EP3417213B1 - Refrigeration device comprising multiple storage chambers - Google Patents

Refrigeration device comprising multiple storage chambers Download PDF

Info

Publication number
EP3417213B1
EP3417213B1 EP17702099.7A EP17702099A EP3417213B1 EP 3417213 B1 EP3417213 B1 EP 3417213B1 EP 17702099 A EP17702099 A EP 17702099A EP 3417213 B1 EP3417213 B1 EP 3417213B1
Authority
EP
European Patent Office
Prior art keywords
heat exchanger
refrigeration appliance
appliance according
line section
storage chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17702099.7A
Other languages
German (de)
French (fr)
Other versions
EP3417213A1 (en
Inventor
Andreas BABUCKE
Niels Liengaard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BSH Hausgeraete GmbH
Original Assignee
BSH Hausgeraete GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BSH Hausgeraete GmbH filed Critical BSH Hausgeraete GmbH
Publication of EP3417213A1 publication Critical patent/EP3417213A1/en
Application granted granted Critical
Publication of EP3417213B1 publication Critical patent/EP3417213B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • F25D11/022Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures with two or more evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/385Dispositions with two or more expansion means arranged in parallel on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/06Details of flow restrictors or expansion valves
    • F25B2341/062Capillary expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/05Compression system with heat exchange between particular parts of the system
    • F25B2400/052Compression system with heat exchange between particular parts of the system between the capillary tube and another part of the refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/05Compression system with heat exchange between particular parts of the system
    • F25B2400/054Compression system with heat exchange between particular parts of the system between the suction tube of the compressor and another part of the cycle

Definitions

  • the present invention relates to a refrigeration appliance, in particular a household refrigeration appliance, with several storage chambers that can be operated at different temperatures.
  • a refrigeration device with several storage chambers in which a first throttle point, a first heat exchanger for temperature control of the first storage chamber, a second throttle point and a second heat exchanger for cooling the second storage chamber are connected in series in a refrigerant circuit.
  • the pressure drop at the second throttle point causes a pressure difference between the two heat exchangers, so that the evaporation temperature of the refrigerant in the second heat exchanger is lower than in the first and thus a lower operating temperature can be set in the second storage chamber than in the first.
  • the first heat exchanger can work as an evaporator or as a condenser. When operating as a condenser, the operating temperature of the first storage chamber can reach values at room temperature or even slightly above.
  • the US 2014/0020410 A1 reveals air conditioning.
  • the object of the present invention is to create a refrigeration device with several storage chambers that enables energy-efficient operation even if for a first Storage chamber has a high operating temperature and a low operating temperature is selected for a second storage chamber.
  • a first controllable throttle point, a first heat exchanger for temperature control of the first storage chamber, a second controllable throttle point and a second heat exchanger for cooling the second storage chamber are in series between a pressure connection and a suction connection connected, at least one warm line section located upstream of the second heat exchanger and a cold line section located downstream of the second heat exchanger are guided in thermal contact with one another to form an internal heat exchanger, and the first heat exchanger is connected to the pressure connection, bypassing the warm line section.
  • the warm line section of the inner heat exchanger is located between the first heat exchanger and the second heat exchanger.
  • a shunt line branch can be provided upstream of the second heat exchanger, which contains a third controllable throttle point and a third heat exchanger.
  • the warm line section can also be located in the shunt line branch.
  • It is preferably located upstream of the third heat exchanger in order to enable energy-efficient cooling operation there.
  • the refrigerant can reach the second heat exchanger, regardless of the route , can only be achieved after pre-cooling in one of the internal heat exchangers.
  • the warm line section of the second internal heat exchanger is located between an outlet of the third heat exchanger and an inlet of the second heat exchanger.
  • Refrigerant vapor extracted from the second heat exchanger can first be warmed up in the second internal heat exchanger before it reaches the first internal heat exchanger.
  • the cooling that the compressed refrigerant achieves in the first internal heat exchanger is therefore less than if the second internal heat exchanger were not present or connected behind the first heat exchanger; This can prevent a storage chamber cooled by the third heat exchanger from cooling down more than desired when the second storage chamber requires long-term cooling.
  • An expansion valve can be provided as a controllable throttle point.
  • a controllable throttle point can be formed by at least two parallel line branches and a valve for controlling the distribution of the refrigerant to the line branches.
  • one of the parallel line branches can comprise a capillary.
  • One of the parallel passages can also form a warm line section of a further internal heat exchanger. If, in particular, the first controllable throttle point is constructed in this way, there is the possibility of either applying non-precooled refrigerant to the first heat exchanger, bypassing each internal heat exchanger, in order to heat the first storage chamber, or to cool the first storage chamber via this further internal one to supply heat exchangers.
  • the in Fig. 1 The refrigerant circuit shown includes a 1 with a pressure connection 2 and a suction connection 3.
  • a refrigerant line 4 starting from the pressure connection 2 runs in the direction of circulation of the refrigerant via a condenser 5 to a branch 6 and divides there into two branches 7, 8.
  • the branch 7 extends over a first controllable throttle point 9, for example an expansion valve, a heat exchanger 10 and a second controllable throttle point 11 to a confluence 12.
  • a first controllable throttle point 9 for example an expansion valve
  • a heat exchanger 10 for example an expansion valve
  • a second controllable throttle point 11 to a confluence 12.
  • branch 8 there are a third controllable throttle point 13, a heat exchanger 14 and a fourth controllable throttle point 15 row connected; At confluence 12, branches 7, 8 meet again. From there, the refrigerant line 4 runs via a heat exchanger 16 to the suction connection 3 of the compressor 1.
  • the heat exchangers 10, 16, 14 are each surrounded by a common insulating shell 20 together with a first storage chamber 17, a second storage chamber 18 and a third storage chamber 19 of the refrigerator.
  • a section 21 of the refrigerant line 4 located downstream of the heat exchanger 16 and a section 22 which connects the heat exchanger 10 to the second controllable throttle point 11 form an inner heat exchanger 23.
  • the sections 21, 22 may be superficially soldered together, or the warm section 22 may be wrapped around the section 21 or extend inside the cold section 21 to give off heat to the refrigerant vapor flowing in the cold section 21.
  • a further internal heat exchanger 24 comprises a warm section 25 located upstream of the third controllable throttle point 13 and belonging to the branch 8 and a cold section 26 located downstream of the evaporator 16 in the refrigerant line 4.
  • section 26 is downstream from section 21 of internal heat exchanger 23; but it could also lie upstream of this or overlap with it.
  • An electronic control unit 27 is connected to temperature sensors 28 in the three storage chambers 17, 18, 19 and controls the speed of the compressor 1 as well as the pressure drops at the controllable throttle points 9, 11, 13, 15 based on a comparison of those in the storage chambers 17, 18, 19 prevailing temperatures with setpoints set by the user.
  • the adjustable setpoint can be above the ambient temperature; then the pressure drop at the throttle point 9 is minimal, the heat exchanger 10 works as a condenser. After passing through the heat exchanger 10 and before reaching the controllable throttle point 11, the refrigerant is pre-cooled in the inner heat exchanger 23 before it reaches the heat exchanger 16 of the storage chamber 18. Since the pressure in the heat exchanger 16 is inevitably lower than in the heat exchangers 10 and 14, the heat exchanger 16 always works as an evaporator, and the temperature of the storage chamber 18 is lower than that of the storage chambers 17, 19.
  • a temperature below the ambient temperature can also be set as the setpoint for the storage chamber 17; then the control unit 27 sets the pressure drop in the throttle points 9 to a non-disappearing value. The higher this is, and consequently the lower the temperature of the storage chamber 17, the lower the temperature of the refrigerant at the outlet of the heat exchanger 10, and the lower the heat exchange in the inner heat exchanger 23.
  • the section 25 of the inner heat exchanger 24 is located upstream of the controllable throttle point 13 and the heat exchanger 14, so that the refrigerant circulating through this section 25 releases heat before reaching the heat exchanger 14. Temperatures above the ambient temperature are therefore difficult to achieve in the storage chamber 19, but this is not necessary since the storage chamber 17 is available for storage at elevated temperatures. Temperatures below the ambient temperature, on the other hand, can be achieved with better efficiency in the storage chamber 19 than in the storage chamber 17.
  • Fig.2 shows a second embodiment of the refrigeration device according to the invention.
  • a control unit and temperature sensors in the storage chambers 17, 18, 19 are present here in the same way as in the first embodiment, but are not shown in the figure for the sake of clarity.
  • the other components also largely correspond to those of the Fig. 1 ; one difference lies in the arrangement of the internal heat exchangers.
  • the inner heat exchanger 24 Fig. 1 is also in Fig. 2 identically present, but the inner heat exchanger 21 is replaced by an inner heat exchanger 30, in which a section 31 of the branch 8, which lies between the outlet of the heat exchanger 14 and the controllable throttle point 15, is in thermal contact with the section 21.
  • the branch 7 has no internal heat exchanger at all, the branch 8 has two instead.
  • this structure proves to be particularly efficient in practice.
  • the reason is that the refrigerant flow rate on branch 8 is normally significantly larger than on branch 7; Even if long running times of the compressor 1, including uninterrupted operation, are required to keep the storage chamber 18 at its target temperature or the compressor 1 is even operated in a speed-controlled manner, the fact that the refrigerant vapor with which the compressed refrigerant in the inner heat exchanger 24 is brought into thermal contact, has already been preheated in the inner heat exchanger 29, subcooling of the storage chamber 19.
  • Fig. 3 shows a section of the refrigerant circuit according to a modification, both in the arrangement of the internal heat exchanger according to Fig. 1 as well as according to Fig. 2 is applicable.
  • the controllable throttle point 9 is not designed here as an expansion valve, but rather it comprises a parallel connection of two line branches 31, 32, one of which, 31, comprises a capillary 33 and the other, 32, comprises a shut-off valve 34.
  • the shut-off valve 34 When the shut-off valve 34 is open, virtually all of the refrigerant circulating on the branch 7 flows through the shut-off valve 34, and the influence of the capillary 33 on the pressures and flows in the refrigerant circuit is negligible.
  • the pressure in the heat exchanger 10 is then practically identical to that in the condenser 5, and the storage chamber 17 can be operated above the ambient temperature as described above.
  • the shut-off valve 34 is closed, then the refrigerant in branch 7 can only flow through the capillary 33, and a low pressure and a correspondingly low temperature are established in the heat exchanger 10.
  • a part of the capillary 33 or a section 35 of the line branch 31 upstream of it can be included here in the inner heat exchanger 24 in order to enable more efficient cooling operation of the storage chamber 17. Since the refrigerant flow via the capillary 33 is negligible when the shut-off valve 34 is open, this inclusion has no influence on the possibility of reaching high temperatures in the storage chamber 17.
  • the capillary 33 can be replaced by an expansion valve.
  • controllable throttle points 11, 13, 15 can also be the same as in Fig. 3 have the structure shown for the throttle point 9.

