EP3412377B1 - Air cooling in continuous casting plants - Google Patents

Air cooling in continuous casting plants Download PDF

Info

Publication number
EP3412377B1
EP3412377B1 EP18175910.1A EP18175910A EP3412377B1 EP 3412377 B1 EP3412377 B1 EP 3412377B1 EP 18175910 A EP18175910 A EP 18175910A EP 3412377 B1 EP3412377 B1 EP 3412377B1
Authority
EP
European Patent Office
Prior art keywords
gas
housing
cast strip
cooling
strand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18175910.1A
Other languages
German (de)
French (fr)
Other versions
EP3412377A1 (en
Inventor
Axel Weyer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SMS Group GmbH
Original Assignee
SMS Group GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SMS Group GmbH filed Critical SMS Group GmbH
Publication of EP3412377A1 publication Critical patent/EP3412377A1/en
Application granted granted Critical
Publication of EP3412377B1 publication Critical patent/EP3412377B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/124Accessories for subsequent treating or working cast stock in situ for cooling
    • B22D11/1245Accessories for subsequent treating or working cast stock in situ for cooling using specific cooling agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/22Controlling or regulating processes or operations for cooling cast stock or mould
    • B22D11/225Controlling or regulating processes or operations for cooling cast stock or mould for secondary cooling

Definitions

  • the invention relates to a device and a method for cooling a cast strand in a continuous caster.
  • the Figure 1A shows schematically a known continuous caster, the structure of which is referred to as a "vertical bending system", since the cast strand 1 is first guided vertically downwards by means of a strand guide 2 and then, usually after solidification, is deflected along an arch and transported horizontally.
  • the steel to be cast is fed from a casting ladle 3, optionally via an intermediate container 4, to a mold 5, which can be designed as a funnel mold and brings the steel into the desired slab shape.
  • the as yet not completely solidified strand 1 emerges vertically downwards from the mold 5 and is then continued to be guided vertically downwards along the strand guide 2 while it gradually cools down.
  • the strand 1 arrives in a bending area, where it is exposed to bending forces on the one hand and actively driven in the conveying direction on the other. This is done by means of rollers 11 and / or pairs of rollers.
  • the strand 1 is actively cooled, as a result of which it gradually solidifies from the outside in.
  • the strand 1 can be transported, guided and cooled via strand guide segments 10 which are arranged one behind the other and which have a modular structure and thus enable flexible adaptation of the transport and cooling parameters.
  • the strand 1 passes between the rollers 11, with individual rollers 11 can be driven to actively advance the strand 1 in the transport direction.
  • the Figure 1B shows the position and alignment of the strand guide segments 10 with rollers 11 arranged in pairs in a schematic manner.
  • rollers 11 and pairs of rollers, which act as drive rollers for example are drawn in completely or partially filled.
  • the middle pair of rollers per strand guide segment 10 can be actively driven over a certain guide path.
  • the figure section 1C shows such a strand guide segment 10 with rollers 11 in a schematic manner.
  • the strand is cooled by means of what is known as secondary cooling, the nozzles of which are in accordance with the above DE 10 2011 003 194 A1 seen in the transport direction between the rollers 11.
  • the cooling is realized either as a 1-substance cooling, which is a pure water cooling, or as a 2-substance cooling, in which a water / air mixture is sprayed onto the strand 1 to be cooled.
  • the DE 195 42 180 C1 describes a method and a device for guiding strands of a continuous casting plant.
  • the JP H07 100220 B2 and WO 03/072281 A1 concern the continuous, ribbon-shaped casting of molten metal.
  • One object of the invention is to provide a device and a method with which the cooling of a cast strand in a continuous casting plant can be improved, which in particular can be flexibly adapted to different production conditions.
  • the device according to the invention for cooling a cast strand is intended for use in a continuous casting installation, preferably a vertical bending installation, arching installation or vertical slab installation.
  • the device has a housing, one or more gas feed devices for introducing a gas, preferably air, into the housing and one or more gas discharge devices for discharging the gas from the housing.
  • the housing is designed like a tunnel so that the cast strand can be transported through the housing in one transport direction for cooling.
  • the housing surrounds the cast strand, it being open on opposite end faces so that the cast strand can enter the housing on one side and exit on the opposite side.
  • a tunnel cooling chamber is created through the housing, in which the gas cooling of the cast strand takes place.
  • the housing it is not important that the tunnel-like or cylindrical side cover of the cast strand is strictly airtight. Rather, the nature of the housing serves to direct the gas flow, because the tunnel cooling chamber is part of the concept for creating a targeted gas flow for the variable and effective cooling of the strand surface.
  • the shape and nature of the housing are preferably adapted to the desired flow behavior.
  • the gas supply devices are set up to apply the gas to at least part of the surface of the cast strand
  • the gas discharge devices are set up to discharge the gas from the interior of the housing, so that one or more directed gas flow paths can be formed in the interior of the housing, which on at least part of the surface of the cast strand impinge and / or run along at least part of the surface of the cast strand.
  • the gas supply and gas discharge devices are equipped with openings, which can be nozzles, duct ends or pipe connections, for example.
  • a directed gas flow path is to be understood as a defined trajectory along which the gas flows and which is essentially stable over time during the gas cooling. The trajectory leads past at least part of the surface of the cast strand, so that the flowing air comes into contact with the surface and is then removed quickly and in a targeted manner.
  • the gas cooling set out above therefore results from an interaction between the tunnel cooling chamber created by the housing and the gas supply and gas discharge devices, whereby a specifically directed gas flow is created for the effective cooling of the strand surface.
  • the cooling capacity on the strand surface is provided by the directed gas flow.
  • the heat transfer coefficient, which is essential for cooling, and thus the cooling capacity depend on the flow velocity and the flow rate of the gas flowing past. Both can be flexibly adapted to the process parameters, which means that the cooling capacity can be easily adjusted.
  • the gas quantity, gas speed and / or gas pressure can be set. In particular, it is also possible to adapt the cooling capacity during the cooling process.
  • gas includes multi-component gas mixtures.
  • the gas supply devices are set up in such a way that they only introduce gas, and thus no gas / liquid mixture.
  • one or more nozzles of a conventional secondary cooling system for example water / air cooling, can be converted so that they introduce a gas into the housing in the above sense.
  • the other nozzles of the secondary cooling can introduce a gas / liquid mixture into the housing.
  • the gas / liquid mixture is enriched by gas from appropriately retrofitted nozzles of the secondary cooling, which are then gas supply devices or part of gas supply devices, in order to form the gas flow paths.
  • the housing is preferably constructed in several parts, for example in two parts, the housing in this case being adjustable such that the cross section of the housing can be changed perpendicular to the direction of transport of the cast strand.
  • One or more of the housing sections can be moved or displaced relative to one another.
  • the housing is constructed in two parts, with a lower housing section and an upper housing section, both of which have a U-shaped cross section.
  • the two housing sections form a rectangular tunnel cooling chamber cross section and can be moved into one another in such a way that their side walls at least partially overlap.
  • the cross section of the tunnel cooling chamber and in particular the position of the gas supply and gas discharge devices can be adjusted in a simple manner.
  • the walls of the tunnel cooling chamber can be realized by partially overlapping, adjustable gas baffles, whereby the cross section of the tunnel, thus the nature of the gas flow paths and thus the cooling capacity, can be adjusted in a structurally simple manner.
  • the gas supply devices and gas discharge devices are preferably set up such that the gas flow paths have a component in the width direction of the cast strand.
  • “Component” means a vector component, ie the gas flow paths in this case do not run completely along the direction of transport of the cast strand.
  • the gas flow paths are mainly directed to the side, ie they run mainly in the width direction of the strand in order to realize a rapid dissipation of the heat from the strand surface.
  • the width direction denotes a direction which runs perpendicular to the transport direction (longitudinal direction) of the strand and, in the case of a rectangular strand cross-section, is also perpendicular to the thickness direction of the strand.
  • the surfaces of the two longer sides of the strand cross-section usually the upper and lower surfaces, are referred to below as main surfaces, while the two surfaces along the thickness direction, usually the side surfaces, are referred to as secondary surfaces.
  • openings of the gas supply devices lie opposite the main surfaces of the cast strand, while openings of the gas discharge devices lie opposite the secondary surfaces of the cast strand.
  • the openings or nozzles of the gas supply devices are thus preferably arranged on opposite sides, while the openings of the gas discharge devices are arranged on the other two opposite sides. In this way, gas flow paths can be generated that do not intersect or interfere with one another, so that the heat can be dissipated particularly effectively.
  • one or more of the gas supply devices and / or gas discharge devices are adjustable so that one or more of the gas flow paths can be adjusted, preferably the flow speed and / or position of one or more of the gas flow paths can be adjusted.
  • “Location” here refers to the spatial position, orientation and / or the course of the relevant trajectory.
  • the above-mentioned adjustability includes, for example, a change in the position and / or orientation of gas discharge nozzles, but it can also relate, for example, to a change in the opening angle of the flow cone. This allows the gas flow paths to be adjusted and kept stable over time.
  • the gas discharge devices are preferably designed to suck the gas out of the interior of the housing.
  • a suction device is provided which generates a negative pressure, for example by means of a compressor or exhauster, whereby the gas is actively sucked off.
  • the speed of the gas flow can be increased and controlled, and on the other hand, the stability of the gas flow paths can be improved.
  • the device preferably also has secondary cooling with secondary cooling nozzles, which is set up to apply a liquid, preferably water, or a liquid / gas mixture, preferably water / air mixture, to the cast strand, the gas discharge devices being set up so that in addition to the air from the gas supply devices, they also remove the vapor generated by the secondary cooling.
  • a vapor mixture is generated in the tunnel cooling chamber, which is then enriched with additional gas by the gas cooling described.
  • a special technical effect of the gas cooling is that the liquid applied by the secondary cooling, e.g. the splash or splash water, is actively diverted from the strand surface. This will be synergistically improves cooling performance and uniformity of cooling along the strand surface.
  • the pressure at the secondary cooling nozzles is preferably 1 to 5 bar, more preferably it is between 1 and 3 bar.
  • the device preferably has rollers for transporting the cast strand, which are for example arranged in pairs, so that the cast strand can pass between them.
  • the gas cooling can be combined with the guidance and transport of the strand in a technically compact manner.
  • the gas supply devices are preferably arranged between the rollers, viewed in the direction of transport, in order to improve the stability of the gas flow paths.
  • One or more rollers can be drive rollers that are driven, for example, by an electric motor, possibly with the interposition of a gear, a clutch, brake, etc., in order to transport the strand.
  • the device with or without rollers, has a modular structure, so that it forms a segment which can be expanded by further segments and can be used flexibly along the transport path of the cast strand.
  • a technically simple adaptation of the transport and / or cooling parameters to the desired properties of the cast steel, the environmental conditions, etc. is thus possible.
