EP3406974B1 - Turbine à gaz et son procédé de fonctionnement - Google Patents

Turbine à gaz et son procédé de fonctionnement Download PDF

Info

Publication number
EP3406974B1
EP3406974B1 EP17172854.6A EP17172854A EP3406974B1 EP 3406974 B1 EP3406974 B1 EP 3406974B1 EP 17172854 A EP17172854 A EP 17172854A EP 3406974 B1 EP3406974 B1 EP 3406974B1
Authority
EP
European Patent Office
Prior art keywords
injector
inlet
nozzle
combustion chamber
mass flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17172854.6A
Other languages
German (de)
English (en)
Other versions
EP3406974A1 (fr
Inventor
Alessandro Scarpato
Bruno Schuermans
Mirko Bothien
Franklin Genin
Luis TAY WO CHONG HILARES
Naresh Kumar Aluri
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ansaldo Energia Switzerland AG
Original Assignee
Ansaldo Energia Switzerland AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ansaldo Energia Switzerland AG filed Critical Ansaldo Energia Switzerland AG
Priority to EP17172854.6A priority Critical patent/EP3406974B1/fr
Priority to CN201810507686.1A priority patent/CN108954386B/zh
Publication of EP3406974A1 publication Critical patent/EP3406974A1/fr
Application granted granted Critical
Publication of EP3406974B1 publication Critical patent/EP3406974B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/286Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply having fuel-air premixing devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00013Reducing thermo-acoustic vibrations by active means