Description

Die vorliegende Erfindung betrifft ein Kältegerät, insbesondere ein Haushaltskältegerät, mit mehreren Lagerkammern, die bei unterschiedlichen Temperaturen betreibbar sind.The present invention relates to a refrigeration appliance, in particular a household refrigeration appliance, with several storage chambers that can be operated at different temperatures.

Aus DE 10 2013 226 341 A1 ist ein Kältegerät mit mehreren Lagerkammern bekannt, bei denen in einem Kältemittelkreislauf eine erste Drosselstelle, ein erster Wärmetauscher zum Temperieren der ersten Lagerkammer, eine zweite Drosselstelle und ein zweiter Wärmetauscher zum Kühlen der zweiten Lagerkammer in Reihe verbunden sind. Der Druckabfall an der zweiten Drosselstelle bewirkt einen Druckunterschied zwischen den beiden Wärmetauschern, so dass die Verdampfungstemperatur des Kältemittels im zweiten Wärmetauscher tiefer liegt als im ersten und somit in der zweiten Lagerkammer eine tiefere Betriebstemperatur eingestellt werden kann als in der ersten. Der erste Wärmetauscher kann je nach Einstellung der ersten Drosselstelle als Verdampfer oder als Verflüssiger arbeiten. Wenn er als Verflüssiger betrieben wird, kann die Betriebstemperatur der ersten Lagerkammer Werte bei Zimmertemperatur oder sogar leicht darüber annehmen.Out of DE 10 2013 226 341 A1 a refrigeration device with several storage chambers is known, in which a first throttle point, a first heat exchanger for temperature control of the first storage chamber, a second throttle point and a second heat exchanger for cooling the second storage chamber are connected in series in a refrigerant circuit. The pressure drop at the second throttle point causes a pressure difference between the two heat exchangers, so that the evaporation temperature of the refrigerant in the second heat exchanger is lower than in the first and thus a lower operating temperature can be set in the second storage chamber than in the first. Depending on the setting of the first throttle point, the first heat exchanger can work as an evaporator or as a condenser. When operating as a condenser, the operating temperature of the first storage chamber can reach values at room temperature or even slightly above.

