EP3408880A1 - Method for producing ceramic cathode layers on current collectors - Google Patents
Method for producing ceramic cathode layers on current collectorsInfo
- Publication number
- EP3408880A1 EP3408880A1 EP16819818.2A EP16819818A EP3408880A1 EP 3408880 A1 EP3408880 A1 EP 3408880A1 EP 16819818 A EP16819818 A EP 16819818A EP 3408880 A1 EP3408880 A1 EP 3408880A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- lithium
- coating
- cobalt
- reducing atmosphere
- ceramic material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000000919 ceramic Substances 0.000 title claims abstract description 17
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 13
- 238000000576 coating method Methods 0.000 claims abstract description 48
- 239000011248 coating agent Substances 0.000 claims abstract description 46
- 239000012298 atmosphere Substances 0.000 claims abstract description 32
- 239000000725 suspension Substances 0.000 claims abstract description 30
- 229910010293 ceramic material Inorganic materials 0.000 claims abstract description 21
- 239000007795 chemical reaction product Substances 0.000 claims abstract description 19
- 238000005245 sintering Methods 0.000 claims abstract description 19
- 239000000758 substrate Substances 0.000 claims abstract description 14
- 239000000203 mixture Substances 0.000 claims abstract description 13
- 230000002829 reductive effect Effects 0.000 claims abstract description 12
- 238000010405 reoxidation reaction Methods 0.000 claims abstract description 12
- 238000010438 heat treatment Methods 0.000 claims abstract description 8
- 230000001590 oxidative effect Effects 0.000 claims abstract description 7
- 239000000375 suspending agent Substances 0.000 claims abstract description 7
- 230000008018 melting Effects 0.000 claims abstract description 6
- 238000002844 melting Methods 0.000 claims abstract description 6
- 238000000034 method Methods 0.000 claims description 66
- BFZPBUKRYWOWDV-UHFFFAOYSA-N lithium;oxido(oxo)cobalt Chemical compound [Li+].[O-][Co]=O BFZPBUKRYWOWDV-UHFFFAOYSA-N 0.000 claims description 50
- 229910000625 lithium cobalt oxide Inorganic materials 0.000 claims description 44
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 24
- 229910052744 lithium Inorganic materials 0.000 claims description 24
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 14
- 239000010941 cobalt Substances 0.000 claims description 13
- 229910017052 cobalt Inorganic materials 0.000 claims description 13
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 13
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 claims description 11
- GQYHUHYESMUTHG-UHFFFAOYSA-N lithium niobate Chemical compound [Li+].[O-][Nb](=O)=O GQYHUHYESMUTHG-UHFFFAOYSA-N 0.000 claims description 11
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 10
- 229910052808 lithium carbonate Inorganic materials 0.000 claims description 10
- 229910052760 oxygen Inorganic materials 0.000 claims description 10
- 239000001301 oxygen Substances 0.000 claims description 10
- 239000007784 solid electrolyte Substances 0.000 claims description 10
- 150000001869 cobalt compounds Chemical class 0.000 claims description 9
- 239000002245 particle Substances 0.000 claims description 9
- 229910052786 argon Inorganic materials 0.000 claims description 7
- 150000003839 salts Chemical class 0.000 claims description 7
- 238000000280 densification Methods 0.000 claims description 6
- 238000009826 distribution Methods 0.000 claims description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 4
- 239000000155 melt Substances 0.000 claims description 4
- RJEIKIOYHOOKDL-UHFFFAOYSA-N [Li].[La] Chemical compound [Li].[La] RJEIKIOYHOOKDL-UHFFFAOYSA-N 0.000 claims description 3
- 239000007788 liquid Substances 0.000 claims description 3
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N Propionic acid Chemical class CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 claims description 2
- 229910052783 alkali metal Inorganic materials 0.000 claims description 2
- 150000001340 alkali metals Chemical class 0.000 claims description 2
- 229910052791 calcium Inorganic materials 0.000 claims description 2
- 239000011575 calcium Substances 0.000 claims description 2
- 150000007942 carboxylates Chemical class 0.000 claims description 2
- 229910000428 cobalt oxide Inorganic materials 0.000 claims description 2
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 claims description 2
- 229910052742 iron Inorganic materials 0.000 claims description 2
- 229910052759 nickel Inorganic materials 0.000 claims description 2
- 150000002823 nitrates Chemical class 0.000 claims description 2
- 229910052574 oxide ceramic Inorganic materials 0.000 claims description 2
- 239000011224 oxide ceramic Substances 0.000 claims description 2
- 238000005524 ceramic coating Methods 0.000 claims 1
- 239000000126 substance Substances 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 56
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 14
- 239000000843 powder Substances 0.000 description 12
- 239000002131 composite material Substances 0.000 description 11
- 229910001416 lithium ion Inorganic materials 0.000 description 10
- 239000007787 solid Substances 0.000 description 10
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 9
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 8
- 238000007596 consolidation process Methods 0.000 description 8
- 239000007789 gas Substances 0.000 description 8
- 238000004544 sputter deposition Methods 0.000 description 8
- 239000011230 binding agent Substances 0.000 description 7
- 229910002092 carbon dioxide Inorganic materials 0.000 description 7
- 239000001569 carbon dioxide Substances 0.000 description 7
- 239000003792 electrolyte Substances 0.000 description 6
- 239000011888 foil Substances 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 239000002105 nanoparticle Substances 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- 238000000151 deposition Methods 0.000 description 5
- 239000006185 dispersion Substances 0.000 description 5
- 239000010408 film Substances 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 239000002243 precursor Substances 0.000 description 5
- 238000003860 storage Methods 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 230000008021 deposition Effects 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- -1 lithium hexafluorophosphate Chemical compound 0.000 description 4
- FUJCRWPEOMXPAD-UHFFFAOYSA-N lithium oxide Chemical group [Li+].[Li+].[O-2] FUJCRWPEOMXPAD-UHFFFAOYSA-N 0.000 description 4
- 229910001947 lithium oxide Inorganic materials 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 238000005979 thermal decomposition reaction Methods 0.000 description 4
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 3
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 239000010406 cathode material Substances 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- 239000011651 chromium Substances 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 238000003980 solgel method Methods 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 2
- 239000005977 Ethylene Substances 0.000 description 2
- AMQJEAYHLZJPGS-UHFFFAOYSA-N N-Pentanol Chemical compound CCCCCO AMQJEAYHLZJPGS-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 238000000231 atomic layer deposition Methods 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- TZWGXFOSKIHUPW-UHFFFAOYSA-L cobalt(2+);propanoate Chemical class [Co+2].CCC([O-])=O.CCC([O-])=O TZWGXFOSKIHUPW-UHFFFAOYSA-L 0.000 description 2
- 238000005056 compaction Methods 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 2
- 238000007598 dipping method Methods 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000007641 inkjet printing Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000004530 micro-emulsion Substances 0.000 description 2
- 238000007645 offset printing Methods 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 238000004528 spin coating Methods 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 235000012431 wafers Nutrition 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- FJLUATLTXUNBOT-UHFFFAOYSA-N 1-Hexadecylamine Chemical compound CCCCCCCCCCCCCCCCN FJLUATLTXUNBOT-UHFFFAOYSA-N 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- 229910013641 LiNbO 3 Inorganic materials 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- CXOWYMLTGOFURZ-UHFFFAOYSA-N azanylidynechromium Chemical compound [Cr]#N CXOWYMLTGOFURZ-UHFFFAOYSA-N 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000012876 carrier material Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 239000006255 coating slurry Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000001659 ion-beam spectroscopy Methods 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 239000002346 layers by function Substances 0.000 description 1
- 150000002642 lithium compounds Chemical class 0.000 description 1
- 229910003002 lithium salt Inorganic materials 0.000 description 1
- 159000000002 lithium salts Chemical class 0.000 description 1
- AXMOZGKEVIBBCF-UHFFFAOYSA-M lithium;propanoate Chemical compound [Li+].CCC([O-])=O AXMOZGKEVIBBCF-UHFFFAOYSA-M 0.000 description 1
- 238000009766 low-temperature sintering Methods 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 239000008204 material by function Substances 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- RMIODHQZRUFFFF-UHFFFAOYSA-N methoxyacetic acid Chemical compound COCC(O)=O RMIODHQZRUFFFF-UHFFFAOYSA-N 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- ZTILUDNICMILKJ-UHFFFAOYSA-N niobium(v) ethoxide Chemical compound CCO[Nb](OCC)(OCC)(OCC)OCC ZTILUDNICMILKJ-UHFFFAOYSA-N 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 150000002843 nonmetals Chemical class 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 238000003746 solid phase reaction Methods 0.000 description 1
- 238000010671 solid-state reaction Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- RIUWBIIVUYSTCN-UHFFFAOYSA-N trilithium borate Chemical compound [Li+].[Li+].[Li+].[O-]B([O-])[O-] RIUWBIIVUYSTCN-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0471—Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1391—Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/664—Ceramic materials
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the invention relates to a novel production method of ceramic cathode layers on current collectors, in particular for lithium-ion batteries.
- Li-ion batteries One of the most commonly used cathode materials in commercial lithium-ion batteries is currently lithium cobalt dioxide, hereinafter referred to as lithium cobalt oxide (LCO), due to its high storage capacity and good electrochemical behavior.
- LCO lithium cobalt oxide
- this material is first mixed in powder form with conductive carbon, such as graphite or carbon black, and a polymeric binder, such as polyvinylidene fluoride, which, inter alia, helps to compensate for the volume change during charging and discharging of the active material rolled in the form of a paste on a metal foil, which serves as a current collector.
- an organic, liquid eg, lithium hexafluorophosphate in ethylene and dimethyl carbonate
- polymer eg, lithium salts in polyethylene oxide
- the cathode and the electrolyte consist of a ceramic solid, which, combined with an anode made of metallic lithium or a lithium-absorbing solid, such as elemental silicon, a high degree of operational reliability, and a significantly improved cycle stability guaranteed.
- a prerequisite for the production of this type of batteries are process steps which enable both a sufficient densification of the functional layers and a good ionic and optionally electron-conducting connection within the layers and across the layer boundaries.
- the object of the invention is to provide a simple process for producing a ceramic all-layer cathode, without carbon-based additives for improving the electron and ion conductivity, for the construction of lithium-ion batteries.
- the inventive method should advantageously also allow a variable thickness of the prepared cathode layer, which can be applied to an electrically conductive substrate.
- the method according to the invention should also make it possible for the cathode layer to be advantageously produced without detrimentally damaging the electrically conductive substrate.
- the method should allow the cathode layer to be added to improve the achievable current densities with a solid electrolyte and thus deposited as a composite electrode.
- the object is achieved by a reactive low-temperature sintering of a ceramic material in a two-stage process with different reactor atmospheres.
- the coating of an electrically conductive carrier material is carried out with a coating suspension in the form of slips or pastes comprising the ceramic material.
