EP3412963B1 - Transparent component arrangement of a light module and light module comprising such a transparent component arrangement - Google Patents

Transparent component arrangement of a light module and light module comprising such a transparent component arrangement Download PDF

Info

Publication number
EP3412963B1
EP3412963B1 EP18177056.1A EP18177056A EP3412963B1 EP 3412963 B1 EP3412963 B1 EP 3412963B1 EP 18177056 A EP18177056 A EP 18177056A EP 3412963 B1 EP3412963 B1 EP 3412963B1
Authority
EP
European Patent Office
Prior art keywords
light
section
component arrangement
exit surface
reflecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18177056.1A
Other languages
German (de)
French (fr)
Other versions
EP3412963A1 (en
Inventor
Daniel Rülke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli Automotive Lighting Reutlingen Germany GmbH
Original Assignee
Automotive Lighting Reutlingen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Automotive Lighting Reutlingen GmbH filed Critical Automotive Lighting Reutlingen GmbH
Publication of EP3412963A1 publication Critical patent/EP3412963A1/en
Application granted granted Critical
Publication of EP3412963B1 publication Critical patent/EP3412963B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S43/00Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights
    • F21S43/10Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by the light source
    • F21S43/13Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by the light source characterised by the type of light source
    • F21S43/14Light emitting diodes [LED]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/147Light emitting diodes [LED] the main emission direction of the LED being angled to the optical axis of the illuminating device
    • F21S41/148Light emitting diodes [LED] the main emission direction of the LED being angled to the optical axis of the illuminating device the main emission direction of the LED being perpendicular to the optical axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/285Refractors, transparent cover plates, light guides or filters not provided in groups F21S41/24 - F21S41/2805
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/30Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
    • F21S41/32Optical layout thereof
    • F21S41/322Optical layout thereof the reflector using total internal reflection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/30Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
    • F21S41/32Optical layout thereof
    • F21S41/36Combinations of two or more separate reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/30Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
    • F21S41/32Optical layout thereof
    • F21S41/36Combinations of two or more separate reflectors
    • F21S41/365Combinations of two or more separate reflectors successively reflecting the light
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S43/00Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights
    • F21S43/30Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by reflectors
    • F21S43/31Optical layout thereof
    • F21S43/315Optical layout thereof using total internal reflection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S43/00Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights
    • F21S43/40Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by the combination of reflectors and refractors

Definitions

  • the present invention relates to a transparent component arrangement of a lamp module according to the preamble of claim 1.
  • a component arrangement is from DE 10 2005 003 367 A1 known.
  • the invention also relates to a lamp module of a motor vehicle lamp which has such a component arrangement.
  • elongated light exit surfaces which shine as extended strips have been desired for some time.
  • An elongated light exit surface has a significantly greater length than height.
  • Such lights are, for example, in the front area of a motor vehicle for generating daytime running lights, a position or Parking light or a flashing light or used in the rear area of a motor vehicle to generate a rear light, a brake light, a flashing light or a reversing light.
  • Various options for realizing such an elongated light exit surface are known from the prior art. Important aspects for the design of such lights include inexpensive manufacture and assembly of the light as well as the most homogeneous possible illumination of the elongated light exit surface of the light.
  • a transparent component arrangement in which partial areas of a circular beam of rays are coupled into individual complex light guides and are each guided by these to an exit surface of the light guide. All light guides together thus form a redistribution section.
  • the exit surfaces of the light guides are arranged next to one another, each exit surface of a light guide forming a partial area of the light exit surface of the light module.
  • the problem with this known component arrangement is the configuration of the redistribution section with a large number of individually manufactured light guides and the complex structure of the individual light guides.
  • the assembly of the component arrangement, in particular the alignment of the individual light guides relative to the beam, as well as the attachment and mounting of the individual light guides are very complex and expensive.
  • the known component arrangement serves to generate a headlight function, for example a low beam with a horizontal light-dark border, and not a lighting function. For this reason, the exit surfaces of the light guides do not form a flat light exit surface either. In addition, remains Due to the complex courses of the individual light guides, the parallel course of the light rays of the bundle of rays to one another during the deflection in the redistribution section is not maintained, so that homogeneous illumination of the exit areas of the individual light guides and thus the entire light exit area can at best be realized with additional effort.
  • a transparent component arrangement for bundling and redistributing the light emitted by a light source to partial areas of a light exit surface of the lamp module for generating an elongated light distribution with a greater horizontal than vertical extent is known.
  • light emitted by a light source in a main emission direction with a Lambertian emission characteristic is coupled into the component arrangement via a coupling section and bundled by means of a bundling section to form a bundle of rays with parallel light rays.
  • the bundling section is implemented in the form of a transparent solid body with a circular cross section with respect to the main emission direction of the light source, so that it generates a beam with light beams running parallel to one another.
  • This bundle of rays emerges from the bundling section via an annular exit surface, so that the bundle of rays also has an annular shape.
  • the exit surface is divided into a number of equally large facet-like segments, with each facet directing a partial area (segment) of the beam onto a faceted light entry surface of an elongated transparent luminous element by means of refraction at the facet.
  • the length of the filament is significantly larger than its height.
  • the facets of the entry surface are arranged next to one another on a first longitudinal side of the luminous element. The opposite long side of the luminaire body forms the light exit surface of the luminaire module.
  • the light rays of the various partial areas of the beam that fall on the facets of the entry surface of the luminous element pass through the luminous element and strike different partial areas of the light exit area.
  • the light emerging from the luminous element via the various partial areas of the light exit surface then generates an elongated light distribution.
  • the redistribution section thus consists of several facets which divert subregions of the beam onto the various subregions of the light exit surface of the light module by means of refraction.
  • the known transparent component arrangement has the disadvantage that both the facets on the exit surface of the bundling section and the facets of the entry surface of the transparent luminous element have to be individually designed in a very complex manner so that the partial areas of the beam from the circular ring segment-shaped facets of the exit surface of the bundling section onto the above the longitudinal extension of the entry surface of the luminous element meet rectangular facets arranged distributed and the subregions of the light exit surface of the lamp module are illuminated as homogeneously as possible.
  • the present invention is based on the object of designing and developing a transparent component arrangement and a light module of the type mentioned at the outset in such a way that simple and inexpensive production and assembly, the most homogeneous possible illumination of the light exit surface and a light exit surface with a particularly low height can be achieved compared to their longitudinal extent.
  • the light source is preferably designed as a half-space radiator and comprises, for example, at least one light-emitting diode (LED).
  • the light source preferably emits light with an approximately lambertian emission characteristic in a main emission direction into a 180 ° half-space.
  • the bundle of rays bundled by the bundling section preferably has a circular cross section.
  • the beam it would also be conceivable for the beam to have a rectangular shape, for example with rounded corners. It is crucial that the light rays emitted by the light source with a relatively large emission angle are bundled through the bundling section into a bundle of rays with largely parallel light rays, which are then in a particularly simple but efficient manner within the scope of the present invention while maintaining the parallelism of the light rays with one another through the redistribution section in the corresponding partial areas of the light exit surface of the light module can be deflected.
  • the individual sections of the transparent component arrangement are designed as transparent solid bodies. They consist of a transparent material, in particular PC, PMMA or PMMI.
  • the coupling section and the bundling section are preferably designed as a single integral component. It is thus conceivable, for example, that this component is designed in the form of what is known as an attachment lens or TIR (total internal reflection) lens.
  • a front lens has a coupling-in section with a depression and several light entry surfaces in the area of this depression.
  • the light source mainly radiates its light into this recess and onto the entry surfaces.
  • a bottom of the recess extends at least in some areas perpendicular to a main emission direction of the light source and forms a first light entry surface.
  • the ancillary optics On a side opposite the first entry face, the ancillary optics have a first light exit face.
  • the first entry surface and / or the first exit surface can be curved in the manner of a lens. Light rays that enter the ancillary optics via the first entry surface and exit it again via the first exit surface are bundled, in particular collimated, by means of refraction.
  • an optical attachment comprises at least one second light entry surface, which is preferably aligned parallel or with a slight inclination at an angle to the main emission direction of the light source.
  • Light beams emitted by the light source at an angle to the main emission direction hit this entry surface and enter the ancillary optics from the side. There they first encounter totally reflective interfaces of the ancillary optics and are deflected by these onto at least one second light exit surface of the ancillary optics. This exit surface extends at least over part of the circumference of the first exit surface.
  • the light beams reflected from the boundary surfaces exit the ancillary optics parallel to the light beams exiting through the first exit surface via the second exit surface.
  • Light rays that enter the ancillary optics via the second entry surface and exit it again via the second exit surface are bundled, in particular collimated, by means of refraction and total reflection (TIR).
  • a lens in particular a plano-convex lens, can also be used to focus the light beams emitted by the light source.
  • One advantage of the present invention is that the transparent component arrangement is particularly simple and can therefore also be produced simply and inexpensively and that the parallel course of the light beams of the beam to one another is nevertheless maintained during the entire deflection in the redistribution section. As a result, the individual sub-areas of the light exit surface of the light module can be illuminated particularly homogeneously.
  • the coupling, bundling and redistribution sections are designed as a single integral component.
  • the entire transparent component arrangement is thus a solid body made of a transparent plastic material, in particular PC, PMMA or PMMI, educated. This has great advantages in terms of cost-effective production, since the entire transparent component arrangement can be produced in one production step.
  • the component arrangement can be produced, for example, by means of an injection molding process.
  • the coupling-in section has a rotationally symmetrical shape, with an axis of rotation being congruent with a main direction of emission of the light by the light source.
  • the bundling section has a rotationally symmetrical shape, with an axis of rotation congruent with a main direction of emission of the light by the light source.
  • the redistribution section of the transparent component arrangement preferably has a longitudinal extension along the light exit surface and perpendicular to a main emission direction of the light source.
  • the length of the redistribution section corresponds approximately to the length of the light exit surface with the sub-areas arranged next to one another, to which the deflected light beams of the sub-areas of the beam are deflected.
  • optically effective structures e.g. any lenses, cylinder optics, cushion optics, scatter optics, prisms, etc.
  • the reflective facets of the redistribution section deflect light incident on them by means of total reflection.
  • the facets can thus be designed as totally reflective boundary surfaces of the redistribution section designed as a transparent solid body. These surfaces can be produced with a high degree of accuracy in an injection molding process. Since the redistribution section of the transparent component arrangement has a very low height, which is in the range of a few millimeters (e.g. 2.5 mm), there is at best minimal material shrinkage when the injection-molded plastic part hardens, so that the transparent component arrangement and in particular the reflective facets of the Redistribution section can be produced with a particularly high level of accuracy.
  • the reflective facets of the redistribution section include first reflective surfaces, second reflective surfaces and third reflective surfaces.
  • the first reflective surfaces are designed to deflect the light beams from at least some of the partial regions of the beam in the direction of the second reflective surfaces, perpendicular to a main emission direction of the light source and along a longitudinal extension of the redistribution section.
  • the first reflection surfaces are arranged and aligned in the redistribution section in such a way that those that have entered the redistribution section Light rays from at least some of the partial areas of the beam impinge directly on the first reflection surfaces and are deflected by them.
  • the second reflective surfaces are designed to deflect light beams deflected by the first reflective surfaces in the direction of the corresponding third reflective surfaces, parallel to the main emission direction of the light source and perpendicular to the direction of the light beams deflected by the first reflective surfaces.
  • the third reflection surfaces are formed, light beams deflected by the second reflection surfaces in the direction of the corresponding partial areas of the light exit surface, perpendicular to the main emission direction of the light source, perpendicular to the direction of the light beams deflected by the first reflection surfaces and perpendicular to the direction of the light beams deflected by the second reflection surfaces redirect.
  • the light beams of the various partial areas of the beam bundle deflected by the first reflection surfaces can run in the redistribution section at the same height (viewed from above) but next to one another or (viewed from the front) one behind the other. This allows a particularly low overall height of the redistribution section in the range of only a few millimeters.
  • the light rays of a partial area of the beam strike at least one of the third reflective surfaces directly without hitting one of the first reflective surfaces or one of the second reflective surfaces beforehand.
  • the light rays of the partial area of the beam, which on the central partial area of the Light exit surface are deflected, so are not deflected at first reflective surfaces along the longitudinal extent of the redistribution section and perpendicular to the main emission direction of the light source, in order to then hit second reflective surfaces, which then deflect them in the direction of the third reflective surface.
  • the second reflective surfaces which deflect the light beams propagating in the redistribution section in the direction of the third reflective surfaces, have a differently large distance from the first reflective surfaces, corresponding to a distance between the corresponding subregions of the light exit surface to which the second reflective surfaces are assigned Third reflective surfaces deflect the light beams to the central partial area of the light exit surface.
  • the third reflective surfaces which deflect the light beams coming from the second reflective surfaces assigned to them in the direction of the corresponding decentrally arranged subregions of the light exit surface, have a different distance from the first reflective surfaces, corresponding to a distance between the corresponding subregions of the light outlet surface, onto which the third reflective surfaces assigned to the second reflective surfaces deflect the light beams to the central partial area of the light exit surface.
  • the distance from the second and third reflective surfaces to the first reflective surfaces is greater, the further away that portion of the light exit surface onto which the second and third reflective surfaces deflect light rays is located from the central portion of the light exit surface.
  • a light beam that strikes approximately the middle of the first and second reflective surfaces covers a path on its way from a first to a second reflective surface that is roughly the distance from the center of that part of the light exit surface on which the Light beam is deflected over the second and third reflection surfaces, corresponds to the center of the central portion of the light exit surface.
  • the redistribution section can be designed as a flat plate, the light exit surface then having a straight longitudinal extension.
  • the various reflection surfaces are preferably flat and have an inclination of 45 ° with respect to the light rays impinging on them, so that the light rays striking the reflection surfaces are each deflected by 90 ° by the reflection surfaces.
  • the redistribution section it would also be conceivable for the redistribution section to be designed to be curved about an axis parallel to the direction of the light beams deflected by the third reflection surfaces in the direction of the corresponding subregions of the light exit surface.
  • a lamp module of the type mentioned at the outset which has a transparent lamp module according to the invention Has component arrangement.
  • a lamp module can be used to generate an elongated light distribution with a greater horizontal than vertical extent.
  • the light distribution is used in particular to implement any lighting function, for example a daytime running light, a flashing light, a position or parking light, a rear light, a brake light or a reversing light.
  • light sources are used that emit light of a certain color (e.g. white, yellow, red). It would also be conceivable to use light sources that can each emit light of different colors (e.g.
  • RGB LEDs so-called multicolor or RGB LEDs so that they emit light of a certain color depending on a corresponding control of the light source in order to achieve a desired light distribution .
  • FIG 8 is a lighting device of a Motor vehicle in the form of a headlight designated in its entirety with the reference number 1.
  • the lighting device 1 could also be a rear light of a motor vehicle.
  • the headlight 1 is arranged and fastened in the front area of the body of a motor vehicle.
  • a lamp module of a motor vehicle lamp according to the invention is arranged in the headlight 1.
  • the lamp with the lamp module can also be arranged separately from the headlight 1 as an independent component with its own housing at the front, rear or side in or on a motor vehicle.
  • the light could be arranged as a raised third brake light in or on a trunk lid or behind a rear window of a motor vehicle.
  • the light could be arranged as a retrofittable daytime running light in the area of a front spoiler or on a bumper of the motor vehicle.
  • the headlight 1 has a housing 2 which is preferably made of plastic.
  • the housing 2 has a light exit opening 4 which is closed by means of a transparent cover plate 5.
  • the cover 5 is made of glass or plastic.
  • optically effective elements for example prisms or cylinder lenses
  • diffusion plate can be arranged at least in some areas in order to scatter the light passing through.
  • the cover plate 5 is designed without such optically effective elements (so-called clear plate).
  • a light module 6 is arranged in the interior of the housing 2.
  • the light module 6 can be used to generate any Serve headlight function or part thereof.
  • the light module 6 can serve to generate a low beam distribution, a high beam distribution, a fog light distribution or any adaptive light distribution or a part thereof.
  • a further light module 7 can be arranged in the housing 2. This is used, for example, to generate a further headlight function.
  • the light modules 6, 7 together generate the intended headlight function.
  • the light module 7 could generate a low beam basic light distribution with a relatively wide spread and a horizontal light-dark border.
  • the light module 6 could then generate a low-beam spot light distribution which, compared to the low-beam basic light distribution of the light module 7, is relatively highly concentrated and has an asymmetrical light-dark boundary on the top.
  • the asymmetrical light-dark boundary shows a higher course on the own traffic side than on the opposite traffic side.
  • a superposition of the basic light distribution and the spot light distribution results in a conventional low beam distribution.
  • further light modules for realizing other headlight functions are arranged in the headlight housing 2.
  • only one light module for example the light module 6 without the light module 7, can be arranged in the headlight housing 2.
  • At least one motor vehicle light with a light module 8 according to the invention is also arranged in the housing 2.
  • the light module 8 is used to generate at least one light function, for example a flashing light, a position light, a daytime running light, etc.
  • the lamp module 8 according to the invention is described below with reference to FIG Figures 1 to 7 explained in more detail.
  • the lamp module 8 is shown in various perspective views in Figures 4 and 5 shown. It comprises a light source 10, which is designed, for example, as a half-space radiator, in particular as a light-emitting diode (LED).
  • the light-emitting diode 10 comprises at least one LED chip, which in a main emission direction 11 emits light, preferably with a Lambertian emission characteristic, into a 180 ° half-space.
  • the luminaire module 8 also comprises a transparent component arrangement, which is designated in its entirety by the reference symbol 12.
  • the coupling-in section 13 preferably has a rotationally symmetrical shape, an axis of rotation preferably being congruent with the main emission direction 11 of the light by the light source 10.
  • the component arrangement 12 has a bundling section 14 which is designed to bundle the coupled-in light into a beam 19 with light beams running parallel to one another.
  • the bundle of rays 19 bundled by the bundling section 14 preferably has a circular cross section (cf. Figure 1 ).
  • the bundling section 14 can have a rotationally symmetrical shape, with an axis of rotation preferably congruent with the main emission direction 11 of the light by the light source 10 is.
  • the bundling section 14 is, for example, together with the coupling section 13, part of a TIR ancillary optics (cf. Figure 2 ).
  • a lens in particular a plano-convex lens, could also be used as an auxiliary lens.
  • the coupling section 13 and the bundling section 14 are designed as a single integral component.
  • this component is designed in the form of a so-called front lens or TIR (total internal reflection) lens made of a transparent material, in particular PC, PMMA or PMMI.
  • the optical attachment 13, 14 has a coupling-in section 13 with a recess 13a and a plurality of light entry surfaces 13b, 13c in the area of this recess 13a.
  • the light source 10 radiates its light mainly into this recess 13a and onto the entry surfaces 13b, 13c.
  • a bottom of the recess 13a extends at least in regions perpendicular to the main emission direction 11 of the light source 10 and forms a first light entry surface 13b.
  • the surface 13b is both part of the coupling-in section 13 and part of the bundling section 14.
  • the optical attachment 13, 14 On a side opposite the first entry surface 13b, the optical attachment 13, 14 has a first light exit surface 14b.
  • the first entry surface 13b and / or the first exit surface 14b can be curved in the manner of a lens. Light rays which enter the ancillary optics 13, 14 via the first entry surface 13b and exit the latter again via the first exit surface 14b are bundled, in particular collimated, by means of refraction.
  • an ancillary optics 13, 14 comprises at least one second light entry surface 13c, which extends through a wall of the Ancillary optics 13, 14 is formed which delimits the cylindrical or frustoconical recess 13a.
  • Light beams emitted by the light source 10 obliquely to the main emission direction 11 strike this entry surface 13c and enter the ancillary optics 13, 14 laterally. There they first encounter totally reflective boundary surfaces 14a of the optical attachment 13, 14 and are deflected by these onto at least one second light exit surface 14c of the optical attachment 13, 14. This exit surface 14c extends at least around part of the circumference of the first exit surface 14b.
  • the light beams reflected by the boundary surfaces 14a emerge via the second exit surface 14c parallel to the light beams exiting via the first exit surface 14b from the ancillary optics 13, 14.
  • Light rays that enter the ancillary optics 13, 14 via the second entry surface 13c and exit it again via the second exit surface 14c are bundled, in particular collimated, by means of refraction and total reflection.
  • the component arrangement 12 comprises a redistribution section which is designated in its entirety by the reference symbol 15.
  • the redistribution section 15 has several facets 20, 21, 22 (cf. Figures 4 and 5 ), which are formed, in each case a partial area 18 of the beam 19 (cf. Figure 1 ) on a sub-area 16 of a light exit surface 17 (cf. Figures 1 , 2 , 5 and 7th ) of the lamp module 8.
  • the redistribution section 15 preferably has a longitudinal extension along the light exit surface 17 and perpendicular to the main emission direction 11 of the light source 10.
  • a dashed line 14d is drawn in, which symbolizes an imaginary dividing plane between the bundling section 14 and the redistribution section 15.
  • the light exit surfaces 14b, 14c of the bundling section 14 are also only imaginary and within the transparent solid body of the transparent component arrangement 12 only form a transition for the light rays from the bundling section 14 into the redistribution section 15.
  • the redistribution section 15 is only shown schematically. However, as mentioned, it can also be an integral part of the shown integral component (front lens 13, 14), or it can be formed separately from it.
  • Figures 3a to 3c 12 show various other views of the transparent component assembly 12.
  • Figure 3a shows a view obliquely from above (against the direction of the y-axis in Figure 5 ),
  • Figure 3b a view from diagonally below and
  • Figure 3c a view from diagonally above.
  • the light emitted from the light exit surface 17 in the light exit direction 3 (cf. Figure 5 ) is used to implement the lighting function of the motor vehicle light.
  • the individual subregions 16 of the light exit surface 17 lie next to one another, so that an elongated light distribution with a greater horizontal than vertical extension results.
  • At least some of the facets, in the example shown here the facets 22, are assigned a certain partial area 16 of the light exit surface 17, onto which these facets 22 deflect light.
  • the facets 20, 21, 22 of the redistribution section 15 deflect the light incident on them by means of reflection (and not by refraction) and that the redistribution section 15 is formed by the individual reflective facets 20, 21, 22 partial areas 18 of the beam 19, which are divided by a subdivision of a cross section of the beam 19 (cf. Figure 1 ) by means of horizontal and / or vertical cutting planes 23, 24, which run parallel to the mutually parallel light rays of the bundle of rays 19 and parallel or perpendicular to each other, onto the subregions 16 of the light exit surface 17 assigned to them.
  • the parallel course of the light beams of the beam 19 to one another is maintained during the entire deflection in the redistribution section 15. This is explained in detail below.
  • the reflective facets 20, 21, 22 of the redistribution section 15 deflect light incident on them, preferably by means of total reflection.
  • the transparent component arrangement 12 is designed in the form of a transparent solid body made of plastic, for example PC, PMMA or PMMI.
  • the coupling-in section 13, the bundling section 14 and the redistribution section 15 are designed as a single integral component, i.e. the TIR ancillary optics 13, 14 and the redistribution section 15 are designed in one piece.
  • the one integral component has advantages in production, for example in the context of an injection molding process, since the entire component arrangement can be produced in one step.
  • the reflective facets of the redistribution section 15 include first reflective surfaces 20, second reflective surfaces 21 and third reflective surfaces 22.
  • the first reflective surfaces 20 are formed, the light rays from at least some of the partial areas 18 of the beam 19 in the direction of the second reflective surfaces 21, that is perpendicular to the Main emission direction 11 of the light source 10 and deflect along the longitudinal extension of the redistribution section 15.
  • the deflected light beams propagate parallel to one another in the transparent material of the redistribution section 15 in the direction of the second reflective surfaces 21.
  • the second reflective surfaces 21 are formed, light beams deflected by the first reflective surfaces 20 in the direction of the corresponding third reflective surfaces 22, i.e.
  • the light beams deflected by the second reflective surfaces 21 propagate parallel to one another in the transparent material of the redistribution section 15.
  • the third reflective surfaces 22 are designed to direct the light beams deflected by the second reflective surfaces 21 in the direction of the corresponding subregions 16 of the light exit surface 17, i.e. perpendicular to the Main emission direction 11 of the light source 10, perpendicular to the direction of the light beams deflected by the first reflection surfaces 20 and perpendicular to the direction of the light beams deflected by the second reflection surfaces 21.
  • FIG Figure 7 A corresponding configuration of the redistribution section 15 and the course of the light beams through the redistribution section 15 are shown in FIG Figure 7 for an exemplary drawn light beam 25, which strikes the various reflection surfaces 20, 21, 22 approximately in the middle.
  • the light beam 25 is one of many parallel light beams of the beam 19 which has been formed in the focusing section 14.
  • the beam 25 initially strikes a first reflective surface 20 in the redistribution section 15.
  • the reflective surfaces 20 are arranged in the redistribution section 15 in such a way that light rays from almost all subregions 18 of the beam 19 hit them.
  • first reflective surfaces 20 are provided which are at right angles to one another, each first reflective surface 20 being oriented at an angle ⁇ of 45 ° with respect to the parallel light rays entering the redistribution section 15.
  • An edge 20c, along which the two reflective surfaces 20 are in contact with one another, runs approximately centrally through the coupled-in beam 19, so that the subregions 18.2a, 18.3a, 18.4a, 18.5a, 18.6a of the beam 19 focus on the first Hit the reflection surface 20a and the subregions 18.2b, 18.3b, 18.4b, 18.5b, 18.6b of the beam 19 hit the other first reflection surface 20b.
  • the first reflection surfaces 20 therefore deflect a large part of the light beams that have entered the redistribution section 15 90 ° so that they propagate along the longitudinal extent of the redistribution section 15 until they hit one of the second reflection surfaces 21.
  • Such a second reflection surface 21 is shown in FIG Figure 7 drawn in as an example.
  • the reflective surface 21 is also oriented at an angle ⁇ of 45 ° with respect to the light beams deflected by the first reflective surface 20 (and thus generally also with respect to the main emission direction 11 of the light source 10). It again deflects the light beam 25 by 90 °, so that it is now directed against the main emission direction 11 of the light source 10.
  • the second reflective surfaces 21 have a precisely defined size, so that only those light rays of the beam 19 hit them that were previously deflected by one of the first reflective surfaces 20 and that originate from a specific sub-area 18 of the beam 19.
  • This specific sub-area 18 can be one of the sub-areas 18.2a, 18.2b, 18.3a, 18.3b, 18.4a, 18.4b, 18.5a, 18.5b, 18.6a, 18.6b, the light of which enters a decentralized sub-area 16.2a, 16.2b , 16.3a, 16.3b, 16.4a, 16.4b, 16.5a, 16.5b, 16.6a, 16.6b, the light exit surface 17 is deflected.
  • the second reflective surface 21 shown directs the incident light beam 25 in the direction of the third reflective surface 22, which here is arranged above the second reflective surface 21 assigned to it.
  • a light bundle from any partial area 18 is reflected on the reflection surfaces 20 and 21.
  • the parallel bundles of rays pass through different planes and are deflected by the reflection surfaces 22 into a common plane in which they emerge from the arrangement 12 via the exit surface 17.
  • Such a third reflection surface 22 is shown in FIG Figure 7 drawn in as an example.
  • their inclination about an axis that runs parallel to the light beams deflected by the second reflective surface 21 is rotated by 90 ° with respect to the inclination of the first and second reflective surfaces 20, 21.
  • the third reflective surface 22 again deflects the incident light beam 25 by 90 ° um, but both perpendicular to the direction of the light beams deflected by the first reflective surface 20 and perpendicular to the direction of the light beams deflected by the second reflective surface 21.
  • the light beam 25 deflected by the third reflective surface 22 strikes a specific sub-area 16 of the light exit surface 17 assigned to the third reflective surface 22.
  • the light beams deflected by the third reflection surfaces 22 propagate in a plane above or below the plane in which the light beams propagate along the longitudinal extension of the redistribution section 15.
  • the beam path described is also in Figure 2 in the sections 2 and 3 for the light rays of the subregions 18.6a, 18.6b (section 2) and 18.5a, 18.5b (section 3).
  • the light beams emitted by the light source 10 enter the transparent component arrangement 12 via the coupling section 13 and are bundled by the bundling section 14 to form the beam 19 with largely parallel light beams.
  • the light rays arrive from right to left into the redistribution section 15, where they first hit the first reflection surfaces 20.
  • the first reflection surfaces 20 deflect the light beams upwards or downwards with respect to the plane of the drawing.
  • the light beams deflected by the first reflective surfaces 20 then strike the second reflective surfaces 21.6a, 21.6b assigned to the partial areas 18.6a, 18.6b of the beam 19. These then deflect the incident light rays to the right with respect to the plane of the drawing, so that they strike the third reflection surfaces 22.6a, 22.6b assigned to the second reflection surfaces 21.6a, 21.6b. These deflect the light beams out of the plane of the drawing, so that they strike the corresponding subregions 16.6a, 16.6b of the light exit surface 17.
  • the light beams deflected by the first reflective surfaces 20 then strike the second reflective surfaces 21.5a, 21.5b assigned to the subregions 18.5a, 18.5b of the beam 19.
  • This third reflection surface 22.1 is, however, in the same horizontal plane in the redistribution section 15 arranged like the other third reflection surfaces.
  • the beam path described for the light beams of sub-area 18.1 of beam 19 is also shown in FIG Figure 2 shown in section 1.
  • the light beams emitted by the light source 10 enter the transparent component arrangement 12 via the coupling section 13 and are bundled by the bundling section 14 to form the beam 19 with largely parallel light beams.
  • the light rays arrive from right to left into the redistribution section 15, where they strike the third reflection surface 22.1 assigned to the partial area 18.1 of the beam 19. This deflects the light beams out of the plane of the drawing, so that they strike the corresponding central partial area 16.1 of the light exit surface 17.
  • the redistribution section 15 has a flat longitudinal extent, so that a straight, elongated light exit surface 17 results.
  • the redistribution section 15 it would also be conceivable for the redistribution section 15 to be designed to be curved about an axis which runs parallel to the direction of the light beams deflected by the third reflection surfaces 22 in the direction of the corresponding subregions 16 of the light exit surface 17.
  • a curved, elongated light exit surface 17 can be produced, the course of which follows, for example, an edge region of the housing 2 of the lighting device 1 or through which special design aspects can be implemented.
  • the reflective surfaces 20, 21, 22 are flat. It would be however, it is also conceivable that the reflective surfaces 20, 21, 22 are arched. Furthermore, it would be conceivable that the reflection surfaces 20, 21, 22 are not all inclined at a 45 ° angle with respect to the incident light rays (or with respect to the main emission direction 11 of the light source 10), but rather individual or all reflection surfaces 20, 21, 22 in are inclined at a different angle. In this way it could be ensured, for example, that the light beams propagating in the redistribution section 15 hit the reflective surfaces 21, 22 arranged downstream in the beam path if the redistribution section 15 is curved.
  • FIG. 6 a further embodiment of the invention is shown in which several of the above-described and in FIGS Figures 3 to 5 shown transparent component arrangements 12 are arranged side by side.
  • two identically designed transparent component arrangements 12.1, 12.2 are arranged next to one another in such a way that their light exit surfaces 17.1, 17.2 form a single, particularly elongated light exit surface.
  • Front sides of the redistribution sections 15.1, 15.2 directly adjoin one another.
  • the component arrangements 12.1, 12.2 arranged next to one another are preferably designed as a common integral component.
  • the component arrangements 12.1, 12.2 arranged next to one another do not necessarily have to be of identical design. It would also be conceivable, for example, that one of the component arrangements 12.1, 12.2 has a redistribution section 15 bent around the light exit direction 3 or that the component arrangements 12.1, 12.2 are bent differently.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Description