  • the gas flow paths can be set individually for each segment or for segment groups.
  • the setting can be made not only as a function of the above-mentioned parameters (slab format, steel quality, casting speed, etc.), but also of process and / or status parameters of other, preferably preceding segments.
  • the settings can be made in real time during the cooling process.
  • control of the device described is preferably computer-aided; it can be implemented by means of software which, when it is executed on a computer, initiates the steps for carrying out the method set out below.
  • the control can be centralized or decentralized be organized, work independently or be networked using modern information and communication technologies.
  • the method according to the invention for cooling a cast strand in a continuous caster comprises: transporting a cast strand in a transport direction through a housing which surrounds the cast strand like a tunnel; Introducing a gas, preferably air, into the housing by means of one or more gas supply devices, so that the gas is applied to the surface of the cast strand; Removal of the gas from the interior of the housing by means of one or more gas removal devices, so that one or more directed gas flow paths are formed in the interior of the housing which lead past the surface of the cast strand.
  • the temperature of the gas should be lower than that of the strand surface, preferably lower than the environment inside the housing.
  • the temperature of the gas supplied is preferably between 5 ° C and 80 ° C.
  • the pressure at the gas supply devices is preferably more than 1 bar. Even if air is preferably used for cooling, other gases or gas mixtures can also be used, such as oxygen, nitrogen, hydrogen or other gases, preferably inert gases.
  • the gas cooling described is used in a continuous caster.
  • This can be, for example, the following types of construction: vertical bending system, arch system, vertical slab system.
  • the gas cooling can be used particularly advantageously for cast slabs with a width of 1,000 mm to 4,000 mm, a thickness of 40 mm up to 700 mm, casting speed from 0.1 to 10 m / min and strand guide length from 1 to 50 m.
  • the Figure 1A shows schematically a known continuous caster, designed as a "vertical bending system", with strand guide segments for transporting and cooling the cast strand.
  • the Figure 1B shows schematically the position and alignment of the strand guide segments.
  • the Figure 1C shows such a strand guide segment in an enlarged and schematic manner.
  • the Figure 2A shows a strand guide segment through which a cast strand passes.
  • the Figure 2B shows the housing of the strand guide segment in a cross section perpendicular to the transport direction.
  • the Figure 2C shows the housing in cross section with gas supply devices and gas discharge devices.
  • the Figure 2D shows the directed gas flow inside the housing.
  • the Figure 3 shows schematically a strand guide segment embedded in a system for controlling the gas flow inside the housing.
  • the Figure 2A shows a strand guide segment 20, which as in FIG Figure 1C is equipped with rollers 21 arranged in pairs in order to transport a cast strand 1 along a transport direction T.
  • the strand guide segment 20 has a modular structure in order to enable flexible adaptation of the transport and / or cooling parameters to the desired properties of the cast steel, the environmental conditions, etc.
  • the middle pair of rollers - viewed along the transport direction T - is implemented, for example, by drive rollers 21, which are driven for example via an electric motor, possibly with the interposition of a gear, a clutch, brake, etc., in order to transport the strand 1.
  • strand guide segment 20 is an example of a strand guide section or a device which is set up to guide the strand 1 on its way through the continuous caster and to cool it.
  • the strand guide segment 20 or the device has a housing 22.
  • the housing 22 extends in the longitudinal direction, that is to say along the transport direction T of the strand 1, and is closed laterally in order to thereby surround the strand 1 like a tunnel. That goes from the Figure 2B showing a cross-section along the dash-dot line in Figure 2A shows. This creates a tunnel cooling chamber through which the strand 1 passes.
  • the rollers 21 are not shown for the sake of clarity.
  • the housing 22 is constructed in two parts, with a lower housing section 22a and an upper housing section 22b.
  • One or both housing sections 22a, 22b can be provided so as to be displaceable relative to one another along the thickness direction of the strand 1 in order to adjust the cross section of the tunnel cooling chamber and in particular the position of the gas supply and gas discharge devices described below.
  • the tunnel cooling chamber can be implemented, for example, by overlapping gas baffles for the free movement of the housing sections 22a, 22b, whereby the cross section of the tunnel, ie the format thickness of the cast product, can be adjusted in a structurally simple manner. It is not important here that the tunnel-like lateral sealing of the cast strand 1 by the housing 22 is strictly airtight. Rather, the nature of the housing 22 serves to direct the gas flow in the interior of the housing 22.
  • This tunnel cooling chamber created by means of the housing 22 is part of the concept for creating a targeted gas flow for the variable and effective cooling of the strand surface.
  • gas preferably air
  • the gas supply devices 23 have openings, which can be channel ends, pipe connections or nozzles, for example, and are arranged and oriented on or in the housing 22 in such a way that they direct a gas flow onto at least part of the strand surface of the cast strand 1, for example onto one or both main surfaces, can raise.
  • the gas supply devices 23 are according to the in FIG Figure 2C
  • the embodiment shown is arranged on the upper side of the U-shaped upper housing section 22b and on the lower side of the U-shaped lower housing section 22a.
  • the gas supply devices 23 can be arranged regularly, for example in rows and columns, or irregularly, as long as a gas is specifically applied to the strand surface.
  • the gas supply devices 23 can be adjusted be provided, adjustable approximately according to their position, orientation, their gas delivery angle or flow cone.
  • gas discharge devices 24 are provided which are arranged on the sides of the housing sections 22a, 22b.
  • the gas discharge devices 24 have openings which, for example, can be channel ends or pipe connections.
  • the gas discharge devices 24 can be arranged regularly, for example in rows and columns, or irregularly, as long as, in interaction with the gas supply devices 23 and the housing 22, a targeted and temporally stable gas flow is created inside the housing 22, which flows in a defined manner to the surface and / or runs along the surface of the strand 1 and is then quickly removed.
  • the gas discharge devices 24 are subjected to a negative pressure (relative to the interior of the housing) so that the gas is actively extracted.
  • the gas discharge devices 24 can be provided in an adjustable manner, adjustable for example according to their position, orientation and their exit angle.
  • FIG Figure 2D How a directional flow resulting from the interaction of the housing 22, the line 1 and the gas supply and gas discharge devices 23, 24 can look is shown in FIG Figure 2D shown.
  • the surface, in particular the main surfaces, of the cast strand 1 is acted upon in a targeted manner with gas from the openings of the gas supply devices 23.
  • the temperature of the gas is lower than that of the strand surface, preferably lower than the environment in the interior of the housing 22.
  • the temperature of the gas supplied is preferably between 5 ° C and 80 ° C.
  • the targeted discharge of the gas through the openings of the gas discharge devices 24 then takes place on the side walls of the tunnel cooling chamber.
  • the cooling capacity on the strand surface is provided by the directed gas flow. It applies here that the heat transfer coefficient, which is essential for cooling, and thus the cooling capacity, depend on the flow velocity and the flow rate of the gas supplied.
  • the directed gas flow has a significant effect on the cooling of the strand surface.
  • the heat transfer coefficient and thus the cooling capacity according to the illustrated embodiments are significantly higher (up to 60 to 125 times) than in the case of stationary or randomly flowing, for example turbulent, gases.
  • secondary cooling takes place by means of a liquid (preferably water) or a liquid / gas mixture (preferably water / air mixture), which is sprayed onto the strand 1 to be cooled.
  • a vapor mixture is generated in the tunnel cooling chamber, which is then enriched with additional gas by the gas cooling described.
  • the gas flow is, as in Figure 2D shown, passed over the strand surface, preferably with a component in the direction of the broad side, ie transversely to the transport direction T, and removed laterally.
  • a special technical effect of the gas cooling is that the applied liquid of the secondary cooling, for example the splash or splash water, is actively diverted laterally from the strand surface.
  • the cooling performance and in particular the uniformity of the cooling along the strand surface can be further improved.
  • Q GasIn denotes the amount of gas that is introduced into the housing 22 by the gas supply devices 23 and any secondary cooling
  • Q GasOut denotes the amount of gas that is passed through the Gas discharge devices 24 is discharged from the housing 22
  • Q GasIn Q Q GasOut This ensures that the steam from the secondary cooling is also discharged via the gas discharge devices 24. For this reason, the amount of gas from any secondary cooling is also added to the amount of gas Q GasIn .
  • the gas supply devices 23 can be provided in addition to the components, such as channels and nozzles, of any secondary cooling.
  • the components of secondary cooling can be at least partially used for gas cooling, for example by supplying the nozzles of two-component cooling with gas or a liquid / gas mixture, with the gas and any steam being removed in order to generate the directed gas flow.
  • the Figure 3 shows schematically the section through a strand guide segment 20 of the type described above, embedded in a system for controlling the gas flow inside the housing 22.
  • the gas supply devices 23 are fluidically connected to a gas supply 33, for example via a line system 36, which supplies the corresponding openings with the gas to be supplied.
  • the gas discharge devices 24 are fluidically connected to a gas discharge 34, for example via a line system 37, which realizes the discharge of the gas.
  • the gas discharge 34 can be a suction device 35, for example a compressor or exhaustor, for sucking off the gas and / or steam.
  • the components are controlled via a controller 40 for process automation.
  • the flow inside the tunnel cooling chamber in particular the gas velocity and amount of gas
  • the setting can be made individually for each segment or segment groups.
  • the gas quantity, gas speed and / or the gas pressure of the gas to be supplied via the gas supply devices 23 can be set.
  • the amount of gas to be sucked off for example the negative pressure and / or the flow cross-sections of the gas discharge devices 24, can be set according to one or more of the above parameters.
  • Components that can be used to control the gas supply and discharge are, for example: channels, pipes, nozzles, valves, blowers, compressors, exhaustors, measuring devices such as pressure gauges, volumetric meters and / or speedometers.
  • the control is preferably computer-aided; it can be implemented by means of software which, when executed on a computer, initiates the corresponding process steps.
  • the control can be organized centrally or decentrally, work independently or be networked using modern information and communication technology.
  • the gas cooling set out above which is implemented by the interaction between the housing 22, the strand 1 and the gas supply and gas discharge devices 23, 24, can be provided in sections along the transport path of the cast strand 1. Even if air is preferably used for cooling, other gases or gas mixtures can also be used come such as oxygen, nitrogen, hydrogen or other gases, preferably inert gases. The introduction of the gas can be directed towards the upper side of the strand and / or the underside of the strand.
  • the gas cooling described is used in a continuous caster.
  • This can be, for example, the following types of construction: vertical bending system, arch system, vertical slab system.
  • the gas cooling can be used particularly advantageously for cast slabs with a width of 1,000 mm to 4,000 mm, a thickness of 40 mm to 700 mm, a casting speed of 0.1 to 10 m / min and a strand guide length of 1 to 50 m, with the segment-like guide the strand guide length is to be understood as the length from the first segment below the mold to the last segment.
  • the strand After passing through the last segment or, more generally, the continuous caster, the strand can be further processed, for example rolled and / or cut.

