EP3416521B1 - Ultrasound hair drying and styling - Google Patents

Ultrasound hair drying and styling Download PDF

Info

Publication number
EP3416521B1
EP3416521B1 EP17704502.8A EP17704502A EP3416521B1 EP 3416521 B1 EP3416521 B1 EP 3416521B1 EP 17704502 A EP17704502 A EP 17704502A EP 3416521 B1 EP3416521 B1 EP 3416521B1
Authority
EP
European Patent Office
Prior art keywords
hair
ultrasound
styling
mhz
drying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17704502.8A
Other languages
German (de)
French (fr)
Other versions
EP3416521A1 (en
Inventor
Tim TIELEMANS
Marco Baragona
Babu Varghese
Jonathan Alambra PALERO
Wouter Hendrik Cornelis SPOORENDONK
Johan Lub
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips NV filed Critical Koninklijke Philips NV
Priority to PL17704502T priority Critical patent/PL3416521T3/en
Publication of EP3416521A1 publication Critical patent/EP3416521A1/en
Application granted granted Critical
Publication of EP3416521B1 publication Critical patent/EP3416521B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A45HAND OR TRAVELLING ARTICLES
    • A45DHAIRDRESSING OR SHAVING EQUIPMENT; EQUIPMENT FOR COSMETICS OR COSMETIC TREATMENTS, e.g. FOR MANICURING OR PEDICURING
    • A45D1/00Curling-tongs, i.e. tongs for use when hot; Curling-irons, i.e. irons for use when hot; Accessories therefor
    • A45D1/28Curling-tongs, i.e. tongs for use when hot; Curling-irons, i.e. irons for use when hot; Accessories therefor with means for controlling or indicating the temperature
    • AHUMAN NECESSITIES
    • A45HAND OR TRAVELLING ARTICLES
    • A45DHAIRDRESSING OR SHAVING EQUIPMENT; EQUIPMENT FOR COSMETICS OR COSMETIC TREATMENTS, e.g. FOR MANICURING OR PEDICURING
    • A45D1/00Curling-tongs, i.e. tongs for use when hot; Curling-irons, i.e. irons for use when hot; Accessories therefor
    • A45D1/06Curling-tongs, i.e. tongs for use when hot; Curling-irons, i.e. irons for use when hot; Accessories therefor with two or more jaws
    • AHUMAN NECESSITIES
    • A45HAND OR TRAVELLING ARTICLES
    • A45DHAIRDRESSING OR SHAVING EQUIPMENT; EQUIPMENT FOR COSMETICS OR COSMETIC TREATMENTS, e.g. FOR MANICURING OR PEDICURING
    • A45D20/00Hair drying devices; Accessories therefor
    • A45D20/04Hot-air producers
    • A45D20/08Hot-air producers heated electrically
    • A45D20/10Hand-held drying devices, e.g. air douches
    • A45D20/12Details thereof or accessories therefor, e.g. nozzles, stands
    • AHUMAN NECESSITIES
    • A45HAND OR TRAVELLING ARTICLES
    • A45DHAIRDRESSING OR SHAVING EQUIPMENT; EQUIPMENT FOR COSMETICS OR COSMETIC TREATMENTS, e.g. FOR MANICURING OR PEDICURING
    • A45D7/00Processes of waving, straightening or curling hair
    • AHUMAN NECESSITIES
    • A45HAND OR TRAVELLING ARTICLES
    • A45DHAIRDRESSING OR SHAVING EQUIPMENT; EQUIPMENT FOR COSMETICS OR COSMETIC TREATMENTS, e.g. FOR MANICURING OR PEDICURING
    • A45D2200/00Details not otherwise provided for in A45D
    • A45D2200/20Additional enhancing means
    • A45D2200/207Vibration, e.g. ultrasound