Definitions

  • the present invention relates to a gas turbine and a method for operating the same.
  • Figure 1 schematically shows an example of a gas turbine; the gas turbine 1 has a compressor 2, a first combustion chamber 3, a second combustion chamber 4 and a turbine 5. Possibly between the first combustion chamber 3 and the second combustion chamber 4 a high pressure turbine is provided. During operation air is compressed at the compressor 2 and is used to combust a fuel in the first combustion chamber 3; the hot gas (possibly partly expanded in the high pressure turbine) is then sent into the second combustion chamber 4 where further fuel is injected and combusted; the hot gas generated at the second combustion chamber 4 is then expanded in the turbine 5.
  • a mixer 7 can be provided between the first combustion chamber 3 and the second combustion chamber 4 in order to dilute with air (or other gas) the hot gas coming from the first combustion chamber 3 and directed into the second combustion chamber 4. This allows a correct fuel injection and mixing with the hot gas at the second combustion chamber.
  • Figure 2 schematically shows the section of the gas turbine including the first and the second combustion chambers 3, 4.
  • Figure 2 shows a first burner 3a of the first combustion chamber 3 where the compressed air coming from the compressor 2 is mixed with the fuel and a combustor 3b where the mixture is combusted generating hot gas (reference 20a indicates the flame).
  • the hot gas is directed via a transition piece 3c into the mixer 7, where air is supplied into the hot gas to dilute it.
  • the diluted (and cooled) hot gas is thus supplied into the burner 4a of the second combustion chamber 4 where further fuel is injected into the hot gas via a lance 8 and mixed to it.
  • This mixture combusts in the combustor 4b by auto combustion (reference 20b indicates the flame), after a "delay time" from the injection into the second burner 4a.
  • the temperature at the inlet of the second burner 4a can fluctuate, typically because of mass flow fluctuation of the air coming from the mixer 7 and directed into the second burner 4a.
  • the delay time depends on, inter alia, the temperature within the second burner 4a, such that temperature fluctuations in the second burner 4a cause increase/decrease of the delay time and thus axial upstream/downstream oscillations of the flame in the combustor 4b.
  • the temperature in the second burner 4a has to be maintained constant and thus the temperature of the flow emerging from the mixer 7 has to be maintained constant.
  • the flow temperature at the exit of mixer 7 can vary because within the mixer 7 pressure fluctuations exist (e.g. due to the combustion in the combustor 3b and/or 4b); these pressure fluctuations cause diluting air fluctuating mass flow injection into the mixer.
  • multiple injectors can be provided at different axial locations of the mixer 7, in such a way that fluctuating air mass flow supplied through upstream injectors compensate for fluctuating air mass flow supplied trough downstream injectors.
  • air is injected in such a way that the dilution air mass flow injected from upstream injectors reaches the downstream injectors in phase opposition with respect to the dilution air injected through them (and vice versa); this way the upstream/downstream mass flows compensate for one another and air mass flow fluctuations are counteracted.
  • the acoustic mode is the maximum fluctuation amplitude of the acoustic pressure over the axial axis of the mixer.
  • figure 3A shows an example of an acoustic mode in connection with the axial position x along the mixer; references 17a and 17b indicate the injectors, which respectively inject the mass flow Ma and mass flow Mb.
  • Aa and Ab identify the maximum amplitude of the acoustic pressure fluctuations at the injector axial locations 17a and 17b.
  • Figures 3B and 3C respectively show the mass flow Ma and Mb and their fluctuations; the mass flows Ma and Mb propagate along the mixer towards the mixer exit; the fluctuation course is defined with respect to the mean flow (which is in general different but could also be the same) and is shown as a wave that moves from the inlet to the outlet of the mixer.