Die vorliegende Erfindung betrifft eine transparente Bauteilanordnung eines Leuchtenmoduls nach dem Oberbegriff des Anspruchs 1. Eine solche Bauteilanordnung ist aus der DE 10 2005 003 367 A1 bekannt.The present invention relates to a transparent component arrangement of a lamp module according to the preamble of claim 1. Such a component arrangement is from DE 10 2005 003 367 A1 known.

Die Erfindung betrifft außerdem ein Leuchtenmodul einer Kraftfahrzeugleuchte, die eine solche Bauteilanordnung aufweist.The invention also relates to a lamp module of a motor vehicle lamp which has such a component arrangement.

Im Bereich von Signalleuchten eines Kraftfahrzeugs sind seit einiger Zeit langgezogene Lichtaustrittsflächen, die als ausgedehnte Streifen leuchten, erwünscht. Eine langgezogene Lichtaustrittsfläche weist dabei eine deutlich größere Längserstreckung als Höhe auf. Solche Leuchten werden bspw. im Frontbereich eines Kraftfahrzeugs zur Erzeugung eines Tagfahrlichts, eine Positions- oder Standlichts oder eines Blinklichts oder im Heckbereich eines Kraftfahrzeugs zur Erzeugung eines Rücklichts, eines Bremslichts, eines Blinklichts oder eines Rückfahrlichts eingesetzt. Aus dem Stand der Technik sind verschiedene Möglichkeiten bekannt, eine solche langgezogene Lichtaustrittsfläche zu realisieren. Wichtige Aspekte für die Ausgestaltung solcher Leuchten sind u.a. eine kostengünstige Herstellung und Montage der Leuchte sowie eine möglichst homogene Ausleuchtung der langgezogenen Lichtaustrittsfläche der Leuchte.In the area of signal lights of a motor vehicle, elongated light exit surfaces which shine as extended strips have been desired for some time. An elongated light exit surface has a significantly greater length than height. Such lights are, for example, in the front area of a motor vehicle for generating daytime running lights, a position or Parking light or a flashing light or used in the rear area of a motor vehicle to generate a rear light, a brake light, a flashing light or a reversing light. Various options for realizing such an elongated light exit surface are known from the prior art. Important aspects for the design of such lights include inexpensive manufacture and assembly of the light as well as the most homogeneous possible illumination of the elongated light exit surface of the light.