- the coating can be done at room temperature. After removal of the solvent by drying below 200 ° C., a non-sintered layer, which may still contain organic binder portions, is given the so-called green sheet.
- this green sheet is subsequently heated in a reducing atmosphere.
- the ceramic material completely or partially converts into at least one reaction product, which can melt on further temperature increase up to 1200 ° C and thereby causes a compaction of the coating layer.
- the temperature should be increased to more than 100 ° C above the melting point of this reaction product in this consolidation or compression step to prevent thermal decomposition of further reaction products or irreversible change of the electrically conductive substrate.
- reaction product which is first melted and compacted in the first process step, is converted back into the starting composition of the ceramic material.
- This reoxidation step can be carried out either directly by a simple change of the atmosphere from reducing to oxidizing at the same temperature as in the first process step or by a separate process step in the temperature range between 400 ° C and 1200 ° C.
- the two process steps can be carried out in a reactor.
- the grain sizes of the ceramic powder used in the coating suspensions are in principle not limited. In the context of this invention, however, powders with a narrow particle size distribution whose D 50 values are less than 1 ⁇ m are used in order to obtain the highest possible densification of the cathode layers.
- a coating method for applying the ceramic layer with a uniform layer thickness on a metallic support can in principle all known methods such as casting, drawing, spin coating, dipping, ink jet or offset printing of these coating suspensions are used on the metallic current collectors.
- the layer thicknesses that can be achieved in this case are not subject to any restrictions.
- cathode layer As a ceramic material for the cathode layer, all previously conventional cathode materials, for example, calcium or alkali metal-containing iron, nickel and cobalt-based oxide ceramics, such as lithium cobalt oxide, can be used.
- the inventive method is not limited in principle to the sintering of cathode layers on electrically conductive metallic or ceramic substrates, but can also be used for the densification of ceramic moldings.
- the sintered ceramic material may also have a heterogeneous composition in the form of a composite, provided that at least a portion of the ceramic material in the reductive first process step can be converted into a meltable reaction product necessary for consolidation and sintering.
- the coating of a metallic Marshmate- rials with a coating suspension in the form of slips or pastes comprising predominantly powdered, commercial lithium cobalt dioxide (LiCo0 2 ) takes place as a ceramic material, hereinafter referred to briefly lithium cobalt oxide or LCO.
- the coating can be done at room temperature. After removal of the solvent by drying below 200 ° C., a non-sintered organic binder content, if appropriate still containing organic binder, is obtained, the so-called green sheet.
- this green sheet is then heated in a reducing atmosphere, which optionally contains carbon dioxide, to temperatures of about 700 ° C.
- a reducing atmosphere which optionally contains carbon dioxide
- the trivalent cobalt in the lithium cobalt oxide is reduced completely or only to the surface of the powder grains to metallic cobalt.
- the by-product is lithium oxide, which is converted into lithium carbonate with carbon dioxide, which is either added to the reactor atmosphere or is generated in situ from the thermal decomposition of the binder constituents admixed in the coating suspension.
- the subsequently set sintering temperature should regularly be even higher, but below 1000 ° C, to suppress excessive thermal decomposition of the lithium carbonate and evaporation of the lithium oxide formed thereby. Otherwise, this would disadvantageously lead to lithium depletion of the resulting layer. Preference is therefore given to sintering temperatures below 850 ° C. and particularly preferably sintering temperatures of around 800 ° C.
- the metallic cobalt is oxidized back to cobalt oxide in a second step by adding oxygen, preferably in the reactor atmosphere, which reacts with the lithium carbonate in a solid state reaction with release of carbon dioxide to lithium cobalt oxide.
- This final reoxidation step can be carried out either directly by a simple change of the reactor atmosphere from reducing to oxidizing at the same temperature as in the first process step or by a separate process step in the temperature range between 400 ° C and 1000 ° C.
- the particle sizes of the lithium cobalt oxide powder used in the coating suspensions are in principle not restricted.
- powders with a narrow particle size distribution whose D 50 values are less than 1 ⁇ m are used in order to obtain the highest possible densification of the cathode layers.
- a coating method for applying the lithium cobalt oxide-based layer having a uniform layer thickness on a metallic support basically all known methods, such as casting, drawing, spin coating, dipping, ink jet or offset printing of these coating suspensions on the metallic current collectors can be used.
- the layer thicknesses which can be achieved in this case are in principle not limited.
- the coating suspension is additionally admixed with lithium and cobalt compounds or their salts, which are soluble in the suspending agent used.
- the melt of lithium carbonate and metallic cobalt required for consolidating the LCO layer in the first method step is predominantly formed from these compounds, so that Excessive or complete dissolution of the LCO powder grains is not necessary to consolidate the layer.
- these metal compounds in the coating suspensions regularly act as a binder, which provide the necessary compaction of the green sheets and thus makes the addition of organic binder systems superfluous.
- soluble salts of these metals such as, for example, nitrates, can be used here, but preferably carboxylates and particularly preferably propionates, which form carbon dioxide under pyrolysis under a reducing atmosphere and thus permit the formation of lithium carbonate.
- Carbon dioxide addition to the reducing atmosphere is not necessary in this case.
- carbon dioxide could alternatively be mixed with the reducing gas, for example the reactor gas, in the first part process, the reducing sintering, in order to ensure the formation of molten lithium carbonate.
- the reducing gas for example the reactor gas
- the proportions of the lithium and cobalt compounds admixed in the coating suspension should correspond here to the stoichiometric lithium to cobalt ratio of the LCO in order to obtain the greatest possible phase-pure product after the reoxidation in the second process step.
- the coating suspension but lithium in the form of the lithium compound used can also be mixed in a stoichiometric manner in order to compensate for any lithium losses.
- Different metals usually also have a different capacity for Li. This also applies to non-metals as a current collector.
- high temperatures above 800 ° C and long sintering time
- the mass fractions of these soluble lithium and cobalt compounds, or their salts in the coating suspension are basically not limited, but are typically between 5 and 30 wt .-%.
- About 20% by weight, based on the total mass of LCO, in the coating slip in the form of the lithium and cobalt compounds is preferably admixed, this solid fraction being calculated as the LCO mass equivalent after the reductive decomposition of these precursors and subsequent reoxidation.
- the amount by mass of only about 10 wt .-% is used to a To prevent excessive gas formation in the consolidation of the green sheets in the first process step, which can lead to the formation of cracks in the sintered layers.
- the coating suspension is admixed with a solid electrolyte, such as, for example, lithium niobate or lithium lanthanum zirconate, which improves the lithium ion conductivity within the sintered cathode layer and thus the achievable current densities of a battery equipped with this cathode increased to the same extent.
- a solid electrolyte such as, for example, lithium niobate or lithium lanthanum zirconate, which improves the lithium ion conductivity within the sintered cathode layer and thus the achievable current densities of a battery equipped with this cathode increased to the same extent.
- the proportion by weight of the solid electrolyte based on the LCO mass is basically not limited. But it should be below 50 wt .-% to ensure a sufficiently high capacity of the resulting cathode layer.
- the particle sizes of the solid electrolyte used are in principle not limited, but preference is given to powders having a narrow particle size distribution whose D 50 values are less than 1 m in order to obtain the highest possible distribution and thus effectiveness in the cathode layer. For this reason, however, particular preference is given to using nanoparticles of this compound which, in the form of a dispersion, can be mixed in a particularly simple manner with the coating suspension.
- the oxygen partial pressure in the reactor atmosphere in the reducing sintering in the first process step should be less than 1000 ppm, but preferably less than 1 ppm and more preferably less than 0.1 ppm.
- the oxygen content in the furnace gas in the reoxidation of the consolidated layers in the second process step should be greater than 1000 ppm, preferably greater than 10000 ppm, and more preferably greater than 100000 ppm.
- metals and their alloys can be used as current collector substrates which do not form any function-reducing reaction products during the sintering process and which have only a low or no absorption capacity for lithium.
- temperature and oxidation resistant stainless steels such as Aluchrom HF of material number 1.4767 or metallic chromium are used and more preferably thin films of 1.4767 which have been coated with a submicron chromium layer.
- the method is not limited to the production of sintered LCO layers on metallic carrier films, but can be used wherever a fusible reaction product is formed by a reductive conversion of a ceramic material, which is used to densify the material and in which subsequent reoxidation is re-formed back to the original composition.
- the sintered materials may be ceramic shaped bodies as well as layers on substrates of metallic or ceramic origin.
- a sintering of composite materials with a heterogeneous composition is also possible, with at least one component providing the meltable reaction product necessary for the consolidation in the reductive process step.
- these composite materials can also be produced by the use of soluble metal precursors in the coating suspensions which, after the pyrolytic decomposition and subsequent oxidation in the second process step, have a different composition than the second originally pulverulent component.
- An essential feature of the invention is the reactive consolidation of the deposited green sheets in the first process step, which requires a reductive reactor atmosphere. For this reason, careful adjustment and, if appropriate, monitoring of the oxygen partial pressure in the reactor gas is necessary in this process step. It should also be noted that the sintered lithium cobalt oxide layers are hygroscopic, so that they should be transported or stored under a protective gas atmosphere.
- the LCO layer is also admixed with a solid electrolyte to increase the achievable current densities in a lithium ion battery produced in the form of electrolyte nanoparticles.
- the synthesis of these nanoparticles can be carried out in a particularly simple manner by a sol-gel process, in the moisture-sensitive precursors are used. The person skilled in the art should therefore have facilities available that allow him to prepare these nanoparticles under protective gas.
- the sintered ceramic materials may be both ceramic shaped bodies and layers whose substrates are of metallic or ceramic origin.
- the sintered ceramic materials can have a heterogeneous composition in the form of a composite, wherein at least one component provides the meltable reaction product required for consolidation and sintering in the reductive first process step.
- a preparation according to the invention of firmly adhering sintered lithium cobalt oxide-based cathode layers on metallic current collector foils which still contain a solid electrolyte in the form of lithium niobate to increase the achievable current densities can be effected in a simple manner by spray coating of Aluchrom HF stainless steel foils of the material number 1.4767 with a thickness of 50 ⁇ , carried out over coating suspensions containing predominantly commercial LCO powder. This is followed by reactive consolidation at 800 ° C. under a reductive atmosphere and subsequent reoxidation with oxygen at the same temperature.
- the Aluchrom HF sheet was first sputtered by a radio frequency magnetron sputtering process first reactive with a 200 nm thick chromium nitride layer and then with an approximately 50 nm thick chromium layer.
- a particularly suitable for the coating slurry having a solids content of 35 wt .-% contains in addition to ground commercial LCO powder with a D 50 value of about 1 ⁇ and lithium niobate nanoparticles nor a mixture of lithium and cobalt propionates, the mass ratio of 80/10/10 wt .-% were used, wherein the solids content of the propionate precursor was calculated on the LCO mass equivalent after the reductive calcination and subsequent reoxidation of a stoichiometric mixture.
