungen näher erläutert werden. Dabei zeigen:

  • FIG 1 schematisch einen Ausschnitt einer Stranggießanlage in einer Seitenansicht,
  • FIG 2 schematisch ein erfindungsgemäßes Ausführungsbeispiel einer Kühlungsvorrichtung zur Sekundärkühlung eines Strangs in einer Stranggießanlage in einer perspektivischen Darstellung,
  • FIG 3 eine perspektivische Darstellung eines Leitungsendsegments einer Kühlungsvorrichtung zur Sekundärkühlung eines Strangs in einer Stranggießanlage,
  • FIG 4 schematisch ein nicht erfindungsgemäßes Ausführungsbeispiel einer Kühlungsvorrichtung zur Sekundärkühlung eines Strangs in einer Stranggießanlage in einer perspektivischen Darstellung,
  • FIG 5 ein Diagramm eines Kühlmitteldrucks in Abhängigkeit von einem Kühlmitteleinzelstrom einer Auslassdüse,
  • FIG 6 ein Diagramm eines zeitlichen Verlaufs eines pulsweitenmodulierten Kühlmitteleinzelstroms einer Auslassdüse,
  • FIG 7 diagrammatisch zeitliche Verläufe von pulsweitenmodulierten Kühlmittelströmen, die von einer Kühlungsvorrichtung zur Sekundärkühlung eines Strangs in einer Stranggießanlage ausgegeben werden,
  • FIG 8 einen Tastgrad D einer Pulsweitenmodulation eines Kühlmitteleinzelstroms in Abhängigkeit von dem Mittelwert des Kühlmitteleinzelstroms, und
  • FIG 9 einen Regelkreis zur Regelung eines Kühlmitteldrucks oder Kühlmittelstroms in einem Kühlmittelverteilungssystem.
The above-described properties, features and advantages of this invention and the way in which they are achieved will become clearer and more understandable in connection with the following description of an exemplary embodiment according to the invention and an exemplary embodiment not according to the invention, which are explained in more detail in connection with the drawings . Show:
  • FIG 1 schematically a section of a continuous caster in a side view,
  • FIG 2 schematically an embodiment of the invention of a cooling device for secondary cooling of a strand in a continuous casting plant in a perspective view,
  • FIG 3 a perspective view of a line end segment of a cooling device for secondary cooling of a strand in a continuous caster,
  • FIG 4 schematically an embodiment of a cooling device not according to the invention for secondary cooling of a strand in a continuous casting plant in a perspective view,
  • FIG 5 a diagram of a coolant pressure as a function of a single coolant flow from an outlet nozzle,
  • FIG 6 a diagram of a time profile of a pulse-width-modulated individual coolant flow from an outlet nozzle,
  • FIG 7 diagrammatic temporal progressions of pulse-width-modulated coolant flows that are output by a cooling device for secondary cooling of a strand in a continuous caster,
  • FIG 8 a duty cycle D of a pulse width modulation of an individual coolant flow as a function of the mean value of the individual coolant flow, and
  • FIG 9 a control loop for regulating a coolant pressure or coolant flow in a coolant distribution system.

Einander entsprechende Teile sind in allen Figuren mit den gleichen Bezugszeichen versehen.Corresponding parts are provided with the same reference symbols in all figures.

Figur 1 zeigt schematisch einen Ausschnitt einer Stranggießanlage 1 in einer Seitenansicht. Dargestellt sind eine Kokille 3, eine Oszillationseinrichtung 4 zum Bewegen der Kokille 3 gegenüber eines Strangs 9, eine der Kokille 3 nachgeordnete Strangführung 5 und eine Kühlungsvorrichtung 7 der Stranggießanlage 1. Um die Komplexität der Figur nicht unnötig zu erhöhen, wurden die Strangführungsrollen 13 oberhalb des Strangs 9 sowie die Leitungssegmente 17.1 und die Kühlmittelauslässe 21 unterhalb des Strangs 9 nicht dargestellt. Dem Fachmann ist bekannt, dass ein Strang nach dem Austritt aus einer Kokille in der Sekundärkühlung typischerweise durch Strangführungsrollen ober- und unterhalb des Strangs geführt wird sowie die oben- und untenliegenden Breitseiten des Strangs gekühlt werden. Figure 1 shows schematically a section of a continuous caster 1 in a side view. Shown are a mold 3, an oscillation device 4 for moving the mold 3 relative to a strand 9, a strand guide 5 downstream of the mold 3 and a cooling device 7 of the continuous casting plant 1. In order not to increase the complexity of the figure unnecessarily, the strand guide rollers 13 above the Line 9 and the line segments 17.1 and the coolant outlets 21 below the line 9 are not shown. It is known to the person skilled in the art that after exiting a mold in the secondary cooling, a strand is typically guided by strand guide rollers above and below the strand and the broad sides of the strand lying above and below are cooled.

Der Kokille 3 wird eine metallische Schmelze zugeführt, aus der mit der Kokille 3 der metallische Strang 9 gebildet wird, der mit der Strangführung 5 geführt und entlang einer Transportrichtung 11 transportiert wird. Mit der Osszilationseinrichtung 4 werden Bewegungen der Kokille 4, insbesondere oszillierende Bewegungen (die Bewegungsrichtung ist durch einen Pfeil dargestellt) der Kokille 4, erzeugt, damit der Strang 9 nicht an einer Innenoberfläche der Kokille anhaftet. Die Strangführung 5 weist mehrere Strangführungsrollen 13 zur Stützung des Strangs 9 auf.A metallic melt is fed to the mold 3, from which the metallic strand 9 is formed with the mold 3, which is guided with the strand guide 5 and transported along a transport direction 11. With the oscillation device 4, movements of the mold 4, in particular oscillating movements (the direction of movement is shown by an arrow) of the mold 4, are generated, so that the strand 9 does not adhere to an inner surface of the mold. The strand guide 5 has several strand guide rollers 13 to support the strand 9.

Die Kokille 3 weist eine Breitenverstellung zur Einstellung einer Breite des Strangs 9 aufweist, so dass mit der Kokille 3 Stränge 9 unterschiedlicher Breiten erzeugbar sind. Die Strangführung 5 weist eine Gießdickenverstellung zur Einstellung einer Dicke des Strangs 9 auf, so dass mit der Strangführung 5 Stränge 9 verschiedener Dicken erzeugbar sind.The mold 3 has a width adjustment for setting a width of the strand 9, so that strands 9 of different widths can be produced with the mold 3. The strand guide 5 has a casting thickness adjustment for setting a thickness of the strand 9, so that strands 9 of different thicknesses can be produced with the strand guide 5.

Die Kühlungsvorrichtung 7 dient der Sekundärkühlung des Strangs 9 in der Strangführung 5. Die Kühlungsvorrichtung 7 umfasst ein Kühlmittelverteilungssystem 15 mit Leitungssegmenten 17.1 bis 17.4 zur Leitung eines Kühlmittels 19 und mehreren über die Strangführung 5 verteilten Kühlmittelauslässen 21 zur Ausgabe von Kühlmittel 19 auf den Strang 9. Anhand der Figuren 2 bis 4 werden unten verschiedene Ausführungsbeispiele von Kühlungsvorrichtungen 7 näher beschrieben. Das Kühlmittel 19 ist beispielsweise Wasser.The cooling device 7 is used for secondary cooling of the strand 9 in the strand guide 5. The cooling device 7 comprises a coolant distribution system 15 with line segments 17.1 to 17.4 for conveying a coolant 19 and several coolant outlets 21 distributed over the strand guide 5 for outputting coolant 19 onto the strand 9. Based on Figures 2 to 4 Various exemplary embodiments of cooling devices 7 are described in more detail below. The coolant 19 is, for example, water.

