EP3417322B1 - Verfahren zur herstellung von mindestens einer halbleitenden struktur mit einem stapel aus einer oder mehreren aluminiumgalliumarsenidschichten - Google Patents

Verfahren zur herstellung von mindestens einer halbleitenden struktur mit einem stapel aus einer oder mehreren aluminiumgalliumarsenidschichten Download PDF

Info

Publication number
EP3417322B1
EP3417322B1 EP17704512.7A EP17704512A EP3417322B1 EP 3417322 B1 EP3417322 B1 EP 3417322B1 EP 17704512 A EP17704512 A EP 17704512A EP 3417322 B1 EP3417322 B1 EP 3417322B1
Authority
EP
European Patent Office
Prior art keywords
thickness
layer
semiconducting
oxidised
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17704512.7A
Other languages
English (en)
French (fr)
Other versions
EP3417322A1 (de
Inventor
Giuseppe Leo
Oleksandr STEPANENKO
Aristide Lemaitre
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Universite Paris Cite
Original Assignee
Centre National de la Recherche Scientifique CNRS
Universite Paris Cite
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS, Universite Paris Cite filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP3417322A1 publication Critical patent/EP3417322A1/de
Application granted granted Critical
Publication of EP3417322B1 publication Critical patent/EP3417322B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/32308Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm
    • H01S5/32316Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm comprising only (Al)GaAs
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2004Confining in the direction perpendicular to the layer structure
    • H01S5/2018Optical confinement, e.g. absorbing-, reflecting- or waveguide-layers
    • H01S5/2031Optical confinement, e.g. absorbing-, reflecting- or waveguide-layers characterized by special waveguide layers, e.g. asymmetric waveguide layers or defined bandgap discontinuities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/17Semiconductor lasers comprising special layers
    • H01S2301/173The laser chip comprising special buffer layers, e.g. dislocation prevention or reduction