- the preparation of the required lithium niobate (LNO) nanoparticles which could be obtained directly as a stable dispersion via a microemulsion-supported synthesis, can be described as follows: For the synthesis of 100 g of a lithium niobate (LiNbO 3 ) - Dispersion having a typical solids content of 5% by weight, 0.235 g of metallic lithium and 10.763 g of freshly distilled niobium pentaethoxide are dissolved at room temperature under argon in 70.83 g of methanol.
- this moisture-sensitive precursor solution with a stoichiometric amount of water is carried out by slow dropwise addition of 18.173 g of a microemulsion consisting of 2.72% by weight of hexadecylamine, 3.57% by weight of methoxyacetic acid, 10.06% by weight. % of distilled water, 7.76 g of 1-pentanol and 75.89% by weight of cyclohexane.
- an optically isotropic, almost water-clear lithium niobate dispersion having a practically monodisperse particle size distribution and an average particle diameter of 3 nm is obtained directly.
- a coating suspension according to the invention having a solids content of 35% by weight For the preparation of 100 g of a coating suspension according to the invention having a solids content of 35% by weight, 28 g of commercial LCO powder which has been ground down by means of a ball mill to an average particle size of about 1 ⁇ m (D 50 value) are used , 34 g of cobalt (II) propionate and 3.29 g of lithium propionate (15 wt .-% excess to compensate for lithium losses during the sintering process) dissolved or suspended in about 50 g of methanol. 70 g of the lithium niobate dispersion having a solids content of 5% by weight are added dropwise to this suspension, and the mixture is stirred for about 24 hours.
- the reactive consolidation of the LCO green sheets is carried out in the first process step by rapidly heating the composite material to 800 ° C. in a gas-tight oven at a heating rate of about 20 ° C. s under flowing argon at a flow rate of about 10 cm / min and an oxygen partial pressure of 0.1 ppm.
- the composite sheet is aged for another 10 minutes at these conditions.
- FIG. 1 shows, in a scanning electron micrograph of a transverse section, the porous morphology of the sintered LCO / LNO composite cathode layer on the aluchome current collector.
- FIG. 2 shows the development of the specific storage capacity as a function of the number of cycles, whereby a capacity loss of 16% after 100 cycles could be observed.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Ceramic Engineering (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
Description
B e s c h r e i b u n g Description
Verfahren zur Herstellung von keramischen Kathodenschichten auf Stromkollektoren Process for the preparation of ceramic cathode layers on current collectors
Die Erfindung betrifft ein neues Herstellungsverfahren von keramischen Kathodenschichten auf Stromkollektoren insbesondere für Lithium-Ionen-Batterien. The invention relates to a novel production method of ceramic cathode layers on current collectors, in particular for lithium-ion batteries.
Stand der Technik State of the art
Die fortschreitende Weiterentwicklung und Verbreitung von mobiler Kommunikations- und Computertechnologie erfordert inhärent sichere, leistungsstarke und preiswerte Batterien mit einem hohen spezifischen Speichervermögen. Weltweit werden daher große Anstrengungen unternommen um Stromspeicher zu entwickeln die diese Anforderungen erfüllen. Die größten Erfolgsaussichten werden diesbezüglich dem Batteriesystem nach der Lithium-Ionen- Technologie zugeschrieben. The continuing evolution and diffusion of mobile communication and computing technology inherently requires secure, powerful, and inexpensive batteries with high specific storage capacity. Therefore, great efforts are being made worldwide to develop power storage devices that meet these requirements. The greatest chance of success in this regard is attributed to the battery system according to the lithium-ion technology.
Eines der am häufigsten verwendeten Kathodenmaterialien in kommerziellen Lithium-Ionen- Batterien ist derzeit Lithium-Kobaltdioxid, nachfolgend kurz Lithiumkobaltoxid (LCO) genannt, aufgrund seiner hohen Speicherkapazität sowie seines guten elektrochemischen Verhaltens. Bei der Herstellung von Li-Ionen-Batterien wird dieses Material zunächst pulverförmig mit leitfähigem Kohlenstoff wie beispielsweise Graphit oder Ruß sowie einem polymeren Binder wie beispielsweise Polyvinylidenfluorid, die unter Anderem zur Kompensation der Volumenänderung während der Auf- und Endladevorgänge des aktiven Materials beitragen, vermischt und in Form einer Paste auf eine Metallfolie aufgewalzt, die als Stromkollektor dient. In einem nächsten Schritt wird bei einem Kathoden-gestützten Zellaufbau regelmäßig ein organischer, flüssiger (z. B. Lithiumhexafluorophosphat in Ethylen- und Dimethylcarbo- nat) oder Polymer (z. B. Lithiumsalze in Polyethylenoxid) basierter Elektrolyt gefolgt von einer Anodenschicht aufgetragen. Die Nachteile eines solchen Aufbaus sind sowohl die mangelnde Zyklenfestigkeit, also der langsame Kapazitätsverlust (Degradation) bei jedem Auf- und Endladevorgang, als auch die ungenügende Temperaturstabilität, die bei einem technischen Defekt oder bei unsachgemäßer Verwendung aufgrund des hohen Anteils an organischen Materialien zur Entzündung der Batterie führen kann. One of the most commonly used cathode materials in commercial lithium-ion batteries is currently lithium cobalt dioxide, hereinafter referred to as lithium cobalt oxide (LCO), due to its high storage capacity and good electrochemical behavior. In the production of Li-ion batteries, this material is first mixed in powder form with conductive carbon, such as graphite or carbon black, and a polymeric binder, such as polyvinylidene fluoride, which, inter alia, helps to compensate for the volume change during charging and discharging of the active material rolled in the form of a paste on a metal foil, which serves as a current collector. In a next step, in a cathode-assisted cell assembly, an organic, liquid (eg, lithium hexafluorophosphate in ethylene and dimethyl carbonate) or polymer (eg, lithium salts in polyethylene oxide) based electrolyte is regularly applied followed by an anode layer. The disadvantages of such a structure are both the lack of cycle stability, so the slow capacity loss (degradation) in each charging and discharging, as well as the insufficient temperature stability, which in case of a technical defect or inappropriate use due to the high proportion of organic materials to ignite the Battery can lead.
Ein Ansatz zur Lösung dieser Nachteile wäre der vollständige Verzicht von Kohlenstoffbasierten Funktionsmaterialien bei der Herstellung dieser Batterien, wie es beispielsweise das Konzept der Festkörper-Lithium-Ionen-Batterie vorsieht. Bei einer vielversprechenden Variante eines solchen Batterietyps bestehen die Kathode und der Elektrolyt aus einem keramischen Festkörper, die kombiniert mit einer Anode aus metallischen Lithium oder eines Lithium aufnehmenden Festkörpers, wie beispielsweise elementares Silizium, ein hohes Maß an Betriebssicherheit, sowie eine deutlich verbesserte Zyklenfestigkeit garantiert. Eine Voraussetzung für die Herstellung dieser Art von Batterien sind Prozessschritte die sowohl eine ausreichende Verdichtung der Funktionsschichten als auch eine gute Ionen- und ggf. Elektronenleitende Verbindung innerhalb der Schichten und über die Schichtgrenzen hinweg ermöglichen. One approach to solving these drawbacks would be the complete elimination of carbon-based functional materials in the manufacture of these batteries, such as the concept of the solid-state lithium-ion battery. In a promising variant of such a battery type, the cathode and the electrolyte consist of a ceramic solid, which, combined with an anode made of metallic lithium or a lithium-absorbing solid, such as elemental silicon, a high degree of operational reliability, and a significantly improved cycle stability guaranteed. A prerequisite for the production of this type of batteries are process steps which enable both a sufficient densification of the functional layers and a good ionic and optionally electron-conducting connection within the layers and across the layer boundaries.
In der Literatur sind derzeit sehr wenige Verfahren bekannt, die die Herstellung von Kohlen- stoff-freien Lithiumkobaltoxid-Kathodenschichten für den Aufbau von Lithium-Ionen-Batterien beschreiben. Beispielsweise berichtet Ohta et al. (Journal of Power Sources, 238 (2013) 53- 56) über eine Methode um LCO/Lithiumborat-Kathodenschichten auf einen Niob-dotierten Lithiumlanthanzirkonat-Elektrolyten abzuscheiden. Für die Grundlagenforschung wurden hingegen Verdampfungs- und Sputterverfahren, wie beispielsweise Atomic Layer Deposition (ALD), Ion beam layer deposition sowie Physical bzw. Chemical Vapor Deposition PVD, CVD) beschrieben, um reines LCO auf unterschiedliche Substrate aufzubringen. So konnte Kumar et al. (Materials Chemistry and Physics 143 (2014) 536-544) submikrone (d < 1 pm) epitaktische LCO Filme auf texturierten Au/Ti/Si02- Substraten durch einen Radiofrequenz Magentron Sputterprozess aufwachsen lassen. Stockhoff et al. (Thin Solid Films 520 (2012) 3668-3674) beschreibt beispielsweise ein Verfahren, bei dem durch eine lonenstrahl-Sputterabscheidung 200 nm dicke LCO Filme auf Silizium Wafer aufgetragen werden können. Auch Aufschleuderverfahren zur Deposition von LCO-Schichten mit Beschichtungslösungen, die durch einen Sol-Gel-Prozess hergestellt wurden, sind literaturbekannt. So beschreibt beispielsweise Gunagfen et al. (Applied Surface Science 258 (2012) 7612 - 7616) eine Sol- Gel Methode unter Verwendung eines Polyvinylpyrrolidon-Chelatbildners, um dadurch submikrone (d < 1 pm) LCO-Filme über einen Aufschleuderprozess auf Silizium Wafer abzu- scheiden. There are currently very few known processes in the literature describing the production of carbon-free lithium cobalt oxide cathode layers for the construction of lithium-ion batteries. For example, Ohta et al. (Journal of Power Sources, 238 (2013) 53-56) teaches a method for depositing LCO / lithium borate cathode layers on a niobium-doped lithium lanthanum zirconate electrolyte. For basic research, however, evaporation and sputtering techniques such as Atomic Layer Deposition (ALD), Ion Beam Layer Deposition and Physical or Chemical Vapor Deposition PVD (CVD) have been described to apply pure LCO to different substrates. So Kumar et al. (Materials Chemistry and Physics 143 (2014) 536-544) submicron (d <1 pm) epitaxial LCO films grown on textured Au / Ti / Si0 2 substrates by a radio frequency Magentron sputtering process. Stockhoff et al. (Thin Solid Films 520 (2012) 3668-3674) describes, for example, a method in which 200 nm thick LCO films can be applied to silicon wafers by ion beam sputter deposition. Spin-on processes for the deposition of LCO layers with coating solutions prepared by a sol-gel process are also known from the literature. For example, Gunagfen et al. (Applied Surface Science 258 (2012) 7612-7616) used a sol-gel method using a polyvinylpyrrolidone chelating agent to thereby deposit submicron (d <1 pm) LCO films on silicon wafers by means of a spin-on process.