Definitions

  • the invention relates to an ultrasound hair care device and method for drying and styling hair.
  • hair styling as used herein is intended to encompass all actions such as hair crimping, curling, perming and straightening.
  • US 2012/0291797 discloses a hair styling apparatus that includes a hair-heating device for applying heat to hair.
  • the hair-heating device has a moisture-temperature setting and a dry-temperature setting less than moisture-temperature setting.
  • a moisture sensor detects a moisture-indicating parameter of the hair, and generates a moisture-indicating signal indicative of whether the hair is at or below a predetemlined moisture threshold level.
  • a control circuit adjusts the temperature of the hair-heating device from the moisture-temperature setting to the dry-temperature setting in response to the moisture sensor generating a moisture indicating signal indicative of the hair being at or below the predetermined moisture threshold level.
  • the hair-heating device is active in the dry-temperature setting.
  • US 2006/0272669 discloses hair styling appliances that utilize ultrasonic vibration for hair styling, and mentions that it is possible to atomize moisture inside hair to evaporate the moisture by ultrasonic vibration, even under room temperature. It is thus not necessary to use an extremely high temperature (e.g., 130° C) in order to evaporate moisture inside hair, which high temperature causes denaturation of protein and scald.
  • an extremely high temperature e.g. 130° C
  • the document EP1728450A2 discloses an ultrasound hair care device comprising an ultrasound unit.
  • the present invention is based on the new insight that nebulizing (the water for drying the hair) and styling with optimized but distinctively different ultrasound frequencies have significant benefits over using a single frequency range for both styling and drying with ultrasound. Moreover, styling can only be done in an optimal way when the hairs are dry. Drying the hairs before styling makes the styling to be performed at higher temperature which results in better retention of style and quicker styling so hairs will be exposed to high temperature for shorter periods of time. Both conventional and surface acoustic wave based ultrasound nebulization elements can be implemented in the haircare device.
  • a first aspect of the invention provides an ultrasound hair care device for drying and styling hair.
  • An ultrasound unit applies ultrasound to the hair.
  • a hair moisture measurement unit measures a moisture level of the hair.
  • a control unit controls the ultrasound unit based on the moisture level.
  • ultrasound is applied to the hair at a first frequency not exceeding 1 MHz for drying the hair, and/or at a second frequency of at least 1 MHz for styling the hair in dependence on the moisture level.
  • the first frequency does not exceed 0.5 MHz, and preferably does not exceed 0.4 MHz.
  • the second frequency is advantageously at least 5 MHz, and preferably between 6.4 MHz and 500 MHz.
  • An ultrasound intensity is advantageously at least 1 W/cm 2 , and preferably does not exceed 10 W/cm 2 .
  • the control unit may comprise a look-up-table for switching the ultrasound unit to operate at the first frequency and/or at the second frequency in dependence on the moisture level.
  • a second aspect of the invention provides a hair care method of drying and styling hair, using said ultrasound hair care device, the hair care method comprising measuring a hair moisture level; and applying ultrasound to the hair at a first frequency not exceeding 1 MHz for drying the hair and/or at a second frequency of at least 1 MHz for styling the hair in dependence of the hair moisture level.
  • ultrasound is applied during a period not exceeding 2 minutes, and preferably not exceeding 1 minute.
  • Fig. 1 shows an embodiment of an ultrasound hair care device 10 for drying hair and styling of hair.
  • a first ultrasound generator 12 generates ultrasound at a frequency between 20 kHz to 0.4 MHz.
  • a second ultrasound generator 14 generates ultrasound at a frequency between 6.4 MHz to 500 MHz.
  • a first ultrasound transducer 16 in electrical communication with the first ultrasound generator 12 applies ultrasound to the water in hair lock 20 for nebulizing the water in hair lock as to dry hair.
  • a second ultrasound transducer 18 in electrical communication with the second ultrasound generator 14 applies ultrasound to the hair lock 20 to style the hair.
  • a hair moisture measurement unit 22 measures the moisture level of the hair lock 20.
  • a control unit 24 controls a level of energy of the first ultrasound generator 12 and the second ultrasound generator 14 based on the measured hair moisture level as to provide optimum drying and styling to the hair.
  • Nebulization by means of ultrasound can be achieved within a frequency range of 20 kHz - 1 MHz. To prevent cavitation, a frequency range of 20 kHz - 0.4 MHz is preferably selected. Styling by means of ultrasound can be achieved within a frequency range of 1 MHz - 500 MHz. To prevent cavitation, a frequency range of 6.4 MHz - 500 MHz could be selected. Finally, moisture sensing by means of ultrasound can be achieved within a frequency range of 100 kHz to 1 MHz. The preferred range of intensity of an effective ultrasound-based hair styling device is between 1 W/cm 2 and 10 W/cm 2 measured at the transducer-hair interface.
  • Fig. 2 schematically represents how the ultrasound frequencies for drying D and styling S can be applied over time.
  • Starting with wet hair initially relatively much ultrasound energy is applied at the ultrasound frequency for drying D, and relatively little ultrasound energy is applied at the ultrasound frequency for styling S.
  • the amount of ultrasound energy applied at the ultrasound frequency for drying D becomes smaller, and the amount of ultrasound energy applied at the ultrasound frequency for styling S becomes larger.
  • ultrasound styling and drying can be accomplished with different as well as overlapping frequency ranges.