  • Figure 3D shows the total mass flow Mtot and the fluctuations thereof, resulting from the overlapping of the mass flows Ma and Mb; as shown, since the fluctuation amplitude of the mass flow Mb is larger than the fluctuation amplitude of the mass flow Ma, the overlapping of the mass flows Ma and Mb does not result in fluctuation cancellation, but only in attenuated fluctuations.
  • An example of a known gas turbine with a sequential combustor arrangement is disclosed in US 2016/177832 A1 .
  • the sequential combustor arrangement comprises a first combustion chamber and a mixer that mixes a dilution medium to the hot gases leaving the first combustion chamber.
  • the mixer includes multiple injection pipes and pressure-controlled compartments connected to the injection pipes.
  • the mixer of the gas turbine comprises a housing, a duct within the housing, at least a first injector and a second injector for injecting compressed air having a fluctuating mass flow into hot gas passing through the duct.
  • the first injector and the second injector are at a distance such that the fluid mass flow injected through the first injector reaches the second injector in phase opposition with the fluid mass flow injected through the second injector.
  • the first and the second injectors are configured and arranged for injecting a mass flow of compressed air having substantially the same fluctuation amplitude.
  • An aspect of the invention includes providing gas turbine with a mixer and a method by which the mass flow fluctuation cancellation for the fluid injected into the mixer can be improved.
  • the fluctuations amplitude can be made comparable, such that overlapping of the mass flows injected through the different injectors can result in a large reduction or also cancellation of the mass flow fluctuations.
  • the mixer 7 comprises a housing 15, a duct 16 within the housing 15, a first injector 17a and a second injector 17b for injecting a fluid (such as compressed air from the compressor, possibly cooled) into the duct 16; the fluid is injected by the first and second injector 17a, 17b with a fluctuating mass flow.
  • a fluid such as compressed air from the compressor, possibly cooled
  • the first injectors 17a and 17b can be provided around the periphery of the duct 16 and can open in one or more points into the duct, as explained in the following.
  • the first injector 17a and the second injector 17b are at a distance D such that the fluid mass flow injected through the first injector 17a reaches the second injector 17b in phase opposition with the fluid mass flow injected through the second injector 17b.
  • the large fluid mass flow axially travels through the duct 16 and reaches the second injector 17b when the second injector 17b is injecting fluid with a small fluid mass flow.
  • the first and the second injectors 17a, 17b are configured and arranged for injecting a mass flow (e.g. instantaneous mass flow) having substantially the same fluctuation amplitude.
  • a mass flow e.g. instantaneous mass flow
  • This allows a large reduction or also cancellation of the mass flow fluctuation for the mass flow resulting from the sum of the mass flow Ma from the first injector 17a and the mass flow Mb from the second injector 17b.
  • the first injector 17a can comprise a plenum 19a with at least an inlet 20a and at least a nozzle 21a for injecting the fluid into the duct 16.
  • the plenum 19a can be annular in shape and can embrace and be connected to the duct 16
  • the inlet 20a can be provided on any surface of the plenum 19a and the inlet 21a can protrude into the duct 16 or not.
  • the second injector 17b can comprise a plenum 19b with at least an inlet 20b and at least a nozzle 21b for injecting the fluid into the duct 16.
  • the plenum 19b can be annular in shape and can embrace and be connected to the duct 16, the inlet 20b can be provided on any surface of the plenum 19b and the inlet 21b can protrude into the duct 16 or not.