Nach dem Stand der Technik können demnach vollkeramische Lithiumkobaltoxid- Kathodenschichten ohne Kohlenstoff-basierte Additive zur Verbesserung der Elektronen- und lonenleitfähigkeit derzeit nur durch technisch aufwendige Bedampfungs- bzw. Sputter- Verfahren oder mit Hilfe von Aufschleudermethoden mit Sol-Gel basierten Beschichtungslösungen auf Stromkollektoren mit Schichtdicken im submikronen (d < 1 pm) Bereich abgeschieden werden. Bedingt durch die anisotrope lonenleitfähigkeit des Lithiumkobaltoxides aufgrund seiner Schichtstruktur und der damit einhergehenden Abnahme der Stromdichte mit zunehmender Schichtdicke bei regelloser Orientierung der LCO-Kristallite in der Kathode ist die Abscheidung reiner LCO-Schichten allerdings prinzipiell auf wenige Mikrometer beschränkt. Grundsätzlich können durch Bedampfungs- oder Sputterverfahren zwar epitaktisch aufgewachsene reine LCO-Schichten mit Vorzugsorientierung auf Stromkollektoren erzeugt werden, aufgrund der geringen Abscheideraten beschränken sich die dabei erzeugten Schichtdicken aber regelmäßig auf den Mikrometerbereich. According to the state of the art, therefore, all-ceramic lithium cobalt oxide cathode layers without carbon-based additives for improving electron and ionic conductivity can currently only be applied to current collectors with layer thicknesses by technically complicated sputtering or sputtering processes or by spin-on methods with sol-gel-based coating solutions be deposited in the submicron (d <1 pm) range. Due to the anisotropic ion conductivity of the lithium cobalt oxide Due to its layer structure and the concomitant decrease in the current density with increasing layer thickness in the case of random orientation of the LCO crystallites in the cathode, the deposition of pure LCO layers is, however, in principle limited to a few micrometers. Basically epitaxially grown pure LCO layers with preferential orientation can be produced on current collectors by sputtering or sputtering methods, but due to the low deposition rates, the layer thicknesses produced are limited regularly to the micrometer range.
Um die erforderlichen hohen Speicherkapazitäten in Lithium-Ionen-Batterie zu erzielen, sind jedoch deutlich höhere Kathodenschichtdicken erforderlich, die nur mit einer gleichzeitigen Erhöhung der erreichbaren Stromdichte durch Zumischen eines Festkörperelektrolyten erreicht werden können. Die Herstellung solcher Kompositelektroden ist mit Bedampfungs- und Sputtermethoden prinzipiell nicht möglich. Aufgabe und Lösung In order to achieve the required high storage capacities in lithium-ion battery, however, significantly higher cathode layer thicknesses are required, which can only be achieved with a simultaneous increase in the achievable current density by admixing a solid electrolyte. The production of such composite electrodes is in principle not possible with sputtering and sputtering methods. Task and solution
Die Aufgabe der Erfindung ist es, ein einfaches Verfahren zur Herstellung einer vollkeramischen Kathodenschicht, ohne Kohlenstoff-basierte Additive zur Verbesserung der Elektronen- und lonenleitfähigkeit, für den Aufbau von Lithium-Ionen-Batterien bereitzustellen. Das erfindungsgemäße Verfahren sollte vorteilhaft zudem eine variable Schichtdicke der hergestellten Kathodenschicht ermöglichen, welche auf einem elektrisch leitenden Substrat aufgebracht werden kann. The object of the invention is to provide a simple process for producing a ceramic all-layer cathode, without carbon-based additives for improving the electron and ion conductivity, for the construction of lithium-ion batteries. The inventive method should advantageously also allow a variable thickness of the prepared cathode layer, which can be applied to an electrically conductive substrate.
Das erfindungsgemäße Verfahren sollte es ferner ermöglichen, dass die Kathodenschicht vorteilhaft ohne funktionsschädigende Veränderung des elektrisch leitenden Substrates hergestellt werden kann. The method according to the invention should also make it possible for the cathode layer to be advantageously produced without detrimentally damaging the electrically conductive substrate.
Weiterhin sollte das Verfahren ermöglichen, dass die Kathodenschicht zur Verbesserung der erreichbaren Stromdichten mit einem Festkörperelektrolyt versetzt und somit als Komposit- Elektrode abgeschieden werden kann. Furthermore, the method should allow the cathode layer to be added to improve the achievable current densities with a solid electrolyte and thus deposited as a composite electrode.
Die Aufgaben der Erfindung werden gelöst durch ein Verfahren zur Herstellung einer auf Lithiumkobaltoxid basierten Kathodenschicht gemäß Hauptanspruch. Vorteilhafte Ausgestaltungen des Herstellungsverfahrens finden sich in den darauf rückbezogenen Ansprüchen. Gegenstand der Erfindung The objects of the invention are achieved by a method for producing a lithium cobalt oxide-based cathode layer according to the main claim. Advantageous embodiments of the manufacturing process can be found in the claims related thereto. Subject of the invention
Erfindungsgemäß wird die Aufgabe durch eine reaktive Niedertemperatursinterung eines keramischen Materials in einem zweistufigen Prozess mit unterschiedlichen Reaktoratmosphären gelöst. Zunächst erfolgt die Beschichtung eines elektrisch leitenden Trägermate- rials mit einer Beschichtungssuspension in Form von Schlickern oder Pasten umfassend das keramische Material. Die Beschichtung kann bei Raumtemperatur erfolgen. Nach Entfernung des Lösemittels durch eine Trocknung unterhalb von 200 °C wird eine nicht gesinterte, gegebenenfalls noch organische Binderanteile enthaltende, Schicht die sogenannte Grünschicht erhalten. According to the invention, the object is achieved by a reactive low-temperature sintering of a ceramic material in a two-stage process with different reactor atmospheres. First, the coating of an electrically conductive carrier material is carried out with a coating suspension in the form of slips or pastes comprising the ceramic material. The coating can be done at room temperature. After removal of the solvent by drying below 200 ° C., a non-sintered layer, which may still contain organic binder portions, is given the so-called green sheet.
Im ersten Verfahrensschritt wird diese Grünschicht anschließend in einer reduzierenden Atmosphäre erhitzt. Dabei wandelt sich das keramische Material ganz oder teilweise in wenigstens ein Reaktionsprodukt um, welches bei weiterer Temperaturerhöhung bis auf 1200 °C aufschmelzen kann und dadurch eine Verdichtung der Beschichtungsschicht bewirkt. In the first process step, this green sheet is subsequently heated in a reducing atmosphere. In this case, the ceramic material completely or partially converts into at least one reaction product, which can melt on further temperature increase up to 1200 ° C and thereby causes a compaction of the coating layer.
In einer vorteilhaften Ausführung sollte bei diesem Konsolidierungs- oder Verdichtungsschritt die Temperatur auf mehr als 100 °C über dem Schmelzpunkt dieses Reaktionsproduktes erhöht werden, um einen thermischen Zerfall weiterer Reaktionsprodukte oder einer irreversible Veränderung des elektrisch leitenden Substrates zu verhindern. In an advantageous embodiment, the temperature should be increased to more than 100 ° C above the melting point of this reaction product in this consolidation or compression step to prevent thermal decomposition of further reaction products or irreversible change of the electrically conductive substrate.
In einem zweiten Verfahrensschritt in einer oxidierenden Atmosphäre, beispielsweise durch Zugabe von Sauerstoff, wandelt sich das im ersten Verfahrensschritt zunächst aufgeschmolzene und verdichtete Reaktionsprodukt wieder in die Ausgangszusammensetzung des keramischen Materials um. Dieser Reoxidationsschritt kann entweder direkt durch einen einfa- chen Wechsel der Atmosphäre von reduzierend in oxidierend bei der gleichen Temperatur wie im ersten Verfahrensschritt oder durch einen separaten Prozessschritt im Temperaturbereich zwischen 400 °C und 1200 °C erfolgen. In a second process step in an oxidizing atmosphere, for example by adding oxygen, the reaction product, which is first melted and compacted in the first process step, is converted back into the starting composition of the ceramic material. This reoxidation step can be carried out either directly by a simple change of the atmosphere from reducing to oxidizing at the same temperature as in the first process step or by a separate process step in the temperature range between 400 ° C and 1200 ° C.
Vorzugsweise können die beiden Verfahrensschritte in einem Reaktor durchgeführt werden. Preferably, the two process steps can be carried out in a reactor.
Die Korngrößen des in den Beschichtungssuspensionen verwendeten Keramikpulvers unterliegen prinzipiell keinen Beschränkungen. Im Rahmen dieser Erfindung werden jedoch Pulver mit einer engen Partikelgrößenverteilung, deren D50-Werte kleiner als 1 pm liegen, eingesetzt, um eine möglichst hohe Verdichtung der Kathodenschichten zu erhalten. The grain sizes of the ceramic powder used in the coating suspensions are in principle not limited. In the context of this invention, however, powders with a narrow particle size distribution whose D 50 values are less than 1 μm are used in order to obtain the highest possible densification of the cathode layers.
Als Beschichtungsverfahren zur Aufbringung der keramischen Schicht mit einer gleichmäßige Schichtdicke auf einem metallischen Träger können grundsätzlich alle bekannten Metho- den, wie beispielsweise das Gießen, Ziehen, Aufschleudern, Tauchen, Tintenstrahl- oder Offsetdruck dieser Beschichtungssuspensionen auf den metallischen Stromkollektoren verwendet werden. Die hierbei erzielbaren Schichtdicken unterliegen grundsätzlich keinen Beschränkungen. As a coating method for applying the ceramic layer with a uniform layer thickness on a metallic support can in principle all known methods such as casting, drawing, spin coating, dipping, ink jet or offset printing of these coating suspensions are used on the metallic current collectors. The layer thicknesses that can be achieved in this case are not subject to any restrictions.
Als keramisches Material für die Kathodenschicht können alle bislang herkömmlichen Kathodenmaterialien, beispielsweise Kalzium oder Alkalimetall haltige Eisen, Nickel und Cobalt basierte Oxidkeramiken, wie beispielsweise Lithiumkobaltoxid, eingesetzt werden. Das erfindungsgemäße Verfahren ist prinzipiell nicht auf die Sinterung von Kathodenschichten auf elektrisch leitenden metallischen oder keramischen Substraten beschränkt, sondern kann auch zur Verdichtung von keramischen Formkörpern genutzt werden. As a ceramic material for the cathode layer, all previously conventional cathode materials, for example, calcium or alkali metal-containing iron, nickel and cobalt-based oxide ceramics, such as lithium cobalt oxide, can be used. The inventive method is not limited in principle to the sintering of cathode layers on electrically conductive metallic or ceramic substrates, but can also be used for the densification of ceramic moldings.