Description

Technisches GebietTechnical area

Die Erfindung betrifft eine Vorrichtung und ein Verfahren zum Kühlen eines Gießstrangs in einer Stranggießanlage.The invention relates to a device and a method for cooling a cast strand in a continuous caster.

Hintergrund der ErfindungBackground of the invention

Die Figur 1A zeigt schematisch eine bekannte Stranggießanlage, deren Aufbau als "Senkrecht-Abbiegeanlage" bezeichnet wird, da der Gießstrang 1 mittels einer Strangführung 2 zunächst vertikal nach unten geführt und anschließend, üblicherweise nach der Durcherstarrung, entlang eines Bogens umgelenkt und horizontal transportiert wird.The Figure 1A shows schematically a known continuous caster, the structure of which is referred to as a "vertical bending system", since the cast strand 1 is first guided vertically downwards by means of a strand guide 2 and then, usually after solidification, is deflected along an arch and transported horizontally.

Der zu gießende Stahl wird aus einer Gießpfanne 3 gegebenenfalls über einen Zwischenbehälter 4 einer Kokille 5 zugeführt, die als Trichterkokille ausgeführt sein kann und den Stahl in die gewünschte Brammenform bringt. Der noch nicht durcherstarrte Strang 1 tritt vertikal nach unten aus der Kokille 5 aus und wird anschließend entlang der Strangführung 2 weiterhin vertikal nach unten geführt, während er nach und nach abkühlt. Am Ende der vertikalen Führung gelangt der Strang 1 in einen Biegebereich, wo er zum einen Biegekräften ausgesetzt und zum anderen aktiv in Förderrichtung getrieben wird. Dies geschieht mittels Rollen 11 und/oder Rollenpaaren. Während des Transports wird der Strang 1 aktiv gekühlt, wodurch er allmählich von außen nach innen erstarrt.The steel to be cast is fed from a casting ladle 3, optionally via an intermediate container 4, to a mold 5, which can be designed as a funnel mold and brings the steel into the desired slab shape. The as yet not completely solidified strand 1 emerges vertically downwards from the mold 5 and is then continued to be guided vertically downwards along the strand guide 2 while it gradually cools down. At the end of the vertical guide, the strand 1 arrives in a bending area, where it is exposed to bending forces on the one hand and actively driven in the conveying direction on the other. This is done by means of rollers 11 and / or pairs of rollers. During the transport, the strand 1 is actively cooled, as a result of which it gradually solidifies from the outside in.

Der Transport, die Führung und Kühlung des Strangs 1 kann über hintereinander angeordnete Strangführungssegmente 10 erfolgen, die modular aufgebaut sind und somit eine flexible Anpassung der Transport- und Kühlparameter ermöglichen. Der Strang 1 tritt zwischen den Rollen 11 hindurch, wobei einzelne Rollen 11 angetrieben sein können, um den Strang 1 aktiv in Transportrichtung vorzuschieben. Die Figur 1B zeigt die Lage und Ausrichtung der Strangführungssegmente 10 mit paarweise angeordneten Rollen 11 auf eine schematische Weise. In den Figuren 1A bis 1C sind Rollen 11 und Rollenpaare, die beispielhaft als Antriebsrollen fungieren, vollständig oder teilweise gefüllt eingezeichnet. So kann beispielsweise über eine gewisse Führungsstrecke jeweils das mittlere Rollenpaar pro Strangführungssegment 10 aktiv angetrieben werden. Der Figurenausschnitt 1C zeigt ein solches Strangführungssegment 10 mit Rollen 11 auf schematische Weise.The strand 1 can be transported, guided and cooled via strand guide segments 10 which are arranged one behind the other and which have a modular structure and thus enable flexible adaptation of the transport and cooling parameters. The strand 1 passes between the rollers 11, with individual rollers 11 can be driven to actively advance the strand 1 in the transport direction. The Figure 1B shows the position and alignment of the strand guide segments 10 with rollers 11 arranged in pairs in a schematic manner. In the Figures 1A to 1C rollers 11 and pairs of rollers, which act as drive rollers for example, are drawn in completely or partially filled. For example, the middle pair of rollers per strand guide segment 10 can be actively driven over a certain guide path. The figure section 1C shows such a strand guide segment 10 with rollers 11 in a schematic manner.

Wie ein Strangführungssegment 10 im Detail aufgebaut sein kann, beschreibt die DE 10 2011 003 194 A1 .How a strand guide segment 10 can be constructed in detail, describes the DE 10 2011 003 194 A1 .

Die Abkühlung des Strangs erfolgt mittels einer sogenannten Sekundärkühlung, deren Düsen sich gemäß der obigen DE 10 2011 003 194 A1 in Transportrichtung gesehen zwischen den Rollen 11 befinden. Die Kühlung wird hierbei entweder als 1-Stoff Kühlung, die eine reine Wasserkühlung ist, oder als 2-Stoff Kühlung realisiert, bei der ein Wasser/Luft-Gemisch auf den zu kühlenden Strang 1 gespritzt wird.The strand is cooled by means of what is known as secondary cooling, the nozzles of which are in accordance with the above DE 10 2011 003 194 A1 seen in the transport direction between the rollers 11. The cooling is realized either as a 1-substance cooling, which is a pure water cooling, or as a 2-substance cooling, in which a water / air mixture is sprayed onto the strand 1 to be cooled.

Durch das Beaufschlagen der heißen Strangoberfläche mit Wasser oder einem Wasser/Luft-Gemisch entsteht Dampf, der beispielsweise über Ventilatoren und Kanäle durch einen Kamin aus der Stranggießanlage und der die Anlage umgebenden Halle abgeführt wird, um die Anlage, insbesondere im Bereich der Kühlung und Strangführung, frei von Dampf zu halten. Hierbei ist eine gezielte und flexibel einstellbare Wärmeabfuhr schwierig.When the hot strand surface is exposed to water or a water / air mixture, steam is generated, which is removed from the continuous casting plant and the hall surrounding the plant, for example via fans and channels through a chimney, in order to keep the plant, especially in the area of cooling and strand guidance to keep free of steam. A targeted and flexibly adjustable heat dissipation is difficult here.

Die DE 195 42 180 C1 beschreibt ein Verfahren und eine Vorrichtung zum Führen von Strängen einer Strangießanlage. Die JP H07 100220 B2 und WO 03/072281 A1 betreffen das kontinuierliche, bandförmige Vergießen von Metallschmelze.The DE 195 42 180 C1 describes a method and a device for guiding strands of a continuous casting plant. The JP H07 100220 B2 and WO 03/072281 A1 concern the continuous, ribbon-shaped casting of molten metal.

Darstellung der ErfindungPresentation of the invention

Eine Aufgabe der Erfindung besteht darin, eine Vorrichtung und ein Verfahren bereitzustellen, mit denen die Kühlung eines Gießstrangs in einer Stranggießanlage verbessert werden kann, die insbesondere flexibel auf unterschiedliche Produktionsbedingungen anpassbar ist.One object of the invention is to provide a device and a method with which the cooling of a cast strand in a continuous casting plant can be improved, which in particular can be flexibly adapted to different production conditions.

Gelöst wird die Aufgabe mit einer Vorrichtung mit den Merkmalen des Anspruchs 1 sowie einem Verfahren mit den Merkmalen des Anspruchs 9. Vorteilhafte Weiterbildungen folgen aus den Unteransprüchen, der folgenden Darstellung der Erfindung sowie der Beschreibung bevorzugter Ausführungsbeispiele.The object is achieved with a device with the features of claim 1 and a method with the features of claim 9. Advantageous developments follow from the subclaims, the following description of the invention and the description of preferred exemplary embodiments.

Die erfindungsgemäße Vorrichtung zum Kühlen eines Gießstrangs ist zur Anwendung in einer Stranggießanlage, vorzugsweise einer Senkrecht-Abbiegeanlage, Bogenanlage oder Vertikalbrammenanlage, vorgesehen. Die Vorrichtung weist ein Gehäuse, eine oder mehrere Gaszufuhreinrichtungen zum Einbringen eines Gases, vorzugsweise Luft, in das Gehäuse und eine oder mehrere Gasabfuhreinrichtungen zum Abführen des Gases aus dem Gehäuse auf.The device according to the invention for cooling a cast strand is intended for use in a continuous casting installation, preferably a vertical bending installation, arching installation or vertical slab installation. The device has a housing, one or more gas feed devices for introducing a gas, preferably air, into the housing and one or more gas discharge devices for discharging the gas from the housing.

Das Gehäuse ist tunnelartig ausgebildet, so dass der Gießstrang zur Abkühlung in einer Transportrichtung durch das Gehäuse transportierbar ist. In anderen Worten: Das Gehäuse umgibt den Gießstrang, wobei es an gegenüberliegenden Stirnseiten offen ist, damit der Gießstrang an einer Seite in das Gehäuse ein- und an der gegenüberliegenden Seite austreten kann. Auf diese Weise wird durch das Gehäuse eine Tunnelkühlkammer geschaffen, in der die Gaskühlung des Gießstrangs stattfindet. Es kommt beim Gehäuse nicht darauf an, dass die tunnelartige oder zylindrische seitliche Abdeckung des Gießstrangs streng luftdicht erfolgt. Vielmehr dient die Beschaffenheit des Gehäuses dazu, den Gasstrom zu lenken, denn die Tunnelkühlkammer ist Teil des Konzepts zur Schaffung eines gezielt gerichteten Gasstroms zur variablen und effektiven Abkühlung der Strangoberfläche. Aus diesem Grund ist die Form und Beschaffenheit des Gehäuses vorzugsweise an das gewünschte Strömungsverhalten angepasst. Ein senkrecht zur Transportrichtung rechteckförmiger Querschnitt des Gehäuses, dies ist eine bevorzugte Ausführungsform, realisiert hierbei auf baulich einfache Weise ein günstiges Strömungsverhalten.The housing is designed like a tunnel so that the cast strand can be transported through the housing in one transport direction for cooling. In other words: the housing surrounds the cast strand, it being open on opposite end faces so that the cast strand can enter the housing on one side and exit on the opposite side. In this way, a tunnel cooling chamber is created through the housing, in which the gas cooling of the cast strand takes place. With the housing, it is not important that the tunnel-like or cylindrical side cover of the cast strand is strictly airtight. Rather, the nature of the housing serves to direct the gas flow, because the tunnel cooling chamber is part of the concept for creating a targeted gas flow for the variable and effective cooling of the strand surface. For this reason, the shape and nature of the housing are preferably adapted to the desired flow behavior. A rectangular one perpendicular to the direction of transport Cross section of the housing, this is a preferred embodiment, realizes a favorable flow behavior in a structurally simple way.

Die Gaszufuhreinrichtungen sind eingerichtet, um zumindest einen Teil der Oberfläche des Gießstrangs mit dem Gas zu beaufschlagen, die Gasabfuhreinrichtungen sind eingerichtet, um das Gas aus dem Innern des Gehäuses abzuführen, so dass ein oder mehrere gerichtete Gasströmungswege im Innern des Gehäuses ausbildbar sind, die auf zumindest einen Teil der Oberfläche des Gießstrangs auftreffen und/oder an zumindest einem Teil der Oberfläche des Gießstrangs entlangführen. Zu diesem Zweck sind die Gaszufuhr- und Gasabfuhreinrichtungen mit Öffnungen ausgestattet, die beispielsweise Düsen, Kanalenden oder Rohranschlüsse sein können. Unter einem gerichteten Gasströmungsweg ist eine definierte Trajektorie zu verstehen, entlang der das Gas strömt und die während der Gaskühlung im zeitlichen Verlauf im Wesentlichen stabil ist. Die Trajektorie führt an zumindest einem Teil der Oberfläche des Gießstrangs vorbei, so dass die strömende Luft mit der Oberfläche in Kontakt kommt und anschließend rasch und auf zielgerichtete Weise abgeführt wird.The gas supply devices are set up to apply the gas to at least part of the surface of the cast strand, the gas discharge devices are set up to discharge the gas from the interior of the housing, so that one or more directed gas flow paths can be formed in the interior of the housing, which on at least part of the surface of the cast strand impinge and / or run along at least part of the surface of the cast strand. For this purpose, the gas supply and gas discharge devices are equipped with openings, which can be nozzles, duct ends or pipe connections, for example. A directed gas flow path is to be understood as a defined trajectory along which the gas flows and which is essentially stable over time during the gas cooling. The trajectory leads past at least part of the surface of the cast strand, so that the flowing air comes into contact with the surface and is then removed quickly and in a targeted manner.