Die in Figur 1 dargestellte Stranggießanlage 1 ist zum so genannten horizontalen Stranggießen ausgebildet, bei dem der Strang 9 horizontal aus der Kokille 3 zu der Strangführung 5 ausgegeben wird. Die Erfindung, insbesondere eine erfindungsgemäße Kühlungsvorrichtung 7, ist jedoch nicht auf Stranggießanlagen 1 zum horizontalen Stranggießen beschränkt, sondern betrifft insbesondere auch Stranggießanlagen 1, die zum so genannten vertikalen Stranggießen ausgebildet sind, bei dem der Strang 9 vertikal durch eine Bodenöffnung der Kokille 3 aus der Kokille 3 zu der Strangführung 5 ausgegeben wird und die Strangführung 5 gebogen ausgeführt ist, so dass der Strang 9 entlang der Strangführung 5 von einer horizontalen in eine vertikale Lage gebracht wird.In the Figure 1 The continuous casting installation 1 shown is designed for what is known as horizontal continuous casting, in which the strand 9 is output horizontally from the mold 3 to the strand guide 5. The invention, in particular a cooling device 7 according to the invention, is not limited to continuous casting plants 1 for horizontal continuous casting, but in particular also relates to continuous casting plants 1 which are designed for so-called vertical continuous casting, in which the strand 9 emerges vertically through a bottom opening of the mold 3 Mold 3 is issued to the strand guide 5 and the strand guide 5 is designed to be curved, so that the strand 9 is brought along the strand guide 5 from a horizontal to a vertical position.

Figur 2 zeigt schematisch ein erfindungsgemäßes Ausführungsbeispiel einer Kühlungsvorrichtung 7 zur Sekundärkühlung eines Strangs 9 in einer Stranggießanlage 1 in einer perspektivischen Darstellung. Dabei ist nur ein Abschnitt des Strangs 9 dargestellt, der sich im Bereich der Kühlungsvorrichtung 7 befindet. Ferner ist von diesem Abschnitt des Strangs 9 und von dem Kühlmittelverteilungssystem 15 der Kühlungsvorrichtung 7 nur jeweils ein Bereich dargestellt, der sich über eine Hälfte einer Breite des Strangs 9 von einem seitlichen Strangrand 9.1 des Strangs 9 bis zu einer parallel zur Transportrichtung 11 verlaufenden Mittelachse 9.2 des Strangs 9 erstreckt. Über die andere Hälfte der Breite des Strangs 9 erstreckt sich ein weiterer Bereich des Kühlmittelverteilungssystems 15, der ebenso ausgebildet ist wie der in Figur 2 dargestellte Bereich, wobei diese beiden Bereiche spiegelsymmetrisch sind bezüglich einer Spiegelung an einer Spiegelebene, die die Mittelachse 9.2 enthält und senkrecht zu einer Strangoberfläche 9.3 des Strangs 9 ist. Figure 2 shows schematically an exemplary embodiment according to the invention of a cooling device 7 for secondary cooling of a strand 9 in a continuous casting plant 1 in a perspective illustration. Only a section of the strand 9 is shown, which is located in the area of the cooling device 7. Furthermore, of this section of the strand 9 and of the coolant distribution system 15 of the cooling device 7, only one area is shown, which extends over half a width of the strand 9 from a lateral strand edge 9.1 of the strand 9 to a central axis 9.2 running parallel to the transport direction 11 of the strand 9 extends. Over the other half of the width of the strand 9, a further area of the coolant distribution system 15 extends, which is designed in the same way as that in FIG Figure 2 area shown, these two areas being mirror-symmetrical with respect to a reflection on a mirror plane which contains the central axis 9.2 and is perpendicular to a strand surface 9.3 of the strand 9.

Die Kühlmittelauslässe 21 des Kühlmittelverteilungssystems 15 bilden mehrere Längsreihen entlang der Transportrichtung 11 des Strangs 9 hintereinander angeordneter Kühlmittelauslässe 21. Dabei sind die Längsreihen quer zu der Transportrichtung 11 des Strangs 9 nebeneinander angeordnet, so dass Kühlmittelauslässe 21 verschiedener Längsreihen Querreihen quer zu der Transportrichtung 11 nebeneinander angeordneter Kühlmittelauslässe 21 bilden.The coolant outlets 21 of the coolant distribution system 15 form several longitudinal rows of coolant outlets 21 arranged one behind the other along the transport direction 11 of the strand 9 Form coolant outlets 21.

Im in Figur 2 dargestellten Ausführungsbeispiel weist das Kühlmittelverteilungssystem 15 acht nebeneinander angeordnete Längsreihen von Kühlmittelauslässen 21 auf, wobei jede Längsreihe vier Kühlmittelauslässe 21 aufweist. Alternative Ausführungsbeispiele weisen eine von acht verschiedene Anzahl nebeneinander angeordneter Längsreihen von Kühlmittelauslässen 21 oder/und wenigstens eine Längsreihe mit einer von Vier verschiedenen Anzahl von Kühlmittelauslässen 21 auf.In the in Figure 2 In the illustrated embodiment, the coolant distribution system 15 has eight longitudinal rows of coolant outlets 21 arranged next to one another, each longitudinal row having four coolant outlets 21. Alternative exemplary embodiments have one of eight different numbers of longitudinal rows of coolant outlets 21 arranged next to one another and / or at least one longitudinal row with one of four different numbers of coolant outlets 21.

Jeder Kühlmittelauslass 21 bildet ein dem Strang 9 zugewandtes Ende eines Leitungsendsegments 17.1, das senkrecht zu der Strangoberfläche 9.3 verläuft. Für jede Längsreihe von Kühlmittelauslässen 21 weist das Kühlmittelverteilungssystem 15 ein parallel zur Transportrichtung 11 verlaufendes Leitungslängssegment 17.2 auf, das die diese Kühlmittelauslässe 21 aufweisenden Leitungsendsegmente 17.1 miteinander verbindet. Das Kühlmittelverteilungssystem 15 weist ferner ein quer zur Transportrichtung 11 verlaufendes Leitungsquersegment 17.4 auf, das mit jedem Leitungslängssegment 17.2 über jeweils ein senkrecht zur Strangoberfläche 9.3 verlaufendes Leitungszwischensegment 17.3 verbunden ist. Jedes Leitungsendsegment 17.1 weist ferner zur Ausgabe von Kühlmittel 19 eine Auslassdüse 33 mit dem Kühlmittelauslass 21 auf, siehe dazu Figur 3.Each coolant outlet 21 forms an end of a line end segment 17.1 facing the strand 9 and running perpendicular to the strand surface 9.3. For each longitudinal row of coolant outlets 21, the coolant distribution system 15 has a line longitudinal segment 17.2 running parallel to the transport direction 11, which connects the line end segments 17.1 having these coolant outlets 21 to one another. The coolant distribution system 15 also has a transverse line segment 17.4 running transversely to the transport direction 11, which is connected to each longitudinal line segment 17.2 via an intermediate line segment 17.3 running perpendicular to the strand surface 9.3. Each line end segment 17.1 also has an outlet nozzle 33 with the coolant outlet 21 for outputting coolant 19, see in this regard Figure 3 .

In jedem Leitungsendsegment 17.1 ist ein Schaltventil 23 angeordnet, mit dem eine Kühlmittelzufuhr von Kühlmittel 19 zu dem Kühlmittelauslass 21 dieses Leitungsendsegments 17.1 unterbrechbar ist. Jedes Schaltventil 23 ist dabei als ein Auf-/Zu-Ventil ausgebildet, das zwei Betriebszustände aufweist, wobei das Schaltventil 23 in einem ersten Betriebszustand die Kühlmittelzufuhr zu dem Kühlmittelauslass 21 freigibt und in dem zweiten Betriebszustand die Kühlmittelzufuhr zu dem Kühlmittelauslass 21 sperrt. Eine Veränderung des Betriebszustands eines Schaltventils 23 wird hier als Schalten des Schaltventils 23 bezeichnet; ein Schalten von dem ersten in den zweiten Betriebszustand wird als Schließen des Schaltventils 23 bezeichnet und ein Schalten von dem zweiten in den ersten Betriebszustand wird als Öffnen des Schaltventils 23 bezeichnet. Durch jedes Schaltventil 23 ist also genau ein Kühlmitteleinzelstrom Q ein- und abschaltbar, der von einem Kühlmittelauslass 21 ausgegeben wird.A switching valve 23 is arranged in each line end segment 17.1, with which a coolant supply of coolant 19 to the coolant outlet 21 of this line end segment 17.1 can be interrupted. Each switching valve 23 is designed as an on / off valve that has two operating states, the switching valve 23 releasing the coolant supply to the coolant outlet 21 in a first operating state and blocking the coolant supply to the coolant outlet 21 in the second operating state. A change in the operating state of a switching valve 23 is referred to here as switching the switching valve 23; Switching from the first to the second operating state is referred to as closing the switching valve 23 and switching from the second to the first operating state is referred to as opening the switching valve 23. Precisely one individual coolant flow Q, which is output from a coolant outlet 21, can therefore be switched on and off by each switching valve 23.