Definitions

  • the present invention relates to a method for manufacturing a monolithic stack of at least one semiconductor structure having one or more semiconductor layers of Al xi Ga 1-xi As on an electrically insulating layer.
  • Si silicon
  • SOI silicon-on-insulator
  • the announced perspectives of the SOI system are a monolithic integration with the CMOS platform for the electronic part, and a hybrid integration with the InP platform for the laser part.
  • the need for this hybridization is due to the indirect gap Si, which is not a laser material, but two other limitations affect this group IV element: it suffers from two-photon absorption (TPA) at telecom wavelengths (because of its 1.1 eV gap), and it is devoid of second-order nonlinearity (because of its crystalline symmetry).
  • an integrated AlGaAs on insulator photonic platform would be desirable, but until now its development has been hampered on the one hand by the technological complexity of AlGaAs on Si hybridization carried out by wafer bonding and, on the other hand, by by the inefficiency of the process of selective lateral oxidation of thick layers of AlGaAs into layers of AlOx acting as an optical substrate.
  • Two of them fabricated and characterized waveguides comprising a core of GaAs on a thick layer of AlOx.
  • the first gradual oxidation transition and the second gradual oxidation transition correspond to the first aluminum gradient G1 and to the second gradient G2 of the semiconductor layer Al x Ga 1 -x As once this layer has been oxidized.
  • the invention allows a so-called soft transition between the oxidized amorphous substrate of AlOx and the upper crystalline structure made of layers of Al xi Ga 1-xi As, these layers of AlxiGa1-xiAs being for a certain number non-oxidized in order to serve as a high quality optical waveguide.
  • the invention is a method for constructing a structure 1 consisting of the stacking of one or more semi-conducting layers of gallium-aluminum arsenide (Al xi Ga 1-xi As) on a layer of aluminum oxide. aluminum (AlOx) several micrometers thick, the whole being monolithic on a wafer of gallium arsenide (GaAs).
  • Al xi Ga 1-xi As gallium-aluminum arsenide
  • AlOx aluminum
  • GaAs gallium arsenide
  • AIOx designates the material constituting the oxidized gallium-aluminum arsenide layer, contains aluminum and oxygen atoms, and possibly a few galium and arsenic atoms (especially in the gradual oxidation layers), and may be called "Al x Ga 1-x As oxidized”.
  • the strong refractive index jump between the AlOx layer and the stack of Al xi Ga 1-xi As layers ensures the confinement of the light in micro/nano-guides or weakly etched optical micro/nano-resonators.
  • said structure 1 Compared to the SOI platform, said structure 1 has three major advantages, linked to fundamental properties of AlGaAs: i) the absence of two-photon absorption at the wavelengths of optical communications and in particular at 1, 55 ⁇ m; ii) the possibility of laser emission; iii) a second order optical nonlinearity.
  • the specificity of the invention is due to the manufacturing parameters, ranging from the epitaxial growth of a heterostructure 1 to the selective oxidation of some of its AIGaAs layers and not all of them, the method making it possible to select the layers that the it is desired to oxidize by their concentration of Al (those with a high concentration of Aluminum).
  • This new AIGaAs on insulator technology opens the way to non-linear photonics on a monolithic semiconductor chip, for many telecom and environmental applications.
  • the invention is a method for manufacturing at least one upper semiconductor structure 1 having a stack of one or more layers 2 of Al xi Ga 1-xi As, i being an integer greater than or equal to 1, on a layer 3b of electrically insulating AlOx, layer 3b of AlOx having a thickness e sufficient to confine the light in the semiconductor structure 1 by total internal reflection and therefore serve as an optical substrate for the semiconductor layer.
  • FIG. 1g shows the structure during the selective oxidation of the Al x Ga 1-x As layer (in particular the oxidation fronts) and possibly of the oxidized Al xi Ga 1-xi As layers (or AlOx) if xi greater than 0.9.