Es ist z. B. aus der US 5,157,943 , der US 4,918,942 oder der WO 01/79772 A1 bekannt, in einem Kältegerät zur Wirkungsgradverbesserung einen inneren Wärmetauscher vorzusehen, in dem ein Hochdruck-Leitungsabschnitt, in dem durch Verdichten erwärmtes Kältemittel zirkuliert, und ein Niederdruck-Leitungsabschnitt, in dem Kältemittel von einem Verdampfer zu einem Verdichter strömt, in thermischem Kontakt stehen. Ein solcher innerer Wärmetauscher ist jedoch nutzlos, wenn in einem Kältegerät mit mehreren Lagerkammern wie oben beschrieben eine erste Lagerkammer bei hoher Temperatur betrieben werden soll und dafür ein im Kältemittelkreislauf stromabwärts vom Hochdruck-Leitungsabschnitt des inneren Wärmetauschers liegender Verdampfer der Lagerkammer als Verflüssiger betrieben wird.It is Z. B. from the US 5,157,943 , the US 4,918,942 or the WO 01/79772 A1 It is known to provide an internal heat exchanger in a refrigeration device to improve efficiency, in which a high-pressure line section, in which refrigerant heated by compression circulates, and a low-pressure line section, in which refrigerant flows from an evaporator to a compressor, are in thermal contact. However, such an internal heat exchanger is useless if, in a refrigerator with several storage chambers as described above, a first storage chamber is to be operated at high temperature and an evaporator of the storage chamber located in the refrigerant circuit downstream of the high-pressure line section of the internal heat exchanger is operated as a condenser.

Die US 2014/0020410 A1 offenbart eine Klimaanlage.The US 2014/0020410 A1 reveals air conditioning.

Aufgabe der vorliegenden Erfindung ist, ein Kältegerät mit mehreren Lagerkammern zu schaffen, das einen energieeffizienten Betrieb auch dann ermöglicht, wenn für eine erste Lagerkammer eine hohe und für eine zweite Lagerkammer eine niedrige Betriebstemperatur gewählt ist.The object of the present invention is to create a refrigeration device with several storage chambers that enables energy-efficient operation even if for a first Storage chamber has a high operating temperature and a low operating temperature is selected for a second storage chamber.

Die Aufgabe wird durch die Merkmale des Gegenstands des Anspruchs 1 gelöst. Bei dem Kältegerät mit wenigstens einer ersten und einer zweiten Lagerkammer und einem Kältemittelkreislauf sind zwischen einem Druckanschluss und einem Sauganschluss eine erste steuerbare Drosselstelle, ein erster Wärmetauscher zum Temperieren der ersten Lagerkammer, eine zweite steuerbare Drosselstelle und ein zweiter Wärmetauscher zum Kühlen der zweiten Lagerkammer in Reihe verbunden, wenigstens ein stromaufwärts vom zweiten Wärmetauscher gelegener warmer Leitungsabschnitt und ein stromabwärts vom zweiten Wärmetauscher gelegener kalter Leitungsabschnitt sind in thermischem Kontakt zueinander geführt, um einen inneren Wärmetauscher zu bilden, und der erste Wärmetauscher ist unter Umgehung des warmen Leitungsabschnitts mit dem Druckanschluss verbunden. So ist für die zweite Lagerkammer ein energieeffizienter Kühlbetrieb gewährleistet; andererseits wird es vermieden, dem Kältemittel bereits vor Erreichen des ersten Wärmetauschers durch den inneren Wärmetauscher Wärme zu entziehen, die zum Erwärmen der ersten Lagerkammer gebraucht werden könnte.The task is solved by the features of the subject matter of claim 1. In the refrigerator with at least a first and a second storage chamber and a refrigerant circuit, a first controllable throttle point, a first heat exchanger for temperature control of the first storage chamber, a second controllable throttle point and a second heat exchanger for cooling the second storage chamber are in series between a pressure connection and a suction connection connected, at least one warm line section located upstream of the second heat exchanger and a cold line section located downstream of the second heat exchanger are guided in thermal contact with one another to form an internal heat exchanger, and the first heat exchanger is connected to the pressure connection, bypassing the warm line section. This ensures energy-efficient cooling operation for the second storage chamber; On the other hand, it is avoided that heat, which could be used to heat the first storage chamber, is removed from the refrigerant by the inner heat exchanger before it reaches the first heat exchanger.

Im einfachsten Fall ist der warme Leitungsabschnitt des inneren Wärmetauschers zwischen dem ersten Wärmetauscher und dem zweiten Wärmetauscher gelegen.In the simplest case, the warm line section of the inner heat exchanger is located between the first heat exchanger and the second heat exchanger.

Stromaufwärts vom zweiten Wärmetauscher kann ein Nebenschluss-Leitungszweig vorgesehen sein, der eine dritte steuerbare Drosselstelle und einen dritten Wärmetauscher enthält.A shunt line branch can be provided upstream of the second heat exchanger, which contains a third controllable throttle point and a third heat exchanger.

In diesem Fall kann der warme Leitungsabschnitt auch im Nebenschluss-Leitungszweig gelegen sein.In this case, the warm line section can also be located in the shunt line branch.

Vorzugsweise befindet er sich dort stromaufwärts vom dritten Wärmetauscher, um dort einen energieeffizienten Kühlbetrieb zu ermöglichen.It is preferably located upstream of the third heat exchanger in order to enable energy-efficient cooling operation there.

Er kann aber auch im Nebenschluss-Leitungszweig stromabwärts vom dritten Wärmetauscher und stromaufwärts von einer vierten steuerbaren Drosselstelle gelegen sein.However, it can also be located in the shunt line branch downstream from the third heat exchanger and upstream from a fourth controllable throttle point.

Vorzugsweise sind zwei innere Wärmetauscher vorhanden. Diese können auf die zwei Zweige des Kältemittelkreislaufs verteilt sein, wenn einer in dem Nebenschluss-Leitungszweig und der andere in dem Leitungszweig zwischen einem Auslass des ersten Wärmetauschers und einem Einlass des zweiten Wärmetauschers angeordnet ist, kann das Kältemittel den zweiten Wärmetauscher, egal auf welchem Wege, nur nach Vorkühlen in einem der inneren Wärmetauscher erreichen.There are preferably two internal heat exchangers. These can be distributed over the two branches of the refrigerant circuit, if one is arranged in the shunt line branch and the other in the line branch between an outlet of the first heat exchanger and an inlet of the second heat exchanger, the refrigerant can reach the second heat exchanger, regardless of the route , can only be achieved after pre-cooling in one of the internal heat exchangers.