  • the injector can also be defined by a plurality of nozzles without the need of a plenum connected to it, as e.g. shown in figure 5 .
  • the first and/or the second injector can have any of the described structures.
  • the following reference to an embodiment with a plenum at both the first and the second injector 17a, 17b is made.
  • the inlet 20a of the first injector 17a and the inlet 20b of the second injector have different features in order to cause a different pressure drop for the fluid moving from the housing 15 into the plena 19a, 19b.
  • these features of the inlets 20a, 20b include the inlet cross section and/or the inlet surface rugosity; other means are possible.
  • the nozzle 21a of the first injector 17a and the nozzle 21b of the second injector 17b can have different features in order to cause a different pressure drop for the fluid moving from the plena 19a, 19b into the duct 16.
  • the nozzle 21a or 21b causes a pressure drop in the fluid moving from the housing 15 into the duct 16.
  • These features can include the nozzle cross section and/or the nozzle surface rugosity; other means are possible.
  • Hot gas G coming from the first combustion chamber 3 enters the duct 16 and passes through it, to be then discharged into the second combustion chamber 4.
  • the first injector 17a injects a fluid (compressed air e.g. from the compressor 2 possibly cooled) into the duct 16 to dilute and cool the hot gas; the fluid is injected into the duct 16 with a fluctuating mass flow Ma. After injection the mass flow (while mixing with the hot gas) travels through the duct 16 and reaches (completely or partly mixed to the hot gas) the second injector 17b ( figure 6B ).
  • a fluid compressed air e.g. from the compressor 2 possibly cooled
  • the second injector 17b injects a fluid (compressed air) into the duct 16 to dilute and cool the hot gas; the fluid is injected into the duct 16 with a fluctuating mass flow Mb ( figure 6C ).
  • the mass flow Ma reaches the second injector 17b in phase opposition with the mass flow Mb.
  • the fluid passes from the inside of the housing 15 into the plenum 19a of the first injector and 19b of the second injector. While passing through the inlets 20a and 20b the fluid undergoes a different pressure drop, such that the pressure inside the plena 19a and 19b is different and the flow injected through the injectors 17a and 17b and in particular the flow fluctuation amplitude thereof is different.
  • the nozzles 21a and 21b can cause pressure drop for the fluid passing through them, to cause or contribute to cause injection of a different mass flow and thus different flow fluctuation amplitudes through the first and second injectors 17a, 17b.
  • the flow fluctuation amplitude for the mass flow Ma and Mb is made substantially equal; in addition, since the flow fluctuations are in phase opposition, their overlapping causes fluctuation cancellation.
  • the present invention also refers to a method for operating a mixer 7.
  • the method comprises injecting through the first and the second injectors 17a, 17b a mass flow (e.g. instantaneous mass flow) having substantially the same fluctuation amplitude.
  • a mass flow e.g. instantaneous mass flow
  • the different pressure drop within the plena 19a, 19b and/or through the nozzles 21a, 21b causes injection of fluid with different fluctuation amplitude with respect to what would be imposed by the acoustic mode; therefore the fluctuations being in phase opposition and with substantially the same amplitude are cancelled following their overlapping.
  • the mixer can have more than two axially spaced injectors, which are at distances such as to reduce or cancel different frequencies.
  • a mixer could have a first, a second and a third injectors, the first and the third injectors cooperating to cancel a fluctuation at a frequency and the second and third injectors cooperating to cancel fluctuations at another frequency.
  • the mixer can have four injectors, with a first and a second injectors that cancel a frequency and a third and a fourth injectors that cancel another frequency.
  • any number of injectors are possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Claims (9)