  • the lithography and etching are carried out so that the two large lateral surfaces of Al x Ga 1-x As, named A and B, here horizontal, on the left and on the right of structure 1, are available to the air to allow significant oxidation, oxidation fronts starting to propagate through these lateral surfaces A and B of the Al x Ga 1-x As layer to then propagate laterally inside the Al x Ga 1-x As layer.
  • the oxidation is much greater laterally via these lateral surfaces A and B, than directly via the vertical heights of the gradients G1 and G2 in the open air, given the extent of these lateral surfaces A and B, and the contents aluminum much lower in these heights than the layer of thickness e0 of Al x Ga 1-x As.
  • the semiconductor layer 3a of Al x Ga 1-x As can have a given thickness e of a few hundred nanometers up to several micrometers.
  • This Al x Ga 1 -x As layer which is said to be thick as opposed to the so-called thin layers which are a few tens of nanometers, serves as an optical substrate for the semiconductor structure 1.
  • It has a thickness greater than at least 200 nm.
  • It has a thickness e of less than 10 micrometers, or 5 micrometers depending on the applications and the semiconductor structures envisaged and the desired confinement of the light.
  • the invention makes it possible to have, for a certain number of applications, layers of AlOx smaller than one micrometer.
  • the first aluminum G1 gradient (progressive and continuous variation of the aluminum G1 fraction) can be produced over a thickness between 80 and 100 nm to improve the mechanical strength of layer 3b of AlOx obtained by oxidation of the semiconductor layer 3a of Al x Ga 1-x As.
  • the second gradient of aluminum G2 (progressive and continuous variation of the fraction of aluminum G1) can be carried out over a thickness between 80 and 100 nm to improve the mechanical strength of layer 3b of AlOx obtained by oxidation of the layer 3a of Al x Ga 1-x As and the confinement of the waves in the semiconductor structure 1 of layers 2 of Al xi Ga 1-xi As.
  • the gradient G2 attenuates wave scattering at the contact surface between the first layer Al x1 Ga 1-x1 As and the layer Al0x whose optical indices are different.
  • the progressive evolution of the optical index related to the progressive evolution of the aluminum content up to the layer 3b of AlOx according to the gradient G2 allows a better confinement of the light in the structure 1 semiconductor Al xi Ga 1-xi As (with i ranging from 1 to n).
  • one or more layers of AlOx can also be produced in the Al xi Ga 1-xi As semiconductor structure 1, for example to enhance the shape birefringence and obtain phase matching in the nonlinear mixture between guided modes.
  • the molar fraction x of aluminum is equal to 0.98, making it possible to optimally combine the oxidation rate and the mechanical strength. of said layer.
  • xi is less than 0.8, except for layers 2 of Al xi Ga 1-xi As which it is desired to oxidize and for which xi ⁇ 0.9.
  • the insulating AlOx layer is obtained on which rests a semiconductor structure 1 having non-oxidized or crystalline Al xi Ga 1-xi As layers, as illustrated in the picture 1a .
  • any semiconductor layer that one wishes to oxidize can be produced by an equivalent network of AlAs/GaAs binary alloys.
  • the oxidation temperature can be chosen between 390°C and 430°C.
  • FIG. 6a represents the oxidation length as a function of the AlAs thickness at different times of oxidation at 400°C, showing a strong dependence of the AlAs thickness for values smaller than 80 nm.
  • the window corresponding to 120 minutes of oxidation shows a minimum thickness of an AlAs layer to be oxidized of around 11 nm.
  • FIG 6c represents the wet lateral oxidation of layers one micrometer thick.
  • the oxidation length as a function of the oxidation time indicates the linear relationship between these two quantities.
  • the oxidation rate as a function of the aluminum composition shows a large degree of selectivity in the oxidation.
  • the Al x Ga 1 -x As semiconductor layer is protected under vacuum from the oxidation of the ambient air, between the second step (ii) and the third step (iii).
  • the oxidation takes place after an exposure time to air of less than one hour after the second stage (ii).
  • the invention also relates to a device obtained by the manufacturing method illustrated above in the picture 1a .
