EP3400583B1 - Checking the authenticity of value documents - Google Patents

Checking the authenticity of value documents Download PDF

Info

Publication number
EP3400583B1
EP3400583B1 EP16819439.7A EP16819439A EP3400583B1 EP 3400583 B1 EP3400583 B1 EP 3400583B1 EP 16819439 A EP16819439 A EP 16819439A EP 3400583 B1 EP3400583 B1 EP 3400583B1
Authority
EP
European Patent Office
Prior art keywords
value
emission
spectral
document
remission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16819439.7A
Other languages
German (de)
French (fr)
Other versions
EP3400583A1 (en
Inventor
Erich KERST
Thomas Happ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Giesecke and Devrient Currency Technology GmbH
Original Assignee
Giesecke and Devrient Currency Technology GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Giesecke and Devrient Currency Technology GmbH filed Critical Giesecke and Devrient Currency Technology GmbH
Publication of EP3400583A1 publication Critical patent/EP3400583A1/en
Application granted granted Critical
Publication of EP3400583B1 publication Critical patent/EP3400583B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07FCOIN-FREED OR LIKE APPARATUS
    • G07F7/00Mechanisms actuated by objects other than coins to free or to actuate vending, hiring, coin or paper currency dispensing or refunding apparatus
    • G07F7/08Mechanisms actuated by objects other than coins to free or to actuate vending, hiring, coin or paper currency dispensing or refunding apparatus by coded identity card or credit card or other personal identification means
    • G07F7/10Mechanisms actuated by objects other than coins to free or to actuate vending, hiring, coin or paper currency dispensing or refunding apparatus by coded identity card or credit card or other personal identification means together with a coded signal, e.g. in the form of personal identification information, like personal identification number [PIN] or biometric data
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D7/00Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
    • G07D7/06Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency using wave or particle radiation
    • G07D7/12Visible light, infrared or ultraviolet radiation
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D7/00Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
    • G07D7/20Testing patterns thereon
    • G07D7/202Testing patterns thereon using pattern matching
    • G07D7/205Matching spectral properties
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D7/00Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
    • G07D7/06Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency using wave or particle radiation
    • G07D7/12Visible light, infrared or ultraviolet radiation
    • G07D7/1205Testing spectral properties
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D7/00Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
    • G07D7/16Testing the dimensions
    • G07D7/162Length or width

Definitions

  • the present invention relates to a method as well as a testing sensor and a testing device for checking a document of value for authenticity.
  • the document of value is composed of several, possibly forged, partial documents or certain sections of the document of value have been replaced by forged sections.
  • Such authenticity tests which are often based on the evaluation of emission radiation from a luminescence feature that is present in or on the document of value, are implemented by combined test methods or test sensors which, in addition to the actual luminescence measurement, also carry out a remission or reflection measurement.
  • a spectrally resolving luminescence sensor includes a spectral detector with a diffraction grating
  • a separate detector is used to measure reflectance, which means that the test sensor requires a lot of space and its production requires a lot of design effort.
  • a spectrally resolving luminescence sensor for calibration purposes
  • a reference radiation source and a light scanner are used to determine the position of a document of value to be checked.
  • the reference radiation is designed in such a way that it lies within the spectral range of the luminescence sensor, so that no separate detector is required as a light sensor.
  • the reference radiation is switched off as soon as an edge of the document of value is detected.
  • this has the disadvantage that either no reflectance measurement can be carried out within the document of value or, given the usual transport speeds of the documents of value to be checked, only a low spatial resolution of the luminescence measurement is achieved.
  • banknote for adhesive strips.
  • the banknote is illuminated by several light sources, each of which emits light of different wavelengths.
  • One image line is recorded per wavelength, with the images of each wavelength being combined per image line.
  • document JP 4058246 B2 a method for detecting an adhesive strip on a banknote.
  • a banknote is exposed to light of a first wavelength, which is absorbed by the adhesive strip illuminated with light of a second wavelength, which is not absorbed by the adhesive strip.
  • EP 3 142 080 A1 shows an image reading device comprising a sensor, a light source and an image capture controller.
  • the document of value to be checked has a security area which extends over the entire extent of the document of value to be checked in the transport direction, and in or on which a substantially homogeneously distributed luminescence feature is present.