Aus der US 5,931,576 ist eine transparente Bauteilanordnung bekannt, bei der Teilbereiche eines kreisförmigen Strahlenbündels in einzelne komplexe Lichtleiter eingekoppelt werden und durch diese jeweils zu einer Austrittsfläche des Lichtleiters gelenkt werden. Alle Lichtleiter zusammen bilden somit einen Umverteilungsabschnitt. Die Austrittsflächen der Lichtleiter sind nebeneinander angeordnet, wobei jede Austrittsfläche eines Lichtleiters einen Teilbereich der Lichtaustrittsfläche des Leuchtenmoduls bildet. Problematisch bei dieser bekannten Bauteilanordnung sind die Ausgestaltung des Umverteilungsabschnitts mit einer Vielzahl von einzeln zu fertigenden Lichtleitern und der komplexe Aufbau der einzelnen Lichtleiter. Die Montage der Bauteilanordnung, insbesondere die Ausrichtung der einzelnen Lichtleiter relativ zu dem Strahlenbündel, sowie die Befestigung und Halterung der einzelnen Lichtleiter sind sehr aufwendig und teuer. Zudem dient die bekannte Bauteilanordnung zur Erzeugung einer Scheinwerferfunktion, bspw. eines Abblendlichts mit einer horizontalen Helldunkelgrenze, und nicht einer Leuchtenfunktion. Aus diesem Grund bilden auch die Austrittsflächen der Lichtleiter keine ebene Lichtaustrittsfläche. Zudem bleibt aufgrund der komplexen Verläufe der einzelnen Lichtleiter der parallele Verlauf der Lichtstrahlen des Strahlenbündels zueinander während der Umlenkung in dem Umverteilungsabschnitt nicht erhalten, so dass eine homogene Ausleuchtung der Austrittsflächen der einzelnen Lichtleiter und damit der gesamten Lichtaustrittsfläche allenfalls mit einem zusätzlichen Aufwand realisiert werden kann.From the U.S. 5,931,576 a transparent component arrangement is known in which partial areas of a circular beam of rays are coupled into individual complex light guides and are each guided by these to an exit surface of the light guide. All light guides together thus form a redistribution section. The exit surfaces of the light guides are arranged next to one another, each exit surface of a light guide forming a partial area of the light exit surface of the light module. The problem with this known component arrangement is the configuration of the redistribution section with a large number of individually manufactured light guides and the complex structure of the individual light guides. The assembly of the component arrangement, in particular the alignment of the individual light guides relative to the beam, as well as the attachment and mounting of the individual light guides are very complex and expensive. In addition, the known component arrangement serves to generate a headlight function, for example a low beam with a horizontal light-dark border, and not a lighting function. For this reason, the exit surfaces of the light guides do not form a flat light exit surface either. In addition, remains Due to the complex courses of the individual light guides, the parallel course of the light rays of the bundle of rays to one another during the deflection in the redistribution section is not maintained, so that homogeneous illumination of the exit areas of the individual light guides and thus the entire light exit area can at best be realized with additional effort.

Ferner ist aus der DE 10 2014 218 991 A1 eine transparente Bauteilanordnung zum Bündeln und Umverteilen des von einer Lichtquelle ausgesandten Lichts auf Teilbereiche einer Lichtaustrittsfläche des Leuchtenmoduls zur Erzeugung einer langgezogenen Lichtverteilung mit einer größeren horizontalen als vertikalen Erstreckung bekannt. Dabei wird von einer Lichtquelle in einer Hauptabstrahlrichtung mit einer lambert'sehen Abstrahlcharakteristik ausgesandtes Licht über einen Einkoppelabschnitt in die Bauteilanordnung eingekoppelt und mittels eines Bündelungsabschnitts zu einem Strahlenbündel mit parallel zueinander verlaufenden Lichtstrahlen gebündelt. Der Bündelungsabschnitt ist in Form eines transparenten Festkörpers mit einem bezüglich der Hauptabstrahlrichtung der Lichtquelle kreisförmigen Querschnitt realisiert, so dass er ein Strahlenbündel mit zueinander parallel verlaufenden Lichtstrahlen erzeugt. Dieses Strahlenbündel tritt über eine kreisringförmige Austrittsfläche des Bündelungsabschnitts aus diesem aus, so dass auch das Strahlbündel eine Kreisringform aufweist. Die Austrittsfläche ist in eine Anzahl gleich großer facettenartiger Segmente unterteilt, wobei jede Facette einen Teilbereich (ein Segment) des Strahlenbündels mittels Brechung an der Facette auf eine facettierte Lichteintrittsfläche eines langgestreckten transparenten Leuchtkörpers lenkt. Die Längserstreckung des Leuchtkörpers ist deutlich größer als seine Höhe. Die Facetten der Eintrittsfläche sind auf einer ersten Längsseite des Leuchtkörpers nebeneinander angeordnet. Die gegenüberliegende Längsseite des Leuchtkörpers bildet die Lichtaustrittsfläche des Leuchtenmoduls. Die auf die Facetten der Eintrittsfläche des Leuchtkörpers fallenden Lichtstrahlen der verschiedenen Teilbereiche des Strahlenbündels treten durch den Leuchtkörper hindurch und treffen auf verschiedene Teilbereiche der Lichtaustrittsfläche. Das über die verschiedenen Teilbereiche der Lichtaustrittsfläche aus dem Leuchtkörper austretende Licht erzeugt dann eine langgestreckte Lichtverteilung.Furthermore, from the DE 10 2014 218 991 A1 a transparent component arrangement for bundling and redistributing the light emitted by a light source to partial areas of a light exit surface of the lamp module for generating an elongated light distribution with a greater horizontal than vertical extent is known. In this case, light emitted by a light source in a main emission direction with a Lambertian emission characteristic is coupled into the component arrangement via a coupling section and bundled by means of a bundling section to form a bundle of rays with parallel light rays. The bundling section is implemented in the form of a transparent solid body with a circular cross section with respect to the main emission direction of the light source, so that it generates a beam with light beams running parallel to one another. This bundle of rays emerges from the bundling section via an annular exit surface, so that the bundle of rays also has an annular shape. The exit surface is divided into a number of equally large facet-like segments, with each facet directing a partial area (segment) of the beam onto a faceted light entry surface of an elongated transparent luminous element by means of refraction at the facet. The length of the filament is significantly larger than its height. The facets of the entry surface are arranged next to one another on a first longitudinal side of the luminous element. The opposite long side of the luminaire body forms the light exit surface of the luminaire module. The light rays of the various partial areas of the beam that fall on the facets of the entry surface of the luminous element pass through the luminous element and strike different partial areas of the light exit area. The light emerging from the luminous element via the various partial areas of the light exit surface then generates an elongated light distribution.

Bei diesem Stand der Technik besteht der Umverteilungsabschnitt also aus mehreren Facetten, welche Teilbereiche des Strahlenbündels mittels Brechung auf die verschiedenen Teilbereiche der Lichtaustrittsfläche des Leuchtenmoduls lenken. Ferner hat die bekannte transparente Bauteilanordnung den Nachteil, dass sowohl die Facetten auf der Austrittsfläche des Bündelungsabschnitts als auch die Facetten der Eintrittsfläche des transparenten Leuchtkörpers individuell sehr aufwendig ausgestaltet sein müssen, damit die Teilbereiche des Strahlenbündels aus den kreisringsegmentförmigen Facetten der Austrittsfläche des Bündelungsabschnitts auf die über die Längserstreckung der Eintrittsfläche des Leuchtkörpers verteilt angeordneten rechteckigen Facetten treffen und die Teilbereiche der Lichtaustrittsfläche des Leuchtenmoduls möglichst homogen ausgeleuchtet werden. Es ist offensichtlich, dass auf dem recht komplizierten Weg der Lichtstrahlen von dem Bündelungsabschnitt zu der Lichtaustrittsfläche des Leuchtenmoduls der ursprünglich weitgehend parallele Verlauf aller Lichtstrahlen des Strahlenbündels verloren geht, so dass eine homogene Ausleuchtung der gesamten Lichtaustrittsfläche kaum möglich ist.In this prior art, the redistribution section thus consists of several facets which divert subregions of the beam onto the various subregions of the light exit surface of the light module by means of refraction. Furthermore, the known transparent component arrangement has the disadvantage that both the facets on the exit surface of the bundling section and the facets of the entry surface of the transparent luminous element have to be individually designed in a very complex manner so that the partial areas of the beam from the circular ring segment-shaped facets of the exit surface of the bundling section onto the above the longitudinal extension of the entry surface of the luminous element meet rectangular facets arranged distributed and the subregions of the light exit surface of the lamp module are illuminated as homogeneously as possible. It is obvious that on the rather complicated path of the light rays from the bundling section to the light exit surface of the lamp module, the originally largely parallel course of all the light rays of the beam is lost, so that a homogeneous illumination of the whole Light exit surface is hardly possible.

Ausgehend von dem genannten Stand der Technik liegt der vorliegenden Erfindung die Aufgabe zugrunde, eine transparente Bauteilanordnung sowie ein Leuchtenmodul der eingangs genannten Art dahingehend auszugestalten und weiterzubilden, dass eine einfache und kostengünstige Herstellung und Montage, eine möglichst homogene Ausleuchtung der Lichtaustrittsfläche sowie eine Lichtaustrittsfläche mit einer besonders geringen Höhe im Vergleich zu ihrer Längserstreckung erzielt werden kann.Proceeding from the prior art mentioned, the present invention is based on the object of designing and developing a transparent component arrangement and a light module of the type mentioned at the outset in such a way that simple and inexpensive production and assembly, the most homogeneous possible illumination of the light exit surface and a light exit surface with a particularly low height can be achieved compared to their longitudinal extent.

Zur Lösung dieser Aufgabe wird eine transparente Bauteilanordnung mit den Merkmalen des Anspruchs 1 vorgeschlagen.To achieve this object, a transparent component arrangement having the features of claim 1 is proposed.

Die Lichtquelle ist vorzugsweise als ein Halbraum-Strahler ausgebildet und umfasst bspw. mindestens eine Leuchtdiode (LED). Die Lichtquelle sendet vorzugsweise Licht mit einer annähernd lambert'sehen Abstrahlcharakteristik in einer Hauptabstrahlrichtung in einen 180°-Halbraum aus.The light source is preferably designed as a half-space radiator and comprises, for example, at least one light-emitting diode (LED). The light source preferably emits light with an approximately lambertian emission characteristic in a main emission direction into a 180 ° half-space.

Das von dem Bündelungsabschnitt gebündelte Strahlenbündel weist vorzugsweise einen kreisförmigen Querschnitt auf. Es wäre allerdings auch denkbar, dass das Strahlenbündel eine rechteckige Form aufweist, bspw. mit abgerundeten Ecken. Entscheidend ist, dass die von der Lichtquelle mit einem relativ großen Abstrahlwinkel ausgesandten Lichtstrahlen durch den Bündelungsabschnitt in ein Strahlenbündel mit weitgehend parallel zueinander verlaufenden Lichtstrahlen gebündelt werden, die dann im Rahmen der vorliegenden Erfindung auf besonders einfache aber effiziente Weise unter Beibehaltung der Parallelität der Lichtstrahlen untereinander durch den Umverteilungsabschnitt in die entsprechenden Teilbereiche der Lichtaustrittsfläche des Leuchtenmoduls umgelenkt werden können.The bundle of rays bundled by the bundling section preferably has a circular cross section. However, it would also be conceivable for the beam to have a rectangular shape, for example with rounded corners. It is crucial that the light rays emitted by the light source with a relatively large emission angle are bundled through the bundling section into a bundle of rays with largely parallel light rays, which are then in a particularly simple but efficient manner within the scope of the present invention while maintaining the parallelism of the light rays with one another through the redistribution section in the corresponding partial areas of the light exit surface of the light module can be deflected.

Die einzelnen Abschnitte der transparenten Bauteilanordnung sind als transparente Festkörper ausgebildet. Sie bestehen aus einem transparenten Material, insbesondere PC, PMMA oder PMMI. Der Einkoppel- und der Bündelungsabschnitt sind vorzugsweise als ein einziges integrales Bauteil ausgebildet. So ist es bspw. denkbar, dass dieses Bauteil in Form einer sog. Vorsatzoptik oder TIR (total internal reflection)-Optik ausgebildet ist. Eine Vorsatzoptik weist einen Einkoppelabschnitt mit einer Vertiefung und mehreren Lichteintrittsflächen im Bereich dieser Vertiefung auf. Die Lichtquelle strahlt ihr Licht hauptsächlich in diese Vertiefung und auf die Eintrittsflächen. Ein Boden der Vertiefung erstreckt sich zumindest bereichsweise senkrecht zu einer Hauptabstrahlrichtung der Lichtquelle und bildet eine erste Lichteintrittsfläche. An einer der ersten Eintrittsfläche gegenüber liegenden Seite weist die Vorsatzoptik eine erste Lichtaustrittsfläche auf. Die erste Eintrittsfläche und/oder die erste Austrittsfläche können nach Art einer Linse gewölbt sein. Lichtstrahlen, die über die erste Eintrittsfläche in die Vorsatzoptik eintreten und über die erste Austrittsfläche aus dieser wieder austreten werden mittels Brechung gebündelt, insbesondere kollimiert.The individual sections of the transparent component arrangement are designed as transparent solid bodies. They consist of a transparent material, in particular PC, PMMA or PMMI. The coupling section and the bundling section are preferably designed as a single integral component. It is thus conceivable, for example, that this component is designed in the form of what is known as an attachment lens or TIR (total internal reflection) lens. A front lens has a coupling-in section with a depression and several light entry surfaces in the area of this depression. The light source mainly radiates its light into this recess and onto the entry surfaces. A bottom of the recess extends at least in some areas perpendicular to a main emission direction of the light source and forms a first light entry surface. On a side opposite the first entry face, the ancillary optics have a first light exit face. The first entry surface and / or the first exit surface can be curved in the manner of a lens. Light rays that enter the ancillary optics via the first entry surface and exit it again via the first exit surface are bundled, in particular collimated, by means of refraction.

Ferner umfasst eine Vorsatzoptik mindestens eine zweite Lichteintrittsfläche, die vorzugsweise parallel oder mit geringer Neigung schräg zu der Hauptabstrahlrichtung der Lichtquelle ausgerichtet ist. Auf diese Eintrittsfläche treffen von der Lichtquelle schräg zur Hauptabstrahlrichtung ausgesandte Lichtstrahlen und treten seitlich in die Vorsatzoptik ein. Dort treffen sie zunächst auf totalreflektierende Grenzflächen der Vorsatzoptik und werden von diesen auf mindestens eine zweite Lichtaustrittsfläche der Vorsatzoptik umgelenkt. Diese Austrittsfläche erstreckt sich zumindest über einen Teil des Umfangs der ersten Austrittsfläche. Über die zweite Austrittsfläche treten die von den Grenzflächen reflektierten Lichtstrahlen parallel zu den durch die erste Austrittsfläche austretenden Lichtstrahlen aus der Vorsatzoptik aus. Lichtstrahlen, die über die zweite Eintrittsfläche in die Vorsatzoptik eintreten und über die zweite Austrittsfläche aus dieser wieder austreten, werden mittels Brechung und Totalreflexion (TIR) gebündelt, insbesondere kollimiert.Furthermore, an optical attachment comprises at least one second light entry surface, which is preferably aligned parallel or with a slight inclination at an angle to the main emission direction of the light source. Light beams emitted by the light source at an angle to the main emission direction hit this entry surface and enter the ancillary optics from the side. There they first encounter totally reflective interfaces of the ancillary optics and are deflected by these onto at least one second light exit surface of the ancillary optics. This exit surface extends at least over part of the circumference of the first exit surface. The light beams reflected from the boundary surfaces exit the ancillary optics parallel to the light beams exiting through the first exit surface via the second exit surface. Light rays that enter the ancillary optics via the second entry surface and exit it again via the second exit surface are bundled, in particular collimated, by means of refraction and total reflection (TIR).

Statt einer TIR-Vorsatzoptik kann auch eine Linse, insbesondere eine plankonvexe Linse, zur Bündelung der von der Lichtquelle ausgesandten Lichtstrahlen verwendet werden.Instead of a TIR ancillary optics, a lens, in particular a plano-convex lens, can also be used to focus the light beams emitted by the light source.

Ein Vorteil der vorliegenden Erfindung ist es, dass die transparente Bauteilanordnung besonders einfach ausgestaltet und damit auch einfach und kostengünstig herstellbar ist und dass trotzdem der parallele Verlauf der Lichtstrahlen des Strahlenbündels zueinander während der gesamten Umlenkung in dem Umverteilungsabschnitt erhalten bleibt. Dadurch können die einzelnen Teilbereiche der Lichtaustrittsfläche des Leuchtenmoduls besonders homogen ausgeleuchtet werden.One advantage of the present invention is that the transparent component arrangement is particularly simple and can therefore also be produced simply and inexpensively and that the parallel course of the light beams of the beam to one another is nevertheless maintained during the entire deflection in the redistribution section. As a result, the individual sub-areas of the light exit surface of the light module can be illuminated particularly homogeneously.

Gemäß einer vorteilhaften Weiterbildung der vorliegenden Erfindung sind der Einkoppel-, der Bündelungs- und der Umverteilungsabschnitt als ein einziges integrales Bauteil ausgebildet. Somit ist die gesamte transparente Bauteilanordnung als ein Festkörper aus einem transparenten Kunststoffmaterial, insbesondere PC, PMMA oder PMMI, ausgebildet. Dies hat große Vorteile bezüglich einer kostengünstigen Herstellung, da die gesamte transparente Bauteilanordnung in einem Herstellungsschritt hergestellt werden kann. Die Bauteilanordnung kann bspw. mittels eines Spritzgießverfahrens hergestellt werden.According to an advantageous further development of the present invention, the coupling, bundling and redistribution sections are designed as a single integral component. The entire transparent component arrangement is thus a solid body made of a transparent plastic material, in particular PC, PMMA or PMMI, educated. This has great advantages in terms of cost-effective production, since the entire transparent component arrangement can be produced in one production step. The component arrangement can be produced, for example, by means of an injection molding process.