  • the semiconductor structure 1 may also have one or more layers of oxidized Al xi Ga 1-xi As (AIOx) after the oxidation of the third step (iii), these layers of Al xi Ga 1-xi As having an aluminum content xi ⁇ 0.90.
  • AIOx oxidized Al xi Ga 1-xi As
  • the invention makes it possible, through oxidation kinetics, appropriate aluminum gradients, and lateral and surface oxidation: to carry out selective oxidation of the layers of Al x Ga 1-x As and Al xi Ga 1-xi stacked As, to obtain a semiconductor structure stacked on an insulating layer of AlOx and which may have non-oxidized Al xi Ga 1-xi As layers, and oxidized Al xi Ga 1-xi As layers, without delamination of these layers.
  • the structure 1 can be weakly etched but a strong confinement of the light in its volume, allowing by example of optical couplings with other structures located nearby (at distances less than 100 nm for example), as represented on the figures 3a and 3b for example the coupling of the waveguide with the ring.
  • Semiconductor structure 1 can be an active or passive optical micro- or nano-structure, such as a waveguide, a resonator, a dielectric antenna, or a combination of one or more of each of these structures, optionally incorporating a laser or a semiconductor optical sensor.
  • active or passive optical micro- or nano-structure such as a waveguide, a resonator, a dielectric antenna, or a combination of one or more of each of these structures, optionally incorporating a laser or a semiconductor optical sensor.
  • the semiconductor structure 1 is in the form of one or more dielectric antennas which radiate with a second harmonic signal, of height and width less than the wavelength of the pump (1.55 ⁇ m) , as shown in the figure 1b .
  • the quantum cascade laser shown in the figure 2a is also produced by the method according to the invention. It is observed that the electric field is confined in the active region as shown in the graph of the figure 2b , therefore by a metal layer at the top and by a heavily n-doped GaAs layer at the bottom.
  • the given deviation g or gap between the waveguide and the ring can be larger and the ratio h Etch / gap equal to approximately 4.
  • two structures 1 (named 9 and 10 on the picture 3a ), optically coupled, having one or more semiconductor layers of Al xi Ga 1-xi As each, etched with a given etching height h and a given gap g between the two etched structures (1), and in which the ratio between h given / g given is less than 10, for a given gap g less than 100 nm.
  • the refractive index of the layer of oxidized Al x Ga 1-x As (or AlOx) is very low (for example less than 2 and here equal to about 1.6)
  • the refractive index jump is large between the layer of oxidized Al x Ga 1-x As (or AlOx) with structure 1 allowing the light to be well confined in the latter and not to overflow into the layer of Al x Ga 1-x Oxidized As (or AlOx).
  • the first step consists of molecular beam epitaxy of a 400 nm layer of Al 0.18 Ga 0.82 As above an aluminum-rich substrate, which will be oxidized later, on a GaAs wafer [100]. unintentionally doped.
  • this substrate consists of a layer of about 1 ⁇ m of Al 0.98 Ga 0.02 As placed between two transition regions each having a thickness of 90 nm, whose Al mole fraction gradually decreases to the Al mole fraction of adjacent crystal layers. This choice, motivated by the fact that the oxidation kinetics vary very significantly in proportion to the molar fraction of Al, is essential for the success of the manufacturing process.
  • the sample was subjected to non-selective dry etching.
  • the etching depth defines the nano-cylinders and reveals the Al 0.98 Ga 0.02 As substrate (see the figure 1 ).
  • the sample is placed in acetone for the stripping of the resin, after which it is cleaned, dried and quickly placed in the vacuum chamber of the oxidation oven.
  • the oxidation takes place at 390° C. for 30 minutes.
  • a demonstration of a second harmonic nano-emitter was performed by focusing an infrared pump beam on one of these nano-cylinders (400 nm height, 200 nm radius). This radiates a second harmonic signal in the visible, when the pump wavelength is swept around the resonance at 1200 nm (the pump beam is in normal incidence on the sample and the second harmonic signal is collected in reflection).