Die Schaltventile 23 sind über Steuerleitungen 25.1 bis 25.4 mit einer Steuereinheit 27 verbunden und durch die Steuereinheit 27 schaltbar. Dabei verbindet jede Steuerleitung 25.1 bis 25.4 die Schaltventile 23 einer Längsreihe von Kühlmittelauslässen 21 mit der Steuereinheit 27. Die Steuerleitungen 25.1 bis 25.4 können zumindest abschnittsweise in Rohren von Leitungssegmenten 17.1 bis 17.4 verlaufen, vgl. die Beschreibung von Figur 3 unten.The switching valves 23 are connected to a control unit 27 via control lines 25.1 to 25.4 and can be switched by the control unit 27. Each control line 25.1 to 25.4 connects the switching valves 23 of a longitudinal row of coolant outlets 21 with the control unit 27. The control lines 25.1 to 25.4 can run at least in sections in pipes of line segments 17.1 to 17.4, see the description of FIG Figure 3 below.

Die Schaltventile 23 sind als pneumatisch oder elektrisch oder elektromagnetisch oder hydraulisch schaltbare Ventile ausgebildet. Entsprechend sind die Steuerleitungen 25.1 bis 25.4 im Falle pneumatisch schaltbarer Schaltventile 23 pneumatische Druckluftleitungen, im Falle elektrisch oder elektromagnetisch schaltbarer Schaltventile 23 elektrische Leitungen und im Falle hydraulisch schaltbarer Schaltventile 23 Hydraulikflüssigkeitsleitungen.The switching valves 23 are designed as pneumatically or electrically or electromagnetically or hydraulically switchable valves. Accordingly, the control lines 25.1 to 25.4 in the case of pneumatically switchable switching valves 23 are pneumatic compressed air lines, in the case of electrically or electromagnetically switchable switching valves 23 are electrical lines and in the case of hydraulically switchable switching valves 23 are hydraulic fluid lines.

Die Steuereinheit 27 ist dazu ausgebildet, die Schaltventile 23 in einer unten beschriebenen Weise zu schalten.The control unit 27 is designed to switch the switching valves 23 in a manner described below.

Die Kühlungsvorrichtung 7 umfasst ferner eine Druckerfassungsvorrichtung 29 zur Erfassung des Kühlmitteldrucks P in dem Kühlmittelverteilungssystem 15. Die von der Druckerfassungsvorrichtung 29 erfassten Signale werden über eine Drucksignalleitung 31 der Steuereinheit 27 zugeführt. Die Steuereinheit 27 wertet diese Signale zu einer Analyse und Überprüfung von Funktionen der Kühlungsvorrichtung 7, beispielsweise zur Ermittlung eines Verstopfungsgrades der Kühlmittelauslässe 21, aus.The cooling device 7 further comprises a pressure detection device 29 for detecting the coolant pressure P in the coolant distribution system 15. The signals detected by the pressure detection device 29 are fed to the control unit 27 via a pressure signal line 31. The control unit 27 evaluates these signals to analyze and check functions of the cooling device 7, for example to determine a degree of blockage of the coolant outlets 21.

Figur 3 zeigt eine perspektivische Darstellung eines Leitungsendsegments 17.1. Das Leitungsendsegment 17.1 umfasst ein Segmentrohr 35, einen Verbindungsflansch 37, ein Schaltventil 23 und eine Auslassdüse 33. Figure 3 shows a perspective view of a line end segment 17.1. The line end segment 17.1 comprises a segment tube 35, a connecting flange 37, a switching valve 23 and an outlet nozzle 33.

Der Verbindungsflansch 37 ist an einem ersten Ende des Segmentrohrs 35 angeordnet und mit einem Leitungslängssegment 17.2 verbindbar. An dem zweiten Ende des Segmentrohrs 35 ist das Schaltventil 23 angeordnet, das auf dieses Ende des Segmentrohrs 35 beispielsweise durch eine Rohr-Ventil-Schraubverbindung 39, die von einem Außengewinde an der Außenoberfläche des Segmentrohrs 35 und einem korrespondierenden Innengewinde des Schaltventils 23 gebildet wird, aufschraubbar ist.The connecting flange 37 is arranged at a first end of the segment tube 35 and can be connected to a line longitudinal segment 17.2. On the second end of the segment tube 35, the switching valve 23 is arranged, which is attached to this end of the segment tube 35, for example by a pipe-valve screw connection 39, which is formed by an external thread on the outer surface of the segment tube 35 and a corresponding internal thread of the switching valve 23, can be screwed on.

Die Auslassdüse 33 weist eine Düsenspitze 33.1 mit einem Kühlmittelauslass 21 und einen Düsengrundkörper 33.2 auf. Der Düsengrundkörper 33.2 ist an dem Schaltventil 23 angeordnet und auf das Schaltventil 23 beispielsweise durch eine Ventil-Düse-Schraubverbindung 41, die von einem Außengewinde an der Außenoberfläche des Schaltventils 23 und einem korrespondierenden Innengewinde des Düsengrundkörpers 33.2 gebildet wird, aufschraubbar. Die Düsenspitze 33.1 ist an dem Düsengrundkörper 33.2 angeordnet. Beispielsweise weist der Düsenkörper 33.2 ein Innengewinde auf, das zu einem Außengewinde der Düsenspitze 33.1 korrespondiert, so dass die Düsenspitze 33.1 lösbar mit dem Düsenkörper 33.2 verbindbar ist. Dadurch kann durch einen Wechsel der Düsenspitze 33.1 vorteilhaft ein Strahlprofil eines von der Auslassdüse 33 ausgegebenen Kühlmittelstrahls verändert werden.The outlet nozzle 33 has a nozzle tip 33.1 with a coolant outlet 21 and a nozzle base body 33.2. The nozzle body 33.2 is arranged on the switching valve 23 and can be screwed onto the switching valve 23, for example by a valve-nozzle screw connection 41, which is formed by an external thread on the outer surface of the switching valve 23 and a corresponding internal thread of the nozzle body 33.2. The nozzle tip 33.1 is arranged on the nozzle base body 33.2. For example, the nozzle body 33.2 has an internal thread which corresponds to an external thread of the nozzle tip 33.1, so that the nozzle tip 33.1 can be detachably connected to the nozzle body 33.2. As a result, a jet profile of a coolant jet emitted by the outlet nozzle 33 can advantageously be changed by changing the nozzle tip 33.1.