  • the luminescent feature is introduced into the volume of the document of value in the security area as homogeneously or evenly distributed as possible, or it is applied in the security area as a coating or varnish on the document of value, for example in the form of a luminescent paint or varnish.
  • the security area preferably extends over the entire document of value, so that the luminescent feature is essentially evenly distributed in or on the entire document of value.
  • the luminescence feature present in or on the security area can be excited to luminescence, i.e. to phosphorescence and/or fluorescence, by means of an excitation radiation.
  • the document of value is checked by a scanning sequence that is repeated several times as the document of value is transported past the test sensor, in the context of which the document of value is irradiated and scanned.
  • the scanning sequence repeated several times is then preferably followed by the actual test for integrity and/or authenticity, in which the previously scanned spectral values are appropriately evaluated.
  • the scanning sequence which is repeated several times, includes a first irradiation phase and a subsequent second irradiation phase.
  • the security area of the valuable document is irradiated with test radiation and excitation radiation in a detection or test area of the test sensor.
  • the test radiation is designed in such a way that the portion of the test radiation remitted by the safety area lies at least partially in a detection spectral range of the test sensor.
  • the excitation radiation is designed to cause emission radiation of the luminescent feature, which also emits at least partially in the detection spectral range of the test sensor.
  • a Location-dependent remission spectral value is sampled in a spectrally resolved manner, which includes, on the one hand, portions of the remitted test radiation and, on the other hand, portions of the emission radiation of the luminescence feature emitted due to the excitation radiation.
  • the safety area is irradiated only with the excitation radiation in a second irradiation phase in the test area of the test sensor and, preferably at the end of the second irradiation phase, at least one location-dependent emission spectral value is sampled with spectral resolution.
  • a classification as genuine or fake is carried out on the basis of at least one spatially-resolved remission spectral value that has been sampled several times in a spatially resolved manner, in particular at different locations, and at least one location-dependent emission spectral value that has been sampled several times in a spatially resolved manner, in particular at different locations.
  • an intensity of the remission spectral value includes, on the one hand, intensity components of the remitted test radiation and, on the other hand, also intensity components of an emission radiation of the luminescent feature excited by the excitation radiation, since the safety area is irradiated with both the test radiation and the excitation radiation during the first irradiation phase.
  • a spatially resolved reflectance curve is formed from the location-dependent reflectance spectral values recorded in the course of the several scanning sequences, which reflects the reflectance spectral values scanned along the security area in the transport direction.
  • a spatially resolved emission curve is formed from the location-dependent emission spectral values recorded in the course of the several scanning sequences, which reproduces the emission spectral values scanned along the safety area in the transport direction.
  • Each remission/emission spectral value of the remission/emission curve thus reflects the remitted/emitted radiation intensity at a specific position of the security area of the document of value, which is caused by the first or second irradiation phase.
  • the remission curve reflects the extent of the valuable document in the transport direction, while the emission curve reflects that area of the valuable document in the transport direction in which the luminescence feature could be detected.
  • the document of value is finally classified as complete and/or genuine after it has been passed completely past the test sensor if the remission curve and the emission curve have a qualitatively comparable curve, because this means that the luminescence feature is present along the entire extent of the document of value is present in the transport direction. If the two curves have curves that are not qualitatively comparable, a counterfeit can be assumed since the luminescent feature is not present in a counterfeit area of the value document that results from the emission curve.
  • a corresponding test sensor is used.
  • This includes a test radiation source which generates test radiation which is at least partially remitted by the document of value in the detection spectral range of the test sensor, and an excitation radiation source which generates an excitation radiation which excites the luminescence feature to produce emission radiation which is also at least partially in the detection spectral range of the test sensor emitted.
  • the test sensor comprises a scanning unit which scans test radiation remitted by the document of value and emission radiation emitted by the luminescence feature as location-dependent remission spectral values and location-dependent emission spectral values in the detection spectral range.
  • the detection of the emission spectral values and the remission spectral values is carried out in a spectrally resolved manner with preferably more than two spectral channels, in particular more than eight spectral channels and particularly preferably with more than sixteen spectral channels.
  • a control unit of the test sensor coordinates the radiation sources and the scanning unit in such a way that the scanning sequence is continuously repeated while the document of value is guided past the test sensor.
  • An evaluation unit of the test sensor finally forms the remission curve and the emission curve in the manner described above and compares their curve profiles qualitatively.