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Geometry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Lasers (AREA)

Claims (21)

  1. Verfahren zur Herstellung von mindestens einer Halbleiterstruktur (1) mit einem Stapel von n Halbleiterschichten (2) aus Aluminiumgalliumarsenid AlxiGa1-xiAs, wobei n eine ganze Zahl größer als oder gleich 1 ist (und 1 • i • n), für die xi kleiner als 0,8 ist,
    auf einer Schicht (3b) aus isolierendem oxidiertem AlxiGa1-xiAs, die eine gegebene Dicke e aufweist, die ausreicht, um das Licht in der Halbleiterstruktur (1) durch innere Totalreflexion einzuschließen, und die als optisches Substrat für die Halbleiterstruktur (1) dient, wobei e größer als 200 nm und kleiner als 10 Mikrometer ist,
    wobei das Verfahren die folgenden Schritte umfasst:
    - in einem ersten Schritt (i) auf einem Substrat (4) aus GaAs, Wachstum durch Epitaxie: *einer AlxGa1-xAs-Halbleiterschicht (3a) mit einer Dicke e = e0 + e1 + e2 und die einen Teil der Dicke e0, einen Teil der Dicke e1 und einen Teil der Dicke e2 umfasst, wobei der Teil der Dicke e0 einen gegebenen Aluminium-Stoffmengenanteil x = x0 größer als oder gleich 0,90 aufweist, wobei der Teil der Dicke e0 zwischen dem Teil der Dicke e1 und dem Teil der Dicke e2 liegt, *dann einer oder mehrerer AlxiGa1-xiAs-Halbleiterschichten (2),
    wobei das Wachstum durch Epitaxie des ersten Schritts (i) so durchgeführt wird, dass der Stoffmengenanteil von Aluminium x der Halbleiterschicht (3a) aus AlxGa1-xAs ausgehend von dem Teil der Dicke e0 allmählich entsprechend einer progressiven und kontinuierlichen Veränderung abnimmt:
    im Teil der Dicke e1 in einer ersten Richtung gemäß einem ersten Aluminiumgradienten (G1) von dem Stoffmengenanteil von Aluminium x0, der von dem Teil der Dicke e0 gegeben ist, bis zu dem Stoffmengenanteil von Aluminium x = 0 des GaAs-Substrats (4), wobei der Teil der Dicke e1 in Kontakt mit dem Substrat (4) und dem Teil der Dicke e0 ist, und
    im Teil der Dicke e2 in einer zweiten Richtung entgegengesetzt zur ersten Richtung gemäß einem zweiten Aluminiumgradienten (G2) von dem Stoffmengenanteil von Aluminium x0, der von dem Teil der Dicke e0 gegeben ist, bis zu dem Stoffmengenanteil von Aluminium x = x1 mit x1 Stoffmengenanteil einer ersten Alx1Ga1-x1As-Halbleiterschicht des Stapels aus n Halbleiterschichten (2) aus Aluminiumgalliumarsenid AlxiGa-1-xiAs, die an die AlxiGa1-xiAs-Halbleiterschicht (3a) angrenzt, wobei der Teil der Dicke e2 in Kontakt mit dem Teil der Dicke e0 und der Alx1Ga1-x1As-Schicht ist
    - in einem zweiten Schritt (ii),
    Herstellen der Halbleiterstruktur (1) aus Halbleiterschichten (2) aus AlxiGa1-xiAs durch Lithographie und Ätzen, und
    Eliminieren durch Lithographie und Ätzen des Teils der Dicke e2 mit einem Aluminiumgradienten G2 der Halbleiterschicht aus AlxGa1-xAs (3a), außer unter der Halbleiterstruktur (1);
    - in einem dritten Schritt (iii), laterales Oxidieren der Halbleiterschicht (3a) aus AlxGa1-xAs, um die Schicht (3b) aus oxidiertem AlxGa1-xAs zu erhalten,
    wobei die Halbleiterschichten aus AlxiGa1-xiAs der Halbleiterstruktur (1), für die xi kleiner als 0,8 ist, nicht oxidiert sind.
  2. Herstellungsverfahren nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass die Schicht (3b) aus oxidiertem AlxGa1-xAs eine Dicke e von weniger als einem Mikrometer aufweist.
  3. Herstellungsverfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Schicht (3b) aus oxidiertem AlxGa1-xAs eine Dicke e von mehr als 1 Mikrometer aufweist.