Die oben dargelegte Gaskühlung erfolgt demnach aus einem Zusammenspiel zwischen der durch das Gehäuse geschaffenen Tunnelkühlkamme und den Gaszufuhr- und Gasabfuhreinrichtungen, wodurch ein gezielt gelenkter Gasstrom zur effektiven Abkühlung der Strangoberfläche geschaffen wird. Die Kühlleistung an der Strangoberfläche wird über den gerichteten Gasstrom erbracht. Hierbei gilt, dass der zur Kühlung wesentliche Wärmeübergangskoeffizient und somit die Kühlleistung von der Strömungsgeschwindigkeit und der Strömungsmenge des vorbeiströmenden Gases abhängen. Beides lässt sich flexibel an die Prozessparameter anpassen, wodurch die Kühlleistung auf einfache Weise einstellbar ist. In Abhängigkeit beispielsweise vom Brammenformat, der Stahlqualität, Gießgeschwindigkeit, einer etwaigen Sekundärkühlung, der angestrebten Kühlfunktion, Lage der Gaskühlung entlang des Transportwegs, von Grundeinstellungen usw. können etwa die Gasmenge, Gasgeschwindigkeit und/oder der Gasdruck eingestellt werden. Insbesondere ist eine Anpassung der Kühlleistung auch während des Kühlvorgangs möglich.The gas cooling set out above therefore results from an interaction between the tunnel cooling chamber created by the housing and the gas supply and gas discharge devices, whereby a specifically directed gas flow is created for the effective cooling of the strand surface. The cooling capacity on the strand surface is provided by the directed gas flow. It applies here that the heat transfer coefficient, which is essential for cooling, and thus the cooling capacity, depend on the flow velocity and the flow rate of the gas flowing past. Both can be flexibly adapted to the process parameters, which means that the cooling capacity can be easily adjusted. Depending on, for example, the slab format, steel quality, casting speed, any secondary cooling, the desired cooling function, position of the gas cooling along the transport path, basic settings, etc., the gas quantity, gas speed and / or gas pressure can be set. In particular, it is also possible to adapt the cooling capacity during the cooling process.

In der Bezeichnung "Gas" sind Mehrstoffgasgemische umfasst. Die Gaszufuhreinrichtungen sind gemäß der Erfindung so eingerichtet, dass sie ausschließlich Gas, somit kein Gas/Flüssigkeit-Gemisch, einbringen. Dies schließt nicht aus, dass eine oder mehrere Düsen einer herkömmlichen Sekundärkühlung, etwa einer Wasser/Luft-Kühlung, so umgerüstet werden können, dass sie ein Gas im obigen Sinne in das Gehäuse einbringen. Die übrigen Düsen der Sekundärkühlung können ein Gas/Flüssigkeit-Gemisch in das Gehäuse einbringen. In diesem Fall, der eine besondere weiter unten im Detail beschriebene Ausführungsform betrifft, wird das Gas/Flüssigkeit-Gemisch durch Gas aus entsprechend umgerüsteten Düsen der Sekundärkühlung, die dann Gaszufuhreinrichtungen oder Teil von Gaszufuhreinrichtungen sind, angereichert, um die Gasströmungswege auszubilden.The term “gas” includes multi-component gas mixtures. According to the invention, the gas supply devices are set up in such a way that they only introduce gas, and thus no gas / liquid mixture. This does not rule out the possibility that one or more nozzles of a conventional secondary cooling system, for example water / air cooling, can be converted so that they introduce a gas into the housing in the above sense. The other nozzles of the secondary cooling can introduce a gas / liquid mixture into the housing. In this case, which relates to a particular embodiment described in detail below, the gas / liquid mixture is enriched by gas from appropriately retrofitted nozzles of the secondary cooling, which are then gas supply devices or part of gas supply devices, in order to form the gas flow paths.

Vorzugsweise ist das Gehäuse mehrteilig, beispielsweise zweigeteilt, aufgebaut, wobei das Gehäuse in diesem Fall so verstellbar ist, dass der Querschnitt des Gehäuses senkrecht zur Transportrichtung des Gießstrangs veränderbar ist. Einer oder mehrere der Gehäuseabschnitte können relativ zueinander verfahrbar oder verschiebbar sein. So ist das Gehäuse gemäß einer bevorzugten Ausführungsform zweiteilig aufgebaut, mit einem unteren Gehäuseabschnitt und einem oberen Gehäuseabschnitt, die beide einen U-förmigen Querschnitt aufweisen. Die beiden Gehäuseabschnitte bilden einen rechteckigen Tunnelkühlkammerquerschnitt und sind so ineinander verfahrbar, dass ihre Seitenwände sich zumindest teilweise überlappen. Auf diese Weise lassen sich der Querschnitt der Tunnelkühlkammer und insbesondere die Lage der Gaszufuhr- und Gasabfuhreinrichtungen auf einfache Weise einstellen. Allgemeiner gesprochen können die Wände der Tunnelkühlkammer durch teilweise überlappende, verstellbare Gasleitbleche realisiert werden, wodurch sich auf baulich einfache Weise der Querschnitt des Tunnels, somit die Beschaffenheit der Gasströmungswege und damit die Kühlleistung, einstellen lässt.The housing is preferably constructed in several parts, for example in two parts, the housing in this case being adjustable such that the cross section of the housing can be changed perpendicular to the direction of transport of the cast strand. One or more of the housing sections can be moved or displaced relative to one another. Thus, according to a preferred embodiment, the housing is constructed in two parts, with a lower housing section and an upper housing section, both of which have a U-shaped cross section. The two housing sections form a rectangular tunnel cooling chamber cross section and can be moved into one another in such a way that their side walls at least partially overlap. In this way, the cross section of the tunnel cooling chamber and in particular the position of the gas supply and gas discharge devices can be adjusted in a simple manner. More generally speaking, the walls of the tunnel cooling chamber can be realized by partially overlapping, adjustable gas baffles, whereby the cross section of the tunnel, thus the nature of the gas flow paths and thus the cooling capacity, can be adjusted in a structurally simple manner.

Vorzugsweise sind die Gaszufuhreinrichtungen und Gasabfuhreinrichtungen so eingerichtet, dass die Gasströmungswege eine Komponente in Breitenrichtung des Gießstrangs aufweisen. Mit "Komponente" ist eine Vektorkomponente gemeint, d.h. die Gasströmungswege verlaufen in diesem Fall nicht vollständig entlang der Transportrichtung des Gießstrangs. Gemäß einer besonders bevorzugten Ausführungsform sind die Gasströmungswege hauptsächlich zur Seite gerichtet, d.h. sie verlaufen hauptsächlich in der Breitenrichtung des Strangs, um ein rasches Abführen der Wärme von der Strangoberfläche zu realisieren. Als Breitenrichtung wird hierbei eine Richtung bezeichnet, die senkrecht zur Transportrichtung (Längsrichtung) des Strangs verläuft und im Fall eines rechteckigen Strangquerschnitts außerdem senkrecht auf der Dickenrichtung des Strangs steht. In diesem Fall werden die Flächen der beiden längeren Seiten des Strangquerschnitts, in der Regel die obere und untere Fläche, im Folgenden als Hauptflächen bezeichnet, während die beiden Flächen entlang der Dickenrichtung, in der Regel die Seitenflächen, als Nebenflächen bezeichnet werden.The gas supply devices and gas discharge devices are preferably set up such that the gas flow paths have a component in the width direction of the cast strand. "Component" means a vector component, ie the gas flow paths in this case do not run completely along the direction of transport of the cast strand. According to a particularly preferred embodiment the gas flow paths are mainly directed to the side, ie they run mainly in the width direction of the strand in order to realize a rapid dissipation of the heat from the strand surface. In this context, the width direction denotes a direction which runs perpendicular to the transport direction (longitudinal direction) of the strand and, in the case of a rectangular strand cross-section, is also perpendicular to the thickness direction of the strand. In this case, the surfaces of the two longer sides of the strand cross-section, usually the upper and lower surfaces, are referred to below as main surfaces, while the two surfaces along the thickness direction, usually the side surfaces, are referred to as secondary surfaces.

Erfindungsgemäß liegen Öffnungen der Gaszufuhreinrichtungen den Hauptflächen des Gießstrangs gegenüber, während Öffnungen der Gasabfuhreinrichtungen den Nebenflächen des Gießstrangs gegenüberliegen. Die Öffnungen oder Düsen der Gaszufuhreinrichtungen sind bei einem Gehäuse mit einem rechteckigen Querschnitt somit vorzugsweise an gegenüberliegenden Seiten angeordnet, während die Öffnungen der Gasabfuhreinrichtungen an den beiden anderen gegenüberliegenden Seiten angeordnet sind. Auf diese Weise lassen sich Gasströmungswege erzeugen, die sich nicht schneiden oder gegenseitig stören, wodurch die Wärme besonders effektiv abgeführt werden kann.According to the invention, openings of the gas supply devices lie opposite the main surfaces of the cast strand, while openings of the gas discharge devices lie opposite the secondary surfaces of the cast strand. In the case of a housing with a rectangular cross section, the openings or nozzles of the gas supply devices are thus preferably arranged on opposite sides, while the openings of the gas discharge devices are arranged on the other two opposite sides. In this way, gas flow paths can be generated that do not intersect or interfere with one another, so that the heat can be dissipated particularly effectively.

Vorzugsweise sind eine oder mehrere der Gaszufuhreinrichtungen und/oder Gasabfuhreinrichtungen verstellbar, so dass einer oder mehrere der Gasströmungswege einstellbar sind, vorzugsweise ist die Strömungsgeschwindigkeit und/oder Lage eines oder mehrerer der Gasströmungswege einstellbar. "Lage" bezeichnet hierbei etwa die räumliche Position, Ausrichtung und/oder den Verlauf der betreffenden Trajektorie. Die oben genannte Verstellbarkeit umfasst beispielsweise eine Änderung der Position und/oder Ausrichtung von Gasabgabedüsen, sie kann sich aber auch beispielsweise auf eine Änderung des Öffnungswinkels des Strömungskegels beziehen. Dadurch lassen sich die Gasströmungswege einstellen und im zeitlichen Verlauf stabil halten.Preferably, one or more of the gas supply devices and / or gas discharge devices are adjustable so that one or more of the gas flow paths can be adjusted, preferably the flow speed and / or position of one or more of the gas flow paths can be adjusted. "Location" here refers to the spatial position, orientation and / or the course of the relevant trajectory. The above-mentioned adjustability includes, for example, a change in the position and / or orientation of gas discharge nozzles, but it can also relate, for example, to a change in the opening angle of the flow cone. This allows the gas flow paths to be adjusted and kept stable over time.

Vorzugsweise sind die Gasabfuhreinrichtungen eingerichtet, um das Gas aus dem Innern des Gehäuses abzusaugen. In diesem Fall ist eine Absaugvorrichtung vorgesehen, die einen Unterdruck erzeugt, beispielsweise mittels eines Kompressors oder Exhaustors, wodurch das Gas aktiv abgesaugt wird. Dadurch lässt sich zum einen die Geschwindigkeit der Gasströmung erhöhen und steuern, zum anderen kann die Stabilität der Gasströmungswege verbessert werden.The gas discharge devices are preferably designed to suck the gas out of the interior of the housing. In this case, a suction device is provided which generates a negative pressure, for example by means of a compressor or exhauster, whereby the gas is actively sucked off. In this way, on the one hand, the speed of the gas flow can be increased and controlled, and on the other hand, the stability of the gas flow paths can be improved.