Das Segmentrohr 35 dient der Führung von Kühlmittel 19 zu dem Kühlmittelauslass 21 und der Führung eines Endabschnitts einer Steuerleitung 25.1 bis 25.4 zu dem Schaltventil 23. Dazu weist das Segmentrohr 35 beispielsweise ein Außenrohr und ein in dem Außenrohr verlaufendes Innenrohr auf, wobei zwischen dem Außenrohr und dem Innenrohr Kühlmittel 19 geführt wird und das Innenrohr den Endabschnitt einer Steuerleitung 25.1 bis 25.4 bildet oder umgibt. Der Verbindungsflansch 37 weist zwei Flanschöffnungen 37.1, 37.2 auf, wobei eine erste Flanschöffnung 37.1 der Zuführung von Kühlmittel 19 in das Segmentrohr 35 dient und die zweite Flanschöffnung 37.2 der Führung der Steuerleitung 25.1 bis 25.4 in das Segmentrohr 35 dient. Der Verbindungsflansch 37 weist ferner einen zwischen den Flanschöffnungen 37.1, 37.2 angeordneten Zentrierungsbolzen 42 auf, um das Leitungsendsegment 17.1 einfacher montieren und ausrichten zu können.The segment tube 35 is used to guide coolant 19 to the coolant outlet 21 and to guide an end section of a control line 25.1 to 25.4 to the switching valve 23. For this purpose, the segment tube 35 has, for example, an outer tube and an inner tube running in the outer tube, with between the outer tube and the inner tube coolant 19 is guided and the inner tube forms or surrounds the end section of a control line 25.1 to 25.4. The connecting flange 37 has two flange openings 37.1, 37.2, a first flange opening 37.1 serving to feed coolant 19 into the segment tube 35 and the second flange opening 37.2 for guiding the control line 25.1 to 25.4 in the segment tube 35 is used. The connecting flange 37 also has a centering bolt 42 arranged between the flange openings 37.1, 37.2 in order to be able to assemble and align the line end segment 17.1 more easily.

Figur 4 zeigt schematisch ein nicht erfindungsgemäßes Ausführungsbeispiel einer Kühlungsvorrichtung 7 zur Sekundärkühlung eines Strangs 9 in einer Stranggießanlage 1 in einer zu Figur 2 analogen perspektivischen Darstellung. Das in Figur 4 dargestellte Ausführungsbeispiel unterscheidet sich von dem in den Figuren 2 und 3 dargestellten Ausführungsbeispiel dadurch, dass nicht in den Leitungsendsegmenten 17.1 jeweils ein Schaltventil 23 für einen Kühlmittelauslass 21 angeordnet ist, sondern dass für jede Längsreihe von Kühlmittelauslässen 21 nur jeweils ein über eine Steuerleitung 25.1 bis 25.4 mit der Steuereinheit 27 verbundenes Schaltventil 23 in einem Leitungszwischensegment 17.3 angeordnet ist, so dass durch jedes dieser Schaltventile 23 eine Kühlmittelzufuhr von dem Leitungsquersegment 17.4 zu einem Leitungslängssegment 17.2 und allen damit verbundenen Leitungsendsegmenten 17.1 unterbrechbar ist. Ferner ist im Unterschied zu dem in den Figuren 2 und 3 dargestellten Ausführungsbeispiel in jedem Leitungsendsegment 17.1 ein Rückschlagventil 43 angeordnet, um nach dem Sperren einer Kühlmittelzufuhr zu dem Leitungsendsegment 17.1 durch das entsprechende Schaltventil 23 eine Ausgabe von Kühlmittel 19, das sich in Leitungssegmenten 17.1 bis 17.3 zwischen dem Schaltventil 23 und Rückschlagventil 43 befindet, auf den Strang 9 zu verhindern. Figure 4 shows schematically an exemplary embodiment, not according to the invention, of a cooling device 7 for secondary cooling of a strand 9 in a continuous casting plant 1 in a to Figure 2 analog perspective representation. This in Figure 4 The illustrated embodiment differs from that in the Figures 2 and 3rd illustrated embodiment in that a switching valve 23 for a coolant outlet 21 is not arranged in each of the line end segments 17.1, but that for each longitudinal row of coolant outlets 21 only one switching valve 23 connected to the control unit 27 via a control line 25.1 to 25.4 is arranged in an intermediate line segment 17.3 is, so that a coolant supply from the line cross segment 17.4 to a line longitudinal segment 17.2 and all the line end segments 17.1 connected to it can be interrupted by each of these switching valves 23. Furthermore, in contrast to that in the Figures 2 and 3rd shown embodiment in each line end segment 17.1 a check valve 43 is arranged in order, after a coolant supply to the line end segment 17.1 has been blocked by the corresponding switching valve 23, an output of coolant 19, which is located in line segments 17.1 to 17.3 between the switching valve 23 and check valve 43, to the Strand 9 to prevent.

Abgesehen von diesen Unterschieden ist die Kühlungsvorrichtung 7 des in Figur 4 dargestellten Ausführungsbeispiels analog zu dem in den Figuren 2 und 3 dargestellten Ausführungsbeispiel ausgebildet. Insbesondere sind die Schaltventile 23 wie die Schaltventile 23 des in den Figuren 2 und 3 dargestellten Ausführungsbeispiels als Auf-/Zu-Ventile ausgebildet, die durch die Steuereinheit 27 in unten näher beschriebener Weise schaltbar sind. Die Leitungsendsegmente 17.1 weisen jeweils wiederum eine Auslassdüse 33 auf, deren Düsenspitze 33.1 vorzugsweise austauschbar ausgeführt ist.Apart from these differences, the cooling device 7 of the in Figure 4 illustrated embodiment analogous to that in the Figures 2 and 3rd illustrated embodiment formed. In particular, the switching valves 23 are like the switching valves 23 in the Figures 2 and 3rd illustrated embodiment as on / off valves formed, which can be switched by the control unit 27 in a manner described in more detail below. The line end segments 17.1 in turn each have an outlet nozzle 33, the nozzle tip 33.1 of which is preferably designed to be exchangeable.

Gegenüber dem in den Figuren 2 und 3 dargestellten Ausführungsbeispiel erfordert das in Figur 4 dargestellte Ausführungsbeispiel vorteilhaft weniger Schaltventile 23. Gegenüber dem in Figur 4 dargestellten Ausführungsbeispiel ermöglicht das in den Figuren 2 und 3 dargestellte Ausführungsbeispiel jedoch eine höhere Taktfrequenz der pulsweitenmodulierten Schaltung der Schaltventile 23 (bei Verwendung gleichartiger Schaltventile 23 in beiden Ausführungsbeispielen), ermöglicht bei einer individuellen Ansteuerung der Schaltventile 23 eine flexiblere Steuerung der Kühlung und reduziert die Auswirkungen eines Ausfalls eines einzelnen Schaltventils 23, da sich ein solcher Ausfall auf einen kleineren Oberflächenbereich des Strangs 9 auswirkt.Compared to that in the Figures 2 and 3rd The illustrated embodiment requires that in Figure 4 The illustrated embodiment advantageously has fewer switching valves 23. Compared to the one shown in Figure 4 illustrated embodiment allows in the Figures 2 and 3rd However, a higher clock frequency of the pulse-width-modulated switching of the switching valves 23 (when using similar switching valves 23 in both embodiments) enables a more flexible control of the cooling with an individual control of the switching valves 23 and reduces the effects of a failure of an individual switching valve 23, since a such failure affects a smaller surface area of the strand 9.

Die Figuren 5 bis 7 illustrieren ein Kühlungsverfahren zur Sekundärkühlung eines Strangs 9 in einer Stranggießanlage 1 mit einer Kühlungsvorrichtung 7, die wie eines der in den Figuren 2 bis 4 dargestellten Ausführungsbeispiele ausgebildet ist.The Figures 5 to 7 illustrate a cooling method for secondary cooling of a strand 9 in a continuous casting installation 1 with a cooling device 7, which is like one of the in FIGS Figures 2 to 4 illustrated embodiments is formed.