  • the invention offers the advantage that no additional scanning or detection channel is required for detecting the remission spectral values, since both the emission spectral values and the remission spectral values are at least partially in the same detection spectral range of the test sensor. This enables a comparatively compact test sensor with reduced design manufacturing effort.
  • the invention enables maximum spatial resolution and intensity of the emission curve, since the luminescent feature is already excited to emit during the irradiation of the document of value with the test radiation in the first irradiation phase, and not only after the test radiation has been switched off with the onset of the second irradiation phase.
  • the spatial/temporal distance between successive emission spectral values is thereby reduced by the length of the first irradiation phase compared to conventional solutions. Since, according to the invention, the first irradiation phase is also used to excite the luminescence feature, the intensities or amplitudes of the emission spectral values are also clearer, since the luminescence feature can be optically inflated over the maximum time available.
  • the emission and remission curves are checked for qualitative comparability. This means in particular that no quantitative comparison or a signal-theoretical correlation of the curves is made, but that the two curves are only compared with regard to their local/temporal widths, which in the case of a genuine document of value essentially correspond to its extent along the direction of transport or the duration of the Transport past the test sensor.
  • the two curves can, if necessary after suitable noise correction or local/temporal low-pass filtering, be subjected to edge detection, for example using edge or high-pass filters.
  • the two curves can be processed using suitable intensity threshold values in order to obtain significant or above-threshold reflectance/emission spectral values of noise-dependent ones or interference-related spectral values that cannot be attributed to a remission of the test radiation or an emission of the luminescence feature.
  • the evaluation unit preferably determines the number of significant or above-threshold reflectance/emission spectral values or the corresponding pixels under the preferably smoothed reflectance/emission curve.
  • the emission curve and the remission curve are considered to be qualitatively comparable if the emission curve essentially has significant intensities at those location/time positions or pixels at which the remission curve also forms significant intensities.
  • the quotient can be formed from the pixels with significant intensities in the remission curve and in the emission curve, so that it can be assumed that the two curves are qualitatively comparable if this quotient is approximately one.
  • a suitable interval can be selected for the quotient depending on the spatial resolution of the two curves, for example an interval between 0.9 and 1.1 or, preferably, an interval between 0.95 and 1.05 .
  • the evaluation unit determines the number of pixels in which the remission curve has significant intensities but the emission curve has subthreshold values.
  • the document of value is classified as inauthentic if this number of pixels suspected of being counterfeit exceeds a certain threshold value of, for example, 0, 1, 2, etc.
  • the duration of the first irradiation phase is preferably set between 0.5 ⁇ s and 500 ⁇ s, particularly preferably between 1 ⁇ s and 50 ⁇ s.
  • the ratio between the duration of the first irradiation phase and the duration of the entire scanning sequence is preferably between 1:1000 and 1:4, particularly preferably between 1:100 and 1:5. This means that the proportion of the first irradiation phase, in which the document of value is irradiated with both the test radiation and the excitation radiation, in the total duration of the scanning sequence, i.e. the total duration of the irradiation with the excitation radiation, is between approximately 0.1% and 25 % and is preferably between about 1% and 20%.
  • the transport speed at which a document of value to be checked is guided past the test sensor is between 1 m/s and 13 m/s, preferably in the range of 4-12 m/s.
  • the scanning sequence is designed such that the excitation irradiation can take place without interruption, in that the first irradiation phase of a scanning sequence immediately follows the second irradiation phase of the previous scanning sequence.
  • the irradiation with the test radiation then takes place in pulses during the first irradiation phase, each interrupted by the second irradiation phase.
  • the at least one remission spectral value is sampled towards the end of the first irradiation phase, preferably with the end of the first irradiation phase, while the at least one emission spectral value is sampled towards the end of the second irradiation phase, preferably with the end of the second irradiation phase.
  • the second irradiation phase is immediately followed by a rest phase in which there is neither irradiation by the test radiation nor by the excitation radiation.
  • the irradiation by the excitation radiation also takes place in pulses, each during the first and second irradiation phases and interrupted by the rest phase.
  • the first irradiation phase of a scanning sequence then immediately follows the rest phase of the previous scanning sequence.
  • emission spectral values are also recorded during the rest phase, preferably towards the end of the rest phase, so that a maximum intensity of the emission spectral values can be ensured if the luminescence marker is still emitting after the excitation radiation has been switched off.