  • An average power limit of 10 W/cm 2 and application time was set to max 60 s to maintain practical relevance.
  • Fig. 3 illustrates ultrasound threshold intensities of the three identified main mechanisms involved in hair drying and styling as a function of ultrasound intensity.
  • the horizontal axis indicates frequencies in MHz, and the vertical axis indicates the threshold intensity in W/cm 2 .
  • Curve A shows the threshold for styling through ultrasound heating (assuming all power is absorbed by hairs, 60 s).
  • Curve B shows the threshold for styling through ultrasound heating (60% relative humidity, matched to experiments, 60 s).
  • Curve C shows the threshold for nebulization (typical water film thickness), and curves C1 - C2 show thresholds for nebulization (limits for 2-10 ⁇ m water film thickness).
  • Curve D shows the threshold for cavitation.
  • Region 1 is a preferred region for ultrasound based styling (heating + cavitation).
  • Region 2 is a preferred region for ultrasound based drying (nebulization).
  • Region 3 is a preferred region for ultrasound based styling & drying.
  • Region 4 is a preferred region for ultrasound based styling (heating).
  • cavitation For cavitation to take place at least a thin film of liquid has to be present on the hairs.
  • cavitation can play a role to enhance the drying process. Styling should preferably only take place once the hair has fully dried to prevent cavitation from happening. Especially at higher power cavitation can damage the hair structure. In this case two non-overlapping frequencies are preferred for several reasons: We favor styling through ultrasound heating and/or non-thermal without cavitation. (Region 1). Cavitation may decrease the power needed, but it also brings increased risk of damaging the hairs (Region 1). We do not exclude to use cavitation for styling, but preferably it is not used.
  • a combined ultrasound styling & drying effect requires a very narrow frequency range and a setup with little losses (Region 3).
  • the threshold for styling through ultrasound heating will lie somewhere between the threshold as predicted by 100% absorption of ultrasound power in hairs (Curve A) and less efficient absorption of ultrasound power in hairs as found in experiments (Curve B), thus significantly shrinking the preferred region for ultrasound based styling & drying (Region 3).
  • Variation in moisture content, relative humidity, hair density, hair diameter, volume etc. will all influence the preferred region for ultrasound based styling and drying, making it very hard to predict the right settings let alone to predetermine said parameters to fall in a viable frequency range for styling and drying. Therefore, in practice the preferred regions for styling (Region 2) or drying (Region 4) are better defined and more robust than the preferred region for styling and drying (Region 3).
  • Fig. 4 shows a second embodiment of an ultrasound hair care device for drying and styling hair in accordance with the present invention.
  • the main features of the ultrasound hair drying system of Fig. 4 include an ultrasound generator 100, an ultrasound amplifier 101, three ultrasound transducers 102A, 102B, 102C (one for styling, one for drying, one for moisture sensing), a droplet handler 105, water film and droplets 103, 103A, a control system 106, a user interface 107, and a thermal detector 108 to prevent overheating.
  • the ultrasound generator 100 generates fixed or variable low-voltage ultrasound pulses, with frequency, voltage and pulse duration controlled by the control system 106 depending on treatment settings selected through the user interface 107 and the moisture content of the hairs detected by the ultrasound receiver 102C. This will enable atomization of liquid (103A, 103B) from the hair surface 104.
  • the resulting droplets will be removed or extracted by the droplet handler 105, which could be a simple air blower/extractor or something more
  • the hair care device can then be made to be safe for use if it is carefully designed such that:
  • Piezoelectric crystals are used to produce ultrasound (> 20 kHz).
  • Non-piezoelectric techniques like Capacitance Micro-machined Ultrasonic Transducers (CMUT) can be used for higher frequencies (typically up to ⁇ 100 MHz) and can be used with this invention. These techniques use relatively small transducers and are cheaper, thereby making it attractive for both home use and semi-professional hair care applications.
  • CMUT Capacitance Micro-machined Ultrasonic Transducers
  • CMUT transducers are used, a single ultrasound transducer may be used for both ultrasound frequencies. It is possible to have a hard switch between the different ultrasound frequencies in that below a certain moisture level the first frequency is produced while above that moisture level the second frequency is produced. It is alternatively possible to have a soft switch allowing for a gradual reduction of the intensity of the ultrasound produced at the first frequency, and a gradual increase of the intensity of the ultrasound produced at the second frequency, as a result of a decreasing moisture level of the hair. In such a soft switching embodiment, a look-up table is preferably used in the control unit for determining the intensities of the ultrasound produced at the first and second frequencies in dependence of the moisture level.
  • any reference signs placed between parentheses shall not be construed as limiting the claim.
  • the word “comprising” does not exclude the presence of elements or steps other than those listed in a claim.
  • the word "a” or “an” preceding an element does not exclude the presence of a plurality of such elements.
  • the invention may be implemented by means of hardware comprising several distinct elements, and/or by means of a suitably programmed processor. In the device claim enumerating several means, several of these means may be embodied by one and the same item of hardware. The mere fact that certain measures are recited in mutually different dependent claims does not indicate that a combination of these measures cannot be used to advantage.