Bevorzugt ist eine Anordnung, bei der der warme Leitungsabschnitt des zweiten inneren Wärmetauschers zwischen einem Auslass des dritten Wärmetauschers und einem Einlass des zweiten Wärmetauschers gelegen ist. So kann aus dem zweiten Wärmetauscher abgesaugter Kältemitteldampf zunächst in dem zweiten inneren Wärmetauscher aufgewärmt werden, bevor er den ersten inneren Wärmetauscher erreicht. Die Abkühlung, die das verdichtete Kältemittel in dem ersten inneren Wärmetauscher erreicht, ist daher geringer als wenn der zweite innere Wärmetauscher nicht vorhanden oder hinter den ersten Wärmetauscher geschaltet wäre; dadurch kann verhindert werden, dass bei lang andauerndem Kältebedarf der zweiten Lagerkammer eine von dem dritten Wärmetauscher gekühlte Lagerkammer stärker als gewünscht auskühlt.An arrangement is preferred in which the warm line section of the second internal heat exchanger is located between an outlet of the third heat exchanger and an inlet of the second heat exchanger. Refrigerant vapor extracted from the second heat exchanger can first be warmed up in the second internal heat exchanger before it reaches the first internal heat exchanger. The cooling that the compressed refrigerant achieves in the first internal heat exchanger is therefore less than if the second internal heat exchanger were not present or connected behind the first heat exchanger; This can prevent a storage chamber cooled by the third heat exchanger from cooling down more than desired when the second storage chamber requires long-term cooling.

Als steuerbare Drosselstelle kann ein Expansionsventil vorgesehen sein.An expansion valve can be provided as a controllable throttle point.

Alternativ kann eine steuerbare Drosselstelle durch wenigstens zwei parallele Leitungszweige und ein Ventil zum Steuern der Verteilung des Kältemittels auf die Leitungszweige gebildet sein.Alternatively, a controllable throttle point can be formed by at least two parallel line branches and a valve for controlling the distribution of the refrigerant to the line branches.

In letzterem Falle kann einer der parallelen Leitungszweige eine Kapillare umfassen.In the latter case, one of the parallel line branches can comprise a capillary.

Es kann auch einer der parallelen Durchlässe einen warmen Leitungsabschnitt eines weiteren inneren Wärmetauschers bilden. Wenn insbesondere die erste steuerbare Drosselstelle so aufgebaut ist, besteht die Möglichkeit, den ersten Wärmetauscher wahlweise mit nicht vorgekühltem, unter Umgehung jedes inneren Wärmetauschers zugeführtem Kältemittel zu beaufschlagen, um die erste Lagerkammer zu beheizen, oder sie zum Kühlen der ersten Lagerkammer über diesen weiteren inneren Wärmetauscher zu versorgen.One of the parallel passages can also form a warm line section of a further internal heat exchanger. If, in particular, the first controllable throttle point is constructed in this way, there is the possibility of either applying non-precooled refrigerant to the first heat exchanger, bypassing each internal heat exchanger, in order to heat the first storage chamber, or to cool the first storage chamber via this further internal one to supply heat exchangers.

Weitere Merkmale und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung von Ausführungsbeispielen unter Bezugnahme auf die beigefügten Figuren. Es zeigen:

Fig. 1
eine schematische Darstellung des Kältemittelkreislaufs gemäß einer ersten Ausgestaltung des erfindungsgemäßen Kältegeräts;
Fig. 2
eine Darstellung eines Kältemittelkreislaufs gemäß einer zweiten Ausgestaltung; und
Fig. 3
ein Detail eines Kältemittelkreislaufs gemäß einer dritten Ausgestaltung der Erfindung.
Further features and advantages of the invention result from the following description of exemplary embodiments with reference to the attached figures. Show it:
Fig. 1
a schematic representation of the refrigerant circuit according to a first embodiment of the refrigeration device according to the invention;
Fig. 2
a representation of a refrigerant circuit according to a second embodiment; and
Fig. 3
a detail of a refrigerant circuit according to a third embodiment of the invention.

Der in Fig. 1 gezeigte Kältemittelkreislauf umfasst einen 1 mit einem Druckanschluss 2 und einem Sauganschluss 3. Eine von dem Druckanschluss 2 ausgehende Kältemittelleitung 4 verläuft in Zirkulationsrichtung des Kältemittels über einen Verflüssiger 5 zu einer Verzweigung 6 und teilt sich dort in zwei Zweige 7, 8.The in Fig. 1 The refrigerant circuit shown includes a 1 with a pressure connection 2 and a suction connection 3. A refrigerant line 4 starting from the pressure connection 2 runs in the direction of circulation of the refrigerant via a condenser 5 to a branch 6 and divides there into two branches 7, 8.

Der Zweig 7 erstreckt sich über eine erste steuerbare Drosselstelle 9, z.B. ein Expansionsventil, einen Wärmetauscher 10 und eine zweite steuerbare Drosselstelle 11 zu einem Zusammenfluss 12. Am Zweig 8 sind eine dritte steuerbare Drosselstelle 13, ein Wärmetauscher 14 und eine vierte steuerbare Drosselstelle 15 in Reihe verbunden; am Zusammenfluss 12 treffen die Zweige 7, 8 wieder zusammen. Von dort verläuft die Kältemittelleitung 4 über einen Wärmetauscher 16 zum Sauganschluss 3 des Verdichters 1.The branch 7 extends over a first controllable throttle point 9, for example an expansion valve, a heat exchanger 10 and a second controllable throttle point 11 to a confluence 12. On branch 8 there are a third controllable throttle point 13, a heat exchanger 14 and a fourth controllable throttle point 15 row connected; At confluence 12, branches 7, 8 meet again. From there, the refrigerant line 4 runs via a heat exchanger 16 to the suction connection 3 of the compressor 1.

Die Wärmetauscher 10, 16, 14 sind jeweils zusammen mit einer ersten Lagerkammer 17, einer zweiten Lagerkammer 18 bzw. einer dritten Lagerkammer 19 des Kältegeräts von einer gemeinsamen isolierenden Hülle 20 umgeben.The heat exchangers 10, 16, 14 are each surrounded by a common insulating shell 20 together with a first storage chamber 17, a second storage chamber 18 and a third storage chamber 19 of the refrigerator.