Vorzugsweise weist die Vorrichtung ferner eine Sekundärkühlung mit Sekundärkühldüsen auf, die eingerichtet ist, um eine Flüssigkeit, vorzugsweise Wasser, oder ein Flüssigkeit/Gas-Gemisch, vorzugsweise Wasser/Luft-Gemisch, auf den Gießstrang aufzubringen, wobei die Gasabfuhreinrichtungen so eingerichtet sind, dass sie neben der Luft aus den Gaszufuhreinrichtungen auch durch die Sekundärkühlung entstandenen Dampf abführen. Bedingt durch eine solche Sekundärkühlung der Strangoberfläche wird ein Dampfgemisch in der Tunnelkühlkammer erzeugt, das anschließend durch die beschriebene Gaskühlung mit zusätzlichem Gas angereichert wird. Eine besondere technische Wirkung der Gaskühlung besteht in diesem Fall darin, dass die aufgebrachte Flüssigkeit der Sekundärkühlung, also etwa das Spritzwasser oder Schwallwasser, aktiv von der Strangoberfläche abgeleitet wird. Dadurch werden die Kühlleistung und Gleichförmigkeit der Kühlung entlang der Strangoberfläche auf synergetische Weise verbessert. Der Druck an den Sekundärkühldüsen beträgt vorzugsweise 1 bis 5 bar, noch bevorzugter liegt er zwischen 1 und 3 bar.The device preferably also has secondary cooling with secondary cooling nozzles, which is set up to apply a liquid, preferably water, or a liquid / gas mixture, preferably water / air mixture, to the cast strand, the gas discharge devices being set up so that in addition to the air from the gas supply devices, they also remove the vapor generated by the secondary cooling. As a result of such secondary cooling of the strand surface, a vapor mixture is generated in the tunnel cooling chamber, which is then enriched with additional gas by the gas cooling described. In this case, a special technical effect of the gas cooling is that the liquid applied by the secondary cooling, e.g. the splash or splash water, is actively diverted from the strand surface. This will be synergistically improves cooling performance and uniformity of cooling along the strand surface. The pressure at the secondary cooling nozzles is preferably 1 to 5 bar, more preferably it is between 1 and 3 bar.

Vorzugsweise weist die Vorrichtung Rollen zum Transport des Gießstrangs auf, die beispielsweise paarweise angeordnet sind, so dass der Gießstrang zwischen ihnen hindurchtreten kann. Auf diese Weise lässt sich die Gaskühlung mit der Führung und dem Transport des Strangs technisch kompakt verbinden. Vorzugsweise sind die Gaszufuhreinrichtungen zwischen den Rollen angeordnet, in Transportrichtung gesehen, um die Stabilität der Gasströmungswege zu verbessern. Eine oder mehrere Rollen können Antriebsrollen sein, die etwa über einen Elektromotor, ggf. unter Zwischenschaltung eines Getriebes, einer Kupplung, Bremse usw., angetrieben werden, um den Strang zu transportieren.The device preferably has rollers for transporting the cast strand, which are for example arranged in pairs, so that the cast strand can pass between them. In this way, the gas cooling can be combined with the guidance and transport of the strand in a technically compact manner. The gas supply devices are preferably arranged between the rollers, viewed in the direction of transport, in order to improve the stability of the gas flow paths. One or more rollers can be drive rollers that are driven, for example, by an electric motor, possibly with the interposition of a gear, a clutch, brake, etc., in order to transport the strand.

Gemäß einer weiteren vorteilhaften Ausführungsform ist die Vorrichtung, mit oder ohne Rollen, modular aufgebaut, so dass sie ein Segment bildet, das um weitere Segmente erweiterbar und flexibel entlang des Transportwegs des Gießstrangs anwendbar ist. Somit ist eine technisch einfache Anpassung der Transport- und/oder Kühlparameter an die gewünschten Eigenschaften des gegossenen Stahls, die Umgebungsbedingung usw. möglich. Insbesondere kann die Einstellung der Gasströmungswege für jedes Segment oder für Segmentgruppen individuell erfolgen. Hierbei kann die Einstellung nicht nur in Abhängigkeit der oben genannten Parameter (Brammenformat, Stahlqualität, Gießgeschwindigkeit usw.) erfolgen, sondern auch von Prozess- und/oder Zustandsparametern anderer, vorzugsweise vorangegangener Segmente. Die Einstellungen können in Echtzeit während des Kühlvorgangs erfolgen.According to a further advantageous embodiment, the device, with or without rollers, has a modular structure, so that it forms a segment which can be expanded by further segments and can be used flexibly along the transport path of the cast strand. A technically simple adaptation of the transport and / or cooling parameters to the desired properties of the cast steel, the environmental conditions, etc. is thus possible. In particular, the gas flow paths can be set individually for each segment or for segment groups. Here, the setting can be made not only as a function of the above-mentioned parameters (slab format, steel quality, casting speed, etc.), but also of process and / or status parameters of other, preferably preceding segments. The settings can be made in real time during the cooling process.

Die Steuerung der beschriebenen Vorrichtung erfolgt vorzugsweise rechnergestützt, sie kann mittels einer Software realisiert werden, die, wenn sie auf einem Computer ausgeführt wird, die Schritte zur Durchführung des unten dargelegten Verfahrens veranlasst. Die Steuerung kann zentral oder dezentral organisiert sein, autark arbeiten oder mittels moderner Informations- und Kommunikationstechniken vernetzt sein.The control of the device described is preferably computer-aided; it can be implemented by means of software which, when it is executed on a computer, initiates the steps for carrying out the method set out below. The control can be centralized or decentralized be organized, work independently or be networked using modern information and communication technologies.

Das erfindungsgemäße Verfahren zum Kühlen eines Gießstrangs in einer Stranggießanlage weist auf: Transportieren eines Gießstrangs in einer Transportrichtung durch ein Gehäuse, das den Gießstrang tunnelartig umgibt; Einbringen eines Gases, vorzugsweise Luft, mittels einer oder mehrerer Gaszufuhreinrichtungen in das Gehäuse, so dass die Oberfläche des Gießstrangs mit dem Gas beaufschlagt wird; Abführen des Gases aus dem Innern des Gehäuses mittels einer oder mehrerer Gasabfuhreinrichtungen, so dass ein oder mehrere gerichtete Gasströmungswege im Innern des Gehäuses ausgebildet werden, die an der Oberfläche des Gießstrangs vorbeiführen.The method according to the invention for cooling a cast strand in a continuous caster comprises: transporting a cast strand in a transport direction through a housing which surrounds the cast strand like a tunnel; Introducing a gas, preferably air, into the housing by means of one or more gas supply devices, so that the gas is applied to the surface of the cast strand; Removal of the gas from the interior of the housing by means of one or more gas removal devices, so that one or more directed gas flow paths are formed in the interior of the housing which lead past the surface of the cast strand.

Die technischen Wirkungen, bevorzugten Ausführungsformen und Beiträge zum Stand der Technik, die in Bezug auf die Vorrichtung beschrieben wurden, gelten analog für das Verfahren zum Kühlen des Gießstrangs.The technical effects, preferred embodiments and contributions to the state of the art that have been described in relation to the device apply analogously to the method for cooling the cast strand.

Die Temperatur des Gases sollte geringer sein als das der Strangoberfläche, vorzugsweise geringer als die Umgebung im Inneren des Gehäuses. Die Temperatur des zugeführten Gases liegt vorzugsweise zwischen 5 °C und 80 °C. Der Druck an den Gaszufuhreinrichtungen beträgt vorzugsweise mehr als 1 bar. Auch wenn vorzugsweise Luft zur Kühlung verwendet wird, können auch andere Gase oder Gasgemische zum Einsatz kommen, so etwa Sauerstoff, Stickstoff, Wasserstoff oder andere Gase, vorzugsweise Inertgase.The temperature of the gas should be lower than that of the strand surface, preferably lower than the environment inside the housing. The temperature of the gas supplied is preferably between 5 ° C and 80 ° C. The pressure at the gas supply devices is preferably more than 1 bar. Even if air is preferably used for cooling, other gases or gas mixtures can also be used, such as oxygen, nitrogen, hydrogen or other gases, preferably inert gases.

Die beschriebene Gaskühlung kommt in einer Stranggießanlage zur Anwendung. Hierbei kann es sich beispielsweise um folgende Bauformen handeln: Senkrecht-Abbiegeanlage, Bogenanlage, Vertikalbrammenanlage. Eine Beschränkung darauf besteht jedoch nicht. Die Gaskühlung ist besonders vorteilhaft anwendbar für gegossene Brammen der Breite von 1.000 mm bis 4.000 mm, Dicke von 40 mm bis 700 mm, Gießgeschwindigkeit von 0,1 bis 10 m/min und Strangführungslänge von 1 bis 50 m.The gas cooling described is used in a continuous caster. This can be, for example, the following types of construction: vertical bending system, arch system, vertical slab system. However, there is no restriction to this. The gas cooling can be used particularly advantageously for cast slabs with a width of 1,000 mm to 4,000 mm, a thickness of 40 mm up to 700 mm, casting speed from 0.1 to 10 m / min and strand guide length from 1 to 50 m.

Weitere Vorteile und Merkmale der vorliegenden Erfindung sind aus der folgenden Beschreibung bevorzugter Ausführungsbeispiele ersichtlich. Die dort beschriebenen Merkmale können alleinstehend oder in Kombination mit einem oder mehreren der oben dargelegten Merkmale realisiert werden, insofern sich die Merkmale nicht widersprechen. Die folgende Beschreibung der bevorzugten Ausführungsbeispiele erfolgt mit Bezug auf die begleitenden Zeichnungen.Further advantages and features of the present invention can be seen from the following description of preferred exemplary embodiments. The features described there can be implemented alone or in combination with one or more of the features set out above, provided that the features do not contradict one another. The following description of the preferred embodiments is made with reference to the accompanying drawings.

Kurze Beschreibung der FigurenBrief description of the figures

Die Figur 1A zeigt schematisch eine bekannte Stranggießanlage, konzipiert als "Senkrecht-Abbiegeanlage", mit Strangführungssegmenten zum Transportieren und Kühlen des Gießstrangs. Die Figur 1B zeigt schematisch die Lage und Ausrichtung der Strangführungssegmente. Die Figur 1C zeigt ein solches Strangführungssegment auf vergrößerte und schematische Weise.The Figure 1A shows schematically a known continuous caster, designed as a "vertical bending system", with strand guide segments for transporting and cooling the cast strand. The Figure 1B shows schematically the position and alignment of the strand guide segments. The Figure 1C shows such a strand guide segment in an enlarged and schematic manner.

Die Figur 2A zeigt ein Strangführungssegment durch das ein Gießstrang tritt. Die Figur 2B zeigt das Gehäuse des Strangführungssegments in einem Querschnitt senkrecht zur Transportrichtung. Die Figur 2C zeigt das Gehäuse im Querschnitt mit Gaszufuhreinrichtungen und Gasabfuhreinrichtungen. Die Figur 2D zeigt die gerichtete Gasströmung im Innern des Gehäuses.The Figure 2A shows a strand guide segment through which a cast strand passes. The Figure 2B shows the housing of the strand guide segment in a cross section perpendicular to the transport direction. The Figure 2C shows the housing in cross section with gas supply devices and gas discharge devices. The Figure 2D shows the directed gas flow inside the housing.

Die Figur 3 zeigt schematisch ein Strangführungssegment, eingebettet in ein System zur Steuerung der Gasströmung im Innern des Gehäuses.The Figure 3 shows schematically a strand guide segment embedded in a system for controlling the gas flow inside the housing.

Detaillierte Beschreibung bevorzugter AusführungsbeispieleDetailed description of preferred exemplary embodiments

Im Folgenden werden bevorzugte Ausführungsbeispiele anhand der Figuren beschrieben. Dabei sind gleiche, ähnliche oder gleichwirkende Elemente mit identischen Bezugszeichen versehen, und auf eine wiederholende Beschreibung dieser Elemente wird teilweise verzichtet, um Redundanzen zu vermeiden.Preferred exemplary embodiments are described below with reference to the figures. The same, similar or equivalent elements are included Identical reference numerals are provided, and a repetitive description of these elements is partly omitted in order to avoid redundancies.