Figur 5 zeigt ein Diagramm für einen Kühlmitteldruck P in Abhängigkeit von einen Kühlmitteleinzelstrom Q durch eine Auslassdüse 33 der Kühlungsvorrichtung 7, die wie eines der in den Figuren 2 und 4 darstellten Ausführungsbeispiele ausgebildet ist. Bei dem Kühlungsverfahren wird der von der Auslassdüse 33 durch den Kühlmittelauslass 21 abgegebene Kühlmitteleinzelstrom Q in wenigstens einem Strombereich ΔQ für seinen zeitlichen Mittelwert Q durch eine pulsweitenmodulierte Ansteuerung eines Schaltventils 23 ein- und abgeschaltet und somit selbst pulsweitenmoduliert, siehe Figur 6. In dem in Figur 5 dargestellten Beispiel wird dieser Strombereich ΔQ von einem Schwellenstrom QS begrenzt, der zu einem Schwellendruck PS korrespondiert. Darstellt sind ferner ein Maximaldruck PM und ein korrespondierender Maximalstrom QM, für welche die Auslassdüse 33 ausgelegt ist. Figure 5 FIG. 11 shows a diagram for a coolant pressure P as a function of a single coolant flow Q through an outlet nozzle 33 of the cooling device 7, which, like one of the in FIGS Figures 2 and 4th illustrated embodiments is formed. In the cooling method, the individual coolant flow Q emitted from the outlet nozzle 33 through the coolant outlet 21 is in at least one flow range ΔQ for its mean value over time Q switched on and off by a pulse-width-modulated control of a switching valve 23 and thus itself pulse-width-modulated, see Figure 6 . In the in Figure 5 example shown is this Current range ΔQ limited by a threshold current Q S , which corresponds to a threshold pressure P S. A maximum pressure P M and a corresponding maximum flow Q M , for which the outlet nozzle 33 is designed, are also shown.

Der Schwellenstrom QS wird dabei derart vorgegeben, dass der Kühlmitteldruck P unterhalb des korrespondierenden Schwellendrucks PS nicht mehr ausreicht, um ein vorgesehenes Strahlprofil eines von der Auslassdüse 33 ausgegebenen Kühlmittelstrahls, insbesondere einen vorgesehenen Öffnungswinkel des Kühlmittelstrahls, zu realisieren, um einen ausreichend großen Bereich der Strangoberfläche 9.3 mit dem Kühlmittelstrahl abzudecken.The threshold flow Q S is specified in such a way that the coolant pressure P below the corresponding threshold pressure P S is no longer sufficient to achieve an intended jet profile of a coolant jet emitted by the outlet nozzle 33, in particular an intended opening angle of the coolant jet, to achieve a sufficiently large area to cover the strand surface 9.3 with the coolant jet.

Oberhalb des Schwellenstroms QS werden die Kühlmitteleinzelströme Q in der üblichen Weise, d. h. ohne Pulsweitenmodulation ausgegeben. Dazu werden die Schaltventile 23 der zu erzeugenden Kühlmitteleinzelströme Q geöffnet und der Kühlmitteldruck P oder ein Kühlmittelstrom in dem Kühlmittelverteilungssystem 15 wird mittels eines Regelkreises 45 auf einen von den zu erzeugenden Kühlmitteleinzelströmen Q abhängigen Sollwert geregelt, siehe dazu Figur 9.Above the threshold current Q S , the individual coolant flows Q are output in the usual way, ie without pulse width modulation. For this purpose, the switching valves 23 of the individual coolant flows Q to be generated are opened and the coolant pressure P or a coolant flow in the coolant distribution system 15 is regulated by means of a control circuit 45 to a setpoint dependent on the individual coolant flows Q to be generated, see Figure 9 .

Figur 6 zeigt einen Verlauf eines pulsweitenmodulierten Kühlmitteleinzelstroms Q einer Auslassdüse 33 in Abhängigkeit von einer Zeit t. Die Pulsweitenmodulation hat eine Taktperiode der Periodenlänge T bzw. eine Taktfrequenz 1/T. In dem dargestellten Beispiel hat der Kühlmitteleinzelstrom Q in einer ersten Hälfte jeder Taktperiode einen konstanten, von Null verschiedenen Strompulswert QP und verschwindet in der zweiten Hälfte jeder Taktperiode. Dementsprechend ist der zeitliche Mittelwert Q des Kühlmitteleinzelstroms Q in diesem Beispiel halb so groß wie der Strompulswert QP. Figure 6 shows a profile of a pulse-width-modulated individual coolant flow Q of an outlet nozzle 33 as a function of a time t. The pulse width modulation has a clock period of the period length T or a clock frequency 1 / T. In the example shown, the individual coolant flow Q has a constant, non-zero current pulse value Q P in a first half of each clock period and disappears in the second half of each clock period. The time average is accordingly Q of the individual coolant flow Q in this example is half as large as the current pulse value Q P.

Durch die Pulsweitenmodulation können mit einem Strompulswert QP, der größer als der Schwellenstrom QS ist, Mittelwerte Q eines Kühlmitteleinzelstroms Q realisiert werden, die kleiner als der Schwellenstrom QS sind. Mit anderen Worten können Kühlmitteleinzelströme Q realisiert werden, deren zeitliche Mittelwerte Q kleiner als der Schwellenstrom QS sind und die dennoch ein vorgesehenes Strahlprofil eines von der Auslassdüse 33 ausgegebenen Kühlmittelstrahls erzeugen.The pulse width modulation allows mean values with a current pulse value Q P that is greater than the threshold current Q S Q a single coolant flow Q can be realized, which is smaller than the threshold current Q S. In other words, individual coolant flows Q can be realized, their mean values over time Q are smaller than the threshold flow Q S and which nevertheless generate an intended jet profile of a coolant jet emitted by the outlet nozzle 33.

Figur 7 zeigt diagrammatisch zeitliche Verläufe von Kühlmittelströmen Q1 bis Q4 und eines Kühlmittelgesamtstroms QG, die von einer Kühlungsvorrichtung 7 zur Sekundärkühlung eines Strangs 9 in einer Stranggießanlage 1 infolge einer pulsweitenmodulierten Schaltung der Schaltventile 23 ausgegeben werden. Dabei ist die Kühlungsvorrichtung 7 wie eines der in den Figuren 2 oder 4 dargestellten Ausführungsbeispiele ausgebildet, wobei sich Figur 7 zur Vereinfachung der Darstellung auf eine Kühlungsvorrichtung 7 mit nur vier Längsreihen von Kühlmittelauslässen 21 statt wie in den Ausführungsbeispielen der Figuren 2 und 4 acht Längsreihen bezieht (Figur 7 kann auch zeitliche Verläufe von Kühlmittelströmen Q1 bis Q4 und eines Kühlmittelgesamtstroms QG der in den Figuren 2 oder 4 dargestellten Hälften der jeweiligen Kühlungsvorrichtungen 7 darstellen, wobei die jeweils nicht dargestellten anderen Hälften analog gesteuert werden). Figure 7 shows diagrammatically temporal progressions of coolant flows Q 1 to Q 4 and a total coolant flow Q G , which are output by a cooling device 7 for secondary cooling of a strand 9 in a continuous casting plant 1 as a result of a pulse-width-modulated switching of the switching valves 23. The cooling device 7 is like one of the in the Figures 2 or 4th illustrated embodiments formed, wherein Figure 7 to simplify the illustration of a cooling device 7 with only four longitudinal rows of coolant outlets 21 instead of as in the exemplary embodiments of FIG Figures 2 and 4th eight longitudinal rows refers to ( Figure 7 can also show temporal progressions of coolant flows Q 1 to Q 4 and a total coolant flow Q G in the Figures 2 or 4th represent the halves of the respective cooling devices 7 shown, the other halves (not shown) being controlled analogously).

Die Kühlmittelströme Q1 bis Q4 werden jeweils von allen Kühlmittelauslässen 21 einer Längsreihe zusammen ausgegeben und sind daher jeweils eine Summe der Kühlmitteleinzelströme Q der Kühlmittelauslässe 21 einer Längsreihe, wobei die Kühlmitteleinzelströme Q jeweils analog zu Figur 6 pulsweitenmoduliert sind. Der Kühlmittelgesamtstrom QG wird von den Kühlmittelauslässen 21 aller dieser Längsreihen zusammen ausgegeben und ist die Summe der Kühlmittelströme Q1 bis Q4.The coolant flows Q 1 to Q 4 are each output from all coolant outlets 21 of a longitudinal row together and are therefore each a sum of the individual coolant flows Q of the coolant outlets 21 of a longitudinal row, the individual coolant flows Q each being analogous to Figure 6 are pulse width modulated. The total coolant flow Q G is output from the coolant outlets 21 of all these longitudinal rows together and is the sum of the coolant flows Q 1 to Q 4 .