Ein stromabwärts vom Wärmetauscher 16 gelegener Abschnitt 21 der Kältemittelleitung 4 und ein Abschnitt 22, der den Wärmetauscher 10 mit der zweiten steuerbaren Drosselstelle 11 verbindet, bilden einen inneren Wärmetauscher 23. In dem inneren Wärmetauscher 23 können die Abschnitte 21, 22 aneinander oberflächlich verlötet sein, oder der warme Abschnitt 22 kann um den Abschnitt 21 herumgewickelt sein oder sich im Innern des kalten Abschnitts 21 erstrecken, um Wärme an den im kalten Abschnitt 21 fließenden Kältemitteldampf abzugeben.A section 21 of the refrigerant line 4 located downstream of the heat exchanger 16 and a section 22 which connects the heat exchanger 10 to the second controllable throttle point 11 form an inner heat exchanger 23. In the inner Heat exchanger 23, the sections 21, 22 may be superficially soldered together, or the warm section 22 may be wrapped around the section 21 or extend inside the cold section 21 to give off heat to the refrigerant vapor flowing in the cold section 21.

Ein weiterer innerer Wärmetauscher 24 umfasst einen stromaufwärts von der dritten steuerbaren Drosselstelle 13 gelegenen, zum Zweig 8 gehörigen warmen Abschnitt 25 und einen stromabwärts vom Verdampfer 16 in der Kältemittelleitung 4 gelegenen kalten Abschnitt 26. In der Darstellung der Fig. 1 liegt der Abschnitt 26 stromabwärts vom Abschnitt 21 des inneren Wärmetauschers 23; er könnte aber auch stromaufwärts von diesem liegen oder mit ihm überlappen.A further internal heat exchanger 24 comprises a warm section 25 located upstream of the third controllable throttle point 13 and belonging to the branch 8 and a cold section 26 located downstream of the evaporator 16 in the refrigerant line 4. In the illustration Fig. 1 section 26 is downstream from section 21 of internal heat exchanger 23; but it could also lie upstream of this or overlap with it.

Eine elektronische Steuereinheit 27 ist mit Temperatursensoren 28 in den drei Lagerkammern 17, 18, 19 verbunden und steuert die Drehzahl des Verdichter 1 sowie die Druckabfälle an den steuerbaren Drosselstellen 9, 11, 13 15 anhand eines Vergleichs der in den Lagerkammern 17, 18, 19 herrschenden Temperaturen mit vom Benutzer eingestellten Sollwerten.An electronic control unit 27 is connected to temperature sensors 28 in the three storage chambers 17, 18, 19 and controls the speed of the compressor 1 as well as the pressure drops at the controllable throttle points 9, 11, 13, 15 based on a comparison of those in the storage chambers 17, 18, 19 prevailing temperatures with setpoints set by the user.

Für die über den Zweig 7 temperierte Lagerkammer 17 kann der einstellbare Sollwert über der Umgebungstemperatur liegen; dann ist der Druckabfall an der Drosselstelle 9 minimal, der Wärmetauscher 10 arbeitet als Verflüssiger. Nach Durchgang durch den Wärmetauscher 10 und vor Erreichen der steuerbaren Drosselstelle 11 wird das Kältemittel im inneren Wärmetauscher 23 vorgekühlt, bevor es den Wärmetauscher 16 der Lagerkammer 18 erreicht. Da der Druck im Wärmetauscher 16 zwangsläufig niedriger als in den Wärmetauschern 10 und 14 ist, arbeitet der Wärmetauscher 16 immer als Verdampfer, und die Temperatur der Lagerkammer 18 ist tiefer als die der Lagerkammern 17, 19.For the storage chamber 17, which is tempered via branch 7, the adjustable setpoint can be above the ambient temperature; then the pressure drop at the throttle point 9 is minimal, the heat exchanger 10 works as a condenser. After passing through the heat exchanger 10 and before reaching the controllable throttle point 11, the refrigerant is pre-cooled in the inner heat exchanger 23 before it reaches the heat exchanger 16 of the storage chamber 18. Since the pressure in the heat exchanger 16 is inevitably lower than in the heat exchangers 10 and 14, the heat exchanger 16 always works as an evaporator, and the temperature of the storage chamber 18 is lower than that of the storage chambers 17, 19.

Natürlich kann als Sollwert für die Lagerkammer 17 auch eine Temperatur unterhalb der Umgebungstemperatur eingestellt werden; dann setzt die Steuereinheit 27 den Druckabfall in der Drosselstellen 9 auf einen nichtverschwindenden Wert. Je höher dieser ist, und je niedriger folglich die Temperatur der Lagerkammer 17, umso niedriger ist auch die Temperatur des Kältemittels am Ausgang des Wärmetauschers 10, und umso geringer ist auch der Wärmeaustausch im inneren Wärmetauscher 23.Of course, a temperature below the ambient temperature can also be set as the setpoint for the storage chamber 17; then the control unit 27 sets the pressure drop in the throttle points 9 to a non-disappearing value. The higher this is, and consequently the lower the temperature of the storage chamber 17, the lower the temperature of the refrigerant at the outlet of the heat exchanger 10, and the lower the heat exchange in the inner heat exchanger 23.

Auf dem Zweig 8 ist der Abschnitt 25 des inneren Wärmetauschers 24 der steuerbaren Drosselstelle 13 und dem Wärmetauscher 14 vorgelagert, so dass das durch diesen Abschnitt 25 zirkulierende Kältemittel vor Erreichen des Wärmetauschers 14 Wärme abgibt. Temperaturen oberhalb der Umgebungstemperatur sind daher in der Lagerkammer 19 nur schwerlich zu erreichen, was aber auch nicht notwendig ist, da für Lagerung bei erhöhter Temperatur die Lagerkammer 17 zur Verfügung steht. Temperaturen unterhalb der Umgebungstemperatur sind hingegen in der Lagerkammer 19 mit besserem Wirkungsgrad zu erreichen als in der Lagerkammer 17.On the branch 8, the section 25 of the inner heat exchanger 24 is located upstream of the controllable throttle point 13 and the heat exchanger 14, so that the refrigerant circulating through this section 25 releases heat before reaching the heat exchanger 14. Temperatures above the ambient temperature are therefore difficult to achieve in the storage chamber 19, but this is not necessary since the storage chamber 17 is available for storage at elevated temperatures. Temperatures below the ambient temperature, on the other hand, can be achieved with better efficiency in the storage chamber 19 than in the storage chamber 17.