Die Figur 2A zeigt ein Strangführungssegment 20, das wie in der Figur 1C mit paarweise angeordneten Rollen 21 ausgestattet ist, um einen Gießstrang 1 entlang einer Transportrichtung T zu transportieren. Das Strangführungssegment 20 ist gemäß der vorliegenden Ausführungsform modular aufgebaut, um eine flexible Anpassung der Transport- und/oder Kühlparameter an die gewünschten Eigenschaften des gegossenen Stahls, die Umgebungsbedingung usw. zu ermöglichen. Das mittlere Rollenpaar - entlang der Transportrichtung T gesehen - ist beispielhaft durch Antriebsrollen 21 realisiert, die etwa über einen Elektromotor, ggf. unter Zwischenschaltung eines Getriebes, einer Kupplung, Bremse usw., angetrieben werden, um den Strang 1 zu transportieren.The Figure 2A shows a strand guide segment 20, which as in FIG Figure 1C is equipped with rollers 21 arranged in pairs in order to transport a cast strand 1 along a transport direction T. According to the present embodiment, the strand guide segment 20 has a modular structure in order to enable flexible adaptation of the transport and / or cooling parameters to the desired properties of the cast steel, the environmental conditions, etc. The middle pair of rollers - viewed along the transport direction T - is implemented, for example, by drive rollers 21, which are driven for example via an electric motor, possibly with the interposition of a gear, a clutch, brake, etc., in order to transport the strand 1.

Es sei darauf hingewiesen, dass eine modulare Ausführung der Strangführungssegmente 20, zur unabhängigen Anwendung jeweils mit Rollen 21 und Kühlvorrichtungen ausgestattet, zwar eine besondere Ausführungsform realisiert, jedoch nicht unbedingt erforderlich ist. Vielmehr ist das hier dargestellte Strangführungssegment 20 ein Beispiel eines Strangführungsabschnitts oder einer Vorrichtung, der bzw. die eingerichtet ist, um den Strang 1 auf seinem Weg durch die Stranggießanlage zu führen und zu kühlen.It should be pointed out that a modular design of the strand guide segments 20, each equipped with rollers 21 and cooling devices for independent use, is a special embodiment, but is not absolutely necessary. Rather, the strand guide segment 20 shown here is an example of a strand guide section or a device which is set up to guide the strand 1 on its way through the continuous caster and to cool it.

Das Strangführungssegment 20 bzw. die Vorrichtung weist ein Gehäuse 22 auf. Das Gehäuse 22 erstreckt sich in Längsrichtung, d.h. entlang der Transportrichtung T des Strangs 1, und ist seitlich geschlossen, um dadurch den Strang 1 tunnelartig zu umgeben. Das geht aus der Figur 2B hervor, die einen Querschnitt entlang der Strich-Punkt-Linie in Figur 2A zeigt. Dadurch wird eine Tunnelkühlkammer geschaffen, durch die der Strang 1 tritt. In der Figur 2B und den nachfolgenden Figuren sind die Rollen 21 der Übersichtlichkeit halber nicht eingezeichnet.The strand guide segment 20 or the device has a housing 22. The housing 22 extends in the longitudinal direction, that is to say along the transport direction T of the strand 1, and is closed laterally in order to thereby surround the strand 1 like a tunnel. That goes from the Figure 2B showing a cross-section along the dash-dot line in Figure 2A shows. This creates a tunnel cooling chamber through which the strand 1 passes. In the Figure 2B and the following figures, the rollers 21 are not shown for the sake of clarity.

Im Ausführungsbeispiel der Figur 2B ist das Gehäuse 22 zweiteilig aufgebaut, mit einem unteren Gehäuseabschnitt 22a und einem oberen Gehäuseabschnitt 22b. Ein oder beide Gehäuseabschnitte 22a, 22b können entlang der Dickenrichtung des Strangs 1 relativ zueinander verschiebbar vorgesehen sein, um den Querschnitt der Tunnelkühlkammer und insbesondere die Lage der weiter unten beschriebenen Gaszufuhr- und Gasabfuhreinrichtungen einzustellen. Die Tunnelkühlkammer kann beispielsweise durch überlappende Gasleitbleche realisiert werden, zur freien Bewegung der Gehäuseabschnitte 22a, 22b, wodurch sich auf baulich einfache Weise der Querschnitt des Tunnels, d.h. die Formatdicke des Gießprodukts, einstellen lässt. Es kommt hierbei nicht darauf an, dass die tunnelartige seitliche Abdichtung des Gießstrangs 1 durch das Gehäuse 22 streng luftdicht erfolgt. Vielmehr dient die Beschaffenheit des Gehäuses 22 dazu, den Gasstrom im Innern des Gehäuses 22 zu lenken. Diese mittels des Gehäuses 22 geschaffene Tunnelkühlkammer ist Teil des Konzepts zur Schaffung eines gezielt gerichteten Gasstroms zur variablen und effektiven Abkühlung der Strangoberfläche.In the embodiment of Figure 2B the housing 22 is constructed in two parts, with a lower housing section 22a and an upper housing section 22b. One or both housing sections 22a, 22b can be provided so as to be displaceable relative to one another along the thickness direction of the strand 1 in order to adjust the cross section of the tunnel cooling chamber and in particular the position of the gas supply and gas discharge devices described below. The tunnel cooling chamber can be implemented, for example, by overlapping gas baffles for the free movement of the housing sections 22a, 22b, whereby the cross section of the tunnel, ie the format thickness of the cast product, can be adjusted in a structurally simple manner. It is not important here that the tunnel-like lateral sealing of the cast strand 1 by the housing 22 is strictly airtight. Rather, the nature of the housing 22 serves to direct the gas flow in the interior of the housing 22. This tunnel cooling chamber created by means of the housing 22 is part of the concept for creating a targeted gas flow for the variable and effective cooling of the strand surface.

Dazu wird Gas, vorzugsweise Luft, über Gaszufuhreinrichtungen 23 in das Gehäuse 22 eingebracht. Die Gaszufuhreinrichtungen 23 weisen Öffnungen auf, die beispielsweise Kanalenden, Rohranschlüsse oder Düsen sein können, und sind so am oder im Gehäuse 22 angeordnet und ausgerichtet, dass sie einen Gasstrom auf zumindest einen Teil der Strangoberfläche des Gießstrangs 1, etwa auf eine oder beide Hauptflächen, aufbringen können.For this purpose, gas, preferably air, is introduced into the housing 22 via gas supply devices 23. The gas supply devices 23 have openings, which can be channel ends, pipe connections or nozzles, for example, and are arranged and oriented on or in the housing 22 in such a way that they direct a gas flow onto at least part of the strand surface of the cast strand 1, for example onto one or both main surfaces, can raise.

Konkret sind die Gaszufuhreinrichtungen 23 gemäß der in der Figur 2C gezeigten Ausführungsform an der oberen Seite des U-förmig ausgebildeten oberen Gehäuseabschnitts 22b und an der unteren Seite des U-förmig ausgebildeten unteren Gehäuseabschnitts 22a angeordnet. Die Gaszufuhreinrichtungen 23 können regelmäßig, etwa in Reihen und Spalten, oder unregelmäßig angeordnet sein, solange die Strangoberfläche durch diese gezielt mit einem Gas beaufschlagt wird. Dazu können die Gaszufuhreinrichtungen 23 verstellbar vorgesehen sein, verstellbar etwa gemäß ihrer Position, Ausrichtung, ihres Gasabgabewinkels bzw. Strömungskegels.Specifically, the gas supply devices 23 are according to the in FIG Figure 2C The embodiment shown is arranged on the upper side of the U-shaped upper housing section 22b and on the lower side of the U-shaped lower housing section 22a. The gas supply devices 23 can be arranged regularly, for example in rows and columns, or irregularly, as long as a gas is specifically applied to the strand surface. For this purpose, the gas supply devices 23 can be adjusted be provided, adjustable approximately according to their position, orientation, their gas delivery angle or flow cone.

Um das Gas aus dem Innern des Gehäuses 22 abzuführen, sind Gasabfuhreinrichtungen 24 vorgesehen, die an den Seiten der Gehäuseabschnitte 22a, 22b angeordnet sind.In order to discharge the gas from the interior of the housing 22, gas discharge devices 24 are provided which are arranged on the sides of the housing sections 22a, 22b.

Die Gasabfuhreinrichtungen 24 weisen Öffnungen auf, die beispielsweise Kanalenden oder Rohranschlüsse sein können. Die Gasabfuhreinrichtungen 24 können regelmäßig, etwa in Reihen und Spalten, oder unregelmäßig angeordnet sein, solange im Zusammenspiel mit den Gaszufuhreinrichtungen 23 und dem Gehäuse 22 ein gezielter und zeitlich stabiler Gasstrom im Innern des Gehäuses 22 geschaffen wird, der auf definierte Weise zur Oberfläche und/oder entlang der Oberfläche des Strangs 1 verläuft und anschließend rasch abgeführt wird. Dazu werden die Gasabfuhreinrichtungen 24 gemäß einer besonders bevorzugten Ausführungsform mit einem Unterdruck (relativ zum Gehäuseinneren) beaufschlagt, so dass das Gas aktiv abgesaugt wird. Die Gasabfuhreinrichtungen 24 können verstellbar vorgesehen sein, verstellbar etwa gemäß ihrer Position, Ausrichtung und ihres Austrittswinkels.The gas discharge devices 24 have openings which, for example, can be channel ends or pipe connections. The gas discharge devices 24 can be arranged regularly, for example in rows and columns, or irregularly, as long as, in interaction with the gas supply devices 23 and the housing 22, a targeted and temporally stable gas flow is created inside the housing 22, which flows in a defined manner to the surface and / or runs along the surface of the strand 1 and is then quickly removed. For this purpose, according to a particularly preferred embodiment, the gas discharge devices 24 are subjected to a negative pressure (relative to the interior of the housing) so that the gas is actively extracted. The gas discharge devices 24 can be provided in an adjustable manner, adjustable for example according to their position, orientation and their exit angle.

Wie eine aus dem Zusammenspiel aus dem Gehäuse 22, dem Strang 1 und den Gaszufuhr- und Gasabfuhreinrichtungen 23, 24 resultierende gerichtete Strömung aussehen kann, ist in der Figur 2D gezeigt. Die Oberfläche, insbesondere die Hauptflächen, des Gießstrangs 1 wird gezielt mit Gas aus den Öffnungen der Gaszufuhreinrichtungen 23 beaufschlagt. Hierbei ist die Temperatur des Gases geringer als das der Strangoberfläche, vorzugsweise geringer als die Umgebung im Inneren des Gehäuses 22. Vorzugsweise liegt die Temperatur des zugeführten Gases zwischen 5 °C und 80 °C. An den Seitenwänden der Tunnelkühlkammer erfolgt anschließend die gezielte Abfuhr des Gases durch die Öffnungen der Gasabfuhreinrichtungen 24.How a directional flow resulting from the interaction of the housing 22, the line 1 and the gas supply and gas discharge devices 23, 24 can look is shown in FIG Figure 2D shown. The surface, in particular the main surfaces, of the cast strand 1 is acted upon in a targeted manner with gas from the openings of the gas supply devices 23. Here, the temperature of the gas is lower than that of the strand surface, preferably lower than the environment in the interior of the housing 22. The temperature of the gas supplied is preferably between 5 ° C and 80 ° C. The targeted discharge of the gas through the openings of the gas discharge devices 24 then takes place on the side walls of the tunnel cooling chamber.