Landscapes

  • Cleaning And Drying Hair (AREA)
  • Cosmetics (AREA)

Description

    FIELD OF THE INVENTION
  • The invention relates to an ultrasound hair care device and method for drying and styling hair.
  • BACKGROUND OF THE INVENTION
  • Many women are concerned about hair damage resulting from styling and are sometimes dissatisfied with the results obtained from present styling devices. In general, there is awareness that applying heat to the hair will cause damage. The term hair styling as used herein is intended to encompass all actions such as hair crimping, curling, perming and straightening.
  • Traditional electrical hair styling devices use hot irons designed to give a thermal treatment to the hair fibers or lock of fibers while pressing them into a desired shape. The combination of excessive heating and/or weathering with mechanical (shear) forces during styling and combing leads to moisture loss and potential hair damage. Another problem is styling when hair is still damp or wet. This can create additional damage to the hair structure or might decrease the efficacy of the treatment.
  • US 2012/0291797 discloses a hair styling apparatus that includes a hair-heating device for applying heat to hair. The hair-heating device has a moisture-temperature setting and a dry-temperature setting less than moisture-temperature setting. A moisture sensor detects a moisture-indicating parameter of the hair, and generates a moisture-indicating signal indicative of whether the hair is at or below a predetemlined moisture threshold level. A control circuit adjusts the temperature of the hair-heating device from the moisture-temperature setting to the dry-temperature setting in response to the moisture sensor generating a moisture indicating signal indicative of the hair being at or below the predetermined moisture threshold level. The hair-heating device is active in the dry-temperature setting.
  • US 2012/0312320 mentions that some hair styling tools incorporate the distribution of steam, ultrasonic waves, or active hair treatment compositions in addition to the application of heat, and that there are various methods for measuring moisture content in hair via observing electrical conductance, impedance, resistance, ultrasound, etc. No details are mentioned.
  • US 2006/0272669 discloses hair styling appliances that utilize ultrasonic vibration for hair styling, and mentions that it is possible to atomize moisture inside hair to evaporate the moisture by ultrasonic vibration, even under room temperature. It is thus not necessary to use an extremely high temperature (e.g., 130° C) in order to evaporate moisture inside hair, which high temperature causes denaturation of protein and scald.
  • The document EP1728450A2 discloses an ultrasound hair care device comprising an ultrasound unit.
  • SUMMARY OF THE INVENTION
  • It is, inter alia, an object of the invention to provide a practical ultrasound hair care device and method for drying and styling hair, using said ultrasound hair care device. The invention is defined by the independent claims. Advantageous embodiments are defined in the dependent claims.
  • The present invention is based on the new insight that nebulizing (the water for drying the hair) and styling with optimized but distinctively different ultrasound frequencies have significant benefits over using a single frequency range for both styling and drying with ultrasound. Moreover, styling can only be done in an optimal way when the hairs are dry. Drying the hairs before styling makes the styling to be performed at higher temperature which results in better retention of style and quicker styling so hairs will be exposed to high temperature for shorter periods of time. Both conventional and surface acoustic wave based ultrasound nebulization elements can be implemented in the haircare device.
  • A first aspect of the invention provides an ultrasound hair care device for drying and styling hair. An ultrasound unit applies ultrasound to the hair. A hair moisture measurement unit measures a moisture level of the hair. A control unit controls the ultrasound unit based on the moisture level. In accordance with the present invention, ultrasound is applied to the hair at a first frequency not exceeding 1 MHz for drying the hair, and/or at a second frequency of at least 1 MHz for styling the hair in dependence on the moisture level.
  • Advantageously, the first frequency does not exceed 0.5 MHz, and preferably does not exceed 0.4 MHz. The second frequency is advantageously at least 5 MHz, and preferably between 6.4 MHz and 500 MHz.
  • An ultrasound intensity is advantageously at least 1 W/cm2, and preferably does not exceed 10 W/cm2.
  • The control unit may comprise a look-up-table for switching the ultrasound unit to operate at the first frequency and/or at the second frequency in dependence on the moisture level.
  • A second aspect of the invention provides a hair care method of drying and styling hair, using said ultrasound hair care device, the hair care method comprising measuring a hair moisture level; and applying ultrasound to the hair at a first frequency not exceeding 1 MHz for drying the hair and/or at a second frequency of at least 1 MHz for styling the hair in dependence of the hair moisture level.
  • Advantageously, ultrasound is applied during a period not exceeding 2 minutes, and preferably not exceeding 1 minute.
  • These and other aspects of the invention will be apparent from and elucidated with reference to the embodiments described hereinafter.
  • BRIEF DESCRIPTION OF THE DRAWINGS
    • Fig. 1 shows a first embodiment of an ultrasound hair care device for drying and styling hair in accordance with the present invention.
    • Fig. 2 schematically represents how the ultrasound frequencies for drying and styling can be applied over time.
    • Fig. 3 illustrates ultrasound threshold intensities of the three identified main mechanisms involved in hair drying and styling as a function of ultrasound intensity.
    • Fig. 4 shows a second embodiment of an ultrasound hair care device for drying and styling hair in accordance with the present invention.
    DESCRIPTION OF EMBODIMENTS
  • Fig. 1 shows an embodiment of an ultrasound hair care device 10 for drying hair and styling of hair. A first ultrasound generator 12 generates ultrasound at a frequency between 20 kHz to 0.4 MHz. A second ultrasound generator 14 generates ultrasound at a frequency between 6.4 MHz to 500 MHz. A first ultrasound transducer 16 in electrical communication with the first ultrasound generator 12 applies ultrasound to the water in hair lock 20 for nebulizing the water in hair lock as to dry hair. A second ultrasound transducer 18 in electrical communication with the second ultrasound generator 14 applies ultrasound to the hair lock 20 to style the hair. A hair moisture measurement unit 22 measures the moisture level of the hair lock 20. A control unit 24 controls a level of energy of the first ultrasound generator 12 and the second ultrasound generator 14 based on the measured hair moisture level as to provide optimum drying and styling to the hair.
  • Nebulization by means of ultrasound can be achieved within a frequency range of 20 kHz - 1 MHz. To prevent cavitation, a frequency range of 20 kHz - 0.4 MHz is preferably selected. Styling by means of ultrasound can be achieved within a frequency range of 1 MHz - 500 MHz. To prevent cavitation, a frequency range of 6.4 MHz - 500 MHz could be selected. Finally, moisture sensing by means of ultrasound can be achieved within a frequency range of 100 kHz to 1 MHz. The preferred range of intensity of an effective ultrasound-based hair styling device is between 1 W/cm2 and 10 W/cm2 measured at the transducer-hair interface.