Fig.2 zeigt eine zweite Ausgestaltung des erfindungsgemäßen Kältegeräts. Eine Steuereinheit und Temperatursensoren in den Lagerkammern 17, 18, 19 sind hier in gleicher Weise vorhanden wie in der ersten Ausgestaltung, sind der Übersichtlichkeit halber aber in der Fig. nicht dargestellt. Auch die übrigen Komponenten entsprechen weitgehend denen der Fig. 1; ein Unterschied liegt in der Anordnung der inneren Wärmetauscher. Der innere Wärmetauscher 24 aus Fig. 1 ist auch in Fig. 2 identisch vorhanden, doch der innere Wärmetauscher 21 ist ersetzt durch einen inneren Wärmetauscher 30, in dem ein Abschnitt 31 des Zweiges 8, der zwischen dem Auslass des Wärmetauschers 14 und der steuerbaren Drosselstelle 15 liegt, mit dem Abschnitt 21 in thermischem Kontakt steht. Der Zweig 7 weist also gar keinen inneren Wärmetauscher auf, der Zweig 8 stattdessen zwei. Überraschenderweise erweist sich dieser Aufbau in der Praxis als besonders effizient. Der Grund ist, dass der Kältemitteldurchsatz auf dem Zweig 8 normalerweise deutlich größer ist als auf dem Zweig 7; auch wenn lange Laufzeiten des Verdichters 1 bis hin zu unterbrechungsfreiem Betrieb erforderlich sind, um die Lagerkammer 18 auf ihrer Solltemperatur zu halten oder der Verdichter 1 gar drehzahlgeregelt betrieben wird, bewirkt die Tatsache, dass der Kältemitteldampf, mit dem das verdichtete Kältemittel im inneren Wärmetauscher 24 in thermischen Kontakt gebracht wird, bereits im inneren Wärmetauscher 29 vorgewärmt worden ist, eine Unterkühlung der Lagerkammer 19. Fig.2 shows a second embodiment of the refrigeration device according to the invention. A control unit and temperature sensors in the storage chambers 17, 18, 19 are present here in the same way as in the first embodiment, but are not shown in the figure for the sake of clarity. The other components also largely correspond to those of the Fig. 1 ; one difference lies in the arrangement of the internal heat exchangers. The inner heat exchanger 24 Fig. 1 is also in Fig. 2 identically present, but the inner heat exchanger 21 is replaced by an inner heat exchanger 30, in which a section 31 of the branch 8, which lies between the outlet of the heat exchanger 14 and the controllable throttle point 15, is in thermal contact with the section 21. The branch 7 has no internal heat exchanger at all, the branch 8 has two instead. Surprisingly, this structure proves to be particularly efficient in practice. The reason is that the refrigerant flow rate on branch 8 is normally significantly larger than on branch 7; Even if long running times of the compressor 1, including uninterrupted operation, are required to keep the storage chamber 18 at its target temperature or the compressor 1 is even operated in a speed-controlled manner, the fact that the refrigerant vapor with which the compressed refrigerant in the inner heat exchanger 24 is brought into thermal contact, has already been preheated in the inner heat exchanger 29, subcooling of the storage chamber 19.

Fig. 3 zeigt einen Ausschnitt des Kältemittelkreislaufs gemäß einer Abwandlung, die sowohl bei der Anordnung der inneren Wärmetauscher gemäß Fig. 1 als auch gemäß Fig. 2 anwendbar ist. Die steuerbare Drosselstelle 9 ist hier nicht als Expansionsventil ausgeführt, sondern sie umfasst eine Parallelschaltung von zwei Leitungszweigen 31, 32, von denen der eine, 31, eine Kapillare 33 und der andere, 32, ein Absperrventil 34 umfasst. Wenn das Absperrventil 34 offen ist, fließt praktisch das gesamte auf dem Zweig 7 zirkulierende Kältemittel durch das Absperrventil 34, und der Einfluss der Kapillare 33 auf die Drücke und Flüsse im Kältemittelkreis ist vernachlässigbar. Der Druck im Wärmetauscher 10 ist dann praktisch identisch mit dem im Verflüssiger 5, und die Lagerkammer 17 kann wie oben beschrieben oberhalb der Umgebungstemperatur betrieben werden. Fig. 3 shows a section of the refrigerant circuit according to a modification, both in the arrangement of the internal heat exchanger according to Fig. 1 as well as according to Fig. 2 is applicable. The controllable throttle point 9 is not designed here as an expansion valve, but rather it comprises a parallel connection of two line branches 31, 32, one of which, 31, comprises a capillary 33 and the other, 32, comprises a shut-off valve 34. When the shut-off valve 34 is open, virtually all of the refrigerant circulating on the branch 7 flows through the shut-off valve 34, and the influence of the capillary 33 on the pressures and flows in the refrigerant circuit is negligible. The pressure in the heat exchanger 10 is then practically identical to that in the condenser 5, and the storage chamber 17 can be operated above the ambient temperature as described above.

Ist hingegen das Absperrventil 34 geschlossen, dann kann das Kältemittel im Zweig 7 nur durch die Kapillare 33 fließen, und im Wärmetauscher 10 stellt sich ein niedriger Druck und eine entsprechend niedrige Temperatur ein.However, if the shut-off valve 34 is closed, then the refrigerant in branch 7 can only flow through the capillary 33, and a low pressure and a correspondingly low temperature are established in the heat exchanger 10.

Ein Teil der Kapillare 33 oder eines ihr vorgelagerten Abschnitts 35 des Leitungszweigs 31 können hier in den inneren Wärmetauscher 24 einbezogen sein, um einen effizienteren Kühlbetrieb der Lagerkammer 17 zu ermöglichen. Da bei offenem Absperrventil 34 der Kältemittelfluss über die Kapillare 33 vernachlässigbar ist, hat diese Einbeziehung keinen Einfluss auf die Möglichkeit, hohe Temperaturen in der Lagerkammer 17 zu erreichen.A part of the capillary 33 or a section 35 of the line branch 31 upstream of it can be included here in the inner heat exchanger 24 in order to enable more efficient cooling operation of the storage chamber 17. Since the refrigerant flow via the capillary 33 is negligible when the shut-off valve 34 is open, this inclusion has no influence on the possibility of reaching high temperatures in the storage chamber 17.

Die Kapillare 33 kann durch ein Expansionsventil ersetzt sein.The capillary 33 can be replaced by an expansion valve.

Die steuerbaren Drosselstellen 11, 13, 15 können, wenn gewünscht, ebenfalls den in Fig. 3 für die Drosselstelle 9 gezeigten Aufbau haben.If desired, the controllable throttle points 11, 13, 15 can also be the same as in Fig. 3 have the structure shown for the throttle point 9.