  4. Herstellungsverfahren nach dem vorhergehenden Anspruch, bei dem zwei optisch gekoppelte Strukturen (1, 9, 10) hergestellt werden, die jeweils eine oder mehrere Halbleiterschichten aus AlxiGa1-xiAs aufweisen, die auf der Schicht (3b) aus oxidiertem AlxGa1-xAs gestapelt sind, wobei die Halbleiterschichten aus AlxiGa1-xiAs und die Schicht (3b) aus oxidiertem AlxGa1-xAs mit einer Ätzhöhe hgegeben und einem Abstand ggegeben zwischen den beiden geätzten Strukturen (9, 10) geätzt sind, und bei dem das Verhältnis zwischen Ätzen hgegeben/ggegeben kleiner als 10 ist für einen Abstand ggegeben kleiner als 100 nm.
  5. Herstellungsverfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der erste Aluminiumgradient (G1) auf dem Teil mit einer Dicke e1 zwischen 80 und 100 nm erzeugt wird, um eine Delaminierung zwischen der Schicht (3b) aus oxidiertem AlxGa1-xAs und dem Substrat (4) aus GaAs zu vermeiden.
  6. Herstellungsverfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der zweite Aluminiumgradient (G2) über eine Dicke zwischen 80 und 100 nm erzeugt wird, um eine Delaminierung zwischen der Schicht (3b) aus oxidiertem AlxGa1-xAs und der ersten AlxGa1-xAs-Halbleiterschicht zu vermeiden und um den Welleneinschluss in der AlxiGa1-xiAs-Halbleiterstruktur (1) zu verbessern.
  7. Herstellungsverfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass im dritten Schritt (iii) auch eine Oxidation einer oder mehrerer Schichten aus AlxiGa1-xiAs in der Halbleiterstruktur (1) stattfindet, wobei diese Schichten aus oxidiertem AlxiGa1-xiAs einen Aluminiumgehalt xi größer als 0,90 aufweisen.
  8. Herstellungsverfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass für die Halbleiterschicht (3a) aus AlxGa1-xAs der Stoffmengenanteil für den Teil mit gegebener Dicke e0 x = 0,98 ist, wodurch gleichzeitig die Oxidationskinetik und die mechanische Festigkeit der Schicht maximiert werden kann, während die Oxidationstemperatur minimiert wird.
  9. Herstellungsverfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Oxidationstemperatur gleich 390 °C gewählt wird.
  10. Herstellungsverfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Oxidationstemperatur gleich oder kleiner als 390 °C gewählt wird.
  11. Herstellungsverfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass im ersten Schritt (i) jede gegebenenfalls zu oxidierende Halbleiterschicht durch ein äquivalentes Netzwerk aus binären AlAs/GaAs-Legierungen erzeugt wird.
  12. Herstellungsverfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Halbleiterstruktur (1) eine aktive oder passive optische Mikro- oder Nanostruktur ist, wie ein Wellenleiter, ein Resonator, eine dielektrische Antenne oder eine Kombination aus einem oder mehreren von jeder dieser Strukturen ist, die gegebenenfalls einen Laser oder einen optischen Halbleitersensor enthält.
  13. Vorrichtung, die durch das Herstellungsverfahren nach einem der vorhergehenden Ansprüche 1-12 erhalten wird und einen monolithischen Stapel umfasst mit:
    - einer Halbleiterstruktur (1) aus n Halbleiterschichten (2) aus Aluminiumgalliumarsenid AlxiGa1-xiAs, wobei n eine ganze Zahl größer oder gleich 1 ist (und 1 • i • n), auf einer Isolierschicht aus oxidiertem AlxiGa1-xiAs (3b);
    wobei die Halbleiterstruktur (1) aus Schichten (2) aus AlxiGa1-xiAs eine oder mehrere Halbleiterschichten aus AlxiGa1-xiAs der Halbleiterstruktur (1) umfasst, die nicht oxidiert sind und die einen Aluminiumgehalt xi von weniger als 0,8 aufweisen;