Die Schaltventile 23 werden von der Steuereinheit 27 pulsweitenmoduliert mit einer Taktperiode der Periodenlänge T bzw. mit einer Taktfrequenz 1/T geschaltet. Dabei werden die Schaltventile 23 für die verschiedenen Längsreihen von Kühlmittelauslässen 21 zeitversetzt zueinander geschaltet, so dass der Kühlmittelgesamtstrom QG zeitlich konstant ist. In dem in Figur 7 dargestellten Beispiel werden die Schaltventile 23 derart geschaltet, dass ein erster Kühlmittelstrom Q1 während einer zweiten Hälfte jeder Taktperiode verschwindet, ein zweiter Kühlmittelstrom Q2 während eines ersten und letzten Viertels jeder Taktperiode verschwindet, ein dritter Kühlmittelstrom Q3 während der ersten Hälfte jeder Taktperiode verschwindet, ein vierter Kühlmittelstrom Q4 während eines zweiten und dritten Viertels jeder Taktperiode verschwindet und die Kühlmittelströme Q1 bis Q4 in den verbleibenden Zeiten einen konstanten, für alle Längsreihen gleichen, von Null verschiedenen Wert annehmen, der halb so groß wie der Kühlmittelgesamtstrom QG ist.The switching valves 23 are switched by the control unit 27 in a pulse width modulated manner with a clock period of the period length T or with a clock frequency 1 / T. The switching valves 23 for the various longitudinal rows of Coolant outlets 21 are switched with a time offset to one another, so that the total coolant flow Q G is constant over time. In the in Figure 7 In the illustrated example, the switching valves 23 are switched in such a way that a first coolant flow Q 1 disappears during a second half of each cycle period, a second coolant flow Q 2 disappears during a first and last quarter of each cycle period, and a third coolant flow Q 3 disappears during the first half of each cycle period , a fourth coolant flow Q 4 disappears during a second and third quarter of each cycle period and the coolant flows Q 1 to Q 4 in the remaining times assume a constant, non-zero value for all longitudinal rows, which is half the total coolant flow Q G is.

Der Kühlmittelgesamtstrom QG wird dabei bei der Pulsweitenmodulation auf einen vorgegebenen Sollwert geregelt. Dazu wird ein Istwert des Kühlmittelgesamtstroms QG ermittelt und ein Tastgrad D und die Periodenlänge T der Pulsweitenmodulation werden in Abhängigkeit von einer Abweichung des ermittelten Istwertes von dem Sollwert geregelt. Unter dem Tastgrad D der Pulsweitenmodulation wird wie üblich das Verhältnis einer Pulsdauer während einer Taktperiode zu der Periodenlänge T verstanden. In den in den Figuren 6 und 7 dargestellten Beispielen beträgt der Tastgrad D beispielsweise jeweils 50%. Um den Istwert des Kühlmittelgesamtstroms QG zu ermitteln, werden beispielsweise jeweils Kühlmitteldrücke P in Leitungssegmenten 17.1 bis 17.4, über die Kühlmitteleinzelströme Q ausgegeben werden, erfasst und daraus mittels Strom-Druck-Kennlinien auf die jeweils ausgegebenen Kühlmitteleinzelströme Q geschlossen. Der Istwert des Kühlmittelgesamtstroms QG wird dann als Summe dieser Kühlmitteleinzelströme Q, jeweils multipliziert mit dem jeweiligen Tastgrad D der Pulsweitenmodulation, gebildet.The total coolant flow Q G is regulated to a predetermined setpoint during the pulse width modulation. For this purpose, an actual value of the total coolant flow Q G is determined and a duty cycle D and the period length T of the pulse width modulation are regulated as a function of a deviation of the determined actual value from the setpoint. As usual, the duty cycle D of the pulse width modulation is understood to mean the ratio of a pulse duration during a clock period to the period length T. In the in the Figures 6 and 7th In the examples shown, the duty cycle D is, for example, 50% in each case. In order to determine the actual value of the total coolant flow Q G , for example, coolant pressures P in line segments 17.1 to 17.4, via which individual coolant flows Q are output, are recorded and the individual coolant flows Q output in each case are deduced from this by means of current-pressure characteristics. The actual value of the total coolant flow Q G is then formed as the sum of these individual coolant flows Q, each multiplied by the respective duty cycle D of the pulse width modulation.

Figur 8 zeigt den Tastgrad D der Pulsweitenmodulation eines Kühlmitteleinzelstroms Q in Abhängigkeit von dem Mittelwert Q des Kühlmitteleinzelstroms Q in dem Strombereich ΔQ. In dem Strombereich ΔQ liegende zeitliche Mittelwerte Q der Kühlmitteleinzelströme Q werden erzeugt, indem der Kühlmitteldruck P in dem Kühlmittelverteilungssystem 15 auf einen konstanten Druckwert, der mindestens so groß wie der Schwellendruck PS ist, eingestellt wird und jeder Kühlmitteleinzelstrom Q durch eine pulsweitenmodulierte Ansteuerung eines Schaltventils 23 mit einem von dem zu erzeugenden Mittelwert Q abhängigen Tastgrad D pulsweitenmoduliert wird. Der Tastgrad D steigt daher innerhalb des Strombereichs ΔQ mit steigendem Mittelwert Q bis zu einem Tastgradendwert Dm an. Im Fall, dass der Kühlmitteldruck P in dem Kühlmittelverteilungssystem 15 auf den Schwellendruck PS eingestellt wird, nimmt der Tastgradendwert Dm beispielsweise den Wert 1 an. Wenn der Kühlmitteldruck P in dem Kühlmittelverteilungssystem 15 auf einen größeren Druckwert eingestellt wird, ist der Tastgradendwert Dm entsprechend kleiner. Figure 8 shows the duty cycle D of the pulse width modulation of an individual coolant flow Q as a function of the mean value Q of the individual coolant flow Q in the flow range ΔQ. By doing Temporal mean values lying in the current range ΔQ Q of the individual coolant flows Q are generated by setting the coolant pressure P in the coolant distribution system 15 to a constant pressure value that is at least as high as the threshold pressure P S and each individual coolant flow Q by a pulse-width-modulated control of a switching valve 23 with an average value to be generated Q dependent duty cycle D is pulse width modulated. The duty cycle D therefore increases within the current range ΔQ as the mean value increases Q up to a duty cycle end value D m . In the event that the coolant pressure P in the coolant distribution system 15 is set to the threshold pressure P S , the duty cycle end value D m assumes the value 1, for example. If the coolant pressure P in the coolant distribution system 15 is set to a higher pressure value, the duty cycle end value D m is correspondingly smaller.

Bei dem Kühlungsverfahren wird ferner eine Auswahl von Kühlmittelauslässen 21, durch die Kühlmitteleinzelströme Q ausgegeben werden, in Abhängigkeit von einer Breite des Strangs 9 getroffen. Dabei werden durch Kühlmittelauslässe 21, die zur Kühlung des Strangs 9 nicht benötigt werden, da sie sich neben der Strangoberfläche 9.3 befinden, beispielsweise nur jeweils Ausblasluft in einer Pulspause oder ein kurzer Wasserpuls abgegeben, um ein Verstopfen dieser Kühlmittelauslässe 21 zu verhindern.In the cooling method, a selection of coolant outlets 21, through which individual coolant flows Q are output, is also made as a function of a width of the strand 9. Coolant outlets 21, which are not required to cool the strand 9 because they are located next to the strand surface 9.3, for example only release blow-out air in a pulse pause or a short water pulse to prevent these coolant outlets 21 from clogging.