BEZUGSZEICHENREFERENCE MARKS

11
Verdichtercompressor
22
DruckanschlussPressure connection
33
SauganschlussSuction connection
44
KältemittelleitungRefrigerant pipe
55
Verflüssigerliquefier
66
Verzweigungbranch
77
Zweigbranch
88th
Zweigbranch
99
DrosselstelleThrottle point
1010
WärmetauscherHeat exchanger
1111
DrosselstelleThrottle point
1212
Zusammenflussconfluence
1313
DrosselstelleThrottle point
1414
WärmetauscherHeat exchanger
1515
DrosselstelleThrottle point
1616
WärmetauscherHeat exchanger
1717
LagerkammerStorage chamber
1818
LagerkammerStorage chamber
1919
LagerkammerStorage chamber
2020
HülleCovering
2121
kalter Abschnittcold section
2222
warmer Abschnittwarm section
2323
innerer Wärmetauscherinternal heat exchanger
2424
innerer Wärmetauscherinternal heat exchanger
2525
kalter Abschnittcold section
2626
warmer Abschnittwarm section
2727
SteuerschaltungControl circuit
2828
TemperatursensorTemperature sensor
2929
innerer Wärmetauscherinternal heat exchanger
3030
warmer Abschnittwarm section
3131
LeitungszweigLine branch
3232
LeitungszweigLine branch
3333
Kapillarecapillary
3434
AbsperrventilShut-off valve
3535
AbschnittSection

Claims (12)

  1. Refrigeration appliance comprising at least a first storage chamber (17), a second storage chamber (18) and a refrigerant circuit in which a condenser (5), a first controllable throttle point (9), a first heat exchanger (10) for controlling the temperature of the first storage chamber (17), a second controllable throttle point (11) and a second heat exchanger (16) for cooling the second storage chamber (18) are connected in series between a pressure connection (2) and a suction connection (3) of a compressor (1), wherein at least a hot line section (22, 26, 30) located upstream of the second heat exchanger (16) and a cold line section (21, 25) located downstream of the second heat exchanger (16) are routed in thermal contact with respect to one another in order to form an inner heat exchanger (23, 24, 29) and the first heat exchanger (10) is connected to the pressure connection (2) bypassing the hot line section (22, 26, 30), wherein the refrigeration appliance has an electronic control unit (27) and temperature sensors (28) in the two storage chambers (17, 18), wherein the electronic control unit (27) is connected to the temperature sensors (28) in the two storage chambers (17, 18) and is configured to control the rotational speed of the compressor (1) as well as the pressure losses at the controllable throttle points (9, 11) using a comparison of the temperatures prevailing in the storage chambers (17, 18) with set values adjusted by the user, so that when the adjustable set value for the first temperature-controlled storage chamber (17) is above the ambient temperature, the pressure loss at the first throttle point (9) is minimal and the first heat exchanger (10) operates as a condenser.
  2. Refrigeration appliance according to claim 1, characterised in that upstream of the second heat exchanger (14) a bypass line branch (8) which contains a third controllable throttle point (11) and a third heat exchanger (14) is connected in parallel to a line branch (7) containing the first controllable throttle point (9) and the first heat exchanger (10).
  3. Refrigeration appliance according to claim 1 or 2, characterised in that the hot line section (22) is located in the refrigerant circuit between the first heat exchanger (10) and the second heat exchanger (16).
  4. Refrigeration appliance according to claim 2, characterised in that the hot line section (26, 30) is located in the bypass line branch (8).
  5. Refrigeration appliance according to claim 4, characterised in that the hot line section (26) is located upstream of the third heat exchanger (14).
  6. Refrigeration appliance according to claim 4, characterised in that the bypass line branch (8) comprises a fourth controllable throttle point (15) downstream of the third heat exchanger (14) and the hot line section (30) is located between the third heat exchanger (14) and the fourth controllable throttle point (15).
  7. Refrigeration appliance according to claim 5, characterised in that it comprises a second inner heat exchanger (21, 29), wherein a hot line section (22, 30) of the second inner heat exchanger (21, 29) is located between an outlet of the first or of the third heat exchanger (10, 16) and an inlet of the second heat exchanger (14).
  8. Refrigeration appliance according to claim 7, characterised in that a cold line section (21) of the second inner heat exchanger (22, 29) is located between an outlet of the second heat exchanger (16) and the cold line section (25) of the first inner heat exchanger (24).
  9. Refrigeration appliance according to one of the preceding claims, characterised in that at least one of the controllable throttle points (9, 11, 13, 15) comprises an expansion valve.
  10. Refrigeration appliance according to one of the preceding claims, characterised in that at least one of the controllable throttle points (9) comprises at least two parallel line branches and a valve (32) for controlling the distribution of the refrigerant to the line branches.
  11. Refrigeration appliance according to claim 10, characterised in that one of the parallel line branches comprises a capillary (31).
  12. Refrigeration appliance according to claim 10, characterised in that one of the parallel line branches forms a hot line section of an inner heat exchanger.
EP17702099.7A 2016-02-19 2017-01-31 Refrigeration device comprising multiple storage chambers Active EP3417213B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016202565.1A DE102016202565A1 (en) 2016-02-19 2016-02-19 Refrigerating appliance with several storage chambers
PCT/EP2017/051971 WO2017140488A1 (en) 2016-02-19 2017-01-31 Refrigeration device comprising multiple storage chambers

Publications (2)

Publication Number Publication Date
EP3417213A1 EP3417213A1 (en) 2018-12-26
EP3417213B1 true EP3417213B1 (en) 2023-10-04

Family

ID=57914987

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17702099.7A Active EP3417213B1 (en) 2016-02-19 2017-01-31 Refrigeration device comprising multiple storage chambers

Country Status (5)

Country Link
US (1) US11092376B2 (en)
EP (1) EP3417213B1 (en)
CN (1) CN108700349B (en)
DE (1) DE102016202565A1 (en)
WO (1) WO2017140488A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107356003B (en) 2016-05-10 2021-04-20 比亚迪股份有限公司 Heat pump air conditioning system and electric automobile
CN107351624B (en) * 2016-05-10 2020-08-25 比亚迪股份有限公司 Heat pump air conditioning system and electric automobile
CN112303944A (en) * 2019-07-31 2021-02-02 特灵国际有限公司 System and method for controlling superheat from a subcooler
DE102019216582A1 (en) * 2019-10-28 2021-04-29 BSH Hausgeräte GmbH Refrigeration device with a compartment that can be heated and cooled
DE102019218352A1 (en) * 2019-11-27 2021-05-27 BSH Hausgeräte GmbH Refrigerator with a compartment that can be used in various ways
DE102020207648A1 (en) 2020-06-22 2021-12-23 BSH Hausgeräte GmbH Refrigeration device with an intake manifold heat exchanger and method for operating a refrigeration device with an intake manifold heat exchanger