  • Fig. 2 schematically represents how the ultrasound frequencies for drying D and styling S can be applied over time. Starting with wet hair, initially relatively much ultrasound energy is applied at the ultrasound frequency for drying D, and relatively little ultrasound energy is applied at the ultrasound frequency for styling S. However, over time, when the hair becomes gradually drier, the amount of ultrasound energy applied at the ultrasound frequency for drying D becomes smaller, and the amount of ultrasound energy applied at the ultrasound frequency for styling S becomes larger.
  • Three mechanisms of ultrasound styling have been proposed:
    • Heating; the hydrogen bonds are broken by increasing the temperature of the hairs above the glass transition temperature of hair.
    • Cavitation + heat; cavitation can decrease the power needed for styling with heat only
    • Non-thermal (i.e. mechanical vibrations); experiments have shown ultrasound as a means to break hydrogen bonds without using heat. Not using heat is a big advantage in order to avoid overheating during styling.
  • As shown in Fig. 2, ultrasound styling and drying can be accomplished with different as well as overlapping frequency ranges. An average power limit of 10 W/cm2 and application time was set to max 60 s to maintain practical relevance.
  • Fig. 3 illustrates ultrasound threshold intensities of the three identified main mechanisms involved in hair drying and styling as a function of ultrasound intensity. The horizontal axis indicates frequencies in MHz, and the vertical axis indicates the threshold intensity in W/cm2.
  • Curve A shows the threshold for styling through ultrasound heating (assuming all power is absorbed by hairs, 60 s).
  • Curve B shows the threshold for styling through ultrasound heating (60% relative humidity, matched to experiments, 60 s).
  • Curve C shows the threshold for nebulization (typical water film thickness), and curves C1 - C2 show thresholds for nebulization (limits for 2-10 µm water film thickness).
  • Curve D shows the threshold for cavitation.
  • Region 1 is a preferred region for ultrasound based styling (heating + cavitation).
  • Region 2 is a preferred region for ultrasound based drying (nebulization).
  • Region 3 is a preferred region for ultrasound based styling & drying.
  • Region 4 is a preferred region for ultrasound based styling (heating).
  • For cavitation to take place at least a thin film of liquid has to be present on the hairs. During the drying phase cavitation can play a role to enhance the drying process. Styling should preferably only take place once the hair has fully dried to prevent cavitation from happening. Especially at higher power cavitation can damage the hair structure. In this case two non-overlapping frequencies are preferred for several reasons:
    We favor styling through ultrasound heating and/or non-thermal without cavitation. (Region 4). Cavitation may decrease the power needed, but it also brings increased risk of damaging the hairs (Region 1). We do not exclude to use cavitation for styling, but preferably it is not used.
  • Drying through nebulization with high power using cavitation can be damaging to the hairs and therefore a more gentle form of nebulization is preferred (Region 2). We do not exclude to use cavitation to increase nebulization speed, but preferably it is not used.
  • A combined ultrasound styling & drying effect requires a very narrow frequency range and a setup with little losses (Region 3). The threshold for styling through ultrasound heating will lie somewhere between the threshold as predicted by 100% absorption of ultrasound power in hairs (Curve A) and less efficient absorption of ultrasound power in hairs as found in experiments (Curve B), thus significantly shrinking the preferred region for ultrasound based styling & drying (Region 3). Variation in moisture content, relative humidity, hair density, hair diameter, volume etc. will all influence the preferred region for ultrasound based styling and drying, making it very hard to predict the right settings let alone to predetermine said parameters to fall in a viable frequency range for styling and drying. Therefore, in practice the preferred regions for styling (Region 2) or drying (Region 4) are better defined and more robust than the preferred region for styling and drying (Region 3).
  • Fig. 4 shows a second embodiment of an ultrasound hair care device for drying and styling hair in accordance with the present invention. The main features of the ultrasound hair drying system of Fig. 4 include an ultrasound generator 100, an ultrasound amplifier 101, three ultrasound transducers 102A, 102B, 102C (one for styling, one for drying, one for moisture sensing), a droplet handler 105, water film and droplets 103, 103A, a control system 106, a user interface 107, and a thermal detector 108 to prevent overheating. The ultrasound generator 100 generates fixed or variable low-voltage ultrasound pulses, with frequency, voltage and pulse duration controlled by the control system 106 depending on treatment settings selected through the user interface 107 and the moisture content of the hairs detected by the ultrasound receiver 102C. This will enable atomization of liquid (103A, 103B) from the hair surface 104. The resulting droplets will be removed or extracted by the droplet handler 105, which could be a simple air blower/extractor or something more complex.
  • The hair care device can then be made to be safe for use if it is carefully designed such that:
    • During operation, the transducer does not touch the skin/scalp;
    • During operation, there is a substantial distance between the transducer and skin/scalp, wherein within the distance a material with low acoustic impedance e.g. air, is present to allow reflection of any leaking ultrasound wave in the interface to the skin due to acoustic impedance mismatch, limiting the ultrasound intensity of more than 3 W/cm2 to reach the skin, and;
    • During non-operation, the transducer does not emit ultrasound.
  • Piezoelectric crystals (PMUT or standard) are used to produce ultrasound (> 20 kHz). Non-piezoelectric techniques like Capacitance Micro-machined Ultrasonic Transducers (CMUT) can be used for higher frequencies (typically up to ∼100 MHz) and can be used with this invention. These techniques use relatively small transducers and are cheaper, thereby making it attractive for both home use and semi-professional hair care applications.
  • It should be noted that the above-mentioned embodiments illustrate rather than limit the invention, and that those skilled in the art will be able to design many alternative embodiments without departing from the scope of the appended claims. If CMUT transducers are used, a single ultrasound transducer may be used for both ultrasound frequencies. It is possible to have a hard switch between the different ultrasound frequencies in that below a certain moisture level the first frequency is produced while above that moisture level the second frequency is produced. It is alternatively possible to have a soft switch allowing for a gradual reduction of the intensity of the ultrasound produced at the first frequency, and a gradual increase of the intensity of the ultrasound produced at the second frequency, as a result of a decreasing moisture level of the hair. In such a soft switching embodiment, a look-up table is preferably used in the control unit for determining the intensities of the ultrasound produced at the first and second frequencies in dependence of the moisture level.
  • In the claims, any reference signs placed between parentheses shall not be construed as limiting the claim. The word "comprising" does not exclude the presence of elements or steps other than those listed in a claim. The word "a" or "an" preceding an element does not exclude the presence of a plurality of such elements. The invention may be implemented by means of hardware comprising several distinct elements, and/or by means of a suitably programmed processor. In the device claim enumerating several means, several of these means may be embodied by one and the same item of hardware. The mere fact that certain measures are recited in mutually different dependent claims does not indicate that a combination of these measures cannot be used to advantage.