Figur 9 zeigt einen Regelkreis 45 zur Regelung eines Kühlmitteldrucks P oder Kühlmittelstroms in dem Kühlmittelverteilungssystem 15, um Kühlmitteleinzelströme Q zu erzeugen, die größer als der Schwellenstrom QS sind. Die Regelgröße R des Regelkreises 45 ist daher der Kühlmitteldruck P oder Kühlmittelstrom in dem Kühlmittelverteilungssystem 15. Eine Führungsgröße S des Regelkreises 45 ist dementsprechend ein von den Kühlmitteleinzelströmen Q abhängiger Sollwert des Kühlmitteldrucks P oder Kühlmittelstroms in dem Kühlmittelverteilungssystem 15. Der Regelkreis 45 umfasst einen Regler 47, eine Regelstrecke 49 und ein Messglied 51. Der Regler 47 ist eine Pumpe zur direkten Erzeugung eines Kühlmitteldrucks P oder Kühlmittelstroms in dem Kühlmittelverteilungssystem 15, oder eine Pumpe mit einem ihr nachgeschalteten Druck- oder Stromregler zur Reduzierung eines von der Pumpe erzeugten Kühlmitteldrucks P oder Kühlmittelstroms in dem Kühlmittelverteilungssystem 15. Die Regelstrecke 49 ist das Kühlmittelverteilungssystem 15. Das Messglied 51 ist eine Druckerfassungsvorrichtung 29 zur Erfassung des Kühlmitteldrucks P oder eine Stromerfassungsvorrichtung zur Erfassung eines Kühlmittelstroms in dem Kühlmittelverteilungssystem 15. Zur Regelung der Regelgröße R wird eine Regelabweichung E der Regelgröße R von der Führungsgröße S gebildet. Der Regler 47 erzeugt eine von der Regelabweichung E abhängige Stellgröße U, um die Regelabweichung B zu reduzieren. Figure 9 shows a control circuit 45 for regulating a coolant pressure P or coolant flow in the coolant distribution system 15 in order to generate individual coolant flows Q which are greater than the threshold flow Q S. The controlled variable R of the control loop 45 is therefore the coolant pressure P or coolant flow in the coolant distribution system 15. A reference variable S of the control loop 45 is accordingly a setpoint value of the coolant pressure P or coolant flow in the which depends on the individual coolant flows Q Coolant distribution system 15. The control circuit 45 comprises a controller 47, a controlled system 49 and a measuring element 51. The controller 47 is a pump for the direct generation of a coolant pressure P or coolant flow in the coolant distribution system 15, or a pump with a downstream pressure or flow controller for Reduction of a coolant pressure P or coolant flow generated by the pump in the coolant distribution system 15. The controlled system 49 is the coolant distribution system 15. The measuring element 51 is a pressure detection device 29 for detecting the coolant pressure P or a flow detection device for detecting a coolant flow in the coolant distribution system 15 Controlled variable R, a system deviation E of the controlled variable R from the reference variable S is formed. The controller 47 generates a manipulated variable U that is dependent on the control deviation E in order to reduce the control deviation B.

Obwohl die Erfindung im Detail durch ein bevorzugtes Ausführungsbeispiel (vgl. Figuren 2 und 3) näher illustriert und beschrieben wurde, so ist die Erfindung nicht durch das offenbarte Beispiel eingeschränkt und andere Variationen können vom Fachmann hieraus abgeleitet werden, ohne den Schutzumfang der Erfindung zu verlassen.Although the invention is detailed by a preferred embodiment (cf. Figures 2 and 3rd ) has been illustrated and described in more detail, the invention is not restricted by the example disclosed and other variations can be derived from this by the person skilled in the art without departing from the scope of protection of the invention.

BezugszeichenlisteList of reference symbols

11
StranggießanlageContinuous caster
33
KokilleMold
44th
OszillationseinrichtungOscillation device
55
StrangführungStrand guide
77th
KühlungsvorrichtungCooling device
99
Strangstrand
9.19.1
StrangrandStrand edge
9.29.2
MittelachseCentral axis
9.39.3
StrangoberflächeStrand surface
1111
TransportrichtungTransport direction
1313th
StrangführungsrolleStrand guide roller
1515th
KühlmittelverteilungssystemCoolant distribution system
17.117.1
LeitungsendsegmentLine end segment
17.217.2
LeitungslängssegmentLine length segment
17.317.3
LeitungszwischensegmentLine intermediate segment
17.417.4
LeitungsquersegmentLine cross segment
1919th
KühlmittelCoolant
2121
KühlmittelauslassCoolant outlet
2323
SchaltventilSwitching valve
25.1 bis 25.425.1 to 25.4
SteuerleitungControl line
2727
SteuereinheitControl unit
2929
DruckerfassungsvorrichtungPressure detection device
3131
DrucksignalleitungPressure signal line
3333
AuslassdüseOutlet nozzle
33.133.1
DüsenspitzeNozzle tip
33.233.2
DüsenkörperNozzle body
3535
SegmentrohrSegment tube
3737
VerbindungsflanschConnecting flange
37.1, 37.237.1, 37.2
FlanschöffnungFlange opening
3939
Rohr-Ventil-SchraubverbindungPipe-valve screw connection
4141
Ventil-Düse-SchraubverbindungValve-nozzle screw connection
4242
ZentrierungsbolzenCentering bolt
4343
Rückschlagventilcheck valve
4545
RegelkreisControl loop
4747
ReglerRegulator
4949
RegelstreckeControlled system
5151
MessgliedMeasuring element
DD.
TastgradDuty cycle
DmDm
TastgradendwertDuty cycle end value
EE.
RegelabweichungControl deviation
PP
KühlmitteldruckCoolant pressure
PSPS
SchwellendruckThreshold pressure
PMPM
MaximaldruckMaximum pressure
RR.
RegelgrößeControlled variable
QQ
KühlmitteleinzelstromIndividual coolant flow
QPQP
StrompulswertCurrent pulse value
Q1 bis Q4Q1 to Q4
KühlmittelstromCoolant flow
QGQG
KühlmittelgesamtstromTotal coolant flow
QSQS
SchwellenstromThreshold current
QMQM
MaximalstromMaximum current
ΔQΔQ
StrombereichCurrent range
QQ
MittelwertAverage
SS.
FührungsgrößeReference variable
tt
Zeittime
TT
PeriodenlängePeriod length
UU
StellgrößeManipulated variable

Claims (10)