Ferner kann das gesinterte keramische Material auch eine heterogene Zusammensetzung in Form eines Komposites aufweisen, sofern sich wenigstens ein Teil des keramischen Materials im reduktiven ersten Verfahrensschritt in ein zur Konsolidierung und Sinterung notwendiges schmelzfähiges Reaktionsprodukt umwandeln lässt. Furthermore, the sintered ceramic material may also have a heterogeneous composition in the form of a composite, provided that at least a portion of the ceramic material in the reductive first process step can be converted into a meltable reaction product necessary for consolidation and sintering.
In einer besonderen Ausgestaltung erfolgt die Beschichtung eines metallischen Trägermate- rials mit einer Beschichtungssuspension in Form von Schlickern oder Pasten umfassend überwiegend pulverförmiges, kommerzielles Lithium-Kobaltdioxid (LiCo02) als keramisches Material, nachfolgend kurz Lithiumkobaltoxid oder LCO genannt. Die Beschichtung kann bei Raumtemperatur erfolgen. Nach Entfernung des Lösemittels durch eine Trocknung unterhalb von 200 °C wird eine nicht gesinterte, gegebenenfalls noch organische Binderanteile enthal- ten, Schicht die sogenannte Grünschicht erhalten. In a particular embodiment, the coating of a metallic Trägermate- rials with a coating suspension in the form of slips or pastes comprising predominantly powdered, commercial lithium cobalt dioxide (LiCo0 2 ) takes place as a ceramic material, hereinafter referred to briefly lithium cobalt oxide or LCO. The coating can be done at room temperature. After removal of the solvent by drying below 200 ° C., a non-sintered organic binder content, if appropriate still containing organic binder, is obtained, the so-called green sheet.
Im ersten Verfahrensschritt wird diese Grünschicht anschließend in einer reduzierenden Atmosphäre, die gegebenenfalls Kohlendioxid enthält, auf Temperaturen von ca. 700 °C erhitzt. Bei diesen reduzierenden Atmosphärenbedingungen im Reaktor wird dabei das dreiwertige Kobalt im Lithiumkobaltoxid vollständig oder nur an der Oberfläche der Pulverkörner zu metallischem Kobalt reduziert. Als Nebenprodukt entsteht Lithiumoxid, das mit Kohlendioxid, welches entweder der Reaktoratmosphäre beigemischt oder in situ aus dem thermischen Zerfall von der in die Beschichtungssuspension zugemischten Binderanteilen entstammt, zu Lithiumkarbonat umgesetzt wird. In the first process step, this green sheet is then heated in a reducing atmosphere, which optionally contains carbon dioxide, to temperatures of about 700 ° C. In these reducing atmospheric conditions in the reactor, the trivalent cobalt in the lithium cobalt oxide is reduced completely or only to the surface of the powder grains to metallic cobalt. The by-product is lithium oxide, which is converted into lithium carbonate with carbon dioxide, which is either added to the reactor atmosphere or is generated in situ from the thermal decomposition of the binder constituents admixed in the coating suspension.
Durch weiteres Erhitzen dieses Reaktionsproduktes in der gleichen reduzierenden Atmosphäre auf Temperaturen oberhalb des Schmelzpunktes des Lithiumkarbonates von ca. 720 °C erfolgt die Verdichtung der Schicht, wobei die Schmelze neben Lithiumcarbonat und das metallische Kobalt ggfs. auch noch festes Lithiumoxid enthalten kann. Further heating of this reaction product in the same reducing atmosphere to temperatures above the melting point of the lithium carbonate of about 720 ° C, the compression of the layer takes place, wherein the melt in addition to lithium carbonate and the metallic cobalt, if necessary, may also contain solid lithium oxide.
Die anschließend eingestellte Sintertemperatur sollte regelmäßig noch höher, aber unterhalb von 1000 °C liegen, um einen übermäßigen thermischen Zerfall des Lithiumkarbonates und Verdampfung des dabei gebildeten Lithiumoxides zu unterdrücken. Dies würde andernfalls nachteilig zu einer Lithiumverarmung der resultierenden Schicht führen. Bevorzugt werden daher Sintertemperaturen unterhalb von 850 °C und besonders bevorzugt Sintertemperaturen um die 800 °C eingestellt. The subsequently set sintering temperature should regularly be even higher, but below 1000 ° C, to suppress excessive thermal decomposition of the lithium carbonate and evaporation of the lithium oxide formed thereby. Otherwise, this would disadvantageously lead to lithium depletion of the resulting layer. Preference is therefore given to sintering temperatures below 850 ° C. and particularly preferably sintering temperatures of around 800 ° C.
Zur Ausbildung einer gesinterten LCO-Kathodenschicht wird in einem zweiten Schritt durch Zugabe von Sauerstoff, vorzugsweise in die Reaktoratmosphäre, das metallische Kobalt wieder zu Kobaltoxid oxidiert, welches mit dem Lithiumkarbonat in einer Festkörperreaktion unter Abgabe von Kohlendioxid zu Lithiumkobaltoxid reagiert. Dieser abschließende Reoxi- dationsschritt kann entweder direkt durch einen einfachen Wechsel der Reaktoratmosphäre von reduzierend in oxidierend bei der gleichen Temperatur wie im ersten Verfahrensschritt oder durch einen separaten Prozessschritt im Temperaturbereich zwischen 400 °C und 1000 °C erfolgen. Die Korngrößen des in den Beschichtungssuspensionen verwendeten Lithiumkobaltoxidpulvers unterliegen prinzipiell keinen Beschränkungen. Im Rahmen dieser Erfindung werden jedoch Pulver mit einer engen Partikelgrößenverteilung, deren D50-Werte kleiner als 1 pm liegen, eingesetzt, um eine möglichst hohe Verdichtung der Kathodenschichten zu erhalten. Als Beschichtungsverfahren zur Aufbringung der Lithiumkobaltoxid basierten Schicht mit einer gleichmäßigen Schichtdicke auf einem metallischen Träger können grundsätzlich alle bekannten Methode, wir beispielsweise das Gießen, Ziehen, Aufschleudern, Tauchen, Tintenstrahl- oder Offsetdruck dieser Beschichtungssuspensionen auf den metallischen Stromkollektoren verwendet werden. Die hierbei erzielbaren Schichtdicken unterliegen grundsätz- lieh keinen Beschränkungen. To form a sintered LCO cathode layer, the metallic cobalt is oxidized back to cobalt oxide in a second step by adding oxygen, preferably in the reactor atmosphere, which reacts with the lithium carbonate in a solid state reaction with release of carbon dioxide to lithium cobalt oxide. This final reoxidation step can be carried out either directly by a simple change of the reactor atmosphere from reducing to oxidizing at the same temperature as in the first process step or by a separate process step in the temperature range between 400 ° C and 1000 ° C. The particle sizes of the lithium cobalt oxide powder used in the coating suspensions are in principle not restricted. In the context of this invention, however, powders with a narrow particle size distribution whose D 50 values are less than 1 μm are used in order to obtain the highest possible densification of the cathode layers. As a coating method for applying the lithium cobalt oxide-based layer having a uniform layer thickness on a metallic support, basically all known methods, such as casting, drawing, spin coating, dipping, ink jet or offset printing of these coating suspensions on the metallic current collectors can be used. The layer thicknesses which can be achieved in this case are in principle not limited.
In einer weiteren bevorzugten Ausführungsform der Erfindung werden der Beschichtungs- suspension zusätzlich Lithium- und Kobaltverbindungen, bzw. deren Salze, beigemischt, die in dem verwendeten Suspensionsmittel löslich sind. Durch diese Zugabe wird die zur Konso- lidierung der LCO-Schicht im ersten Verfahrensschritt erforderlichen Schmelze aus Lithiumkarbonat und metallischem Kobalt vorwiegend aus diesen Verbindungen gebildet, so dass ein übermäßiges oder vollständiges Auflösen der LCO Pulverkörner zur Konsolidierung der Schicht nicht nötig ist. In a further preferred embodiment of the invention, the coating suspension is additionally admixed with lithium and cobalt compounds or their salts, which are soluble in the suspending agent used. As a result of this addition, the melt of lithium carbonate and metallic cobalt required for consolidating the LCO layer in the first method step is predominantly formed from these compounds, so that Excessive or complete dissolution of the LCO powder grains is not necessary to consolidate the layer.
Zudem fungieren diese Metallverbindungen in den Beschichtungssuspensionen regelmäßig als Binder, die für die nötige Verdichtung der Grünschichten sorgen und somit die Zugabe von organischen Bindersystemen überflüssig macht. In addition, these metal compounds in the coating suspensions regularly act as a binder, which provide the necessary compaction of the green sheets and thus makes the addition of organic binder systems superfluous.
Prinzipiell können hierbei alle löslichen Salze dieser Metalle wie beispielsweise Nitrate eingesetzt werden, bevorzugt jedoch Carboxylate und besonders bevorzugt Propionate, die bei der Pyrolyse unter reduzierender Atmosphäre Kohlendioxid bilden und somit die Ausbildung von Lithiumkarbonat ermöglichen. Eine Kohlendioxidzugabe zur reduzierenden Atmosphäre ist in diesem Fall nicht notwendig. In principle, all soluble salts of these metals, such as, for example, nitrates, can be used here, but preferably carboxylates and particularly preferably propionates, which form carbon dioxide under pyrolysis under a reducing atmosphere and thus permit the formation of lithium carbonate. Carbon dioxide addition to the reducing atmosphere is not necessary in this case.
Bei der Verwendung von Verbindungen und Salzen, die beim thermischen Zerfall kein Koh- lendioxid bilden, könnte alternativ beim ersten Teilprozess, der reduzierenden Sinterung, der reduzierenden Atmosphäre, beispielsweise dem Reaktorgas, vorzugsweise Kohlendioxid beigemischt werden, um die Bildung von schmelzfähigem Lithiumkarbonat zu gewährleisten. When using compounds and salts which do not form carbon dioxide during thermal decomposition, carbon dioxide could alternatively be mixed with the reducing gas, for example the reactor gas, in the first part process, the reducing sintering, in order to ensure the formation of molten lithium carbonate.