Claims (8)

  1. An ultrasound hair care device (10) for drying and styling hair (20, 104), the ultrasound hair care device (10) comprising:
    an ultrasound unit (12-18; 100-102B) for applying ultrasound to the hair (20; 104);
    a hair moisture measurement unit (22, 102C) for measuring a moisture level of the hair (20; 104); and
    a control unit (24; 106) for controlling the ultrasound unit (12-18, 100-102B) based on the moisture level, wherein, in dependence on the moisture level, ultrasound is applied to the hair (20; 104) at a first frequency not exceeding 1 MHz for drying the hair (20; 104), and/or at a second frequency of at least 1 MHz for styling the hair (20; 104).
  2. An ultrasound hair care device (10) as claimed in claim 1, wherein the first frequency does not exceed 0.5 MHz, and preferably does not exceed 0.4 MHz.
  3. An ultrasound hair care device (10) as claimed in claim 1 or 2, wherein the second frequency is at least 5 MHz, and preferably between 6.4 MHz and 500 MHz.
  4. An ultrasound hair care device (10) as claimed in any of the preceding claims, wherein an ultrasound intensity is at least 1 W/cm2.
  5. An ultrasound hair care device (10) as claimed in any of the preceding claims, wherein an ultrasound intensity does not exceed 10 W/cm2.
  6. The hair care device as claimed in any of the preceding claims, wherein the control unit (24, 106) comprises a look-up-table for switching the ultrasound unit (12-18; 100-102B) to operate at the first frequency and/or at the second frequency in dependence on the moisture level.
  7. A hair care method of drying and styling hair, using an ultrasound hair care device (10) according to one of the preceding claims, the hair care method comprising:
    measuring a hair moisture level; and
    applying, in dependence of the hair moisture level, ultrasound to the hair at a first frequency not exceeding 1 MHz for drying the hair and/or at a second frequency of at least 1 MHz for styling the hair.
  8. A hair styling method as claimed in claim 7, wherein ultrasound is applied during a period not exceeding 2 minutes, and preferably not exceeding 1 minute.
EP17704502.8A 2016-02-17 2017-02-16 Ultrasound hair drying and styling Active EP3416521B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL17704502T PL3416521T3 (en) 2016-02-17 2017-02-16 Ultrasound hair drying and styling