    - wobei die Schicht (3b) aus oxidiertem AlxGa1-xAs eine Dicke e aufweist, die ausreicht, um das Licht in der Halbleiterstruktur (1) durch innere Totalreflexion einzuschließen, die als optisches Substrat für die Halbleiterstruktur (1) dient und auf einem Substrat (4) aus GaAs liegt, wobei e größer als 200 nm und kleiner als 10 Mikrometer ist und gleich der Summe e = e0 + e1 + e2 ist, wobei die Schicht (3b) aus oxidiertem AlxGa1-xAs einen Teil der Dicke e0, einen Teil der Dicke e1 und einen Teil der Dicke e2 umfasst, wobei der Teil der Dicke e0 zwischen dem Teil der Dicke e1 und dem Teil der Dicke e2 liegt,
    wobei die Schicht (3b) aus oxidiertem AlxGa1-xAs aufweist:
    - einen ersten allmählichen Oxidationsübergang, der dem Teil der Dicke e1 entspricht, der sich zwischen dem Substrat (4) aus GaAs und dem Teil der Dicke e0 der Schicht (3b) aus oxidiertem AlxGa1-xAs befindet, wobei der Oxidationsgrad in dem Teil der Dicke e1 in Richtung des Substrats (4) aus GaAs allmählich abnimmt;
    - einen zweiten allmählichen Oxidationsübergang, der dem Teil der Dicke e2 entspricht, der sich zwischen dem Teil der Dicke e0 der Schicht (3b) aus oxidiertem AlxGa1-xAs und einer ersten Alx1Ga1-x1As-Halbleiterschicht (2) befindet, wobei der Oxidationsgrad in dem Teil der Dicke e2 allmählich in Richtung der ersten Alx1Ga1-x1As-Halbleiterschicht der Halbleiterstruktur (1) abnimmt.
  14. Vorrichtung nach Anspruch 13, bei der die Schicht aus oxidiertem AlxGa1-xAs eine gegebene Dicke e größer als 1 Mikrometer aufweist.
  15. Vorrichtung nach Anspruch 13, bei der die Schicht aus oxidiertem AlxGa1-xAs eine gegebene Dicke e von weniger als 1 Mikrometer aufweist.
  16. Vorrichtung nach einem der Ansprüche 13 bis 15, mit zwei optisch gekoppelten Strukturen (1, 9, 10) und mit jeweils einer oder mehreren Halbleiterschichten aus AlxiGa1-xiAs, die auf der Schicht (3b) aus oxidiertem AlxGa1-xAs gestapelt sind,
    wobei die Halbleiterschichten aus AlxiGa1-xiAs und die Schicht (3b) aus oxidiertem AlxGa1-xAs mit einer Ätzhöhe hgegeben und einem Abstand ggegeben zwischen den beiden Strukturen (1) geätzt sind,
    wobei das Verhältnis zwischen hgegeben/ggegeben kleiner als 10 ist, für einen Abstand ggegeben kleiner als 100 nm.
  17. Vorrichtung nach einem der Ansprüche 13 bis 16, bei der die Schicht aus oxidiertem AlxGa1-xAs einen Brechungsindex gleich 1,6 aufweist.
  18. Vorrichtung nach einem der Ansprüche 13 bis 17, bei der die Halbleiterstruktur (1) eine aktive oder passive optische Mikro-/Nanostruktur wie ein Wellenleiter, ein Resonator, eine dielektrische Antenne oder eine Kombination aus einer oder mehreren dieser Strukturen ist.
  19. Vorrichtung nach einem der Ansprüche 13 bis 18, bei der die Halbleiterstruktur (1) auch eine oder mehrere Schichten aus oxidiertem AlxiGa1-xiAs mit xi • 0,9 aufweist.
  20. Vorrichtung nach einem der Ansprüche 13 bis 19, bei der die Halbleiterstruktur (1) einen Laser oder einen optischen Halbleitersensor enthält.
  21. Vorrichtung nach einem der Ansprüche 13 bis 20, bei der die Halbleiterstruktur (1) die Form einer oder mehrerer dielektrischer Antennen hat, die mit einem zweiten Oberwellensignal strahlen.
EP17704512.7A 2016-02-16 2017-02-16 Verfahren zur herstellung von mindestens einer halbleitenden struktur mit einem stapel aus einer oder mehreren aluminiumgalliumarsenidschichten Active EP3417322B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1670043A FR3047840A1 (fr) 2016-02-16 2016-02-16 Procede de fabrication d'au moins une structure semi-conductrice presentant un empilement d'une ou de plusieurs couches d'arseniure de gallium-aluminium
PCT/EP2017/053542 WO2017140804A1 (fr) 2016-02-16 2017-02-16 Procédé de fabrication d'au moins une structure semi-conductrice présentant un empilement d'une ou de plusieurs couches d'arséniure de gallium-aluminium