Gemäß einer bevorzugten Ausführungsform wird vorgeschlagen, dass der Einkoppelabschnitt eine rotationssymmetrische Form aufweist, wobei eine Rotationsachse deckungsgleich mit einer Hauptabstrahlrichtung des Lichts durch die Lichtquelle ist. Dementsprechend wird auch vorgeschlagen, dass der Bündelungsabschnitt eine rotationssymmetrische Form aufweist, wobei eine Rotationsachse deckungsgleich mit einer Hauptabstrahlrichtung des Lichts durch die Lichtquelle ist.According to a preferred embodiment, it is proposed that the coupling-in section has a rotationally symmetrical shape, with an axis of rotation being congruent with a main direction of emission of the light by the light source. Accordingly, it is also proposed that the bundling section has a rotationally symmetrical shape, with an axis of rotation congruent with a main direction of emission of the light by the light source.

Der Umverteilungsabschnitt der transparenten Bauteilanordnung weist vorzugsweise eine Längserstreckung entlang der Lichtaustrittsfläche und senkrecht zu einer Hauptabstrahlrichtung der Lichtquelle auf. Die Länge des Umverteilungsabschnitts entspricht in etwa der Länge der Lichtaustrittsfläche mit den nebeneinander angeordneten Teilbereichen, auf die die umgelenkten Lichtstrahlen der Teilbereiche des Strahlenbündels umgelenkt werden. Selbstverständlich können auf der Lichtaustrittsfläche optisch wirksame Strukturen (bspw. beliebige Linsen, Zylinderoptiken, Kissenoptiken, Streuoptiken, Prismen, etc.) angeordnet sein, um aus dem über die Lichtaustrittsfläche austretenden Licht eine gewünschte Lichtverteilung des Leuchtenmoduls zu erzielen. Insbesondere ist es denkbar, die austretenden Lichtstrahlen horizontal zu streuen, um eine Lichtverteilung zu erzielen, die breiter als die Lichtaustrittsfläche ist, und um eine Sichtbarkeit der Leuchte bzw. des durch diese ausgesandten Lichts durch andere Verkehrsteilnehmer aus größeren seitlichen Blickwinkeln zu verbessern.The redistribution section of the transparent component arrangement preferably has a longitudinal extension along the light exit surface and perpendicular to a main emission direction of the light source. The length of the redistribution section corresponds approximately to the length of the light exit surface with the sub-areas arranged next to one another, to which the deflected light beams of the sub-areas of the beam are deflected. Of course, optically effective structures (e.g. any lenses, cylinder optics, cushion optics, scatter optics, prisms, etc.) can be arranged on the light exit surface in order to achieve a desired light distribution of the luminaire module from the light emerging via the light exit surface. In particular, it is conceivable to scatter the exiting light beams horizontally in order to achieve a light distribution that is wider than the light exit surface and to make the light or the light emitted by it visible Improve light through other road users from larger lateral angles.

Gemäß einer bevorzugten Ausführungsform der vorliegenden Erfindung wird vorgeschlagen, dass die reflektierenden Facetten des Umverteilungsabschnitts auf sie auftreffendes Licht mittels Totalreflexion umlenken. Die Facetten können somit als totalreflektierende Grenzflächen des als transparenter Festkörper ausgebildeten Umverteilungsabschnitts ausgebildet sein. Diese Flächen können im Rahmen eines Spritzgießverfahrens mit hoher Genauigkeit hergestellt werden. Da der Umverteilungsabschnitt der transparenten Bauteilanordnung eine sehr geringe Höhe aufweist, die im Bereich weniger Millimeter (z.B. 2,5 mm) liegt, kommt es beim Aushärten des gespritzten Kunststoffteils auch allenfalls zu minimalen Materialschrumpfungen, so dass die transparente Bauteilanordnung und insbesondere die reflektierenden Facetten des Umverteilungsabschnitts mit einer besonders hohen Genauigkeit hergestellt werden können.According to a preferred embodiment of the present invention, it is proposed that the reflective facets of the redistribution section deflect light incident on them by means of total reflection. The facets can thus be designed as totally reflective boundary surfaces of the redistribution section designed as a transparent solid body. These surfaces can be produced with a high degree of accuracy in an injection molding process. Since the redistribution section of the transparent component arrangement has a very low height, which is in the range of a few millimeters (e.g. 2.5 mm), there is at best minimal material shrinkage when the injection-molded plastic part hardens, so that the transparent component arrangement and in particular the reflective facets of the Redistribution section can be produced with a particularly high level of accuracy.

Gemäß einer anderen vorteilhaften Weiterbildung der vorliegenden Erfindung wird vorgeschlagen, dass die reflektierenden Facetten des Umverteilungsabschnitts erste Reflexionsflächen, zweite Reflexionsflächen und dritte Reflexionsflächen umfassen. Die ersten Reflexionsflächen sind ausgebildet, die Lichtstrahlen zumindest von einigen der Teilbereiche des Strahlenbündels in Richtung der zweiten Reflexionsflächen, senkrecht zu einer Hauptabstrahlrichtung der Lichtquelle und entlang einer Längserstreckung des Umverteilungsabschnitts umzulenken. Das heißt also, dass die ersten Reflexionsflächen derart in dem Umverteilungsabschnitt angeordnet und ausgerichtet sind, dass die in den Umverteilungsabschnitt eingetretenen Lichtstrahlen zumindest von einigen der Teilbereiche des Strahlenbündels unmittelbar auf die ersten Reflexionsflächen treffen und von diesen umgelenkt werden. Die zweiten Reflexionsflächen sind ausgebildet, von den ersten Reflexionsflächen umgelenkte Lichtstrahlen in Richtung der entsprechenden dritten Reflexionsflächen, parallel zu der Hauptabstrahlrichtung der Lichtquelle und senkrecht zu der Richtung der von den ersten Reflexionsflächen umgelenkten Lichtstrahlen umzulenken. Die dritten Reflexionsflächen sind ausgebildet, von den zweiten Reflexionsflächen umgelenkte Lichtstrahlen in Richtung der entsprechenden Teilbereiche der Lichtaustrittsfläche, senkrecht zu der Hauptabstrahlrichtung der Lichtquelle, senkrecht zu der Richtung der von den ersten Reflexionsflächen umgelenkten Lichtstrahlen und senkrecht zu der Richtung der von den zweiten Reflexionsflächen umgelenkten Lichtstrahlen umzulenken. Die von den ersten Reflexionsflächen umgelenkten Lichtstrahlen der verschiedenen Teilbereiche des Strahlenbündels können in dem Umverteilungsabschnitt auf der gleichen Höhe aber (von oben betrachtet) nebeneinander bzw. (von vorne betrachtet) hintereinander verlaufen. Das erlaubt eine besonders geringe Bauhöhe des Umverteilungsabschnitts im Bereich von nur wenigen Millimetern.According to another advantageous development of the present invention, it is proposed that the reflective facets of the redistribution section include first reflective surfaces, second reflective surfaces and third reflective surfaces. The first reflective surfaces are designed to deflect the light beams from at least some of the partial regions of the beam in the direction of the second reflective surfaces, perpendicular to a main emission direction of the light source and along a longitudinal extension of the redistribution section. This means that the first reflection surfaces are arranged and aligned in the redistribution section in such a way that those that have entered the redistribution section Light rays from at least some of the partial areas of the beam impinge directly on the first reflection surfaces and are deflected by them. The second reflective surfaces are designed to deflect light beams deflected by the first reflective surfaces in the direction of the corresponding third reflective surfaces, parallel to the main emission direction of the light source and perpendicular to the direction of the light beams deflected by the first reflective surfaces. The third reflection surfaces are formed, light beams deflected by the second reflection surfaces in the direction of the corresponding partial areas of the light exit surface, perpendicular to the main emission direction of the light source, perpendicular to the direction of the light beams deflected by the first reflection surfaces and perpendicular to the direction of the light beams deflected by the second reflection surfaces redirect. The light beams of the various partial areas of the beam bundle deflected by the first reflection surfaces can run in the redistribution section at the same height (viewed from above) but next to one another or (viewed from the front) one behind the other. This allows a particularly low overall height of the redistribution section in the range of only a few millimeters.

Gemäß einer bevorzugten Ausführungsform der Erfindung treffen die Lichtstrahlen eines Teilbereichs des Strahlenbündels, dessen Licht der Umverteilungsabschnitt auf einen zentralen Teilbereich der Lichtaustrittsfläche umlenkt, unmittelbar auf mindestens eine der dritten Reflexionsflächen, ohne zuvor auf eine der ersten Reflexionsflächen oder eine der zweiten Reflexionsflächen zu treffen. Die Lichtstrahlen des Teilbereichs des Strahlenbündels, welche auf den zentralen Teilbereich der Lichtaustrittsfläche umgelenkt werden, werden also nicht an ersten Reflexionsflächen entlang der Längserstreckung des Umverteilungsabschnitts und senkrecht zu der Hauptabstrahlrichtung der Lichtquelle umgelenkt, um dann auf zweite Reflexionsflächen zu treffen, welche sie dann in Richtung der dritten Reflexionsfläche umlenken. Vielmehr treffen diese Lichtstrahlen nach dem Eintritt in den Umverteilungsabschnitt unmittelbar auf die dritten Reflexionsflächen, welche die Lichtstrahlen in Richtung des zentralen Teilbereichs der Lichtaustrittsfläche senkrecht zu der Hauptabstrahlrichtung der Lichtquelle und senkrecht zur Längserstreckung des Umverteilungsabschnitts umlenken.According to a preferred embodiment of the invention, the light rays of a partial area of the beam, the light of which the redistribution section deflects onto a central partial area of the light exit surface, strike at least one of the third reflective surfaces directly without hitting one of the first reflective surfaces or one of the second reflective surfaces beforehand. The light rays of the partial area of the beam, which on the central partial area of the Light exit surface are deflected, so are not deflected at first reflective surfaces along the longitudinal extent of the redistribution section and perpendicular to the main emission direction of the light source, in order to then hit second reflective surfaces, which then deflect them in the direction of the third reflective surface. Rather, after entering the redistribution section, these light rays impinge directly on the third reflective surfaces, which deflect the light rays in the direction of the central portion of the light exit surface perpendicular to the main emission direction of the light source and perpendicular to the longitudinal extent of the redistribution section.

Alle anderen Lichtstrahlen, die also nicht auf den zentralen Teilbereich der Lichtaustrittsfläche umgelenkt werden, müssen erst mittels der ersten Reflexionsflächen mehr oder weniger weit entlang der Längserstreckung des Umverteilungsabschnitts in diesem propagiert werden, bevor sie auf die zweiten Reflexionsflächen treffen, welche sie dann in Richtung der dritten Reflexionsfläche umlenken, welche die Lichtstrahlen dann in Richtung der entsprechenden dezentral angeordneten Teilbereiche der Lichtaustrittsfläche umlenken.All other light rays, which are not deflected onto the central partial area of the light exit surface, must first be propagated more or less far along the longitudinal extension of the redistribution section by means of the first reflective surfaces before they hit the second reflective surfaces, which they then move towards the deflect third reflection surface, which then deflect the light beams in the direction of the corresponding decentrally arranged subregions of the light exit surface.

Dementsprechend wird vorgeschlagen, dass die zweiten Reflexionsflächen, welche die in dem Umverteilungsabschnitt propagierenden Lichtstrahlen in Richtung der dritten Reflexionsflächen umlenken, einen unterschiedlich großen Abstand zu den ersten Reflexionsflächen aufweisen, entsprechend einem Abstand der entsprechenden Teilbereiche der Lichtaustrittsfläche, auf welche die den zweiten Reflexionsflächen jeweils zugeordneten dritten Reflexionsflächen die Lichtstrahlen umlenken, zu dem zentralen Teilbereich der Lichtaustrittsfläche.Accordingly, it is proposed that the second reflective surfaces, which deflect the light beams propagating in the redistribution section in the direction of the third reflective surfaces, have a differently large distance from the first reflective surfaces, corresponding to a distance between the corresponding subregions of the light exit surface to which the second reflective surfaces are assigned Third reflective surfaces deflect the light beams to the central partial area of the light exit surface.

Ferner wird vorgeschlagen, dass die dritten Reflexionsflächen, welche die von den ihnen jeweils zugeordneten zweiten Reflexionsflächen kommenden Lichtstrahlen in Richtung der entsprechenden dezentral angeordneten Teilbereiche der Lichtaustrittsfläche umlenken, einen unterschiedlich großen Abstand zu den ersten Reflexionsflächen aufweisen, entsprechend einem Abstand der entsprechenden Teilbereiche der Lichtaustrittsfläche, auf welche die den zweiten Reflexionsflächen jeweils zugeordneten dritten Reflexionsflächen die Lichtstrahlen umlenken, zu dem zentralen Teilbereich der Lichtaustrittsfläche.It is further proposed that the third reflective surfaces, which deflect the light beams coming from the second reflective surfaces assigned to them in the direction of the corresponding decentrally arranged subregions of the light exit surface, have a different distance from the first reflective surfaces, corresponding to a distance between the corresponding subregions of the light outlet surface, onto which the third reflective surfaces assigned to the second reflective surfaces deflect the light beams to the central partial area of the light exit surface.

Das heißt also, dass der Abstand von den zweiten und dritten Reflexionsflächen zu den ersten Reflexionsflächen umso größer ist, desto weiter entfernt derjenige Teilbereich der Lichtaustrittsfläche, auf den die zweiten und dritten Reflexionsflächen Lichtstrahlen umlenken, von dem zentralen Teilbereich der Lichtaustrittsfläche angeordnet ist. Mit anderen Worten, ein Lichtstrahl, der in etwa auf die Mitte der ersten und zweiten Reflexionsflächen trifft, legt auf seinem Weg von einer ersten zu einer zweiten Reflexionsfläche einen Weg zurück, der in etwa dem Abstand der Mitte desjenigen Teilbereichs der Lichtaustrittsfläche, auf den der Lichtstrahl über die zweiten und dritten Reflexionsflächen umgelenkt wird, zu der Mitte des zentralen Teilbereichs der Lichtaustrittsfläche entspricht.This means that the distance from the second and third reflective surfaces to the first reflective surfaces is greater, the further away that portion of the light exit surface onto which the second and third reflective surfaces deflect light rays is located from the central portion of the light exit surface. In other words, a light beam that strikes approximately the middle of the first and second reflective surfaces covers a path on its way from a first to a second reflective surface that is roughly the distance from the center of that part of the light exit surface on which the Light beam is deflected over the second and third reflection surfaces, corresponds to the center of the central portion of the light exit surface.

Der Umverteilungsabschnitt kann als eine ebene Platte ausgestaltet sein, wobei die Lichtaustrittsfläche dann eine gerade Längserstreckung aufweist. In diesem Fall sind die verschiedenen Reflexionsflächen vorzugsweise eben ausgebildet und weisen eine Neigung von 45° bezüglich der auf sie auftreffenden Lichtstrahlen auf, so dass die auf die Reflexionsflächen treffenden Lichtstrahlen von den Reflexionsflächen jeweils um 90° umgelenkt werden. Es wäre aber auch denkbar, dass der Umverteilungsabschnitt um eine Achse parallel zu der Richtung der von den dritten Reflexionsflächen in Richtung der entsprechenden Teilbereiche der Lichtaustrittsfläche umgelenkten Lichtstrahlen gebogen ausgestaltet ist. In diesem Fall könnte es dann erforderlich sein, die Neigung der ebenen Reflexionsflächen geringfügig abweichend von 45° zu wählen, um sicherzustellen, dass die auf eine Reflexionsfläche auftreffenden Lichtstrahlen auch wirklich möglichst alle auf die im Strahlengang nachfolgende Reflexionsfläche bzw. den entsprechenden Teilbereich der Lichtaustrittsfläche treffen. Es wäre ferner denkbar, die Reflexionsflächen nicht eben, sondern leicht gewölbt auszugestalten, um dieses Ziel besser zu erreichen.The redistribution section can be designed as a flat plate, the light exit surface then having a straight longitudinal extension. In this case, the various reflection surfaces are preferably flat and have an inclination of 45 ° with respect to the light rays impinging on them, so that the light rays striking the reflection surfaces are each deflected by 90 ° by the reflection surfaces. However, it would also be conceivable for the redistribution section to be designed to be curved about an axis parallel to the direction of the light beams deflected by the third reflection surfaces in the direction of the corresponding subregions of the light exit surface. In this case, it might be necessary to choose the inclination of the flat reflective surfaces slightly different from 45 ° in order to ensure that the light rays hitting a reflective surface really all hit the subsequent reflective surface in the beam path or the corresponding sub-area of the light exit surface . It would also be conceivable to design the reflection surfaces not flat, but rather slightly curved, in order to better achieve this goal.

Es wäre denkbar, auch mehrere der transparenten Bauteilanordnungen nebeneinander anzuordnen, so dass Stirnseiten des Umverteilungsabschnitts der Bauteilanordnungen unmittelbar aneinander grenzen. Auf diese Weise kann eine besonders langgestreckte Lichtaustrittsfläche realisiert werden, die sich aus den Lichtaustrittsflächen der einzelnen transparenten Bauteilanordnungen zusammensetzt. Die Umverteilungsabschnitte mehrerer nebeneinander angeordneter transparenter Bauteilanordnungen können auch einteilig ausgebildet sein.It would also be conceivable to arrange several of the transparent component arrangements next to one another, so that the end faces of the redistribution section of the component arrangements directly adjoin one another. In this way, a particularly elongated light exit surface can be implemented, which is composed of the light exit surfaces of the individual transparent component arrangements. The redistribution sections of a plurality of transparent component arrangements arranged next to one another can also be designed in one piece.