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP16156168.3A EP3207817A1 (en) 2016-02-17 2016-02-17 Ultrasound hair drying and styling
PCT/EP2017/053461 WO2017140757A1 (en) 2016-02-17 2017-02-16 Ultrasound hair drying and styling

Publications (2)

Publication Number Publication Date
EP3416521A1 EP3416521A1 (en) 2018-12-26
EP3416521B1 true EP3416521B1 (en) 2020-04-08

Family

ID=55405168

Family Applications (2)

Application Number Title Priority Date Filing Date
EP16156168.3A Withdrawn EP3207817A1 (en) 2016-02-17 2016-02-17 Ultrasound hair drying and styling
EP17704502.8A Active EP3416521B1 (en) 2016-02-17 2017-02-16 Ultrasound hair drying and styling

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP16156168.3A Withdrawn EP3207817A1 (en) 2016-02-17 2016-02-17 Ultrasound hair drying and styling

Country Status (6)

Country Link
US (1) US20210204667A1 (en)
EP (2) EP3207817A1 (en)
CN (1) CN108697217B (en)
ES (1) ES2792081T3 (en)
PL (1) PL3416521T3 (en)
WO (1) WO2017140757A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3935993A1 (en) 2020-07-07 2022-01-12 Koninklijke Philips N.V. Hair dryer

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2513884B (en) 2013-05-08 2015-06-17 Univ Bristol Method and apparatus for producing an acoustic field
US9612658B2 (en) 2014-01-07 2017-04-04 Ultrahaptics Ip Ltd Method and apparatus for providing tactile sensations
GB2530036A (en) 2014-09-09 2016-03-16 Ultrahaptics Ltd Method and apparatus for modulating haptic feedback
KR102524966B1 (en) 2015-02-20 2023-04-21 울트라햅틱스 아이피 엘티디 Algorithm improvements in haptic systems
US9841819B2 (en) 2015-02-20 2017-12-12 Ultrahaptics Ip Ltd Perceptions in a haptic system
US10818162B2 (en) 2015-07-16 2020-10-27 Ultrahaptics Ip Ltd Calibration techniques in haptic systems
US11189140B2 (en) 2016-01-05 2021-11-30 Ultrahaptics Ip Ltd Calibration and detection techniques in haptic systems
US10268275B2 (en) 2016-08-03 2019-04-23 Ultrahaptics Ip Ltd Three-dimensional perceptions in haptic systems
US10943578B2 (en) 2016-12-13 2021-03-09 Ultrahaptics Ip Ltd Driving techniques for phased-array systems
US11531395B2 (en) 2017-11-26 2022-12-20 Ultrahaptics Ip Ltd Haptic effects from focused acoustic fields
WO2019122912A1 (en) 2017-12-22 2019-06-27 Ultrahaptics Limited Tracking in haptic systems
JP7483610B2 (en) 2017-12-22 2024-05-15 ウルトラハプティクス アイピー リミテッド Minimizing unwanted responses in haptic systems
SG11202010752VA (en) 2018-05-02 2020-11-27 Ultrahaptics Ip Ltd Blocking plate structure for improved acoustic transmission efficiency
US11098951B2 (en) 2018-09-09 2021-08-24 Ultrahaptics Ip Ltd Ultrasonic-assisted liquid manipulation
US11378997B2 (en) 2018-10-12 2022-07-05 Ultrahaptics Ip Ltd Variable phase and frequency pulse-width modulation technique
EP3643196A1 (en) * 2018-10-25 2020-04-29 Koninklijke Philips N.V. Hair styling using dielectric heating
US11550395B2 (en) 2019-01-04 2023-01-10 Ultrahaptics Ip Ltd Mid-air haptic textures
US11842517B2 (en) 2019-04-12 2023-12-12 Ultrahaptics Ip Ltd Using iterative 3D-model fitting for domain adaptation of a hand-pose-estimation neural network
US11553295B2 (en) 2019-10-13 2023-01-10 Ultraleap Limited Dynamic capping with virtual microphones
US11374586B2 (en) 2019-10-13 2022-06-28 Ultraleap Limited Reducing harmonic distortion by dithering
WO2021090028A1 (en) 2019-11-08 2021-05-14 Ultraleap Limited Tracking techniques in haptics systems
US11715453B2 (en) 2019-12-25 2023-08-01 Ultraleap Limited Acoustic transducer structures
US11816267B2 (en) 2020-06-23 2023-11-14 Ultraleap Limited Features of airborne ultrasonic fields
WO2022058738A1 (en) 2020-09-17 2022-03-24 Ultraleap Limited Ultrahapticons
CN112325570A (en) * 2020-11-02 2021-02-05 中国兵器科学研究院宁波分院 Clamping plate type ultrasonic drying device based on piezoelectric wafer and drying method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2014803A6 (en) * 1989-07-17 1990-07-16 Sinetics Sa Ultrasonic dryer
WO1999000034A1 (en) * 1997-06-30 1999-01-07 Matsushita Electric Works. Ltd. Ultrasonic hair curling device
JP2006334110A (en) * 2005-06-01 2006-12-14 Matsushita Electric Works Ltd Ultrasonic hair treating device
JP2006334109A (en) * 2005-06-01 2006-12-14 Matsushita Electric Works Ltd Hair setting apparatus
JP4944839B2 (en) * 2008-06-09 2012-06-06 パナソニック株式会社 Hair set equipment
US9138038B2 (en) 2011-05-20 2015-09-22 Spectrum Brands, Inc. Hair styling apparatus having hair-protection function
KR20140058494A (en) 2011-06-13 2014-05-14 쿨웨이 인코포레이티드 Method and hair care tool for dynamic and optimum hair styling temperature control
US10267772B2 (en) * 2014-03-03 2019-04-23 Empire Technology Development Llc Hair moisture measuring device, and methods of making and using the device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3935993A1 (en) 2020-07-07 2022-01-12 Koninklijke Philips N.V. Hair dryer