Die Verhältnisanteile der in die Beschichtungssuspension zugemischten Lithium- und Ko- baltverbindungen sollten hierbei dem stöichiometrischen Lithium zu Kobalt Verhältnis des LCO entsprechen um ein möglichste phasenreines Produkt nach der Reoxidation im zweiten Prozessschritt zu erhalten. Je nach Aufnahmevermögen des verwendeten metallischen Stromkollektors für Lithium kann der Beschichtungssuspension aber Lithium in Form der eingesetzten Lithiumverbindung auch überstöchiometrisch zugemischt werden, um eventuel- le Lithiumverluste auszugleichen. Unterschiedliche Metalle weisen in der Regel auch ein unterschiedliches Aufnahmevermögen für Li auf. Das gilt auch für Nichtmetalle als Stromkollektor. Je nach verwendeten Sinterbedingungen kann es bei hohen Temperaturen (oberhalb von 800 °C und langer Sinterzeit) auch zur Abdampfung von Lithiumoxid aus der Schicht kommen, die zu Lithiumverlusten führt. The proportions of the lithium and cobalt compounds admixed in the coating suspension should correspond here to the stoichiometric lithium to cobalt ratio of the LCO in order to obtain the greatest possible phase-pure product after the reoxidation in the second process step. Depending on the absorption capacity of the metallic current collector used for lithium, the coating suspension but lithium in the form of the lithium compound used can also be mixed in a stoichiometric manner in order to compensate for any lithium losses. Different metals usually also have a different capacity for Li. This also applies to non-metals as a current collector. Depending on the sintering conditions used, high temperatures (above 800 ° C and long sintering time) can also lead to the evaporation of lithium oxide from the layer, which leads to lithium losses.
Die Massenanteile dieser löslichen Lithium- und Kobaltverbindungen, bzw. deren Salze in der Beschichtungssuspension unterliegen grundsätzlich keinen Beschränkungen, liegen aber typischerweise zwischen 5 und 30 Gew.-%. Bevorzugt werden ca. 20 Gew.-% bezogen auf die Gesamtmasse an LCO im Beschichtungsschlicker in Form der Li- und Kobaltverbindun- gen zugemischt, wobei sich dieser Feststoffanteil als LCO-Massenäquivalent nach der re- duktiven Zersetzung dieser Precursor und anschließender Reoxidation berechnet. Besonders bevorzugt werden jedoch Massenanteil von nur ca. 10 Gew.-% verwendet, um eine übermäßige Gasbildung bei der Konsolidierung der Grünschichten im ersten Verfahrensschritt zu verhindern, die zur Ausbildung von Rissen in den gesinterten Schichten führen können. Als Suspensionsmittel werden bei dem erfindungsgemäßen Verfahren bevorzugt niedere Alkohole, wie beispielsweise Methanol oder Ethanol eingesetzt, die eine gute Benetzbarkeit der Beschichtungssuspension auf den metallischen Stromkollektorfolien gewährleisten. Es können jedoch auch andere Lösemittel verwendet werden, die eine ausreichende Löslichkeit für die gewählten Lithium- und Kobaltverbindungen besitzen. The mass fractions of these soluble lithium and cobalt compounds, or their salts in the coating suspension are basically not limited, but are typically between 5 and 30 wt .-%. About 20% by weight, based on the total mass of LCO, in the coating slip in the form of the lithium and cobalt compounds is preferably admixed, this solid fraction being calculated as the LCO mass equivalent after the reductive decomposition of these precursors and subsequent reoxidation. However, more preferably, the amount by mass of only about 10 wt .-% is used to a To prevent excessive gas formation in the consolidation of the green sheets in the first process step, which can lead to the formation of cracks in the sintered layers. In the process according to the invention, preference is given to using lower alcohols, such as, for example, methanol or ethanol, as suspending agents, which ensure good wettability of the coating suspension on the metallic current collector foils. However, other solvents that have sufficient solubility for the selected lithium and cobalt compounds may also be used.
In einer weiteren Ausführungsform der Erfindung wird der Beschichtungssuspension, entweder zusätzlich oder alternativ zu den Lithium- und Kobaltverbindungen, bzw. deren Salzen ein Festkörperelektrolyt, wie beispielsweise Lithiumniobat oder Lithiumlanthanzirkonat, zugemischt, der innerhalb der gesinterten Kathodenschicht die Lithium-Ionenleitfähigkeit ver- bessert und somit die erreichbaren Stromdichten einer mit dieser Kathode ausgestatteten Batterie in gleichem Maße erhöht. Der Gewichtsanteil des Festkörperelektrolyten bezogen auf die LCO-Masse unterliegt grundsätzlich keine Beschränkungen. Er sollte aber unterhalb von 50 Gew.-% liegen um eine ausreichend hohe Kapazität der resultierenden kathoden- schicht zu gewährleisten. In a further embodiment of the invention, the coating suspension, either additionally or alternatively to the lithium and cobalt compounds, or salts thereof, is admixed with a solid electrolyte, such as, for example, lithium niobate or lithium lanthanum zirconate, which improves the lithium ion conductivity within the sintered cathode layer and thus the achievable current densities of a battery equipped with this cathode increased to the same extent. The proportion by weight of the solid electrolyte based on the LCO mass is basically not limited. But it should be below 50 wt .-% to ensure a sufficiently high capacity of the resulting cathode layer.
Die Korngrößen des eingesetzten Festkörperelektrolyten unterliegen prinzipiell keinen Beschränkungen, bevorzugt werden jedoch Pulver mit einer engen Partikelgrößenverteilung deren D50-Werte kleiner als 1 m liegen, um eine möglichst hohe Verteilung und somit Wirksamkeit in der Kathodenschichte zu erhalten. Besonders bevorzugt werden aus diesem Grund jedoch Nanopartikel dieser Verbindung eingesetzt, die in Form einer Dispersion in besonders einfacher Weise der Beschichtungssuspension zugemischt werden kann. The particle sizes of the solid electrolyte used are in principle not limited, but preference is given to powders having a narrow particle size distribution whose D 50 values are less than 1 m in order to obtain the highest possible distribution and thus effectiveness in the cathode layer. For this reason, however, particular preference is given to using nanoparticles of this compound which, in the form of a dispersion, can be mixed in a particularly simple manner with the coating suspension.
Als Festkörperelektrolyte können grundsätzlich alle Verbindungen verwendet werden, die eine ausreichende Stabilität bei der gewählten Sintertemperatur bzw. reduktiven Atmosphäre aufweisen und keine funktionsmindernden Reaktionsprodukte mit dem Kathodenmaterial bilden. In principle, all compounds which have sufficient stability at the selected sintering temperature or reductive atmosphere and which do not form reaction-reducing reaction products with the cathode material can be used as the solid-state electrolyte.
Der Sauerstoffpartialdruck in der Reaktoratmosphäre bei der reduzierenden Sinterung im ersten Prozessschritt sollte weniger als 1000 ppm betragen, bevorzugt jedoch weniger als 1 ppm und besonders bevorzugt weniger als 0,1 ppm. Umgekehrt sollte der Sauerstoffanteil im Ofengas bei der Reoxidation der konsolidierten Schichten im zweiten Prozessschritt größer als 1000 ppm sein, bevorzugt größer als 10000 ppm und besonders bevorzugt größer als 100000 ppm sein. The oxygen partial pressure in the reactor atmosphere in the reducing sintering in the first process step should be less than 1000 ppm, but preferably less than 1 ppm and more preferably less than 0.1 ppm. Conversely, the oxygen content in the furnace gas in the reoxidation of the consolidated layers in the second process step should be greater than 1000 ppm, preferably greater than 10000 ppm, and more preferably greater than 100000 ppm.
Als Stromkollektorsubstrate können grundsätzlich alle Metalle und deren Legierungen ver- wendet werden, die während des Sinterprozesses keine funktionsminderenden Reaktionsprodukte bilden, und die nur ein geringes bzw. kein Aufnahmevermögen für Lithium aufweisen. Bevorzugt werden daher temperatur- und oxidationsbeständige Edelstähle wie beispielsweise Aluchrom HF der Werkstoff-Nummer 1.4767 oder metallisches Chrom verwendet und besonders bevorzugt dünne Folien aus 1.4767 die mit einer submikronen Chromschicht überzogen wurden. Basically all metals and their alloys can be used as current collector substrates which do not form any function-reducing reaction products during the sintering process and which have only a low or no absorption capacity for lithium. Preferably, therefore, temperature and oxidation resistant stainless steels such as Aluchrom HF of material number 1.4767 or metallic chromium are used and more preferably thin films of 1.4767 which have been coated with a submicron chromium layer.
Erfindungsgemäß ist das Verfahren nicht auf die Herstellung von gesinterten LCO-Schichten auf metallischen Trägerfolien beschränkt, sondern kann überall da angewendet werden, wo durch eine reduktive Umwandlung eines keramischem Materials ein schmelzfähiges Reakti- onsprodukt entsteht, welches zur Verdichtung des Materials genutzt werden und in der anschließenden Reoxidation wieder zur ursprünglichen Zusammensetzung zurückgebildet wird. Bei den gesinterten Materialien kann es sich hierbei sowohl um keramische Formkörper als auch um Schichten auf Substraten handeln, die metallischen oder keramischen Ursprungs sind. Auch eine Sinterung von Kompositmaterialien mit heterogener Zusammensetzung ist möglich, wobei zumindest eine Komponente das zur Konsolidierung notwendige schmelzfähige Reaktionsprodukt im reduktiven Prozessschritt bereitstellt. Diese Kompositmaterialien können selbstverständlich auch durch die Verwendung löslicher Metall-Prekursoren in den Beschichtungssupensionen hergestellt werden, die nach dem pyrolytischen Zerfall und anschließender Oxidation im zweiten Prozessschritt eine anderen Zusammensetzung aufwei- sen als die zweite ursprünglich pulverförmige Komponente. According to the invention, the method is not limited to the production of sintered LCO layers on metallic carrier films, but can be used wherever a fusible reaction product is formed by a reductive conversion of a ceramic material, which is used to densify the material and in which subsequent reoxidation is re-formed back to the original composition. The sintered materials may be ceramic shaped bodies as well as layers on substrates of metallic or ceramic origin. A sintering of composite materials with a heterogeneous composition is also possible, with at least one component providing the meltable reaction product necessary for the consolidation in the reductive process step. Of course, these composite materials can also be produced by the use of soluble metal precursors in the coating suspensions which, after the pyrolytic decomposition and subsequent oxidation in the second process step, have a different composition than the second originally pulverulent component.
Wesentliches Merkmal der Erfindung ist die reaktive Konsolidierung der abgeschiedenen Grünschichten im ersten Verfahrensschritt, die eine reduktive Reaktoratmosphäre voraussetzt. Aus diesem Grund ist eine sorgfältige Einstellung und gegebenenfalls Überwachung des Sauerstoffpartialdruckes im Reaktorgas in diesem Prozessschritt erforderlich. Beachtet werden sollte außerdem, dass die gesinterten Lithiumkobaltoxid-Schichten hygroskopisch sind, so dass ein Transport bzw. Lagerung unter Schutzgasatmosphäre erfolgen sollte. An essential feature of the invention is the reactive consolidation of the deposited green sheets in the first process step, which requires a reductive reactor atmosphere. For this reason, careful adjustment and, if appropriate, monitoring of the oxygen partial pressure in the reactor gas is necessary in this process step. It should also be noted that the sintered lithium cobalt oxide layers are hygroscopic, so that they should be transported or stored under a protective gas atmosphere.