  • the pulsed irradiation with the excitation radiation allows the multiple sampling of emission spectral values within a scanning sequence during and/or after the excitation radiation pulse, so that the temporal onset/decay behavior of the luminescence feature can also be determined depending on the location by comparing the emission spectral values sampled within a scanning sequence.
  • This location-dependent onset/decay behavior can then be taken into account during the authenticity test, since the temporal progression of the emission spectral values within a scanning sequence provides information about the emission properties and the exact type of luminescence feature being tested.
  • the emission spectral values sampled several times can be compared, for example, with corresponding location-dependent reference spectral values that were determined in advance for the document of value in question.
  • the document of value is irradiated with a spectrally narrow-band test radiation so that it is only detected in one or a few spectral channels of the detector.
  • the test radiation is preferably not suitable for significantly stimulating luminescence in the valuable document.
  • the document of value is irradiated with a preferably narrow-band excitation radiation, the excitation radiation taking place in the ultraviolet (UV), in the visible (VIS) and/or in the infrared spectral range (IR).
  • UV ultraviolet
  • VIS visible
  • IR infrared spectral range
  • This can also include several different wavelength ranges. This ensures that the test radiation causes no or only a small amount of emission radiation of the luminescence feature in the detection spectral range, so that the sampled emission spectral values can be traced back as far as possible exclusively to the excitation radiation and as little as possible to the test irradiation.
  • the test radiation source comprises an LED or semiconductor laser radiation source, for example an edge emitter laser diode.
  • the test radiation source particularly preferably comprises a narrow-band VCSEL or surface emitter radiation source.
  • the excitation radiation source preferably comprises an LED or semiconductor laser radiation source, particularly preferably a narrow-band VCSEL or surface emitter radiation source.
  • the reflectance spectral values and/or emission spectral values are preferably corrected with regard to noise and interference influences.
  • Scattered radiation components or electronic or electromagnetic interference radiation components can be eliminated from the remission spectral values and/or emission spectral values by an offset correction are, whereby the corresponding correction parameters are determined either in advance by scanning a reference substrate with the test sensor or, preferably, by scanning during the authenticity test at times when no document of value is passed by the test sensor (dark measurement), for example before the start of the authenticity test or between two consecutive documents of value to be checked.
  • the reflectance spectral values are preferably further corrected in such a way that only those sampled spectral components which are actually attributable to the test irradiation and their remission by the document of value are included in them. Accordingly, those sampled spectral components and/or intensity components or intensities that are attributable to emission radiation of the luminescence feature as a result of the excitation irradiation are filtered out or eliminated from the sampled remission spectral values.
  • a narrow-band test radiation is particularly suitable, so that the remission/emission spectral values sampled with spectral resolution can be effectively filtered.
  • intensity components or intensities of the remitted radiation can also be determined.
  • the contribution expected at the earlier time of sampling of the remission spectral value can be interpolated from the emission spectral values measured at the later time and their time course and can thus be deducted to a good approximation.
  • a non-negligible local or temporal offset can develop between the remission curve and the emission curve, since the document of value to be checked is moved further between the scanning of the remission spectral values and the scanning of the emission spectral values.
  • This offset can be compensated for as part of the authenticity test by shifting the emission curve relative to the remission curve by exactly the time interval that lies between the sampling of the remission spectral values and the sampling of the emission spectral values.
  • the test sensor according to the invention together with the transport device, which guides the document of value past the test sensor during the authenticity check in such a way that the test area of the test sensor moves continuously over the security area of the document of value, forms a test device according to the invention.
  • the transport speed of the document of value and the duration of a scanning sequence are preferably coordinated with one another in such a way that the resulting spatial resolution of the reflectance curve and/or emission curve is sufficiently high to enable a reliable authenticity check.
  • a sufficient spatial resolution exists, for example, if the boundaries of the document of value or the security area can be precisely detected or if the spatial resolution is sufficient to depict an important detail of the appearance or an imprint of the document of value.
  • Figure 1 shows the steps of a method for checking the authenticity of a document of value 1 with one of the in Figure 5 shown test sensors 10, comprising a scanning sequence A repeating steps S1 to S4 several times and a final evaluation step S5.
  • the sampling sequence A is in Figure 3 illustrated while Figure 4 the evaluation illustrates.
  • a value document 1 that can be verified using this method shows the Figure 2 .