Also Published As

Publication number Publication date
US20210204667A1 (en) 2021-07-08
ES2792081T3 (en) 2020-11-10
WO2017140757A1 (en) 2017-08-24
PL3416521T3 (en) 2020-11-02
CN108697217A (en) 2018-10-23
EP3207817A1 (en) 2017-08-23
EP3416521A1 (en) 2018-12-26
CN108697217B (en) 2022-08-12

Similar Documents

Publication Publication Date Title
EP3416521B1 (en) Ultrasound hair drying and styling
RU2657167C1 (en) Device for hair care and method for increasing hair care product absorbition for local use
EP3236797B1 (en) Method and apparatus for manipulating the shape of hair
US20120310232A1 (en) System and method for treating a tissue using multiple energy types
US20150032128A1 (en) Ultrasonic skin treatment device with hair removal capability
KR102038425B1 (en) Skin beauty device using ultrasonic waves
WO2018192109A1 (en) Clothing care machine control method and apparatus, clothing care machine, and storage medium
JP2017503568A (en) Method and device for treating skin
US20070038094A1 (en) System and method for the creation of ultrasonic waves
KR102320038B1 (en) Apparatus and method for precise mechanical tissue ablation using pressure modulated focused ultrasound
JP2018522657A (en) Promoting hair growth
JPH07106216B2 (en) Ultrasonic beauty and health equipment
JPH09262121A (en) Hair setting device
CN107847026B (en) Ultrasonic hair styling
JP7066059B6 (en) Hair styling using dielectric heating
CN117258129A (en) Permeation promotion control method, permeation promotion beauty instrument and storage medium
KR102332566B1 (en) Cleansing apparatus with steam towel
JP2024065883A (en) Beauty apparatus and beauty method
JP2006095209A (en) Induction heating apparatus
KR20240130977A (en) Multi function beauty care device
JP2010004948A (en) Ultrasonic beautification instrument
JPH065791Y2 (en) Facial massager
KR20170140597A (en) Apparatus for steam hair roll setting
JPH09337A (en) Ultrasonic comb

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180917

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20191011

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: KONINKLIJKE PHILIPS N.V.

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1253172

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200415

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602017014365

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200808

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200817

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200709

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2792081

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20201110

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1253172

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602017014365

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

26N No opposition filed

Effective date: 20210112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210216

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210216

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20220504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210217

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170216

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240226

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240228

Year of fee payment: 8

Ref country code: GB

Payment date: 20240220

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20240205

Year of fee payment: 8

Ref country code: PL

Payment date: 20240202

Year of fee payment: 8

Ref country code: IT

Payment date: 20240222

Year of fee payment: 8

Ref country code: FR

Payment date: 20240226

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408