Die Kühlleistung an der Strangoberfläche wird über den gerichteten Gasstrom erbracht. Hierbei gilt, dass der zur Kühlung wesentliche Wärmeübergangskoeffizient und somit die Kühlleistung von der Strömungsgeschwindigkeit und der Strömungsmenge des zugeführten Gases abhängen. Die gerichtete Gasströmung hat eine erhebliche Wirkung auf die Abkühlung der Strangoberfläche. So sind der Wärmeübergangskoeffizient und damit die Kühlleistung gemäß der dargestellten Ausführungsformen wesentlich höher (bis um das 60- bis 125-fache) als bei ruhenden oder ungeordnet strömenden, etwa turbulenten Gasen.The cooling capacity on the strand surface is provided by the directed gas flow. It applies here that the heat transfer coefficient, which is essential for cooling, and thus the cooling capacity, depend on the flow velocity and the flow rate of the gas supplied. The directed gas flow has a significant effect on the cooling of the strand surface. The heat transfer coefficient and thus the cooling capacity according to the illustrated embodiments are significantly higher (up to 60 to 125 times) than in the case of stationary or randomly flowing, for example turbulent, gases.

Gemäß einer bevorzugten Ausführungsform erfolgt zusätzlich zur beschriebenen Gaskühlung eine Sekundärkühlung mittels einer Flüssigkeit (vorzugsweise Wasser), oder einem Flüssig/Gas-Gemisch (vorzugsweise Wasser/Luft-Gemisch), die/das auf den zu kühlenden Strang 1 gespritzt wird. Bedingt durch eine solche Sekundärkühlung der Strangoberfläche wird ein Dampfgemisch in der Tunnelkühlkammer erzeugt, das anschließend durch die beschriebene Gaskühlung mit zusätzlichem Gas angereichert wird. Der Gasstrom wird, wie in Figur 2D gezeigt, über die Strangoberfläche geleitet, vorzugsweise mit einer Komponente in Richtung der Breitseite, d.h. quer zur Transportrichtung T, und seitlich abgeführt.According to a preferred embodiment, in addition to the gas cooling described, secondary cooling takes place by means of a liquid (preferably water) or a liquid / gas mixture (preferably water / air mixture), which is sprayed onto the strand 1 to be cooled. As a result of such secondary cooling of the strand surface, a vapor mixture is generated in the tunnel cooling chamber, which is then enriched with additional gas by the gas cooling described. The gas flow is, as in Figure 2D shown, passed over the strand surface, preferably with a component in the direction of the broad side, ie transversely to the transport direction T, and removed laterally.

Eine besondere technische Wirkung der Gaskühlung besteht in diesem Fall darin, dass die aufgebrachte Flüssigkeit der Sekundärkühlung, also etwa das Spritzwasser oder Schwallwasser, aktiv von der Strangoberfläche seitlich abgeleitet wird. Dadurch können die Kühlleistung und insbesondere die Gleichförmigkeit der Kühlung entlang der Strangoberfläche weiter verbessert werden.In this case, a special technical effect of the gas cooling is that the applied liquid of the secondary cooling, for example the splash or splash water, is actively diverted laterally from the strand surface. As a result, the cooling performance and in particular the uniformity of the cooling along the strand surface can be further improved.

Wenn mit QGasIn die Gasmenge bezeichnet wird, die durch die Gaszufuhreinrichtungen 23 und die etwaige Sekundärkühlung in das Gehäuse 22 eingebracht wird, und mit QGasOut die Gasmenge bezeichnet wird, die über die Gasabfuhreinrichtungen 24 aus dem Gehäuse 22 abgeführt wird, dann sollte gelten: QGasIn ≤ QGasOut. Damit ist sichergestellt, dass auch der Dampf der Sekundärkühlung über die Gasabfuhreinrichtungen 24 abgeführt wird. Aus diesem Grund wird zur Gasmenge QGasIn auch die Gasmenge einer etwaigen Sekundärkühlung hinzugerechnet. Ferner kann eine Ausgleichsmenge, QAusgl = QGasIn - QGasOut, durch sogenanntes Falschgas entstehen, das eine Gas- oder Luftmenge ist, die über nicht zu schließende Konstruktionsstellen ins Gehäuse 22 eingeleitet wird.If Q GasIn denotes the amount of gas that is introduced into the housing 22 by the gas supply devices 23 and any secondary cooling , and Q GasOut denotes the amount of gas that is passed through the Gas discharge devices 24 is discharged from the housing 22, then the following should apply: Q GasIn Q Q GasOut . This ensures that the steam from the secondary cooling is also discharged via the gas discharge devices 24. For this reason, the amount of gas from any secondary cooling is also added to the amount of gas Q GasIn . Furthermore, a compensating amount , Q Ausgl = Q GasIn - Q GasOut , can be created by so-called false gas, which is a gas or air amount that is introduced into the housing 22 via construction points that cannot be closed.

Die Gaszufuhreinrichtungen 23 können zusätzlich zu den Komponenten, etwa Kanälen und Düsen, einer etwaigen Sekundärkühlung vorgesehen sein. Alternativ können die Komponenten einer Sekundärkühlung zumindest Teilweise zur Gaskühlung genutzt werden, beispielsweise indem die Düsen einer Zweistoffkühlung mit Gas oder einem Flüssig/Gas-Gemisch versorgt werden, wobei das Gas und etwaiger Dampf abgeführt werden, um den gerichteten Gasstrom zu erzeugen.The gas supply devices 23 can be provided in addition to the components, such as channels and nozzles, of any secondary cooling. Alternatively, the components of secondary cooling can be at least partially used for gas cooling, for example by supplying the nozzles of two-component cooling with gas or a liquid / gas mixture, with the gas and any steam being removed in order to generate the directed gas flow.

Die Figur 3 zeigt schematisch den Schnitt durch ein Strangführungssegment 20 der oben beschriebenen Art, eingebettet in ein System zur Steuerung der Gasströmung im Innern des Gehäuses 22. Die Details des Strangführungssegments 20, wie etwa die Zweiteilung des Gehäuses 22 und die Gaszufuhr- und Gasabfuhreinrichtungen 23, 24, werden nicht nochmals im Detail beschrieben, da in der Figur 3 das Prinzip der Steuerung des betreffenden Segments oder Abschnitts im Vordergrund steht.The Figure 3 shows schematically the section through a strand guide segment 20 of the type described above, embedded in a system for controlling the gas flow inside the housing 22. The details of the strand guide segment 20, such as the division of the housing 22 in two and the gas supply and gas discharge devices 23, 24, are not described again in detail because in the Figure 3 the principle of controlling the relevant segment or section is in the foreground.

Gemäß der vorliegenden Ausführungsform sind die Gaszufuhreinrichtungen 23 mit einer Gaszufuhr 33 strömungstechnisch, etwa über ein Leitungssystem 36, verbunden, welche die entsprechenden Öffnungen mit dem zuzuführenden Gas versorgt. Die Gasabfuhreinrichtungen 24 sind mit einer Gasabfuhr 34 strömungstechnisch, etwa über ein Leitungssystem 37, verbunden, die den Abtransport des Gases realisiert. Die Gasabfuhr 34 kann eine Absaugvorrichtung 35, etwa einen Kompressor oder Exhaustor, zum Absaugen des Gases und/oder Dampfes aufweisen. Gesteuert werden die Komponenten über eine Steuerung 40 zur Prozessautomation.According to the present embodiment, the gas supply devices 23 are fluidically connected to a gas supply 33, for example via a line system 36, which supplies the corresponding openings with the gas to be supplied. The gas discharge devices 24 are fluidically connected to a gas discharge 34, for example via a line system 37, which realizes the discharge of the gas. The gas discharge 34 can be a suction device 35, for example a compressor or exhaustor, for sucking off the gas and / or steam. The components are controlled via a controller 40 for process automation.

So kann die Strömung im Inneren der Tunnelkühlkammer, insbesondere die Gasgeschwindigkeit und Gasmenge, flexibel auf die Prozessparameter eingestellt werden. Insbesondere kann die Einstellung für jedes Segment oder Segmentgruppen individuell erfolgen. In Abhängigkeit beispielsweise vom Brammenformat, der Stahlqualität, Gießgeschwindigkeit, Sekundärkühlung, angestrebten Abkühlfunktion und Lage entlang des Transportwegs, von Grundeinstellungen usw. können die Gasmenge, Gasgeschwindigkeit und/oder der Gasdruck des über die Gaszufuhreinrichtungen 23 zuzuführenden Gases eingestellt werden. Analog kann die abzusaugende Gasmenge, etwa der Unterdruck und/oder der Strömungsquerschnitte der Gasabfuhreinrichtungen 24, gemäß einem oder mehreren der obigen Parameter eingestellt werden. Komponenten, die zur Steuerung der Gaszufuhr und Gasabfuhr in Frage kommen, sind beispielsweise: Kanäle, Rohre, Düsen, Ventile, Gebläse, Kompressoren, Exhaustor, Messgeräte, wie etwa Druckmesser, Volumenmesser und/oder Geschwindigkeitsmesser.In this way, the flow inside the tunnel cooling chamber, in particular the gas velocity and amount of gas, can be flexibly adjusted to the process parameters. In particular, the setting can be made individually for each segment or segment groups. Depending on, for example, the slab format, steel quality, casting speed, secondary cooling, desired cooling function and position along the transport path, basic settings, etc., the gas quantity, gas speed and / or the gas pressure of the gas to be supplied via the gas supply devices 23 can be set. Similarly, the amount of gas to be sucked off, for example the negative pressure and / or the flow cross-sections of the gas discharge devices 24, can be set according to one or more of the above parameters. Components that can be used to control the gas supply and discharge are, for example: channels, pipes, nozzles, valves, blowers, compressors, exhaustors, measuring devices such as pressure gauges, volumetric meters and / or speedometers.

Die Steuerung erfolgt vorzugsweise rechnergestützt, sie kann mittels einer Software realisiert werden, die, wenn sie auf einem Computer ausgeführt wird, die entsprechenden Verfahrensschritte veranlasst. Die Steuerung kann zentral oder dezentral organisiert sein, autark arbeiten oder mittels moderner Informations- und Kommunikationstechniken vernetzt sein.The control is preferably computer-aided; it can be implemented by means of software which, when executed on a computer, initiates the corresponding process steps. The control can be organized centrally or decentrally, work independently or be networked using modern information and communication technology.

Die oben dargelegte Gaskühlung, die durch das Zusammenspiel zwischen dem Gehäuse 22, dem Strang 1 und den Gaszufuhr- und Gasabfuhreinrichtungen 23, 24 realisiert wird, kann abschnittsweise entlang des Transportwegs des Gießstrangs 1 vorgesehen sein. Auch wenn vorzugsweise Luft zur Kühlung verwendet wird, können auch andere Gase oder Gasgemische zum Einsatz kommen, so etwa Sauerstoff, Stickstoff, Wasserstoff oder andere Gase, vorzugsweise Inertgase. Das Einbringen des Gases kann auf die Strangoberseite und/oder Strangunterseite gerichtet erfolgen.The gas cooling set out above, which is implemented by the interaction between the housing 22, the strand 1 and the gas supply and gas discharge devices 23, 24, can be provided in sections along the transport path of the cast strand 1. Even if air is preferably used for cooling, other gases or gas mixtures can also be used come such as oxygen, nitrogen, hydrogen or other gases, preferably inert gases. The introduction of the gas can be directed towards the upper side of the strand and / or the underside of the strand.