In einer besonders vorteilhaften Ausführungsform werden der LCO-Schicht noch ein Fest- körperelektrolyt zur Erhöhung der erreichbaren Stromdichten in einer hiermit hergestellten Lithium-Ionen Batterie in Form von Elektrolyt-Nanopartikel zugemischt. Die Synthese dieser Nanoteilchen kann in besonders einfacher Weise durch einen Sol-Gel-Prozess erfolgen, bei dem feuchtigkeitsempfindliche Precursoren eingesetzt werden. Dem Fachmann sollten daher Anlagen zur Verfügung stehen, die ihm eine Präparation dieser Nanopartikel unter Schutzgas ermöglichen. Bei dem erfindungsgemäßen Verfahren können die gesinterten keramischen Materialien sowohl keramische Formkörper als auch Schichten sein, deren Substrate metallischen oder keramischen Ursprungs sind. Ferner können bei dem erfindungsgemäßen Verfahren die gesinterten keramischen Materialien eine heterogene Zusammensetzung in Form eines Komposits aufweisen, wobei zumindest eine Komponente das zur Konsolidierung und Sinte- rung notwendige schmelzfähige Reaktionsprodukt im reduktiven ersten Prozessschritt bereitstellt. In a particularly advantageous embodiment, the LCO layer is also admixed with a solid electrolyte to increase the achievable current densities in a lithium ion battery produced in the form of electrolyte nanoparticles. The synthesis of these nanoparticles can be carried out in a particularly simple manner by a sol-gel process, in the moisture-sensitive precursors are used. The person skilled in the art should therefore have facilities available that allow him to prepare these nanoparticles under protective gas. In the method according to the invention, the sintered ceramic materials may be both ceramic shaped bodies and layers whose substrates are of metallic or ceramic origin. Furthermore, in the method according to the invention, the sintered ceramic materials can have a heterogeneous composition in the form of a composite, wherein at least one component provides the meltable reaction product required for consolidation and sintering in the reductive first process step.
Spezieller Beschreibungsteil Special description part
Eine erfindungsgemäße Herstellung von festhaftenden gesinterten Lithiumkobaltoxid basierten Kathodenschichten auf metallischen Stromkollektorfolien, die zur Erhöhung der erreichbaren Stromdichten noch einen Festkörperelektrolyten in Form von Lithiumniobat enthalten, kann in einfacher Weise durch eine Sprühbeschichtung von Aluchrom HF Edelstahlfolien der Werkstoff-Nummer 1.4767 mit einer Dicke von 50 μιτι, über Beschichtungssuspensionen erfolgen, die überwiegend kommerzielles LCO-Pulver enthalten. Anschließend erfolgt eine reaktive Konsolidierung bei 800 °C unter reduktiver Atmosphäre und nachfolgender Reoxida- tion mit Sauerstoff bei der gleichen Temperatur. Zur Verbesserung der elektrochemischen Eigenschaften der hierbei resultierenden Verbundmaterialien wurde das Aluchrom HF Blech vorher über einen Radiofrequenz Magnetron Sputterprozess zunächst reaktiv mit einer 200 nm dicken Chromnitridschicht und anschließend mit einer ca. 50 nm dicken Chromschicht besputtert. A preparation according to the invention of firmly adhering sintered lithium cobalt oxide-based cathode layers on metallic current collector foils which still contain a solid electrolyte in the form of lithium niobate to increase the achievable current densities can be effected in a simple manner by spray coating of Aluchrom HF stainless steel foils of the material number 1.4767 with a thickness of 50 μιτι , carried out over coating suspensions containing predominantly commercial LCO powder. This is followed by reactive consolidation at 800 ° C. under a reductive atmosphere and subsequent reoxidation with oxygen at the same temperature. To improve the electrochemical properties of the composite materials resulting therefrom, the Aluchrom HF sheet was first sputtered by a radio frequency magnetron sputtering process first reactive with a 200 nm thick chromium nitride layer and then with an approximately 50 nm thick chromium layer.
Ein für die Beschichtung besonders geeigneter Schlicker mit einem Feststoffgehalt von 35 Gew.-% enthält neben gemahlenem kommerziellen LCO-Pulver mit einem D50-Wert von ca. 1 μπι und Lithiumniobat-Nanopartikel noch ein Gemisch aus Lithium- und Kobaltpropionaten, die im Massenverhältnis von 80/10/10 Gew.-% verwendet wurden, wobei der Feststoffanteil der Propionat-Precursor auf das LCO Massenäquivalent nach der reduktiven Kalzinierung und anschließender Reoxidation einer stöichiometrischen Mischung berechnet wurde. Die Präparation der hierfür benötigten Lithiumniobat (LNO)-Nanopartikel, die über eine Mi- kroemulsions gestützte Synthese direkt als stabile Dispersion erhalten werden konnte, kann wie folgt beschrieben werden: Für die Synthese von 100 g einer Lithiumniobat (LiNb03)- Dispersion mit einem typischen Feststoffgehalt von 5 Gew.-% werden 0,235 g metallisches Lithium und 10,763 g frisch destilliertes Niobpentaethoxid bei Raumtemperatur unter Argon in 70,83 g Methanol gelöst. Die anschließende Hydrolyse dieser feuchtigkeitsempfindlichen Precursor-Lösung mit einer stöchiometrischen Menge Wasser erfolgt durch langsames Zu- tropfen von 18,173 g einer Mikroemulsion bestehend aus 2,72 Gew.-% Hexadecylamin, 3,57 Gew.-% Methoxyessigsäure, 10,06 Gew.-% destilliertem Wasser, 7,76 g 1-Pentanol und 75,89 Gew.-% Cyclohexan. Nach erfolgter vollständiger Zugabe der Mikroemulsion erhält man direkt eine optisch isotrope, nahezu wasserklare Lithiumniobat-Dispersion mit praktisch monodisperser Partikelgrößenverteilung und einem mittleren Teilchendurchmesser von 3 nm. A particularly suitable for the coating slurry having a solids content of 35 wt .-% contains in addition to ground commercial LCO powder with a D 50 value of about 1 μπι and lithium niobate nanoparticles nor a mixture of lithium and cobalt propionates, the mass ratio of 80/10/10 wt .-% were used, wherein the solids content of the propionate precursor was calculated on the LCO mass equivalent after the reductive calcination and subsequent reoxidation of a stoichiometric mixture. The preparation of the required lithium niobate (LNO) nanoparticles, which could be obtained directly as a stable dispersion via a microemulsion-supported synthesis, can be described as follows: For the synthesis of 100 g of a lithium niobate (LiNbO 3 ) - Dispersion having a typical solids content of 5% by weight, 0.235 g of metallic lithium and 10.763 g of freshly distilled niobium pentaethoxide are dissolved at room temperature under argon in 70.83 g of methanol. The subsequent hydrolysis of this moisture-sensitive precursor solution with a stoichiometric amount of water is carried out by slow dropwise addition of 18.173 g of a microemulsion consisting of 2.72% by weight of hexadecylamine, 3.57% by weight of methoxyacetic acid, 10.06% by weight. % of distilled water, 7.76 g of 1-pentanol and 75.89% by weight of cyclohexane. After complete addition of the microemulsion, an optically isotropic, almost water-clear lithium niobate dispersion having a practically monodisperse particle size distribution and an average particle diameter of 3 nm is obtained directly.
Für die Herstellung von 100 g einer erfindungsgemäßen Beschichtungssuspension mit einem Feststoffgehalt von 35 Gew.-% werden 28 g kommerzielles LCO-Pulvers, das mit Hilfe einer Kugelmühle auf eine mittlere Korngröße von ca. 1 pm (D50-Wert) heruntergemahlen wurde, 7,34 g Kobalt(ll)propionat und 3,29 g Lithiumpropionat (15 Gew.-% Überschuss zur Kompensation von Lithiumverlusten während des Sinterprozesses) in ca. 50 g Methanol gelöst bzw. suspendiert. Zu dieser Suspension werden 70 g der Lithiumniobat-Dispersion mit einem Feststoffgehalt von 5 Gew.-% tropfenweise hinzugegeben und das Gemisch ca. 24 Stunden gerührt. For the preparation of 100 g of a coating suspension according to the invention having a solids content of 35% by weight, 28 g of commercial LCO powder which has been ground down by means of a ball mill to an average particle size of about 1 μm (D 50 value) are used , 34 g of cobalt (II) propionate and 3.29 g of lithium propionate (15 wt .-% excess to compensate for lithium losses during the sintering process) dissolved or suspended in about 50 g of methanol. 70 g of the lithium niobate dispersion having a solids content of 5% by weight are added dropwise to this suspension, and the mixture is stirred for about 24 hours.
Nach erfolgter Homogenisierung wird solange ein Teil des Lösemittels verdampft bis der resultierende dünnflüssige Schlicker eine Masse von 90 g erreicht hat. Abschließend wird diesem Gemisch 10 g 1-Butanol beigefügt, der als Eindicker zur Unterdrückung einer schnellen Sedimentation des LCO-Pulvers in der Suspension fungiert und wiederum 2 Stunden gerührt. Der resultierende leicht viskose Schlicker kann direkt zur Sprühbeschichtung der metallischen Stromkollektorfolien mit Hilfe einer Druckluft-betriebenen Sprühpistole genutzt werden. After homogenization, as long as a part of the solvent is evaporated until the resulting low-viscosity slip has reached a mass of 90 g. Finally, this mixture 10 g of 1-butanol is added, which acts as a thickener to suppress rapid sedimentation of the LCO powder in the suspension and stirred again for 2 hours. The resulting slightly viscous slurry can be used directly for spray coating the metallic current collector foils by means of a compressed air operated spray gun.
Nach 2 stündiger Trocknung in einem Trockenschrank bei 200 °C zur vollständigen Entfer- nung der Suspensionsmittel erfolgt die reaktive Konsolidierung der LCO Grünschichten im ersten Verfahrensschritt durch schnelles Aufheizen des Kompositmaterials auf 800 °C in einem gasdichten Ofen mit einer Aufheizrate von ca. 20 K/s unter strömendem Argon mit einer Strömungsgeschwindigkeit von ca. 10 cm/min und einem Sauerstoffpartialdruck von 0,1 ppm. After drying for 2 hours in a drying oven at 200 ° C. for complete removal of the suspending agent, the reactive consolidation of the LCO green sheets is carried out in the first process step by rapidly heating the composite material to 800 ° C. in a gas-tight oven at a heating rate of about 20 ° C. s under flowing argon at a flow rate of about 10 cm / min and an oxygen partial pressure of 0.1 ppm.