Die der vorliegenden Erfindung zugrundeliegende Aufgabe wird auch durch ein Leuchtenmodul der eingangs genannten Art gelöst, das eine erfindungsgemäße transparente Bauteilanordnung aufweist. Ein solches Leuchtenmodul kann zur Erzeugung einer langgestreckten Lichtverteilung mit einer größeren horizontalen als vertikalen Erstreckung genutzt werden. Die Lichtverteilung dient insbesondere zur Realisierung einer beliebigen Leuchtenfunktion, bspw. eines Tagfahrlichts, eines Blinklichts, eines Positions- oder Standlichts, eines Rücklichts, eines Bremslichts oder eines Rückfahrlichts. Je nach gewünschter Leuchtenfunktion werden Lichtquellen verwendet, die Licht einer bestimmten Farbe (z.B. weiß, gelb, rot) aussenden. Ferner wäre es denkbar, Lichtquellen zu verwenden, die jeweils Licht unterschiedlicher Farbe aussenden können (z.B. sog. Multicolor- oder RGB-LEDs), so dass sie in Abhängigkeit einer entsprechenden Ansteuerung der Lichtquelle Licht einer bestimmten Farbe aussenden, um eine gewünschte Lichtverteilung zu realisieren. Auf diese Weise ist es möglich, mit ein- und derselben transparenten Bauteilanordnung bzw. ein- und demselben Leuchtenmodul unterschiedliche Leuchtenfunktionen (z.B. Tagfahrlicht und Blinklicht) zu realisieren.The object on which the present invention is based is also achieved by a lamp module of the type mentioned at the outset, which has a transparent lamp module according to the invention Has component arrangement. Such a lamp module can be used to generate an elongated light distribution with a greater horizontal than vertical extent. The light distribution is used in particular to implement any lighting function, for example a daytime running light, a flashing light, a position or parking light, a rear light, a brake light or a reversing light. Depending on the desired lighting function, light sources are used that emit light of a certain color (e.g. white, yellow, red). It would also be conceivable to use light sources that can each emit light of different colors (e.g. so-called multicolor or RGB LEDs) so that they emit light of a certain color depending on a corresponding control of the light source in order to achieve a desired light distribution . In this way, it is possible to use one and the same transparent component arrangement or one and the same lamp module to implement different lamp functions (for example daytime running lights and flashing lights).

Weitere Merkmale und Vorteile der vorliegenden Erfindung werden nachfolgend im Detail anhand der Figuren näher erläutert. Es zeigen:

Figur 1
eine schematische Darstellung für eine Umverteilung eines Strahlenbündels mit rundem Querschnitt auf eine langgezogene Lichtaustrittsfläche;
Figur 2
eine schematische Darstellung der Umverteilung in drei Schnitten aus Figur 1;
Figuren 3a bis 3c
ein bevorzugtes Ausführungsbeispiel einer erfindungsgemäßen transparenten Bauteilanordnung in verschiedenen Ansichten;
Figur 4
eine perspektivische Ansicht der Bauteilanordnung aus den Figuren 3a bis 3c von schräg hinten;
Figur 5
eine perspektivische Ansicht der Bauteilanordnung aus den Figuren 3a bis 3c von schräg oben und vorne;
Figur 6
eine perspektivische Ansicht von zwei nebeneinander angeordneten Bauteilanordnungen aus den Figuren 3a bis 3c von schräg oben und vorne;
Figur 7
einen anhand von Beispielstrahlen eingezeichneten schematisch dargestellten Verlauf der Lichtstrahlen in dem Umverteilungsabschnitt der erfindungsgemäßen transparenten Bauteilanordnung; und
Figur 8
eine Beleuchtungseinrichtung mit einem erfindungsgemäßen Leuchtenmodul, das seinerseits eine erfindungsgemäße transparenten Bauteilanordnung umfasst.
Further features and advantages of the present invention are explained in more detail below with reference to the figures. Show it:
Figure 1
a schematic representation for a redistribution of a beam with a round cross-section on an elongated light exit surface;
Figure 2
a schematic representation of the redistribution in three sections Figure 1 ;
Figures 3a to 3c
a preferred embodiment a transparent component arrangement according to the invention in different views;
Figure 4
a perspective view of the component arrangement from FIG Figures 3a to 3c from diagonally behind;
Figure 5
a perspective view of the component arrangement from FIG Figures 3a to 3c from diagonally above and in front;
Figure 6
a perspective view of two juxtaposed component arrangements from the Figures 3a to 3c from diagonally above and in front;
Figure 7
a schematically illustrated course of the light beams in the redistribution section of the transparent component arrangement according to the invention, drawn in using example beams; and
Figure 8
a lighting device with a lamp module according to the invention, which in turn comprises a transparent component arrangement according to the invention.

Die nachfolgend beschriebenen Merkmale der vorliegenden Erfindung können auch einzeln oder in einer anderen Kombination miteinander als hier beschrieben und in den Figuren gezeigt erfindungswesentlich sein. Die vorliegende Erfindung ist nicht auf die hier beschriebenen Ausführungsbeispiele beschränkt.The features of the present invention described below can also be essential to the invention individually or in a different combination than that described here and shown in the figures. The present invention is not restricted to the exemplary embodiments described here.

In Figur 8 ist eine Beleuchtungseinrichtung eines Kraftfahrzeugs in Form eines Scheinwerfers in ihrer Gesamtheit mit dem Bezugszeichen 1 bezeichnet. Selbstverständlich könnte die Beleuchtungseinrichtung 1 auch ein Rücklicht eines Kraftfahrzeugs sein. Der Scheinwerfer 1 wird im Frontbereich der Karosserie eines Kraftfahrzeugs angeordnet und befestigt. In dem Scheinwerfer 1 ist ein erfindungsgemäßes Leuchtenmodul einer Kraftfahrzeugleuchte angeordnet. Selbstverständlich kann die Leuchte mit dem Leuchtenmodul auch separat von dem Scheinwerfer 1 als eigenständiges Bauteil mit eigenem Gehäuse vorne, hinten oder seitlich in oder an einem Kraftfahrzeug angeordnet sein. So wäre es bspw. denkbar, die Leuchte als hochgesetzte dritte Bremsleuchte in oder an einem Kofferraumdeckel oder hinter einer Rückscheibe eines Kraftfahrzeugs anzuordnen. Ferner könnte die Leuchte als eine nachrüstbare Tagfahrlichtleuchte im Bereich eines Frontspoilers oder an einer Stoßstange des Kraftfahrzeugs angeordnet sein.In Figure 8 is a lighting device of a Motor vehicle in the form of a headlight designated in its entirety with the reference number 1. Of course, the lighting device 1 could also be a rear light of a motor vehicle. The headlight 1 is arranged and fastened in the front area of the body of a motor vehicle. A lamp module of a motor vehicle lamp according to the invention is arranged in the headlight 1. Of course, the lamp with the lamp module can also be arranged separately from the headlight 1 as an independent component with its own housing at the front, rear or side in or on a motor vehicle. For example, it would be conceivable to arrange the light as a raised third brake light in or on a trunk lid or behind a rear window of a motor vehicle. Furthermore, the light could be arranged as a retrofittable daytime running light in the area of a front spoiler or on a bumper of the motor vehicle.

Im Einzelnen weist der Scheinwerfer 1 ein Gehäuse 2 auf, das vorzugsweise aus Kunststoff gefertigt ist. In einer Lichtaustrittsrichtung 3 hat das Gehäuse 2 eine Lichtaustrittsöffnung 4, die mittels einer transparenten Abdeckscheibe 5 verschlossen ist. Die Abdeckscheibe 5 besteht aus Glas oder Kunststoff. Auf der Abdeckscheibe 5 können zumindest bereichsweise optisch wirksame Elemente (z. B. Prismen oder Zylinderlinsen) angeordnet sein, um das hindurchtretende Licht zu streuen (sogenannte Streuscheibe). Es ist aber auch denkbar, dass die Abdeckscheibe 5 ohne solche optisch wirksamen Elemente ausgebildet ist (sogenannte klare Scheibe).In detail, the headlight 1 has a housing 2 which is preferably made of plastic. In a light exit direction 3, the housing 2 has a light exit opening 4 which is closed by means of a transparent cover plate 5. The cover 5 is made of glass or plastic. On the cover plate 5, optically effective elements (for example prisms or cylinder lenses) can be arranged at least in some areas in order to scatter the light passing through (so-called diffusion plate). However, it is also conceivable that the cover plate 5 is designed without such optically effective elements (so-called clear plate).

Im Inneren des Gehäuses 2 ist ein Lichtmodul 6 angeordnet. Das Lichtmodul 6 kann zur Erzeugung einer beliebigen Scheinwerferfunktion oder eines Teils davon dienen. Insbesondere kann das Lichtmodul 6 zur Erzeugung einer Abblendlichtverteilung, einer Fernlichtverteilung, einer Nebellichtverteilung oder einer beliebigen adaptiven Lichtverteilung oder eines Teils davon dienen. Ferner kann in dem Gehäuse 2 ein weiteres Lichtmodul 7 angeordnet sein. Dieses dient bspw. zur Erzeugung einer weiteren Scheinwerferfunktion. Es wäre aber auch denkbar, dass die Lichtmodule 6, 7 zusammen die vorgesehene Scheinwerferfunktion erzeugen. So könnte beispielsweise das Lichtmodul 7 eine Abblendlicht-Grundlichtverteilung mit einer relativ breiten Streuung und einer horizontalen Hell-Dunkel-Grenze erzeugen. Das Lichtmodul 6 könnte dann eine Abblendlicht-Spotlichtverteilung erzeugen, die im Vergleich zu der Abblendlicht-Grundlichtverteilung des Lichtmoduls 7 relativ stark konzentriert ist und an der Oberseite eine asymmetrische Helldunkelgrenze aufweist. Die asymmetrische Helldunkelgrenze weist auf der eigenen Verkehrsseite einen höheren Verlauf auf als auf der Gegenverkehrsseite. Eine Überlagerung der Grundlichtverteilung und der Spotlichtverteilung ergibt eine herkömmliche Abblendlichtverteilung. Selbstverständlich ist es denkbar, dass in dem Scheinwerfergehäuse 2 außer den Lichtmodulen 6, 7 noch weitere Lichtmodule zur Realisierung anderer Scheinwerferfunktionen angeordnet sind. Außerdem kann in dem Scheinwerfergehäuse 2 lediglich ein Lichtmodul, beispielsweise das Lichtmodul 6 ohne das Lichtmodul 7, angeordnet sein.A light module 6 is arranged in the interior of the housing 2. The light module 6 can be used to generate any Serve headlight function or part thereof. In particular, the light module 6 can serve to generate a low beam distribution, a high beam distribution, a fog light distribution or any adaptive light distribution or a part thereof. Furthermore, a further light module 7 can be arranged in the housing 2. This is used, for example, to generate a further headlight function. However, it would also be conceivable that the light modules 6, 7 together generate the intended headlight function. For example, the light module 7 could generate a low beam basic light distribution with a relatively wide spread and a horizontal light-dark border. The light module 6 could then generate a low-beam spot light distribution which, compared to the low-beam basic light distribution of the light module 7, is relatively highly concentrated and has an asymmetrical light-dark boundary on the top. The asymmetrical light-dark boundary shows a higher course on the own traffic side than on the opposite traffic side. A superposition of the basic light distribution and the spot light distribution results in a conventional low beam distribution. Of course, it is conceivable that in addition to the light modules 6, 7, further light modules for realizing other headlight functions are arranged in the headlight housing 2. In addition, only one light module, for example the light module 6 without the light module 7, can be arranged in the headlight housing 2.

Schließlich ist in dem Gehäuse 2 auch mindestens eine Kraftfahrzeugleuchte mit einem erfindungsgemäßen Leuchtenmodul 8 angeordnet. Das Leuchtenmodul 8 dient zur Erzeugung von mindestens einer beliebigen Leuchtenfunktion, beispielsweise eines Blinklichts, eines Positionslichts, eines Tagfahrlichts, etc. Das erfindungsgemäße Leuchtenmodul 8 wird nachfolgend unter Bezugnahme auf die Figuren 1 bis 7 näher erläutert.Finally, at least one motor vehicle light with a light module 8 according to the invention is also arranged in the housing 2. The light module 8 is used to generate at least one light function, for example a flashing light, a position light, a daytime running light, etc. The lamp module 8 according to the invention is described below with reference to FIG Figures 1 to 7 explained in more detail.

Das Leuchtenmodul 8 ist in verschiedenen perspektivischen Ansichten in den Figuren 4 und 5 gezeigt. Es umfasst eine Lichtquelle 10, die bspw. als ein Halbraum-Strahler, insbesondere als eine Leuchtdiode (LED) ausgebildet ist. Die Leuchtdiode 10 umfasst mindestens ein LED-Chip, der in einer Hauptabstrahlrichtung 11 Licht vorzugsweise mit einer lambert'sehen Abstrahlcharakteristik in einen 180°-Halbraum aussendet.The lamp module 8 is shown in various perspective views in Figures 4 and 5 shown. It comprises a light source 10, which is designed, for example, as a half-space radiator, in particular as a light-emitting diode (LED). The light-emitting diode 10 comprises at least one LED chip, which in a main emission direction 11 emits light, preferably with a Lambertian emission characteristic, into a 180 ° half-space.

Ferner umfasst das Leuchtenmodul 8 eine transparente Bauteilanordnung, die in ihrer Gesamtheit mit dem Bezugszeichen 12 bezeichnet ist. Diese umfasst ihrerseits einen Einkoppelabschnitt 13, der ausgebildet ist, das von der Lichtquelle 10 in der Hauptabstrahlrichtung 11 ausgesandte Licht in die Bauteilanordnung 12 einzukoppeln. Der Einkoppelabschnitt 13 weist vorzugsweise eine rotationssymmetrische Form auf, wobei eine Rotationsachse vorzugsweise deckungsgleich mit der Hauptabstrahlrichtung 11 des Lichts durch die Lichtquelle 10 ist.The luminaire module 8 also comprises a transparent component arrangement, which is designated in its entirety by the reference symbol 12. This in turn includes a coupling-in section 13 which is designed to couple the light emitted by the light source 10 in the main emission direction 11 into the component arrangement 12. The coupling-in section 13 preferably has a rotationally symmetrical shape, an axis of rotation preferably being congruent with the main emission direction 11 of the light by the light source 10.

Des Weiteren weist die Bauteilanordnung 12 einen Bündelungsabschnitt 14 auf, der ausgebildet ist, das eingekoppelte Licht zu einem Strahlenbündel 19 mit parallel zueinander verlaufenden Lichtstrahlen zu bündeln. Das von dem Bündelungsabschnitt 14 gebündelte Strahlenbündel 19 weist vorzugsweise einen kreisförmigen Querschnitt auf (vgl. Figur 1). Der Bündelungsabschnitt 14 kann eine rotationssymmetrische Form aufweisen, wobei eine Rotationsachse vorzugsweise deckungsgleich mit der Hauptabstrahlrichtung 11 des Lichts durch die Lichtquelle 10 ist. Der Bündelungsabschnitt 14 ist bspw. zusammen mit dem Einkoppelabschnitt 13 Teil einer TIR-Vorsatzoptik (vgl. Figur 2). Als Vorsatzoptik könnte aber auch eine Linse, insbesondere eine plankonvexe Linse, eingesetzt werden.Furthermore, the component arrangement 12 has a bundling section 14 which is designed to bundle the coupled-in light into a beam 19 with light beams running parallel to one another. The bundle of rays 19 bundled by the bundling section 14 preferably has a circular cross section (cf. Figure 1 ). The bundling section 14 can have a rotationally symmetrical shape, with an axis of rotation preferably congruent with the main emission direction 11 of the light by the light source 10 is. The bundling section 14 is, for example, together with the coupling section 13, part of a TIR ancillary optics (cf. Figure 2 ). However, a lens, in particular a plano-convex lens, could also be used as an auxiliary lens.

In Figur 2 sind der Einkoppelabschnitt 13 und der Bündelungsabschnitt 14 als ein einziges integrales Bauteil ausgebildet. Insbesondere ist dieses Bauteil in Form einer sog. Vorsatzoptik oder TIR (total internal reflection)-Optik aus einem transparenten Material, insbesondere PC, PMMA oder PMMI, ausgebildet. Die Vorsatzoptik 13, 14 weist einen Einkoppelabschnitt 13 mit einer Vertiefung 13a und mehreren Lichteintrittsflächen 13b, 13c im Bereich dieser Vertiefung 13a auf. Die Lichtquelle 10 strahlt ihr Licht hauptsächlich in diese Vertiefung 13a und auf die Eintrittsflächen 13b, 13c. Ein Boden der Vertiefung 13a erstreckt sich zumindest bereichsweise senkrecht zu der Hauptabstrahlrichtung 11 der Lichtquelle 10 und bildet eine erste Lichteintrittsfläche 13b. Diese dient gleichzeitig zur Bündelung des auf sie auftreffenden Lichts, so dass die Fläche 13b streng genommen sowohl Teil des Einkoppelabschnitts 13 als auch Teil des Bündelungsabschnitts 14 ist. An einer der ersten Eintrittsfläche 13b gegenüberliegenden Seite weist die Vorsatzoptik 13, 14 eine erste Lichtaustrittsfläche 14b auf. Die erste Eintrittsfläche 13b und/oder die erste Austrittsfläche 14b können nach Art einer Linse gewölbt sein. Lichtstrahlen, die über die erste Eintrittsfläche 13b in die Vorsatzoptik 13, 14 eintreten und über die erste Austrittsfläche 14b aus dieser wieder austreten werden mittels Brechung gebündelt, insbesondere kollimiert.In Figure 2 the coupling section 13 and the bundling section 14 are designed as a single integral component. In particular, this component is designed in the form of a so-called front lens or TIR (total internal reflection) lens made of a transparent material, in particular PC, PMMA or PMMI. The optical attachment 13, 14 has a coupling-in section 13 with a recess 13a and a plurality of light entry surfaces 13b, 13c in the area of this recess 13a. The light source 10 radiates its light mainly into this recess 13a and onto the entry surfaces 13b, 13c. A bottom of the recess 13a extends at least in regions perpendicular to the main emission direction 11 of the light source 10 and forms a first light entry surface 13b. This serves at the same time to focus the light impinging on it, so that, strictly speaking, the surface 13b is both part of the coupling-in section 13 and part of the bundling section 14. On a side opposite the first entry surface 13b, the optical attachment 13, 14 has a first light exit surface 14b. The first entry surface 13b and / or the first exit surface 14b can be curved in the manner of a lens. Light rays which enter the ancillary optics 13, 14 via the first entry surface 13b and exit the latter again via the first exit surface 14b are bundled, in particular collimated, by means of refraction.