  1. Turbine à gaz comprenant un compresseur (2), une première chambre de combustion (3), une seconde chambre de combustion (4), une turbine (5) et un mélangeur (7) entre la première chambre de combustion (3) et la seconde chambre de combustion (4), dans laquelle le mélangeur (7) est configuré pour diluer, avec de l'air comprimé, les gaz chauds (G) provenant de la première chambre de combustion (3) et dirigés dans la seconde chambre de combustion (4), le mélangeur (7) comprenant un boîtier (15), un conduit (16) dans le boîtier (15), au moins un premier injecteur (17a) et un second injecteur (17b) pour injecter l'air comprimé provenant du compresseur (2) et ayant un écoulement de masse fluctuant dans les gaz chauds (G) provenant de la première chambre de combustion (3) et passant par le conduit (16), dans lequel le premier injecteur (17a) et le second injecteur (17b) sont à une distance (D) de sorte que l'écoulement de masse fluide injecté à travers le premier injecteur (17a) atteint le second injecteur (17b) en opposition de phase avec l'écoulement de masse fluide injecté par le second injecteur (17b), dans laquelle le premier et le second injecteur (17a, 17b) sont configurés et agencés pour injecter un écoulement de masse d'air comprimé ayant sensiblement la même amplitude de fluctuation, dans laquelle le premier injecteur (17a) comprend un plénum (19a) avec au moins une entrée (20a) et au moins une buse (21a) pour injecter le fluide dans le conduit (16) et le second injecteur (17b) comprend un plénum (19b) avec au moins une entrée (20b) et au moins une buse (21b) pour injecter le fluide dans le conduit (16), dans laquelle l'entrée (20a) du premier injecteur (17a) et l'entrée (20b) du second injecteur (17b) ont des caractéristiques différentes afin de provoquer une chute de pression différente pour le fluide se déplaçant du boîtier (15) dans le plénum (19a) du premier injecteur (17a) et le plénum (19b) du second injecteur (17b).
  2. Turbine à gaz selon la revendication 1, dans laquelle les caractéristiques de l'entrée (20a) du premier injecteur (17a) et/ou de l'entrée (20b) du second injecteur (17b) comprennent la section transversale d'entrée.
  3. Turbine à gaz selon la revendication 1 ou 2, dans laquelle les caractéristiques de l'entrée (20a) du premier injecteur (17a) et/ou de l'entrée (20b) du second injecteur (17b) comprennent la rugosité de surface de l'entrée.
  4. Turbine à gaz selon la revendication 1, dans laquelle une buse (21a) du premier injecteur (17a) et une buse (21b) du second injecteur (17b) ont des caractéristiques différentes afin de provoquer une chute de pression différente pour le fluide se déplaçant entre les plénums (19a, 19b) du premier et/ou du second injecteur (17a, 17b) dans le conduit (16).
  5. Turbine à gaz selon la revendication 4, dans laquelle les caractéristiques de la buse (21a) du premier injecteur (17a) et/ou de la buse (20b) du second injecteur (17b) comprennent la section transversale de la buse.
  6. Turbine à gaz selon la revendication 4 ou 5, dans laquelle les caractéristiques de la buse (21a) du premier injecteur (17a) et/ou de la buse (21b) du second injecteur (17b) comprennent la rugosité de surface de la buse.
  7. Procédé pour actionner une turbine à gaz comprenant un compresseur (2), une première chambre de combustion (3), une seconde chambre de combustion (4), une turbine (5) et un mélangeur (7) entre la première chambre de combustion (3) et la seconde chambre de combustion (4), dans lequel le mélangeur (7) est configuré pour diluer, avec de l'air comprimé, des gaz chauds (G) provenant de la première chambre de combustion (3) et dirigés dans la seconde chambre de combustion (4), le mélangeur (7) comprenant un boîtier (15), un conduit (16) dans le boîtier (15), au moins un premier injecteur (17a) et un second injecteur (17b) pour injecter un air comprimé provenant du compresseur (2) et ayant un écoulement de masse fluctuant dans les gaz chauds (G) provenant de la première chambre de combustion (3) et passant par le conduit (16), dans lequel le premier injecteur (17a) et le second injecteur (17b) sont à une distance (D) de sorte que l'écoulement de masse fluide injecté par le premier injecteur (10a) atteint le second injecteur (17b) en opposition de phase avec l'écoulement de masse fluide injecté par le second injecteur (17b), le procédé comprenant l'étape consistant à injecter, par le premier et le second injecteur (17a, 17b), un écoulement de masse d'air comprimé ayant sensiblement la même amplitude de fluctuation, dans lequel les premier et second injecteurs (17a, 17b) comprennent chacun : un plénum (19a, 19b) avec au moins une entrée (20a, 20b) et au moins une buse (21a, 21b) pour injecter le fluide dans le conduit (16), et fournissant une pression différente dans le plénum (19a) du premier injecteur (17a, 17b) et le plénum (19b) du second injecteur (17b).
  8. Procédé selon la revendication 7, dans lequel le fluide contenu dans le boîtier (15) pénètre dans le plénum (19a) du premier injecteur (17a) et le plénum (19b) du second injecteur (17b) en passant par l'entrée (20a) du premier injecteur (17a) et l'entrée (20b) du second injecteur (20b), et dans lequel tout en passant par l'entrée (20a) du premier injecteur (17a) et l'entrée (20b) du second injecteur (17b), le fluide subit une chute de pression différente.
  9. Procédé selon la revendication 7 ou 8, dans lequel le fluide contenu dans le plénum (19a) du premier injecteur (17a) et le plénum (19b) du second injecteur (17b) pénètre dans le conduit (16) en passant par la buse (21a) du premier injecteur (17a) et la buse (21b) du second injecteur (17b), et dans lequel tout en passant par la buse (21a) du premier injecteur (17a) et la buse (21b) du second injecteur (17b), le fluide subit une chute de pression différente.
EP17172854.6A 2017-05-24 2017-05-24 Turbine à gaz et son procédé de fonctionnement Active EP3406974B1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17172854.6A EP3406974B1 (fr) 2017-05-24 2017-05-24 Turbine à gaz et son procédé de fonctionnement
CN201810507686.1A CN108954386B (zh) 2017-05-24 2018-05-24 混合器及用于操作该混合器的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP17172854.6A EP3406974B1 (fr) 2017-05-24 2017-05-24 Turbine à gaz et son procédé de fonctionnement