Nach 10 minütiger Auslagerung bei 800 °C wird zur Reoxidation der nunmehr verdichteten Kathodenschicht im zweiten Verfahrensschritt bei der gleichen Temperatur dem Argon so viel Sauerstoff beigemischt, bis das Reaktorgas eine 02-Konzentration von 100000 ppm aufweist. Zur Vervollständigung der LCO Phasenbildung wird das Kompositblech weitere 10 Minuten bei diesen Bedingungen ausgelagert. After 10 minutes of aging at 800 ° C, the reoxidation of the now densified cathode layer in the second process step at the same temperature of the argon so much oxygen is added until the reactor gas has a 0 2 concentration of 100,000 ppm. To complete the LCO phase formation, the composite sheet is aged for another 10 minutes at these conditions.
Nach Abkühlung mit einer Abkühlrate von ebenfalls ca. 20 K/s werden die hierbei erhaltenen blau-grauen rissfreien LCO/LNO-Kathodenschichten bis zur Weiterverwertung unter Argon gelagert. Die Figur 1 zeigt in einer rasterelektronenmikroskopischen Aufnahme eines Querschliffes die poröse Morphologie der gesinterten LCO/LNO-Kompositkathodenschicht auf dem Aluchrom-Stromkollektor. After cooling at a cooling rate of likewise about 20 K / s, the resulting blue-gray crack-free LCO / LNO cathode layers are stored until further use under argon. FIG. 1 shows, in a scanning electron micrograph of a transverse section, the porous morphology of the sintered LCO / LNO composite cathode layer on the aluchome current collector.
Zur Erprobung der elektrochemischen Aktivität wurde mit der erfindungsgemäßen Komposit- kathodenschichten eine Halbzelle unter Verwendung eines flüssigen Lithiumhexafluorophos- hat-Elektrolyten gelöst in einer Mischung aus Ethylen- und Dimethylcarbonat und einer metallischen Lithiumfolie als Anode unter Argon zusammengebaut. Die Zelle wurde anschließend bei Raumtemperatur galvanostatisch in einem Spannungsbereich von 3,0 bis 4,2 V bei einer Stromdichte von 0,5 C 100 mal auf- und entladen. Die Figur 2 zeigt die hierbei erhaltene Entwicklung der spezifischen Speicherkapazität in Abhängigkeit von der Zyklenanzahl, wobei ein Kapazitätsverlust von 16 % nach 100 Zyklen beobachtet werden konnte. To test the electrochemical activity, a half-cell was dissolved with the composite cathode layers according to the invention using a liquid lithium hexafluorophosphorus electrolyte dissolved in a mixture of ethylene and dimethyl carbonate and a metallic lithium foil as an anode under argon. The cell was then charged and discharged galvanostatically in a voltage range of 3.0 to 4.2 V at a current density of 0.5 C at room temperature. FIG. 2 shows the development of the specific storage capacity as a function of the number of cycles, whereby a capacity loss of 16% after 100 cycles could be observed.
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102016000799.0A DE102016000799A1 (en) | 2016-01-27 | 2016-01-27 | Process for the preparation of ceramic cathode layers on current collectors |
PCT/EP2016/002084 WO2017129209A1 (en) | 2016-01-27 | 2016-12-09 | Method for producing ceramic cathode layers on current collectors |
Publications (1)
Publication Number | Publication Date |
---|---|
EP3408880A1 true EP3408880A1 (en) | 2018-12-05 |
Family
ID=57681542
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP16819818.2A Withdrawn EP3408880A1 (en) | 2016-01-27 | 2016-12-09 | Method for producing ceramic cathode layers on current collectors |
Country Status (6)
Country | Link |
---|---|
US (1) | US10403881B2 (en) |
EP (1) | EP3408880A1 (en) |
JP (1) | JP7050674B2 (en) |
CN (1) | CN108475764B (en) |
DE (1) | DE102016000799A1 (en) |
WO (1) | WO2017129209A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102018218412A1 (en) * | 2018-10-26 | 2020-04-30 | Conti Temic Microelectronic Gmbh | Method for producing a layer arrangement for a solid-state accumulator |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9391325B2 (en) * | 2002-03-01 | 2016-07-12 | Panasonic Corporation | Positive electrode active material, production method thereof and non-aqueous electrolyte secondary battery |
CN1150646C (en) * | 2002-05-23 | 2004-05-19 | 上海交通大学 | Process for coating LiFeO2 on nickel oxide cathode of fused carbonate fuel battery |
GB0501590D0 (en) | 2005-01-25 | 2005-03-02 | Ceres Power Ltd | Processing of enhanced performance LSCF fuel cell cathode microstructure and a fuel cell cathode |
US7540886B2 (en) * | 2005-10-11 | 2009-06-02 | Excellatron Solid State, Llc | Method of manufacturing lithium battery |
CN1983683A (en) * | 2006-04-12 | 2007-06-20 | 松下电器产业株式会社 | Positive electrode active material, production method thereof and non-aqueous electrolyte secondary battery |
DE102006030393A1 (en) * | 2006-07-01 | 2008-01-03 | Forschungszentrum Jülich GmbH | Anode for a high temperature fuel cell comprises a porous ceramic structure with a first electron-conducting phase and a second ion-conducting phase containing yttrium or scandium-stabilized zirconium dioxide |
CN101495666B (en) * | 2006-07-27 | 2012-09-26 | Jx日矿日石金属株式会社 | Lithium-containing transition metal oxide target, process for producing the same and lithium ion thin-film secondary battery |
JP2010170854A (en) | 2009-01-23 | 2010-08-05 | Sumitomo Electric Ind Ltd | Method of manufacturing positive electrode for nonaqueous electrolyte battery, positive electrode for nonaqueous electrolyte battery, and nonaqueous electrolyte battery |
JP5646088B1 (en) | 2010-06-29 | 2014-12-24 | ユミコア ソシエテ アノニムUmicore S.A. | High density and high voltage stable cathode materials for secondary batteries |
DE102011050461A1 (en) * | 2011-05-18 | 2012-11-22 | Chemical Consulting Dornseiffer CCD GbR (vertretungsberechtigter Gesellschafter: Dr. Jürgen Dornseiffer, 52070 Aachen) | A method for producing a semiconductor ceramic material for a non-linear PTC resistor, semiconductor ceramic material and a semiconductor device |
FR2982084B1 (en) | 2011-11-02 | 2013-11-22 | Fabien Gaben | PROCESS FOR PRODUCING BATTERY ELECTRODES ENTIRELY SOLID |
JP5828304B2 (en) * | 2012-06-29 | 2015-12-02 | トヨタ自動車株式会社 | Composite active material, solid battery, and method for producing composite active material |
CN103000880B (en) * | 2012-11-29 | 2016-05-18 | 东莞新能源科技有限公司 | Positive electrode and preparation method thereof and the lithium ion battery that comprises this positive electrode |
CN103606648A (en) * | 2013-11-15 | 2014-02-26 | 江苏天鹏电源有限公司 | High-specific-capacity favorable-cyclicity lithium ion battery |
WO2015146574A1 (en) | 2014-03-26 | 2015-10-01 | Jx日鉱日石金属株式会社 | LiCoO2 SPUTTERING TARGET, PRODUCTION METHOD THEREFOR, AND POSITIVE ELECTRODE MATERIAL THIN FILM |
-
2016
- 2016-01-27 DE DE102016000799.0A patent/DE102016000799A1/en not_active Withdrawn
- 2016-12-09 JP JP2018529211A patent/JP7050674B2/en active Active
- 2016-12-09 CN CN201680076545.8A patent/CN108475764B/en active Active
- 2016-12-09 EP EP16819818.2A patent/EP3408880A1/en not_active Withdrawn
- 2016-12-09 WO PCT/EP2016/002084 patent/WO2017129209A1/en active Application Filing
- 2016-12-09 US US16/066,321 patent/US10403881B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2019507458A (en) | 2019-03-14 |
US20190013512A1 (en) | 2019-01-10 |
WO2017129209A1 (en) | 2017-08-03 |
JP7050674B2 (en) | 2022-04-08 |
US10403881B2 (en) | 2019-09-03 |
CN108475764A (en) | 2018-08-31 |
CN108475764B (en) | 2021-09-14 |
DE102016000799A1 (en) | 2017-07-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11682789B2 (en) | Environmentally preferable method of making solid electrolyte and integration of metal anodes thereof | |
EP3925023B1 (en) | Solid state battery and method for producing same | |
EP2760069B1 (en) | Electrode material and electrode | |
DE112014000685T5 (en) | Electrode materials with a synthetic solid electrolyte interface | |
EP3308417B1 (en) | Method for producing nanostructured layers | |
DE102016015191B3 (en) | Lithium-ion solid-state accumulator and method for producing the same | |
DE102013216814A1 (en) | Positive Active Electrode Material, Method for Producing Same and Rechargeable Nonaqueous Electrolyte Battery Having the same | |
DE102010018041A1 (en) | A carbonaceous composite containing an oxygen-containing lithium transition metal compound | |
DE102011121236A1 (en) | Solid electrolyte for use in lithium-air or lithium-water storage batteries | |
DE112019006365T5 (en) | ALL-SOLID-STATE BATTERY AND METHOD FOR MANUFACTURING IT | |
DE112015002533T5 (en) | Copper-containing silicon material, process for its production, negative-electrode active material and secondary battery | |
DE112015002524T5 (en) | Nano-silicon material, process for producing the same and negative electrode of a secondary battery | |
DE112015004276T5 (en) | MSix-CONTAINING SILICONE MATERIAL (M IS AT LEAST ONE ITEM SELECTED FROM GROUP 3 TO 9 ELEMENTS: 1/3 ≤ x ≤ 3) AND METHOD FOR THE MANUFACTURE THEREOF | |
DE112021007772T5 (en) | ION CONDUCTING SOLID AND SOLID BATTERY | |
US12100800B2 (en) | Solid state electrolytes | |
WO2017129209A1 (en) | Method for producing ceramic cathode layers on current collectors | |
EP2013888A2 (en) | Method for the production of a coating of a porous, electrically conductive support material with a dielectric, and production of capacitors having high capacity density with the aid of said method | |
DE112022003402T5 (en) | SOLID-STATE BATTERY | |
CN115084418A (en) | Electrode for solid-state battery and solid-state battery provided with same | |
CN112786851A (en) | Positive electrode active material composite | |
WO2020091723A1 (en) | Environmentally preferable method of making solid electrolyte and integration of metal anodes thereof | |
EP2135266A1 (en) | Method for the production of a coating of a porous, electrically conductive carrier material with a dielectric | |
DE102019200440A1 (en) | Method for producing an electrode for a solid-state accumulator | |
WO2023247072A1 (en) | Method for producing silicon electrodes as anodes for lithium ion batteries and a silicon electrode produced using same | |
DE102018218412A1 (en) | Method for producing a layer arrangement for a solid-state accumulator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20180621 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
RAP3 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: FORSCHUNGSZENTRUM JUELICH GMBH |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20230418 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20240702 |