Ferner umfasst eine Vorsatzoptik 13, 14 mindestens eine zweite Lichteintrittsfläche 13c, die durch eine Wandung der Vorsatzoptik 13, 14 gebildet wird, welche die zylinder- oder kegelstumpfförmige Vertiefung 13a begrenzt. Auf diese Eintrittsfläche 13c treffen von der Lichtquelle 10 schräg zur Hauptabstrahlrichtung 11 ausgesandte Lichtstrahlen und treten seitlich in die Vorsatzoptik 13, 14 ein. Dort treffen sie zunächst auf totalreflektierende Grenzflächen 14a der Vorsatzoptik 13, 14 und werden von diesen auf mindestens eine zweite Lichtaustrittsfläche 14c der Vorsatzoptik 13, 14 umgelenkt. Diese Austrittsfläche 14c erstreckt sich zumindest um einen Teil des Umfangs der ersten Austrittsfläche 14b herum. Über die zweite Austrittsfläche 14c treten die von den Grenzflächen 14a reflektierten Lichtstrahlen parallel zu den über die erste Austrittsfläche 14b austretenden Lichtstrahlen aus der Vorsatzoptik 13, 14 aus. Lichtstrahlen, die über die zweite Eintrittsfläche 13c in die Vorsatzoptik 13, 14 eintreten und über die zweite Austrittsfläche 14c aus dieser wieder austreten, werden mittels Brechung und Totalreflexion gebündelt, insbesondere kollimiert.Furthermore, an ancillary optics 13, 14 comprises at least one second light entry surface 13c, which extends through a wall of the Ancillary optics 13, 14 is formed which delimits the cylindrical or frustoconical recess 13a. Light beams emitted by the light source 10 obliquely to the main emission direction 11 strike this entry surface 13c and enter the ancillary optics 13, 14 laterally. There they first encounter totally reflective boundary surfaces 14a of the optical attachment 13, 14 and are deflected by these onto at least one second light exit surface 14c of the optical attachment 13, 14. This exit surface 14c extends at least around part of the circumference of the first exit surface 14b. The light beams reflected by the boundary surfaces 14a emerge via the second exit surface 14c parallel to the light beams exiting via the first exit surface 14b from the ancillary optics 13, 14. Light rays that enter the ancillary optics 13, 14 via the second entry surface 13c and exit it again via the second exit surface 14c are bundled, in particular collimated, by means of refraction and total reflection.

Außerdem umfasst die Bauteilanordnung 12 einen Umverteilungsabschnitt, der in seiner Gesamtheit mit dem Bezugszeichen 15 bezeichnet ist. Der Umverteilungsabschnitt 15 weist mehrere Facetten 20, 21, 22 (vgl. Figuren 4 und 5) auf, die ausgebildet sind, jeweils einen Teilbereich 18 des Strahlenbündels 19 (vgl. Figur 1) auf einen Teilbereich 16 einer Lichtaustrittsfläche 17 (vgl. Figuren 1, 2, 5 und 7) des Leuchtenmoduls 8 zu lenken. Der Umverteilungsabschnitt 15 weist vorzugsweise eine Längserstreckung entlang der Lichtaustrittsfläche 17 und senkrecht zu der Hauptabstrahlrichtung 11 der Lichtquelle 10 auf. In Figur 4 ist eine gestrichelte Linie 14d eingezeichnet, welche eine imaginäre Trennebene zwischen dem Bündelungsabschnitt 14 und dem Umverteilungsabschnitt 15 symbolisiert. Es versteht sich, dass bei einer einteiligen Ausgestaltung der transparenten Bauteilanordnung 12 die Lichtaustrittsflächen 14b, 14c des Bündelungsabschnitts 14 (vgl. Figur 2) ebenfalls nur imaginär vorhanden sind und innerhalb des transparenten Festkörpers der transparenten Bauteilanordnung 12 lediglich einen Übergang für die Lichtstrahlen aus dem Bündelungsabschnitt 14 in den Umverteilungsabschnitt 15 bilden. In Figur 2 ist der Umverteilungsabschnitt 15 lediglich schematisch gezeigt. Er kann aber - wie gesagt - ebenfalls integraler Bestandteil des gezeigten integralen Bauteils (Vorsatzoptik 13, 14) sein, oder aber separat von diesem ausgebildet sein.In addition, the component arrangement 12 comprises a redistribution section which is designated in its entirety by the reference symbol 15. The redistribution section 15 has several facets 20, 21, 22 (cf. Figures 4 and 5 ), which are formed, in each case a partial area 18 of the beam 19 (cf. Figure 1 ) on a sub-area 16 of a light exit surface 17 (cf. Figures 1 , 2 , 5 and 7th ) of the lamp module 8. The redistribution section 15 preferably has a longitudinal extension along the light exit surface 17 and perpendicular to the main emission direction 11 of the light source 10. In Figure 4 a dashed line 14d is drawn in, which symbolizes an imaginary dividing plane between the bundling section 14 and the redistribution section 15. It understands that, in the case of a one-piece configuration of the transparent component arrangement 12, the light exit surfaces 14b, 14c of the bundling section 14 (cf. Figure 2 ) are also only imaginary and within the transparent solid body of the transparent component arrangement 12 only form a transition for the light rays from the bundling section 14 into the redistribution section 15. In Figure 2 the redistribution section 15 is only shown schematically. However, as mentioned, it can also be an integral part of the shown integral component (front lens 13, 14), or it can be formed separately from it.

Die Figuren 3a bis 3c zeigen verschiedene andere Ansichten der transparenten Bauteilanordnung 12. Figur 3a zeigt eine Ansicht von schräg oben (entgegen der Richtung der y-Achse in Figur 5), Figur 3b eine Ansicht von schräg unten und Figur 3c eine Ansicht von schräg oben.The Figures 3a to 3c 12 show various other views of the transparent component assembly 12. Figure 3a shows a view obliquely from above (against the direction of the y-axis in Figure 5 ), Figure 3b a view from diagonally below and Figure 3c a view from diagonally above.

Das aus der Lichtaustrittsfläche 17 in der Lichtaustrittsrichtung 3 ausgesandte Licht (vgl. Figur 5) dient zur Realisierung der Leuchtenfunktion der Kraftfahrzeugleuchte. Die einzelnen Teilbereiche 16 der Lichtaustrittsfläche 17 liegen nebeneinander, so dass sich eine langgezogene Lichtverteilung mit einer größeren horizontalen als vertikalen Erstreckung ergibt. Zumindest einigen der Facetten, in dem hier gezeigten Beispiel den Facetten 22, ist ein bestimmter Teilbereich 16 der Lichtaustrittsfläche 17 zugeordnet, auf den diese Facetten 22 Licht umlenken. Im Rahmen der vorliegenden Erfindung wird vorgeschlagen, dass die Facetten 20, 21, 22 des Umverteilungsabschnitts 15 das auf sie auftreffende Licht mittels Reflexion (und nicht durch Brechung) umlenken und dass der Umverteilungsabschnitt 15 ausgebildet ist, durch die einzelnen reflektierenden Facetten 20, 21, 22 Teilbereiche 18 des Strahlenbündels 19, die sich durch eine Unterteilung eines Querschnitts des Strahlenbündels 19 (vgl. Figur 1) mittels horizontaler und/oder vertikaler Schnittebenen 23, 24 ergeben, die parallel zu den parallel zueinander verlaufenden Lichtstrahlen des Strahlenbündels 19 und parallel oder senkrecht zueinander verlaufen, auf die diesen jeweils zugeordneten Teilbereiche 16 der Lichtaustrittsfläche 17 zu lenken. Dabei bleibt der parallele Verlauf der Lichtstrahlen des Strahlenbündels 19 zueinander während der gesamten Umlenkung in dem Umverteilungsabschnitt 15 erhalten. Dies wird im Einzelnen nachfolgend noch im Detail erläutert. Die reflektierenden Facetten 20, 21, 22 des Umverteilungsabschnitts 15 lenken auf sie auftreffendes Licht vorzugsweise mittels Totalreflexion um.The light emitted from the light exit surface 17 in the light exit direction 3 (cf. Figure 5 ) is used to implement the lighting function of the motor vehicle light. The individual subregions 16 of the light exit surface 17 lie next to one another, so that an elongated light distribution with a greater horizontal than vertical extension results. At least some of the facets, in the example shown here the facets 22, are assigned a certain partial area 16 of the light exit surface 17, onto which these facets 22 deflect light. In the context of the present invention, it is proposed that the facets 20, 21, 22 of the redistribution section 15 deflect the light incident on them by means of reflection (and not by refraction) and that the redistribution section 15 is formed by the individual reflective facets 20, 21, 22 partial areas 18 of the beam 19, which are divided by a subdivision of a cross section of the beam 19 (cf. Figure 1 ) by means of horizontal and / or vertical cutting planes 23, 24, which run parallel to the mutually parallel light rays of the bundle of rays 19 and parallel or perpendicular to each other, onto the subregions 16 of the light exit surface 17 assigned to them. The parallel course of the light beams of the beam 19 to one another is maintained during the entire deflection in the redistribution section 15. This is explained in detail below. The reflective facets 20, 21, 22 of the redistribution section 15 deflect light incident on them, preferably by means of total reflection.

Die transparenten Bauteilanordnung 12 ist in Form eines transparenten Festkörpers aus Kunststoff, bspw. PC, PMMA oder PMMI ausgebildet. Gemäß der hier in den Figuren gezeigten Ausführungsform der transparenten Bauteilanordnung 12 sind der Einkoppelabschnitt 13, der Bündelungsabschnitt 14 und der Umverteilungsabschnitt 15 als ein einziges integrales Bauteil ausgebildet, das heißt die TIR-Vorsatzoptik 13, 14 und der Umverteilungsabschnitt 15 sind einteilig ausgebildet. Das hat den Vorteil, dass im Rahmen der Montage des Leuchtenmoduls 8 bzw. der transparenten Bauteilanordnung 12 der Bündelungsabschnitt 14 nicht erst relativ zu dem Umverteilungsabschnitt 15 positioniert und gehalten werden muss. Zudem bringt das eine integrale Bauteil Vorteile bei der Herstellung, bspw. im Rahmen eines Spritzgussverfahrens, da die gesamte Bauteilanordnung in einem Schritt hergestellt werden kann. In dem in den Figuren 2-5 und 7 gezeigten Ausführungsbeispiel umfassen die reflektierenden Facetten des Umverteilungsabschnitts 15 erste Reflexionsflächen 20, zweite Reflexionsflächen 21 und dritte Reflexionsflächen 22. Die ersten Reflexionsflächen 20 sind ausgebildet, die Lichtstrahlen zumindest von einigen der Teilbereiche 18 des Strahlenbündels 19 in Richtung der zweiten Reflexionsflächen 21, das heißt senkrecht zu der Hauptabstrahlrichtung 11 der Lichtquelle 10 und entlang der Längserstreckung des Umverteilungsabschnitts 15 umzulenken. Die umgelenkten Lichtstrahlen propagieren parallel zueinander in dem transparenten Material des Umverteilungsabschnitts 15 in Richtung der zweiten Reflexionsflächen 21. Die zweiten Reflexionsflächen 21 sind ausgebildet, von den ersten Reflexionsflächen 20 umgelenkte Lichtstrahlen in Richtung der entsprechenden dritten Reflexionsflächen 22, das heißt parallel (aber entgegengesetzt) zu der Hauptabstrahlrichtung 11 der Lichtquelle 10 und senkrecht zu der Richtung der von den ersten Reflexionsflächen 20 umgelenkten Lichtstrahlen, umzulenken. Die von den zweiten Reflexionsflächen 21 umgelenkten Lichtstrahlen propagieren parallel zueinander in dem transparenten Material des Umverteilungsabschnitts 15. Die dritten Reflexionsflächen 22 sind dazu ausgebildet, die von den zweiten Reflexionsflächen 21 umgelenkten Lichtstrahlen in Richtung der entsprechenden Teilbereiche 16 der Lichtaustrittsfläche 17, das heißt senkrecht zu der Hauptabstrahlrichtung 11 der Lichtquelle 10, senkrecht zu der Richtung der von den ersten Reflexionsflächen 20 umgelenkten Lichtstrahlen und senkrecht zu der Richtung der von den zweiten Reflexionsflächen 21 umgelenkten Lichtstrahlen umzulenken. Eine entsprechende Ausgestaltung des Umverteilungsabschnitts 15 und der Verlauf der Lichtstrahlen durch den Umverteilungsabschnitt 15 ist in Figur 7 für einen beispielhaft eingezeichneten Lichtstrahl 25 dargestellt, der in etwa mittig auf die verschiedenen Reflexionsflächen 20, 21, 22 trifft. Der Lichtstrahl 25 ist einer von vielen parallelen Lichtstrahlen des Strahlenbündels 19, das in dem Bündelungsabschnitt 14 geformt wurde. Der Strahl 25 trifft in dem Umverteilungsabschnitt 15 zunächst auf eine erste Reflexionsfläche 20. Die Reflexionsflächen 20 sind derart in dem Umverteilungsabschnitt 15 angeordnet, dass Lichtstrahlen von nahezu allen Teilbereichen 18 des Strahlenbündels 19 auf sie treffen. Lediglich die Lichtstrahlen eines Teilbereichs 18.1 des Strahlenbündels 19, die der Umverteilungsabschnitt 15 auf einen zentralen Teilbereich 16.1 der Lichtaustrittsfläche 17 umlenkt, treffen unmittelbar auf mindestens eine der dritten Reflexionsflächen 22.1 (vgl. Figur 4), ohne zuvor auf eine der ersten Reflexionsflächen 20 oder eine der zweiten Reflexionsflächen 21 zu treffen. Dies wird im Detail weiter unten noch erläutert.The transparent component arrangement 12 is designed in the form of a transparent solid body made of plastic, for example PC, PMMA or PMMI. According to the embodiment of the transparent component arrangement 12 shown here in the figures, the coupling-in section 13, the bundling section 14 and the redistribution section 15 are designed as a single integral component, i.e. the TIR ancillary optics 13, 14 and the redistribution section 15 are designed in one piece. This has the advantage that the bundling section 14 does not first have to be positioned and held relative to the redistribution section 15 during the assembly of the light module 8 or the transparent component arrangement 12. In addition, the one integral component has advantages in production, for example in the context of an injection molding process, since the entire component arrangement can be produced in one step. In the in the Figures 2-5 and 7th shown Embodiment, the reflective facets of the redistribution section 15 include first reflective surfaces 20, second reflective surfaces 21 and third reflective surfaces 22. The first reflective surfaces 20 are formed, the light rays from at least some of the partial areas 18 of the beam 19 in the direction of the second reflective surfaces 21, that is perpendicular to the Main emission direction 11 of the light source 10 and deflect along the longitudinal extension of the redistribution section 15. The deflected light beams propagate parallel to one another in the transparent material of the redistribution section 15 in the direction of the second reflective surfaces 21. The second reflective surfaces 21 are formed, light beams deflected by the first reflective surfaces 20 in the direction of the corresponding third reflective surfaces 22, i.e. parallel (but opposite) the main emission direction 11 of the light source 10 and perpendicular to the direction of the light beams deflected by the first reflection surfaces 20. The light beams deflected by the second reflective surfaces 21 propagate parallel to one another in the transparent material of the redistribution section 15. The third reflective surfaces 22 are designed to direct the light beams deflected by the second reflective surfaces 21 in the direction of the corresponding subregions 16 of the light exit surface 17, i.e. perpendicular to the Main emission direction 11 of the light source 10, perpendicular to the direction of the light beams deflected by the first reflection surfaces 20 and perpendicular to the direction of the light beams deflected by the second reflection surfaces 21. A corresponding configuration of the redistribution section 15 and the course of the light beams through the redistribution section 15 are shown in FIG Figure 7 for an exemplary drawn light beam 25, which strikes the various reflection surfaces 20, 21, 22 approximately in the middle. The light beam 25 is one of many parallel light beams of the beam 19 which has been formed in the focusing section 14. The beam 25 initially strikes a first reflective surface 20 in the redistribution section 15. The reflective surfaces 20 are arranged in the redistribution section 15 in such a way that light rays from almost all subregions 18 of the beam 19 hit them. Only the light rays of a sub-area 18.1 of the beam 19, which the redistribution section 15 deflects onto a central sub-area 16.1 of the light exit surface 17, impinge directly on at least one of the third reflection surfaces 22.1 (cf. Figure 4 ), without hitting one of the first reflection surfaces 20 or one of the second reflection surfaces 21 beforehand. This is explained in detail below.