Publications (2)

Publication Number Publication Date
EP3406974A1 EP3406974A1 (fr) 2018-11-28
EP3406974B1 true EP3406974B1 (fr) 2020-11-11

Family

ID=58772783

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17172854.6A Active EP3406974B1 (fr) 2017-05-24 2017-05-24 Turbine à gaz et son procédé de fonctionnement

Country Status (2)

Country Link
EP (1) EP3406974B1 (fr)
CN (1) CN108954386B (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240230094A1 (en) * 2023-01-06 2024-07-11 Ge Infrastructure Technology Llc Combustor head end section with integrated cooling system

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5010453A (en) * 1990-08-28 1991-04-23 General Motors Corporation Vehicle lamp ventilation system
US5590529A (en) * 1994-09-26 1997-01-07 General Electric Company Air fuel mixer for gas turbine combustor
US5943866A (en) * 1994-10-03 1999-08-31 General Electric Company Dynamically uncoupled low NOx combustor having multiple premixers with axial staging
JPH08145361A (ja) * 1994-11-16 1996-06-07 Ishikawajima Harima Heavy Ind Co Ltd ガスタービン用燃料噴射弁
US5622054A (en) * 1995-12-22 1997-04-22 General Electric Company Low NOx lobed mixer fuel injector
US6735949B1 (en) * 2002-06-11 2004-05-18 General Electric Company Gas turbine engine combustor can with trapped vortex cavity
US7127899B2 (en) * 2004-02-26 2006-10-31 United Technologies Corporation Non-swirl dry low NOx (DLN) combustor
US7013649B2 (en) * 2004-05-25 2006-03-21 General Electric Company Gas turbine engine combustor mixer
US20070074518A1 (en) * 2005-09-30 2007-04-05 Solar Turbines Incorporated Turbine engine having acoustically tuned fuel nozzle
JP6154988B2 (ja) * 2012-01-05 2017-06-28 三菱日立パワーシステムズ株式会社 燃焼器
US9347669B2 (en) * 2012-10-01 2016-05-24 Alstom Technology Ltd. Variable length combustor dome extension for improved operability
CN102937300B (zh) * 2012-11-28 2014-09-17 哈尔滨汽轮机厂有限责任公司 一种燃气轮机用的稀释剂分级注入系统
EP2837888A1 (fr) * 2013-08-15 2015-02-18 Alstom Technology Ltd Combustion séquentielle avec un mélangeur de gaz de dilution
EP3037728B1 (fr) * 2014-12-22 2020-04-29 Ansaldo Energia Switzerland AG Mélangeur axialement étagé avec injection d'air de dilution
EP3037725B1 (fr) * 2014-12-22 2018-10-31 Ansaldo Energia Switzerland AG Mélangeur destiné à mélanger de l'air de dilution à l'écoulement de gaz chaud

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3406974A1 (fr) 2018-11-28
CN108954386A (zh) 2018-12-07
CN108954386B (zh) 2022-03-08

Similar Documents

Publication Publication Date Title
US7631500B2 (en) Methods and apparatus to facilitate decreasing combustor acoustics
US8631656B2 (en) Gas turbine engine combustor circumferential acoustic reduction using flame temperature nonuniformities
US7320222B2 (en) Burner, method for operating a burner and gas turbine
US8336312B2 (en) Attenuation of combustion dynamics using a Herschel-Quincke filter
US7578130B1 (en) Methods and systems for combustion dynamics reduction
EP3767177B1 (fr) Système de registre de chambre de combustion de type dôme
CN105823085B (zh) 具有混合器的顺序燃烧器组件
JP5052783B2 (ja) ガスタービンエンジンおよび燃料供給装置
CN105716116B (zh) 喷射稀释空气的轴向分级混合器
CN102538012B (zh) 自振荡燃料喷射喷嘴
US20130340436A1 (en) Gas fuel turbine engine for reduced oscillations
US11454398B2 (en) Mixer
US20140338341A1 (en) Liquid fuel turbine engine for reduced oscillations
US20140283525A1 (en) Two-branch mixing passage and method to control combustor pulsations
EP3406974B1 (fr) Turbine à gaz et son procédé de fonctionnement
EP2851618A1 (fr) Système de combustion d'un moteur d'écoulement
CN105318354A (zh) 用于燃烧系统中的相干性降低的系统和方法
KR20160076472A (ko) 고온 가스 유동에 희석 공기를 혼합하기 위한 믹서
JP2017048978A (ja) ガスタービン燃焼器、ガスタービン、及びガスタービン燃焼器のバーナ

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190527

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200605

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1333840

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602017027230

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20201111

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1333840

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210211

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210311

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210311

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210211

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602017027230

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210524

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210524

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210311

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20240430

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240517

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111