  1. Line end segment (17.1) of a coupling device (7) for the secondary cooling of a strand (9) in a strand guide (5) of a continuous casting installation (1), the line end segment (17.1) comprising
    - an outlet nozzle (33) with a coolant outlet (21) for discharging coolant (19),
    - a switchover valve (23) for switching an individual coolant stream (Q) on and off,
    - a segmented pipe (35) for guiding the coolant (19) to the coolant outlet (21) of the outlet nozzle (33) and for guiding an end portion of a control line (25.1 to 25.4) for switching the switchover valve (23) to the switchover valve (23),
    - a connecting flange (37) with a first flange opening (37.1) for feeding the coolant (19) into the segmented pipe (35) and a second flange opening (37.2) for guiding the control line (25.1 to 25.4) into the segmented pipe (35), wherein
    - the connecting flange (37) is arranged at a first end of the segmented pipe (35) and the switchover valve (23) is arranged at a second end of the segmented pipe (35),
    the outlet nozzle (33) is arranged at the switchover valve (23) and
    - the segmented pipe (35) has an outer pipe and an inner pipe running in the outer pipe, wherein the coolant (19) is guided between the outer pipe and the inner pipe and the inner pipe forms or surrounds the end portion of the control line (25.1 to 25.4).
  2. Line end segment (17.1) according to Claim 1, characterized in that the switchover valve (23) is a pneumatically or electrically or electromagnetically or hydraulically switchable switchover valve (23).
  3. Line end segment (17.1) according to Claim 2, characterized in that the control line (25.1 to 25.4) in the case of a pneumatically switchable switchover valve (23) is a pneumatic compressed air line, in the case of an electrically or electromagnetically switchable switchover valve (23) is an electrical line and in the case of a hydraulically switchable switchover valve (23) is a hydraulic fluid line.
  4. Line end segment (17.1) according to one of the preceding claims, characterized in that the outlet nozzle (33) has an exchangeable nozzle tip (33.1).
  5. Line end segment (17.1) according to one of the preceding claims, characterized in that the switchover valve (23) is screwed onto the segmented pipe (35), in particular by a pipe-valve screw connection (39), which is formed by an external thread on an outer surface of the segmented pipe (35) and a corresponding internal thread of the switchover valve (23).
  6. Line end segment (17.1) according to one of the preceding claims, characterized in that the outlet nozzle (33) has a nozzle tip (33.1) with the coolant outlet (21) and a nozzle main body (33.2).
  7. Line end segment (17.1) according to the preceding claims, characterized in that the nozzle main body (33.2) is screwed onto the switchover valve (23), in particular by a valve-nozzle screw connection (41), which is formed by an external thread on an outer surface of the switchover valve (23) and a corresponding internal thread of the nozzle main body (33.2).
  8. Line end segment (17.1) according to one of the preceding Claims 6 or 7, characterized in that the nozzle tip (33.1) is screwed to the nozzle main body (33.2), in particular by an internal thread of the nozzle body (33.2) and a corresponding external thread of the nozzle tip (33.1).
  9. Line end segment (17.1) according to one of the preceding claims, characterized in that the connecting flange (37) has a centring bolt (42) arranged between the flange openings (37.1, 37.2) .
  10. Coiling device (7) for the secondary cooling of a strand (9) in a strand guide (5) of a continuous casting installation (1), the cooling device (7) comprising at least one line end segment (17.1) according to at least one of the preceding claims.
EP18179585.7A 2015-09-07 2016-08-31 Secondary cooling of a strand in a strand casting assembly Active EP3417959B1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
AT507672015 2015-09-07
ATA50985/2015A AT517772B1 (en) 2015-09-07 2015-11-19 Secondary cooling of a strand in a continuous casting plant
EP16757916.8A EP3347151B1 (en) 2015-09-07 2016-08-31 Secondary cooling of a strand in a strand casting system
PCT/EP2016/070441 WO2017042059A1 (en) 2015-09-07 2016-08-31 Secondary cooling of a strand in a strand casting system

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
EP16757916.8A Division EP3347151B1 (en) 2015-09-07 2016-08-31 Secondary cooling of a strand in a strand casting system
EP16757916.8A Division-Into EP3347151B1 (en) 2015-09-07 2016-08-31 Secondary cooling of a strand in a strand casting system

Publications (2)

Publication Number Publication Date
EP3417959A1 EP3417959A1 (en) 2018-12-26
EP3417959B1 true EP3417959B1 (en) 2021-05-26

Family

ID=58504997

Family Applications (2)

Application Number Title Priority Date Filing Date
EP18179585.7A Active EP3417959B1 (en) 2015-09-07 2016-08-31 Secondary cooling of a strand in a strand casting assembly
EP16757916.8A Active EP3347151B1 (en) 2015-09-07 2016-08-31 Secondary cooling of a strand in a strand casting system

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP16757916.8A Active EP3347151B1 (en) 2015-09-07 2016-08-31 Secondary cooling of a strand in a strand casting system

Country Status (3)

Country Link
EP (2) EP3417959B1 (en)
AT (1) AT517772B1 (en)
BR (1) BR112018004427B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT520006B1 (en) 2017-06-07 2021-08-15 Primetals Technologies Austria GmbH COOLANT NOZZLE FOR COOLING A METALLIC STRAND IN A CONTINUOUS CASTING PLANT

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT409940B (en) * 2001-02-20 2002-12-27 Voest Alpine Ind Anlagen TWO-MATERIAL SHAFT NOZZLE AND CONTINUOUS CASTING SYSTEM WITH AN ARRANGEMENT OF TWO-FABRIC SHAFT NOZZLES
AT503526B1 (en) * 2006-04-25 2008-07-15 Voest Alpine Ind Anlagen SPRAY NOZZLE ADJUSTMENT
EP2583772B1 (en) * 2010-05-19 2015-10-21 SMS group GmbH Strand guiding device
EP2527061A1 (en) * 2011-05-27 2012-11-28 Siemens VAI Metals Technologies GmbH Method for cooling a metallic strand and switching valve for intermittent opening and closing of a volume flow of a coolant medium
DE202011110064U1 (en) * 2011-06-07 2012-11-16 Sms Siemag Ag Nozzle device and strand guiding device with the nozzle device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
AT517772A1 (en) 2017-04-15
BR112018004427A2 (en) 2018-10-02
EP3347151A1 (en) 2018-07-18
EP3347151B1 (en) 2021-05-19
EP3417959A1 (en) 2018-12-26
AT517772B1 (en) 2018-12-15
BR112018004427B1 (en) 2022-08-23

Similar Documents

Publication Publication Date Title
WO2017042059A1 (en) Secondary cooling of a strand in a strand casting system
DE4211291C3 (en) Mixing device and method for mixing two liquids at a constant mixture volume flow to supply the headbox of a paper machine
EP2714304B1 (en) Method for cooling a metallic strand, and switching valve for intermittently permitting and shutting off a volume flow of a cooling medium
AT516075B1 (en) Cooling of a metallic strand section
DE102017214450B3 (en) Spray gun and method for cooling a metallic strand in a continuous casting machine
WO1997011833A1 (en) Process for the variable limitation of a flat flow channel and process for extracting a mass channel of variable geometry
EP1900449B1 (en) Spray header of a hydraulic descaling facility and method for operating such a spray header
EP3417959B1 (en) Secondary cooling of a strand in a strand casting assembly
AT506673B1 (en) METHOD FOR LIQUID HOLDING ON A CAST METAL STRUCTURE IN A CONTINUOUS CASTING SYSTEM AND CONTINUOUS CASTING SYSTEM THEREFOR
DE60312107T2 (en) Air supply device for jet loom
EP1393817A2 (en) Device for applying coating material
EP2712691B1 (en) Device and method for secondary cooling in a casting machine
EP3774099B1 (en) Cooling device and method for operating the same
EP3056957B1 (en) Diagnostic device and method for monitoring the operation of a closed loop
DE102013214809A1 (en) Apparatus and method for controlled multi-material secondary cooling of a cast metal strand
DE102017105614A1 (en) Method and cooling device for cooling a metallic strand
DE102012014665A1 (en) Electric arc spraying burner for coating surfaces of cylinder of engine, has deflecting element to deflect process gas from gas supply direction into main gas direction for atomization and transport of molten material
DE69028850T2 (en) DRIP IRRIGATION PIPE AND METHOD FOR THE PRODUCTION THEREOF
DE2657986A1 (en) LEVELING MACHINE FOR LEVELING PLATES AND FLAT MATERIALS
EP0403035B1 (en) Method for attaining a temperature in a metal bath
EP3877142A1 (en) Switching device and method for switching a flat film machine from an input product to a subsequent product
EP3934823B1 (en) Apparatus for cooling a strip-shaped product, and method for operating such an apparatus
DE4133501C2 (en) Device for applying coating color on a fibrous web
DE102023005409A1 (en) Control device for controlling a pressure of a fluid
WO2011082893A1 (en) Nozzle device and strand guiding device having said nozzle device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AC Divisional application: reference to earlier application

Ref document number: 3347151

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17P Request for examination filed

Effective date: 20190626

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

17Q First examination report despatched

Effective date: 20190725

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210205

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AC Divisional application: reference to earlier application

Ref document number: 3347151

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1395707

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210615

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016013120

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210826

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210927

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210826

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210827

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016013120

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210831

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210831

26N No opposition filed

Effective date: 20220301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210926

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210831

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210831

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210831

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210831

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1395707

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160831

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230825

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240821

Year of fee payment: 9