  • Figure 2a illustrates a genuine document of value 1 with a security area 2, in or on which one or more luminescent features 3 are present, which are caused by a suitable excitation radiation L to produce fluorescence or be stimulated to phosphorescence.
  • the luminescence feature 3 can be excited with longer wavelengths (Stokes luminescence) or shorter wavelengths (anti-Stokes luminescence or upconverter) and emit in a specific emission spectral range.
  • the luminescent feature 3 is introduced as homogeneously or evenly distributed as possible over preferably the widest possible areas of the volume of the document of value 1, which can consist of paper or plastic (polymer), or, alternatively, is printed or painted over the entire surface of the security area 2.
  • the security area 2 is preferably equipped with the luminescence feature 3 along the complete extent of the document of value 1 in a transport direction T. Deviating from Figure 2a
  • the security area 2 can also extend over the entire surface of the document of value 1 or can take on almost any coherent geometric shape. These preferably extend over the entire extent of the document of value 1 in the transport direction.
  • Figure 2b In contrast, illustrates a counterfeit value document 1, in which a so-called "snippet forgery” is present in a forgery area F, which protects the security area 2 compared to that of the Figure 2a impaired in such a way that the luminescent feature 3 can no longer be detected over the entire extent of the document of value 1 in the transport direction T.
  • the method according to the invention according to Figure 1 is based, on the one hand, on the consideration that a remission caused by a test radiation P on the document of value 1 is available for detection or scanning and can be evaluated much more quickly than one caused by the excitation radiation L caused luminescence emission of the luminescence feature 3.
  • the method according to the invention is based on the knowledge that irradiation of the document of value 1 by the test radiation P can also be realized in parallel and without interference with the irradiation of the document of value 1 by the excitation irradiation L in order to clear the luminescence feature 3 more effectively optically pumping up and stimulating luminescence emission than with sequential irradiation with the test radiation P and the excitation radiation L.
  • the optical pumping of the luminescence feature 3 already while the document of value 1 is irradiated with the test radiation P is particularly useful for phosphorescence features, since their excitation or .Onset or decay times can range from a few microseconds to a few milliseconds.
  • steps S1 to S4 of the scanning sequence A are repeated several times.
  • a first step S1 the document of value 1 is first irradiated with both the test radiation P and the excitation radiation L as part of a first irradiation phase A1.
  • a correspondingly set up scanning unit 14 of the test sensor 10 then scans in step S2 spectral components of both the remitted test radiation P and the emission radiation emitted by the luminescence feature 3, which result from the first irradiation phase A1.
  • spectrally superimposed intensity components can be sampled by the scanning unit 14.
  • FIG. 3 illustrates two different variants of a scanning sequence A according to the invention in the dashed area. It is shown there that the document of value 1 during the first irradiation phase A1 is irradiated with both the test radiation P and the excitation radiation L, while at the end of the first irradiation phase A1 the sampling of remission spectral values R takes place according to step S2, which includes both remitted intensity components of the test radiation P and emitted intensity components of the emission radiation of the luminescence feature 3 include.
  • test radiation P is remitted directly from the document of value 1, so that in addition to the pure light transit time, no waiting or integration times are necessary, but the sampling of the remission spectral values R in step S2 can take place directly against or at the end of the first irradiation phase A1.
  • the reflectance spectral values R are preferably sampled synchronously and very quickly, so that the intensities attributable to the individual spectral channels of the scanning unit 14 can be evaluated in parallel.
  • the rapid scanning prevents the relevant spectral channels from smearing while the document of value 1 moves in the transport direction T.
  • the sampling step S2 can be carried out using photodiodes and suitable sample-and-hold circuits or using CCD or CMOS detectors with charge accumulation and a suitable array architecture with synchronous shifting of the charges of an entire spectral line into a darkened storage area of the test sensor 10.
  • step S3 the scanning unit 14 is read out again in order to obtain emission spectral values E determine which, due to the optical pumping of the luminescence feature 3, already have sufficiently strong emission intensities during the first irradiation phase A1.
  • step S4 allows a particularly precise and reliable test of the luminescence feature 3, since otherwise incorrect or deviating emission radiation, which is caused, for example, by fake luminescence features, may not be reliably detected, if the emission spectral values E are not sampled with sufficient intensity or are covered by the test radiation P.