Die beschriebene Gaskühlung kommt in einer Stranggießanlage zur Anwendung. Hierbei kann es sich beispielsweise um folgende Bauformen handeln: Senkrecht-Abbiegeanlage, Bogenanlage, Vertikalbrammenanlage. Eine Beschränkung darauf besteht jedoch nicht. Die Gaskühlung ist besonders vorteilhaft anwendbar für gegossene Brammen der Breite von 1.000 mm bis 4.000 mm, Dicke von 40 mm bis 700 mm, Gießgeschwindigkeit von 0,1 bis 10 m/min und Strangführungslänge von 1 bis 50 m, wobei im Falle der segmentartigen Führung als Strangführungslänge die Länge vom ersten Segment unterhalb der Kokille bis zum letzten Segment zu verstehen ist. Nach Durchlaufen des letzten Segments oder allgemeiner der Stranggießanlage, kann der Strang weiterverarbeitet werden, etwa gewalzt und/oder geschnitten werden.The gas cooling described is used in a continuous caster. This can be, for example, the following types of construction: vertical bending system, arch system, vertical slab system. However, there is no restriction to this. The gas cooling can be used particularly advantageously for cast slabs with a width of 1,000 mm to 4,000 mm, a thickness of 40 mm to 700 mm, a casting speed of 0.1 to 10 m / min and a strand guide length of 1 to 50 m, with the segment-like guide the strand guide length is to be understood as the length from the first segment below the mold to the last segment. After passing through the last segment or, more generally, the continuous caster, the strand can be further processed, for example rolled and / or cut.

BezugszeichenlisteList of reference symbols

11
GießstrangCast strand
22
StrangführungStrand guide
33
GießpfanneLadle
44th
ZwischenbehälterIntermediate container
55
KokilleMold
1010
StrangführungssegmentStrand guide segment
1111
Rollenroll
2020th
StrangführungssegmentStrand guide segment
2121st
Rollenroll
2222nd
Gehäusecasing
22a22a
unterer Gehäuseabschnittlower housing section
22b22b
oberer Gehäuseabschnittupper housing section
2323
GaszufuhreinrichtungGas supply device
2424
GasabfuhreinrichtungGas discharge device
3333
GaszufuhrGas supply
3434
GasabfuhrGas discharge
3535
AbsaugvorrichtungSuction device
3636
Leitungssystem für die GaszufuhrPiping system for the gas supply
3737
Leitungssystem für die GasabfuhrPipe system for gas discharge
4040
Steuerungcontrol
TT
Transportrichtung des StrangsDirection of transport of the strand

Claims (13)

  1. Device for cooling a cast strip (1) in a continuous casting plant, which comprises a housing (22), one or more gas feed devices (23) for introduction of a gas, preferably air, into the housing (22) and one or more gas discharge devices (24) for discharge of the gas from the housing (22), wherein
    the housing (22) is of tunnel-like construction so that the cast strip (1) is, for cooling, transportable in a transport direction (T) through the housing (22), and
    the gas feed devices (23) are arranged so as to act on at least part of the surface of the cast strip (1) by the gas and the gas discharge devices (24) are arranged to discharge the gas from the interior of the housing (22) so that one or more directional gas flow paths can be formed in the interior of the housing (22) and impinge on at least a part of the surface of the cast strip (1) and/or travel along at least a part of the surface of the cast strip (1),
    characterised in that
    the cast strip (1) has a rectangular cross-section, wherein the surfaces of the two longer sides of the strip cross-section are principal surfaces, whereas the two surfaces along the thickness direction of the cast strip (1) are subordinate surfaces, and the gas feed devices (23) have openings which are opposite the principal surfaces of the cast strip (1) and the gas discharge devices (24) have openings which are opposite the subordinate surfaces of the cast strip (1).
  2. Device according to claim 1, characterised in that the housing (22) is of multi-part, preferably two-part, construction, whereby the housing (22) comprises several housing sections (22a, 22b) and at least one housing section (22b) is so adjustable that the cross-section of the housing (221) is variable perpendicularly to the transport direction (T).
  3. Device according to claim 1 or 2, characterised in that the gas feed devices (23) and gas discharge devices (24) are so arranged that the gas flow paths have a component in the width direction of the cast strip (1).
  4. Device according to any one of the preceding claims, characterised in that one or more of the gas feed devices (23) and/or gas discharge devices (24) is or are adjustable so that one or more of the gas flow paths is or are settable, preferably in that the flow speed and/or the position of one or more of the gas flow paths is or are settable.
  5. Device according to any one of the preceding claims, characterised in that one or more of the gas discharge devices (24) is or are arranged to suck the gas from the interior of the housing (22).
  6. Device according to anyone of the preceding claims, characterised in that this further comprises secondary cooling means with secondary cooling nozzles which are arranged to apply a liquid, preferably water, or a liquid/gas mixture, preferably water/air mixture, to the cast strip (1), wherein the gas discharge devices (24) are arranged to discharge, apart from the air from the gas feed devices (23), also vapour that has arisen due to the secondary cooling.
  7. Device according to any one of the preceding claims, characterised in that it comprises rollers (21) for transport of the cast strip (1), wherein the gas feed devices (23) are preferably arranged between the rollers (21) as seen in transport direction.
  8. Device according to any one of the preceding claims, characterised in that it is of modular construction so that it forms a segment (20) which can be extended by further segments (20) and is flexibly usable along the transport path of the cast strip (1).
  9. Method of cooling a cast strip (1) in a continuous casting plant, which comprises:
    transporting a cast strip in a transport direction (T) through a housing (22) which surrounds the cast strip (1) in tunnel-like manner;
    introducing a gas, preferably air, by means of one or more gas feed devices (23) into the housing (22) so that at least a part of the surface of the cast strip (1) is acted on by the gas; and
    discharging the gas from the interior of the housing (22) by means of one or more gas discharge devices (24) so that one or more directional gas flow paths which impinge on at least a part of the surface of the cast strip (1) and/or run along at least a part of the surface of the cast strip (1) is or are formed in the interior of the housing (22),
    characterised in that
    the cast strip (1) has a rectangular cross-section, wherein the surfaces of the two longer sides of the strip cross-section are principal surfaces, whereas the two surfaces along the thickness direction of the cast strip (1) are subordinate surfaces, and the gas feed devices (23) have openings which are opposite the principal surfaces of the cast strip (1) and the gas discharge devices (24) have openings which are opposite the subordinate surfaces of the cast strip (1).
  10. Method according to claim 9, characterised in that the gas has a temperature between 5° C and 80° C.
  11. Method according to claim 9 or 10, characterised in that one or more of the gas feed devices (23) and/or gas discharge devices (24) is or are adjusted so as to set one or more of the gas flow paths, wherein preferably the flow speed and/or the position of one or more of the gas flow paths is or are set.
  12. Method according to any one of claims 9 to 11, characterised in that the housing (22) is of multi-part, preferably two-part, construction, whereby the housing (22) has a plurality of housing sections (22a, 22b), and at least one housing section (22b) is adjusted so that the cross-section of the housing (22) perpendicularly to the transport direction (T) is varied.
  13. Method according to any one of claims 9 to 12, characterised in that the method is carried out with a device according to any one of claims 1 to 9.
EP18175910.1A 2017-06-08 2018-06-05 Air cooling in continuous casting plants Active EP3412377B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102017209731.0A DE102017209731A1 (en) 2017-06-08 2017-06-08 Air cooling in continuous casting plants

Publications (2)

Publication Number Publication Date
EP3412377A1 EP3412377A1 (en) 2018-12-12
EP3412377B1 true EP3412377B1 (en) 2020-11-11

Family

ID=62530151

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18175910.1A Active EP3412377B1 (en) 2017-06-08 2018-06-05 Air cooling in continuous casting plants

Country Status (2)

Country Link
EP (1) EP3412377B1 (en)
DE (1) DE102017209731A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109877288B (en) * 2019-04-01 2021-03-16 包头钢铁(集团)有限责任公司 Control process method for central equiaxial crystal rate of oriented silicon steel casting blank
CN111906267B (en) * 2020-07-28 2021-10-22 北京科技大学 Method and system for cooling full gas in continuous casting secondary cooling section
DE102023206241A1 (en) 2022-07-27 2024-02-01 Sms Group Gmbh Method and strand guiding device for operating a cooling chamber
EP4321274A1 (en) 2022-07-27 2024-02-14 SMS Group GmbH Method and strand guiding device for operating a cooling chamber

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07100220B2 (en) * 1987-12-24 1995-11-01 石川島播磨重工業株式会社 Twin roll continuous casting method
DE19542180C1 (en) * 1995-11-03 1997-04-03 Mannesmann Ag Method and device for guiding strands of a continuous caster
AUPN733095A0 (en) * 1995-12-22 1996-01-25 Bhp Steel (Jla) Pty Limited Twin roll continuous caster
AT411025B (en) * 2002-02-27 2003-09-25 Voest Alpine Ind Anlagen DEVICE FOR CONTINUOUSLY POOLING METAL MELT
DE102011003194A1 (en) 2010-05-19 2011-11-24 Sms Siemag Ag roller device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3412377A1 (en) 2018-12-12
DE102017209731A1 (en) 2018-12-13

Similar Documents

Publication Publication Date Title
EP3412377B1 (en) Air cooling in continuous casting plants
EP3122492B2 (en) Semi-continuous casting of a steel ingot
EP2288458B1 (en) Strand guide segment
DE102006056683A1 (en) Continuous casting of metal profiles, first cools cast strip then permits thermal redistribution to re-heat surface before mechanical deformation
EP1761349B1 (en) Continuous casting plant and method for optionally casting a large metal billet or a maximum of two narrower metal billets
WO2013000841A1 (en) Method for strand casting a cast strand, and strand casting system
EP3016762B1 (en) Cast-rolling installation and method for producing metallic rolled stock
CH663165A5 (en) CASTING MACHINE FOR CONTINUOUSLY casting METAL AND METHOD FOR THE OPERATION THEREOF.
EP3993921B1 (en) Melt supply for strip casting systems
DE19823440C1 (en) Method and device for the near-dimensional casting of metal
AT519697A1 (en) Process for the continuous production of steel strip
EP3705202B1 (en) Conversion of a continuous casting plant for billet or bloom strands
EP3223979B1 (en) Continuous casting installation for thin slabs
DE112008000152T5 (en) diverter
EP1827735B1 (en) Method and device for continuous casting of metals
WO2022058152A1 (en) Method and spraying apparatus for thermal surface treatment of a metal product
DE102007055346A1 (en) Casting machine with a device for application to a casting belt
EP0858374B1 (en) Method and device for guiding cast billets in a continuous casting facility
EP2188080A1 (en) Casting device
EP1951631B1 (en) Finish cooling unit for container glass machines and method for cooling the finish of a glass container during parison molding in a container glass machine
EP1897636B1 (en) Continuous casting machine and method
EP1360023A1 (en) Installation for producing a hot-rolled strip
EP1337365B1 (en) Strand guide of a continuous casting installation comprising a device for secondary cooling
DE102008005727B3 (en) Feeding device for a molten metal and a belt casting device equipped with such a device
DE10357435B4 (en) Device for transporting and cooling a metal strand

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17P Request for examination filed

Effective date: 20180605

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17Q First examination report despatched

Effective date: 20181120

17Q First examination report despatched

Effective date: 20181126

17Q First examination report despatched

Effective date: 20181128

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200609

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1332968

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018002962

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20201111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210212

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210211

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210311

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210211

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210311

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018002962

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210605

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210630

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210605

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210311

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210630

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220605

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220605

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20180605

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230620

Year of fee payment: 6

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230707

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111