Erfindungsgemäß sind zwei erste Reflexionsflächen 20 vorgesehen, die in einem rechten Winkel zueinander stehen, wobei jede erste Reflexionsfläche 20 in einem Winkel α von 45° bezüglich der in den Umverteilungsabschnitt 15 eintretenden parallelen Lichtstrahlen ausgerichtet ist. Eine Kante 20c, entlang der die beiden Reflexionsflächen 20 miteinander in Kontakt stehen, verläuft in etwa mittig durch das eingekoppelte Strahlenbündel 19, so dass die Teilbereiche 18.2a, 18.3a, 18.4a, 18.5a, 18.6a des Strahlenbündels 19 auf die eine erste Reflexionsfläche 20a treffen und die Teilbereiche 18.2b, 18.3b, 18.4b, 18.5b, 18.6b des Strahlenbündels 19 auf die andere erste Reflexionsfläche 20b treffen. Die ersten Reflexionsflächen 20 lenken also einen Großteil der in den Umverteilungsabschnitt 15 eingetretenen Lichtstrahlen um 90° um, so dass sie so lange entlang der Längserstreckung des Umverteilungsabschnitts 15 propagieren bis sie auf eine der zweiten Reflexionsflächen 21 treffen.According to the invention, two first reflective surfaces 20 are provided which are at right angles to one another, each first reflective surface 20 being oriented at an angle α of 45 ° with respect to the parallel light rays entering the redistribution section 15. An edge 20c, along which the two reflective surfaces 20 are in contact with one another, runs approximately centrally through the coupled-in beam 19, so that the subregions 18.2a, 18.3a, 18.4a, 18.5a, 18.6a of the beam 19 focus on the first Hit the reflection surface 20a and the subregions 18.2b, 18.3b, 18.4b, 18.5b, 18.6b of the beam 19 hit the other first reflection surface 20b. The first reflection surfaces 20 therefore deflect a large part of the light beams that have entered the redistribution section 15 90 ° so that they propagate along the longitudinal extent of the redistribution section 15 until they hit one of the second reflection surfaces 21.

Eine solche zweite Reflexionsfläche 21 ist in Figur 7 beispielhaft eingezeichnet. Erfindungsgemäß ist die Reflexionsfläche 21 ebenfalls in einem Winkel β von 45° bezüglich der von der ersten Reflexionsfläche 20 umgelenkten Lichtstrahlen (und damit in der Regel auch bezüglich der Hauptabstrahlrichtung 11 der Lichtquelle 10) ausgerichtet. Sie lenkt den Lichtstrahl 25 wiederum um 90° um, so dass er nun entgegen der Hauptabstrahlrichtung 11 der Lichtquelle 10 gerichtet ist. Die zweiten Reflexionsflächen 21 haben erfindungsgemäß eine genau definierte Größe, so dass nur diejenigen Lichtstrahlen des Strahlenbündels 19 auf sie treffen, die zuvor von einer der ersten Reflexionsflächen 20 umgelenkt wurden und die aus einem bestimmten Teilbereich 18 des Strahlenbündels 19 stammen. Dieser bestimmte Teilbereich 18 kann einer der Teilbereiche 18.2a, 18.2b, 18.3a, 18.3b, 18.4a, 18.4b, 18.5a, 18.5b, 18.6a, 18.6b sein, deren Licht in einen dezentralen Teilbereich 16.2a, 16.2b, 16.3a, 16.3b, 16.4a, 16.4b, 16.5a, 16.5b, 16.6a, 16.6b, der Lichtaustrittsfläche 17 umgelenkt wird. Es fallen immer nur diejenigen in dem Umverteilungsabschnitt 15 propagierenden Lichtstrahlen auf eine bestimmte zweite Reflexionsfläche 21, die zuvor von einer der ersten Reflexionsflächen 20 umgelenkt wurden und die auf ihrem Weg entlang der Längserstreckung des Umverteilungsabschnitts 15 nicht bereits vorher auf eine andere, im Strahlengang weiter vorne angeordnete zweite Reflexionsfläche 21 getroffen sind und die auch nicht an der zweiten Reflexionsfläche 21 vorbei laufen, um danach dann auf eine andere, im Strahlengang weiter hinten angeordnete zweite Reflexionsfläche 21 zu treffen. Durch die Form und Größe der zweiten Reflexionsflächen 21 kann also festgelegt werden, von welchem der Teilbereiche 18 des Strahlenbündels 19 Lichtstrahlen auf die anderen, im Strahlengang nachgeordneten zweiten Reflexionsflächen 21 treffen. Die in Figur 7 gezeigte zweite Reflexionsfläche 21 lenkt den auftreffenden Lichtstrahl 25 in Richtung der dritten Reflexionsfläche 22, die hier oberhalb der ihr zugeordneten zweiten Reflexionsfläche 21 angeordnet ist. Ein Lichtbündel aus irgendeinem Teilbereich 18 wird an den Reflexionsflächen 20 und 21 reflektiert. Bezogen auf die Anordnung 12 durchlaufen die parallelen Strahlenbündel verschiedene Ebenen und werden durch die Reflexionsflächen 22 in eine gemeinsame Ebene umgelenkt, in der sie über die Austrittsfläche 17 aus der Anordnung 12 austreten.Such a second reflection surface 21 is shown in FIG Figure 7 drawn in as an example. According to the invention, the reflective surface 21 is also oriented at an angle β of 45 ° with respect to the light beams deflected by the first reflective surface 20 (and thus generally also with respect to the main emission direction 11 of the light source 10). It again deflects the light beam 25 by 90 °, so that it is now directed against the main emission direction 11 of the light source 10. According to the invention, the second reflective surfaces 21 have a precisely defined size, so that only those light rays of the beam 19 hit them that were previously deflected by one of the first reflective surfaces 20 and that originate from a specific sub-area 18 of the beam 19. This specific sub-area 18 can be one of the sub-areas 18.2a, 18.2b, 18.3a, 18.3b, 18.4a, 18.4b, 18.5a, 18.5b, 18.6a, 18.6b, the light of which enters a decentralized sub-area 16.2a, 16.2b , 16.3a, 16.3b, 16.4a, 16.4b, 16.5a, 16.5b, 16.6a, 16.6b, the light exit surface 17 is deflected. Only those light beams propagating in the redistribution section 15 fall on a certain second reflective surface 21, which were previously deflected by one of the first reflective surfaces 20 and which, on their way along the longitudinal extension of the redistribution section 15, did not previously fall on another one further ahead in the beam path arranged second reflective surface 21 are hit and which also do not run past the second reflective surface 21 in order to then hit another second reflective surface 21 arranged further back in the beam path. By the shape and size of the second reflective surfaces 21 can therefore be determined from which of the partial areas 18 of the beam 19 light rays strike the other second reflective surfaces 21 arranged downstream in the beam path. In the Figure 7 The second reflective surface 21 shown directs the incident light beam 25 in the direction of the third reflective surface 22, which here is arranged above the second reflective surface 21 assigned to it. A light bundle from any partial area 18 is reflected on the reflection surfaces 20 and 21. In relation to the arrangement 12, the parallel bundles of rays pass through different planes and are deflected by the reflection surfaces 22 into a common plane in which they emerge from the arrangement 12 via the exit surface 17.

Eine solche dritte Reflexionsfläche 22 ist in Figur 7 beispielhaft eingezeichnet. Erfindungsgemäß weist die dritte Reflexionsfläche 22 ebenfalls eine Neigung von γ = 45° bezüglich der von der zweiten Reflexionsfläche 21 umgelenkten Lichtstrahlen (und damit in der Regel auch bezüglich der Hauptabstrahlrichtung 11 der Lichtquelle 10) auf. Allerdings ist ihre Neigung um eine Achse, die parallel zu den von der zweiten Reflexionsfläche 21 umgelenkten Lichtstrahlen verläuft, um 90° gedreht bezüglich der Neigung der ersten und zweiten Reflexionsflächen 20, 21. Die dritte Reflexionsfläche 22 lenkt den auftreffenden Lichtstrahl 25 wiederum um 90° um, allerdings sowohl senkrecht zu der Richtung der von der ersten Reflexionsfläche 20 umgelenkten Lichtstrahlen als auch senkrecht zu der Richtung der von der zweiten Reflexionsfläche 21 umgelenkten Lichtstrahlen. Der von der dritten Reflexionsfläche 22 umgelenkte Lichtstrahl 25 trifft auf einen bestimmten, der dritten Reflexionsfläche 22 zugeordneten Teilbereich 16 der Lichtaustrittsfläche 17. Die von den dritten Reflexionsflächen 22 umgelenkten Lichtstrahlen propagieren dabei in einer Ebene oberhalb oder unterhalb derjenigen Ebene, in der die Lichtstrahlen entlang der Längserstreckung des Umverteilungsabschnitts 15 propagieren.Such a third reflection surface 22 is shown in FIG Figure 7 drawn in as an example. According to the invention, the third reflective surface 22 also has an inclination of γ = 45 ° with respect to the light beams deflected by the second reflective surface 21 (and thus generally also with respect to the main emission direction 11 of the light source 10). However, their inclination about an axis that runs parallel to the light beams deflected by the second reflective surface 21 is rotated by 90 ° with respect to the inclination of the first and second reflective surfaces 20, 21. The third reflective surface 22 again deflects the incident light beam 25 by 90 ° um, but both perpendicular to the direction of the light beams deflected by the first reflective surface 20 and perpendicular to the direction of the light beams deflected by the second reflective surface 21. The light beam 25 deflected by the third reflective surface 22 strikes a specific sub-area 16 of the light exit surface 17 assigned to the third reflective surface 22. The light beams deflected by the third reflection surfaces 22 propagate in a plane above or below the plane in which the light beams propagate along the longitudinal extension of the redistribution section 15.

Der beschriebene Strahlenverlauf ist auch in Figur 2 in den Schnitten 2 und 3 für die Lichtstrahlen der Teilbereiche 18.6a, 18.6b (Schnitt 2) und 18.5a, 18.5b (Schnitt 3), dargestellt. Die von der Lichtquelle 10 ausgesandten Lichtstrahlen treten über den Einkoppelabschnitt 13 in die transparente Bauteilanordnung 12 ein und werden durch den Bündelungsabschnitt 14 zu dem Strahlbündel 19 mit weitgehend parallelen Lichtstrahlen gebündelt. Die Lichtstrahlen gelangen in dieser Darstellung von rechts nach links in den Umverteilungsabschnitt 15, wo sie zunächst auf die ersten Reflexionsflächen 20 treffen. Die ersten Reflexionsflächen 20 lenken die Lichtstrahlen bezüglich der Zeichenebene nach oben bzw. nach unten um. In dem Schnitt 2 treffen die von den ersten Reflexionsflächen 20 umgelenkten Lichtstrahlen dann auf die den Teilbereichen 18.6a, 18.6b des Strahlbündels 19 zugeordneten zweiten Reflexionsflächen 21.6a, 21.6b. Diese lenken die auftreffenden Lichtstrahlen dann bezüglich der Zeichenebene nach rechts ab, so dass sie auf die den zweiten Reflexionsflächen 21.6a, 21.6b zugeordneten dritten Reflexionsflächen 22.6a, 22.6b treffen. Diese lenken die Lichtstrahlen aus der Zeichenebene heraus um, so dass sie auf die entsprechenden Teilbereiche 16.6a, 16.6b der Lichtaustrittsfläche 17 treffen. In dem Schnitt 3 treffen die von den ersten Reflexionsflächen 20 umgelenkten Lichtstrahlen dann auf die den Teilbereichen 18.5a, 18.5b des Strahlbündels 19 zugeordneten zweiten Reflexionsflächen 21.5a, 21.5b. Diese lenken die auftreffenden Lichtstrahlen dann nach rechts ab, so dass sie auf die den zweiten Reflexionsflächen 21.5a, 21.5b zugeordneten dritten Reflexionsflächen 22.5a, 22.5b treffen. Diese lenken die Lichtstrahlen wiederum aus der Zeichenebene heraus um, so dass sie auf die entsprechenden Teilbereiche 16.5a, 16.5b der Lichtaustrittsfläche 17 treffen.The beam path described is also in Figure 2 in the sections 2 and 3 for the light rays of the subregions 18.6a, 18.6b (section 2) and 18.5a, 18.5b (section 3). The light beams emitted by the light source 10 enter the transparent component arrangement 12 via the coupling section 13 and are bundled by the bundling section 14 to form the beam 19 with largely parallel light beams. In this illustration, the light rays arrive from right to left into the redistribution section 15, where they first hit the first reflection surfaces 20. The first reflection surfaces 20 deflect the light beams upwards or downwards with respect to the plane of the drawing. In the section 2, the light beams deflected by the first reflective surfaces 20 then strike the second reflective surfaces 21.6a, 21.6b assigned to the partial areas 18.6a, 18.6b of the beam 19. These then deflect the incident light rays to the right with respect to the plane of the drawing, so that they strike the third reflection surfaces 22.6a, 22.6b assigned to the second reflection surfaces 21.6a, 21.6b. These deflect the light beams out of the plane of the drawing, so that they strike the corresponding subregions 16.6a, 16.6b of the light exit surface 17. In the section 3, the light beams deflected by the first reflective surfaces 20 then strike the second reflective surfaces 21.5a, 21.5b assigned to the subregions 18.5a, 18.5b of the beam 19. These direct the incident light rays then to the right, so that they hit the third reflection surfaces 22.5a, 22.5b assigned to the second reflection surfaces 21.5a, 21.5b. These in turn deflect the light beams out of the plane of the drawing, so that they strike the corresponding subregions 16.5a, 16.5b of the light exit surface 17.

Lichtstrahlen eines Teilbereichs 18.1 des Strahlenbündels 19, die der Umverteilungsabschnitt 15 auf einen zentralen Teilbereich 16.1 der Lichtaustrittsfläche 17 umlenkt, treffen unmittelbar auf mindestens eine dem Teilbereich 18.1 des Strahlenbündels 19 zugeordnete dritte Reflexionsfläche 22.1, ohne zuvor auf eine der ersten Reflexionsflächen 20 oder eine der zweiten Reflexionsflächen 21 zu treffen. Der Strahlengang dieser Lichtstrahlen ist in Figur 7 beispielhaft anhand zweier weiterer Lichtstrahlen 26 gezeigt. Es ist deutlich zu erkennen, dass diese dritte Reflexionsfläche 22.1 die auftreffenden Lichtstrahlen unmittelbar in Richtung des zentralen Teilbereichs 16.1 der Lichtaustrittsfläche 17 umlenkt. Diese dritte Reflexionsfläche 22.1 weist ebenfalls eine Neigung von δ = 45° bezüglich der in den Umverteilungsabschnitt 15 eingetretenen Lichtstrahlen (und damit in der Regel auch bezüglich der Hauptabstrahlrichtung 11 der Lichtquelle 10) auf, allerdings steht sie senkrecht auf den übrigen dritten Reflexionsflächen 22.i (i>1). Ferner ist die Neigung entgegengesetzt (um eine Achse senkrecht zur Hauptabstrahlrichtung 11 der Lichtquelle 10 und parallel zur Längserstreckung des Umverteilungsabschnitts 15 um 90° gedreht) zu der Neigung der übrigen dritten Reflexionsflächen 22.2a, 22.2b, 22.3a, 22.3b, 22.4a, 22.4b, 22.5a, 22.5b, 22.6a, 22.6b. Diese dritte Reflexionsfläche 22.1 ist jedoch in der gleichen horizontalen Ebene in dem Umverteilungsabschnitt 15 angeordnet wie die übrigen dritten Reflexionsflächen.Light rays from a sub-area 18.1 of the beam 19, which the redistribution section 15 deflects onto a central sub-area 16.1 of the light exit surface 17, impinge directly on at least one third reflective surface 22.1 assigned to the sub-area 18.1 of the beam 19, without first hitting one of the first reflective surfaces 20 or one of the second To meet reflection surfaces 21. The path of these light rays is in Figure 7 shown by way of example on the basis of two further light beams 26. It can be clearly seen that this third reflection surface 22.1 deflects the incident light rays directly in the direction of the central partial area 16.1 of the light exit surface 17. This third reflection surface 22.1 also has an inclination of δ = 45 ° with respect to the light rays that have entered the redistribution section 15 (and thus generally also with respect to the main emission direction 11 of the light source 10), but it is perpendicular to the remaining third reflection surfaces 22.i (i> 1). Furthermore, the inclination is opposite (rotated by 90 ° around an axis perpendicular to the main emission direction 11 of the light source 10 and parallel to the longitudinal extent of the redistribution section 15) to the inclination of the remaining third reflection surfaces 22.2a, 22.2b, 22.3a, 22.3b, 22.4a, 22.4b, 22.5a, 22.5b, 22.6a, 22.6b. This third reflection surface 22.1 is, however, in the same horizontal plane in the redistribution section 15 arranged like the other third reflection surfaces.

Der beschriebene Strahlenverlauf für die Lichtstrahlen des Teilbereichs 18.1 des Strahlenbündels 19 ist auch in Figur 2 in dem Schnitt 1 dargestellt. Die von der Lichtquelle 10 ausgesandten Lichtstrahlen treten über den Einkoppelabschnitt 13 in die transparente Bauteilanordnung 12 ein und werden durch den Bündelungsabschnitt 14 zu dem Strahlbündel 19 mit weitgehend parallelen Lichtstrahlen gebündelt. Die Lichtstrahlen gelangen bezüglich der Zeichenebene von rechts nach links in den Umverteilungsabschnitt 15, wo sie auf die dem Teilbereich 18.1 des Strahlbündels 19 zugeordnete dritte Reflexionsfläche 22.1 treffen. Diese lenkt die Lichtstrahlen aus der Zeichenebene heraus um, so dass sie auf den entsprechenden zentralen Teilbereich 16.1 der Lichtaustrittsfläche 17 treffen.The beam path described for the light beams of sub-area 18.1 of beam 19 is also shown in FIG Figure 2 shown in section 1. The light beams emitted by the light source 10 enter the transparent component arrangement 12 via the coupling section 13 and are bundled by the bundling section 14 to form the beam 19 with largely parallel light beams. With respect to the plane of the drawing, the light rays arrive from right to left into the redistribution section 15, where they strike the third reflection surface 22.1 assigned to the partial area 18.1 of the beam 19. This deflects the light beams out of the plane of the drawing, so that they strike the corresponding central partial area 16.1 of the light exit surface 17.