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140020410A1 (en) * 2012-07-20 2014-01-23 Lenox International Inc. Controlling metering devices

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4439996A (en) * 1982-01-08 1984-04-03 Whirlpool Corporation Binary refrigerant system with expansion valve control
JPS59164860A (en) * 1983-03-09 1984-09-18 株式会社東芝 Refrigeration cycle of refrigerator
US4918942A (en) 1989-10-11 1990-04-24 General Electric Company Refrigeration system with dual evaporators and suction line heating
US5157943A (en) 1990-11-09 1992-10-27 General Electric Company Refrigeration system including capillary tube/suction line heat transfer
US5228308A (en) * 1990-11-09 1993-07-20 General Electric Company Refrigeration system and refrigerant flow control apparatus therefor
US5103650A (en) * 1991-03-29 1992-04-14 General Electric Company Refrigeration systems with multiple evaporators
US5243837A (en) * 1992-03-06 1993-09-14 The University Of Maryland Subcooling system for refrigeration cycle
US6286326B1 (en) * 1998-05-27 2001-09-11 Worksmart Energy Enterprises, Inc. Control system for a refrigerator with two evaporating temperatures
JP2001108319A (en) 1999-10-06 2001-04-20 Matsushita Refrig Co Ltd Refrigerator
US6327871B1 (en) 2000-04-14 2001-12-11 Alexander P. Rafalovich Refrigerator with thermal storage
DE20012619U1 (en) * 2000-07-20 2000-09-21 Bsh Bosch Siemens Hausgeraete Refrigerator
US7017353B2 (en) * 2000-09-15 2006-03-28 Scotsman Ice Systems Integrated ice and beverage dispenser
JP3576092B2 (en) * 2000-11-10 2004-10-13 松下冷機株式会社 refrigerator
KR100712483B1 (en) * 2005-09-16 2007-04-30 삼성전자주식회사 Refrigerator and operation control method therof
KR100757442B1 (en) * 2005-12-29 2007-09-11 엘지전자 주식회사 Air conditioner
US7587905B2 (en) * 2006-02-15 2009-09-15 Maytag Corporation Icemaker system for a refrigerator
CN102080895A (en) 2011-01-18 2011-06-01 合肥美的荣事达电冰箱有限公司 Refrigerating system, refrigerator with same and control method thereof
CN103047829A (en) * 2011-10-14 2013-04-17 博西华电器(江苏)有限公司 Refrigeration device and working method thereof
US9285161B2 (en) * 2012-02-21 2016-03-15 Whirlpool Corporation Refrigerator with variable capacity compressor and cycle priming action through capacity control and associated methods
CN104251579A (en) * 2013-06-26 2014-12-31 海尔集团公司 Defrosting control system for direct-cooling refrigerator
DE102013226341A1 (en) * 2013-12-18 2015-06-18 BSH Hausgeräte GmbH Refrigerating appliance with several cold compartments
KR20150075529A (en) * 2013-12-26 2015-07-06 동부대우전자 주식회사 Cooling apparatus of refrigerator and control method thereof
US9657969B2 (en) * 2013-12-30 2017-05-23 Rolls-Royce Corporation Multi-evaporator trans-critical cooling systems
DE102014223460A1 (en) * 2014-02-27 2015-08-27 BSH Hausgeräte GmbH The refrigerator
KR20150133035A (en) 2014-05-19 2015-11-27 한온시스템 주식회사 Outdoor heat exchanger

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140020410A1 (en) * 2012-07-20 2014-01-23 Lenox International Inc. Controlling metering devices

Also Published As

Publication number Publication date
US11092376B2 (en) 2021-08-17
US20190032986A1 (en) 2019-01-31
CN108700349B (en) 2021-01-12
WO2017140488A1 (en) 2017-08-24
CN108700349A (en) 2018-10-23
EP3417213A1 (en) 2018-12-26
DE102016202565A1 (en) 2017-08-24

Similar Documents

Publication Publication Date Title
EP3417213B1 (en) Refrigeration device comprising multiple storage chambers
EP3344931B1 (en) Refrigeration device comprising multiple storage chambers
DE102005061599A1 (en) Modular cooling system and refrigeration device for such a cooling system
DE102010061005B4 (en) Expansion valve and air conditioner for vehicles that has the same
DE3907859C2 (en) Air-cooled refrigeration unit with a coolant circuit
EP2199706B1 (en) A switching device air conditioner and operation method thereof
DE2606072A1 (en) PROCESS AND SYSTEM FOR CONTROLLING THE TEMPERATURE IN SEVERAL ROOMS THAT HAVE ALTERNATELY DIFFERENT AND CHANGING HEAT REQUIREMENTS, SOME OF THE ROOMS NORMALLY HAVE A COOLING REQUIREMENT
EP3417212B1 (en) Refrigeration device comprising multiple storage chambers
DE102017110560B4 (en) Refrigerant circuit of a refrigeration system with an arrangement for defrosting a heat exchanger and a method for operating the refrigerant circuit
DE102013219146A1 (en) Vehicle heat pump system and control method
DE3341853C2 (en) Interior cooling device
DE102009030041A1 (en) Vehicle air conditioning system with evaporators cooling passenger compartment and e.g. hybrid drive battery, has single excess pressure relief valve
DE102014007853B3 (en) Method and device for controlling the temperature of a heat exchanger
DE102015211963A1 (en) The refrigerator
WO2021083697A1 (en) Refrigeration appliance comprising a compartment that can be heated and cooled
DE102015120138B4 (en) Environmental Test Apparatus, Cooler, and Environmental Test Procedure
DE102015215491A1 (en) Single-circuit refrigerating appliance
EP3309478B1 (en) Method for operating a cooling circuit
DE112019002073T5 (en) Cooling system for low temperature storage
DE102018202008A1 (en) Combination refrigeration device
DE202018001404U1 (en) Device for tempering filter-cleaned liquid medium
DE202009003331U1 (en) Cooling system for the tool of an injection molding machine
DE102011101347A1 (en) Refrigerator and/or freezer for use in building or living space, has ventilation system comprising supply air duct and exhaust air duct that are connected to intake port and exhaust port respectively
DE112009000657B4 (en) Method for operating a cooling device and cooling device for carrying out such a method
DE102016202568A1 (en) Refrigerating appliance with heatable storage chamber

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180919

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210511

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230509

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017015442

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20231004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231004