Publications (2)

Publication Number Publication Date
EP3417322A1 EP3417322A1 (de) 2018-12-26
EP3417322B1 true EP3417322B1 (de) 2023-06-21

Family

ID=56557845

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17704512.7A Active EP3417322B1 (de) 2016-02-16 2017-02-16 Verfahren zur herstellung von mindestens einer halbleitenden struktur mit einem stapel aus einer oder mehreren aluminiumgalliumarsenidschichten

Country Status (3)

Country Link
EP (1) EP3417322B1 (de)
FR (1) FR3047840A1 (de)
WO (1) WO2017140804A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112447868B (zh) * 2020-11-24 2022-05-20 中山德华芯片技术有限公司 一种高质量四结空间太阳电池及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7655489B2 (en) * 2005-10-19 2010-02-02 The University Of Notre Dame Du Lac Monolithically-pumped erbium-doped waveguide amplifiers and lasers

Also Published As

Publication number Publication date
FR3047840A1 (fr) 2017-08-18
WO2017140804A1 (fr) 2017-08-24
EP3417322A1 (de) 2018-12-26

Similar Documents

Publication Publication Date Title
EP3540878B1 (de) Photonenvorrichtung, die einen laser umfasst, der optisch mit einem silizium-wellenleiter verbunden ist, und herstellungsverfahren einer solchen photonenvorrichtung
EP0539298B1 (de) Integrierter elektro-optischer Modulator und dessen Herstellungsverfahren
EP2988378B1 (de) Laservorrichtung und herstellungsverfahren einer solchen laservorrichtung
EP0449719A1 (de) Dreidimensionale integrierte Leiterstruktur und Verfahren zu ihrer Herstellung
FR2981803A1 (fr) Structure optique integree comportant un isolateur optique
FR2907916A1 (fr) Nouvelle structure de guide a fente
EP3503223A1 (de) Herstellungsverfahren einer heterostruktur, die aktive und passive grundstrukturen aus iii-v-halbleitermaterial auf der oberfläche eines substrats auf siliziumbasis umfasst
EP0887668A1 (de) Bragg-Reflektor in einem Halbleiter und Herstellungsverfahren
FR2933502A1 (fr) Structure de guide d'onde optique micronanostructure pour le controle de la birefringence
FR2951740A1 (fr) Procede de realisation d'un cristal magneto-photonique, cristal magneto-photonique et composant comprenant un tel cristal.
FR2761811A1 (fr) Technologie sans gravure pour integration de composants
EP3417322B1 (de) Verfahren zur herstellung von mindestens einer halbleitenden struktur mit einem stapel aus einer oder mehreren aluminiumgalliumarsenidschichten
EP3198690A2 (de) Verfahren zur herstellung einer resonanzstruktur eines halbleiterlasers mit verteilter rückkopplung
EP3772145A1 (de) Hybride laserquelle, die einen integrierten wellenleiter mit einem zwischengeschalteten bragg-gitter umfasst
EP4009456B1 (de) Verfahren zur herstellung eines verteilten bragg-spiegels
EP3339924A1 (de) Optimierter integrierter photonenschaltkreis
EP3764409B1 (de) Quelle einzelner photonen mit einem hohen ununterscheidbarkeitsfaktor
WO2006064124A1 (fr) Modulateur a jonction capacitive, jonction capacitive et son procede de realisation
WO2002052312A1 (fr) Dispositif a guide d'ondes optiques optiquement actif comportant un canal sur un substrat optique
FR3111716A1 (fr) Dispositif optique et procédé de fabrication
EP0689253A1 (de) Verfahren zur Herstellung einer Matrix aus elektrisch steuerbaren Quantumwell-Komponenten mit vertikaler Struktur
EP4254687B1 (de) Optoelektronische vorrichtung mit einer iii-v-halbleitermembran-laserquelle, die einen lateralen p-i-n übergang bildet
EP2804271B1 (de) Elektrisch angetriebene optische parametrische Quelle auf einem Chip
EP0434528A1 (de) Verfahren zur Herstellung eines optoelektronischen Verstärkers und Anwendungen in verschiedenen optoelektronischen Vorrichtungen
FR2907917A1 (fr) Nouvelle structure de guide a fente

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180827

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190603

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE

Owner name: UNIVERSITE DE PARIS

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE

Owner name: UNIVERSITE PARIS CITE

RIC1 Information provided on ipc code assigned before grant

Ipc: H01S 5/323 20060101ALI20221031BHEP

Ipc: H01S 5/20 20060101ALI20221031BHEP

Ipc: G02B 6/12 20060101ALI20221031BHEP

Ipc: H01L 21/02 20060101ALI20221031BHEP

Ipc: H01L 21/3115 20060101ALI20221031BHEP

Ipc: H01S 3/063 20060101ALI20221031BHEP

Ipc: G02B 6/00 20060101AFI20221031BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20221221

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602017070397

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1581300

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230621

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230921

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1581300

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230621

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230621

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230621

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230621

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230621

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230922

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231021

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230621

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230621

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230621

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231023

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231021

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230621

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230621

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230621

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230621

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602017070397

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230621

26N No opposition filed

Effective date: 20240322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230621

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230621

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240216