In den dargestellten Figuren weist der Umverteilungsabschnitt 15 eine ebene Längserstreckung auf, so dass sich eine gerade langgezogene Lichtaustrittsfläche 17 ergibt. Es wäre jedoch auch denkbar, dass der Umverteilungsabschnitt 15 um eine Achse, die parallel zur Richtung der von den dritten Reflexionsflächen 22 in Richtung der entsprechenden Teilbereiche 16 der Lichtaustrittsfläche 17 umgelenkten Lichtstrahlen verläuft, gebogen ausgestaltet ist. Dadurch kann eine gebogene langgezogene Lichtaustrittsfläche 17 erzeugt werden, deren Verlauf beispielsweise einem Randbereich des Gehäuses 2 der Beleuchtungseinrichtung 1 folgt oder durch die besondere Designaspekte realisiert werden können.In the figures shown, the redistribution section 15 has a flat longitudinal extent, so that a straight, elongated light exit surface 17 results. However, it would also be conceivable for the redistribution section 15 to be designed to be curved about an axis which runs parallel to the direction of the light beams deflected by the third reflection surfaces 22 in the direction of the corresponding subregions 16 of the light exit surface 17. As a result, a curved, elongated light exit surface 17 can be produced, the course of which follows, for example, an edge region of the housing 2 of the lighting device 1 or through which special design aspects can be implemented.

Anhand der Figuren ist zu erkennen, dass sämtliche Reflexionsflächen 20, 21, 22 eben ausgebildet sind. Es wäre jedoch auch denkbar, dass die Reflexionsflächen 20, 21, 22 gewölbt ausgebildet werden. Ferner wäre es denkbar, dass die Reflexionsflächen 20, 21, 22 nicht alle in einem 45°-Winkel bezüglich der auftreffenden Lichtstrahlen (bzw. bezüglich der Hauptabstrahlrichtung 11 der Lichtquelle 10) geneigt sind, sondern einzelne oder alle Reflexionsflächen 20, 21, 22 in einem anderen Winkel geneigt sind. Damit könnte bspw. sichergestellt werden, dass die in dem Umverteilungsabschnitt 15 propagierenden Lichtstrahlen bei einem gebogenen Verlauf des Umverteilungsabschnitts 15 auf die im Strahlengang jeweils nachgeordnete Reflexionsflächen 21, 22 treffen.It can be seen from the figures that all of the reflective surfaces 20, 21, 22 are flat. It would be however, it is also conceivable that the reflective surfaces 20, 21, 22 are arched. Furthermore, it would be conceivable that the reflection surfaces 20, 21, 22 are not all inclined at a 45 ° angle with respect to the incident light rays (or with respect to the main emission direction 11 of the light source 10), but rather individual or all reflection surfaces 20, 21, 22 in are inclined at a different angle. In this way it could be ensured, for example, that the light beams propagating in the redistribution section 15 hit the reflective surfaces 21, 22 arranged downstream in the beam path if the redistribution section 15 is curved.

In Figur 6 ist ein weiteres Ausführungsbeispiel der Erfindung gezeigt, bei dem mehrere der oben beschriebenen und in den Figuren 3 bis 5 gezeigten transparenten Bauteilanordnungen 12 nebeneinander angeordnet sind. In dem Beispiel sind zwei identisch ausgebildete transparente Bauteilanordnungen 12.1, 12.2 derart nebeneinander angeordnet, dass deren Lichtaustrittsflächen 17.1, 17.2 eine einzige besonders langgezogene Lichtaustrittsfläche bilden. Dabei grenzen Stirnseiten der Umverteilungsabschnitte 15.1, 15.2 unmittelbar aneinander. Vorzugsweise sind die nebeneinander angeordneten Bauteilanordnungen 12.1, 12.2 als ein gemeinsames integrales Bauteil ausgebildet. Die nebeneinander angeordneten Bauteilanordnungen 12.1, 12.2 müssen nicht notwendigerweise identisch ausgebildet sein. Es wäre bspw. auch denkbar, dass eine der Bauteilanordnungen 12.1, 12.2 einen um die Lichtaustrittsrichtung 3 gebogenen Umverteilungsabschnitt 15 aufweist oder dass die Bauteilanordnungen 12.1, 12.2 unterschiedlich gebogen sind.In Figure 6 a further embodiment of the invention is shown in which several of the above-described and in FIGS Figures 3 to 5 shown transparent component arrangements 12 are arranged side by side. In the example, two identically designed transparent component arrangements 12.1, 12.2 are arranged next to one another in such a way that their light exit surfaces 17.1, 17.2 form a single, particularly elongated light exit surface. Front sides of the redistribution sections 15.1, 15.2 directly adjoin one another. The component arrangements 12.1, 12.2 arranged next to one another are preferably designed as a common integral component. The component arrangements 12.1, 12.2 arranged next to one another do not necessarily have to be of identical design. It would also be conceivable, for example, that one of the component arrangements 12.1, 12.2 has a redistribution section 15 bent around the light exit direction 3 or that the component arrangements 12.1, 12.2 are bent differently.

Claims (15)

  1. Transparent component arrangement (12) of a luminaire module (8), the component arrangement (12) comprising
    - a coupling section (13) adapted to couple light emitted from a light source (10) in a main radiation direction (11) into the component arrangement (12),
    - a bundling section (14) which is adapted to focus the light coupled in into a beam (19) with light rays running parallel to one another, and
    - a redistribution section (15) with a plurality of facets (20, 21, 22) which are adapted to each direct a partial region (18) of the beam (19) onto a partial region (16) of a light exit surface (17) of the luminaire module (8), the partial regions (16) of the light exit surface (17) lying next to one another and thus resulting in an elongated light distribution with a greater horizontal than vertical extension, and wherein at least some of the facets (22) are each assigned a specific partial region (16) of the light exit surface (17) onto which these facets (22) deflect light, wherein the facets (20, 21, 22) of the redistribution section (15) deflect the light incident on them by means of reflection, and in that the redistribution section (15) is adapted, by the individual reflecting facets (20, 21, 22) to direct partial areas (18) of the beam of rays (19), which result from a subdivision of a cross-section of the beam of rays (19) by means of horizontal and vertical sectional planes (23, 24) which run parallel to the light rays of the beam of rays (19) running parallel to one another and parallel or perpendicular to one another, onto the partial areas (16) of the light exit surface (17) respectively assigned to them, the parallel course of the light rays of the beam (19) to one another being maintained during the entire deflection in the redistribution section (15), the reflecting facets (20, 21, 22) of the redistribution section (15) comprising first reflecting surfaces (20) and second reflecting surfaces (21), wherein two first reflecting surfaces (20) are arranged at a right angle to each other, wherein each first reflecting surface (20) is oriented at an angle α of 45° with respect to the parallel light rays entering the redistribution section (15), characterized in that such a second reflecting surface (21) is also oriented at an angle β of 45° with respect to the light rays deflected by a first reflecting surface (20) and in turn deflects the light rays (25) by 90° so that they are now directed against the main radiation direction (11) of the light source (10), and in that the second reflecting surfaces (21) have a precisely defined size so that only those light rays of the beam (19) impinge on them, which have previously been deflected by one of the first reflecting surfaces (20) and which originate from a given sub-region (18) of the beam (19), and in that the reflecting facets (20, 21, 22) of the redistribution section (15) comprise third reflecting surfaces (22) which also have an inclination of γ = 45° with respect to the light rays deflected by the second reflecting surface (21) and which in turn deflect incident light rays (25) by 90°, but both perpendicularly to the direction of the light rays deflected by the first reflecting surface (20) and perpendicularly to the direction of the light rays deflected by the second reflecting surface (21), so that light rays (25) deflected by the third reflecting surface (22) impinge on a specific partial area (16) of the light exit surface (17) assigned to the third reflecting surface (22).
  2. Transparent component arrangement (12) according to claim 1, characterised in that the coupling section (13) and the bundling section (14) are formed as a single integral component separate from the redistribution section (15).
  3. Transparent component arrangement (12) according to claim 1, characterised in that the coupling section (13), the bundling section (14) and the redistribution section (15) are formed as a single integral component.
  4. Transparent component arrangement (12) according to one of claims 1 to 3, characterised in that the beam (19) bundled by the bundling section (14) has a circular cross-section.
  5. Transparent component arrangement (12) according to one of claims 1 to 4, characterised in that the coupling section (13) has a rotationally symmetrical shape, an axis of rotation being congruent with the main direction of radiation (11) of the light through the light source (10) .
  6. Transparent component arrangement (12) according to one of claims 1 to 5, characterized in that the bundling section (14) has a rotationally symmetrical shape, an axis of rotation being congruent with the main direction of radiation (11) of the light through the light source (10) .
  7. Transparent component arrangement (12) according to one of claims 1 to 6, characterised in that the redistribution section (15) has a longitudinal extension along the light exit surface (17) and perpendicular to the main radiation direction (11) of the light source (10) .
  8. Transparent component arrangement (12) according to one of claims 1 to 7, characterised in that the reflecting facets (20, 21, 22) of the redistribution section (15) deflect light incident thereon by means of total reflection.
  9. Transparent component arrangement (12) according to one of the claims 1 to 8, characterised in that the first reflecting facets (20) are adapted to deflect light rays from at least some of the partial areas (18) of the beam (19) in the direction of the second reflecting facets (21), perpendicular to a main radiation direction (11) of the light source (10) and along a longitudinal extension of the redistribution portion (15), wherein the second reflecting surfaces (21) are adapted to deflect light rays deflected by the first reflecting surfaces (20) towards the corresponding third reflecting surfaces (22), parallel to the main radiation direction (11) of the light source (10) and perpendicular to the direction of the light rays deflected by the first reflecting surfaces (20), and wherein the third reflecting surfaces (22) are adapted to deflect light rays deflected by the second reflecting surfaces (21) towards the corresponding partial regions (16) of the light exit surface (17), perpendicular to the main emission direction (11) of the light source (10), perpendicular to the direction of the light rays deflected by the first reflecting surfaces (20) and perpendicular to the direction of the light rays deflected by the second reflecting surfaces (21).
  10. Transparent component arrangement (12) according to claim 9, characterised in that the light rays of a partial region (18.1) of the beam of rays (19), the light of which is deflected by the redistribution section (15) onto a central partial region (16.1) of the light exit surface (17), are directed directly onto at least one of the third reflecting surfaces (22, 23, 24). 1), which deflect the light rays of the partial area (18.1) in the direction of the corresponding central partial area (16.1) of the light-emitting surface (17) without the light rays of the partial area (18.1) first striking one of the first reflecting surfaces (20) or one of the second reflecting surfaces (21).
  11. Transparent component arrangement (12) according to claim 9 or 10, characterised in that the second reflection surfaces (21), which deflect the light rays propagating in the redistribution section (15) in the direction of the third reflection surfaces (22), have a different distance from the first reflection surfaces (21), corresponding to a distance of the corresponding partial areas (16) of the light exit surface (17) with respect to a central partial area (16.1) of the light exit surface (17) .
  12. Transparent component arrangement (12) according to one of claims 9 to 11, characterised in that the third reflection surfaces (22), which deflect the light rays coming from the respective second reflection surfaces (21) in the direction of the corresponding partial areas (16) of the light exit surface (17), have a different distance from the first reflection surfaces (21), corresponding to a distance of the corresponding partial areas (16) of the light exit surface (17) with respect to a central partial area (16.1) of the light exit surface (17) .
  13. Transparent component arrangement (12) according to one of claims 1 to 12, characterized in that the redistribution section (15) is adapted curved about an axis parallel to the direction of the light rays deflected by the third reflecting surfaces (22) in the direction of the corresponding partial areas (16) of the light-emitting surface (17).
  14. Luminaire module (8) of a motor vehicle luminaire, the luminaire module (8) comprising a light source (10) for emitting light in a main radiation direction (11) and a transparent component arrangement (12) for bundling and redistributing the light emitted by the light source (10) to partial areas of a light exit surface (17) of the luminaire module (8) to produce an elongated light distribution with a greater horizontal than vertical extension, characterised in that the transparent component arrangement (12) is adapted according to one of claims 1 to 13.
  15. Luminaire module (8) according to claim 14, characterised in that the light source (10) comprises a semiconductor light source, in particular a light-emitting diode (LED).
EP18177056.1A 2017-06-09 2018-06-11 Transparent component arrangement of a light module and light module comprising such a transparent component arrangement Active EP3412963B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102017112805.0A DE102017112805A1 (en) 2017-06-09 2017-06-09 Transparent component arrangement of a luminaire module and luminaire module with such a transparent component arrangement

Publications (2)

Publication Number Publication Date
EP3412963A1 EP3412963A1 (en) 2018-12-12
EP3412963B1 true EP3412963B1 (en) 2020-12-23

Family

ID=62778674

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18177056.1A Active EP3412963B1 (en) 2017-06-09 2018-06-11 Transparent component arrangement of a light module and light module comprising such a transparent component arrangement

Country Status (2)

Country Link
EP (1) EP3412963B1 (en)
DE (1) DE102017112805A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114046480A (en) * 2021-12-13 2022-02-15 常州星宇车灯股份有限公司 Thick-wall part structure, light-emitting device and light-emitting mode

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5931576A (en) 1996-02-26 1999-08-03 North American Lighting, Inc. Optical coupler for distributive lighting system
US6036340A (en) * 1998-03-03 2000-03-14 Ford Global Technologies, Inc. Dimpled manifold optical element for a vehicle lighting system
DE102005003367B4 (en) * 2005-01-24 2009-05-07 Odelo Gmbh Light unit with light divider
JP5440857B2 (en) * 2010-03-05 2014-03-12 スタンレー電気株式会社 Vehicle lamp unit and vehicle lamp
FR2966224B1 (en) * 2010-10-19 2012-12-14 Valeo Vision LIGHTING OR SIGNALING DEVICE
DE102014218991A1 (en) 2014-09-22 2016-03-24 Automotive Lighting Reutlingen Gmbh Luminaire for a motor vehicle

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3412963A1 (en) 2018-12-12
DE102017112805A1 (en) 2018-12-13

Similar Documents

Publication Publication Date Title
EP2799761B1 (en) Light module for a motor vehicle headlamp
EP2893249B1 (en) Lighting unit for a headlight
DE102009053581B3 (en) Light module for a lighting device of a motor vehicle
DE102014205994B4 (en) Light module with semiconductor light source and attachment optics and motor vehicle headlight with such a light module
DE102011076621B4 (en) Lighting device for a motor vehicle
EP2754948A2 (en) Light module for a motor vehicle headlamp, which is equipped for forming strip-shaped light distributions
DE10065020A1 (en) Motor vehicle head lamp with integral parking lamps, uses light guide under reflector directing light back onto the reflector for parking illumination
EP2789901A2 (en) Light module of a motor vehicle lighting device
EP3210827A1 (en) Vehicle lamp
EP3168657A1 (en) Attachment lens and attachment lens assembly with multiple attachment lenses
EP3301350A1 (en) Light module for a motor vehicle headlamp
DE10200359A1 (en) Lighting unit for road vehicles has primary and secondary light sources
EP2963334B1 (en) Light conductor assembly for use in a lighting device of a motor vehicle and motor vehicle lighting device with such a light conductor assembly
DE102017115899B4 (en) Motor vehicle light and motor vehicle headlight with such a light
WO2020126350A1 (en) Lighting device for a motor vehicle headlight and motor vehicle headlight
EP2500630A2 (en) Transparent lens of a motor vehicle lighting device
DE102017105838A1 (en) Lighting device of a motor vehicle with a light guide arrangement
DE102017114476B4 (en) Lighting device of a motor vehicle
EP3412963B1 (en) Transparent component arrangement of a light module and light module comprising such a transparent component arrangement
DE102015204735B4 (en) Light guide element of a motor vehicle lighting device and motor vehicle lighting device with such a light guide element
EP2835578B1 (en) Plate-shaped fibre optic element made of transparent material and light module for a motor vehicle illumination device with such a fibre optic element
DE102012215124A1 (en) Illumination device for use as e.g. tail lamp, has paraboloider reflector arranged optical downstream of light module, and light guidance bodies whose light exit surface is arranged in focal spots of reflector
DE102015207960A1 (en) Plate-shaped light guide element for use in a lighting device of a motor vehicle and lighting device with such a light guide element
DE102011079790B4 (en) Stepped light guide and light guide arrangement
DE102017102003B4 (en) Lighting device for a motor vehicle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190606

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190924

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200603

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018003382

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1348082

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210323

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201223

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201223

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20201223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201223

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201223

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201223

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201223

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201223

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210423

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201223

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201223

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201223

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201223

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018003382

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201223

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201223

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201223

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201223

26N No opposition filed

Effective date: 20210924

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201223

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201223

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201223

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210611

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210630

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210611

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210630

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220611

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220611

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20180611

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230523

Year of fee payment: 6

Ref country code: DE

Payment date: 20230523

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201223