  • the scanning sequence A is repeated continuously and continuously at least until the document of value 1 has been completely guided past the test sensor 10, so that for the authenticity check in step S5, remission spectral values R and emission spectral values E along the entire extent of the document of value 1 in the transport direction T in a spatial resolution, which depends on the one hand on the total duration of the scanning sequence A and on the other hand on the transport speed of the document of value 1.
  • Figure 3a also illustrates that the first irradiation phase A1 is of significantly shorter duration than the second irradiation phase A2.
  • the test radiation P is directed at the valuable document 1 with very short pulse lengths so that the emission spectral values E, which are crucial for the authenticity test, are disturbed as little as possible by remitted test radiation P and the highest possible spatial resolution is also achieved.
  • the temporal proportion of the first illumination phase A1 in the entire scanning sequence A is therefore between 0.1% and 25%, and preferably between 1% and 20%.
  • the duration of the entire scanning sequence A is preferably formed by the sum of the durations of the first lighting phase A1 and the second lighting phase A2.
  • the absolute duration of the first irradiation phase A1, i.e. the pulse length of the test irradiation P is in the range from 0.5 ⁇ s to 500 ⁇ s, preferably in the range from 1 ⁇ s to 50 ⁇ s.
  • step S2 With such short pulse lengths of the test radiation P, depending on the specific design of the scanning unit 14 and an evaluation unit 17 of the test sensor 10, it may be necessary to scan the remission spectral values R (step S2) only after the end of the first irradiation phase A1 in order to determine the time constant of either parasitic or deliberately installed low-pass filtering of the scanning unit 14 must be taken into account, because a certain time must then be waited until the remission spectral values R caused by the short pulse length of the test radiation P have also formed electronically and can be effectively scanned.
  • the document of value 1 is continuously further irradiated with the excitation radiation L in the second irradiation phase A2 (step S3) in order to further optically pump up the luminescence feature 3.
  • emission spectral values E can then be sampled (step S4), which are essentially exclusively due to the emission radiation of the optically pumped or maximally excited luminescence feature 3.
  • step S4 Immediately following the scanning of the emission spectral values E in step S4, the scanning sequence A begins again with the first irradiation phase A1, by further pulsed irradiation with the test radiation P (step S1), as in Figure 3a is shown.
  • the irradiation with pulsed excitation radiation L allows a single (step S4) or multiple (steps S4', S4) sampling of emission spectral values E during and/or after the pulsed irradiation with the excitation radiation L, that is within the second irradiation phase A2 and/or the Rest phase A3, for example once within and once at the end of the second irradiation phase A2 (step S4 ') and finally towards or at the end of the rest phase (step S4), shortly before the first irradiation phase A1 of the next scanning sequence A begins.
  • a location-dependent evaluation of the on/off behavior of the luminescent feature 3 can be carried out and thus lead to an improved authenticity check, which not only takes into account the mere presence of a luminescent feature 3 over the entire extent of the document of value along the transport direction T, but also the time behavior depending on the location the emission of the luminescence feature 3.
  • a sampling of emission spectral values E takes place relatively shortly after the end of the first irradiation phase A1 or the sampling of the remission spectral values R, so that the luminescence contribution to the remission spectral values R can be estimated more precisely.
  • the temporal proportion of the first illumination phase A1 in the entire scanning sequence A is therefore between 0.1% and 25%, and preferably between 1% and 20%.
  • the absolute duration of the first irradiation phase A1 i.e. the pulse length of the test irradiation P, is in the range from 0.5 ⁇ s to 500 ⁇ s, preferably in the range from 1 ⁇ s to 50 ⁇ s.
  • the duration of the entire scanning sequence A is preferably determined by the sum of the durations of the phases A1+A2+A3 and is dominated by the duration of the second lighting phase A2, i.e. the duration of the rest phase A3 is also relatively short.
  • the absolute duration of the rest phase A3 is preferably in the range from 0.1 ⁇ s to 500 ⁇ s, in particular in the range from 10 ⁇ s to 100 ⁇ s. This enables particularly good inflation of even relatively slow luminescence features 3 while at the same time having good spatial resolution.
  • correction and compensation methods are first used.
  • the two spectral values R, E are subjected to an offset or background correction, in which any effects caused by scattered radiation or electronic/electromagnetic radiation Spectral components are eliminated.
  • the correction parameters used can either be predefined in the evaluation unit 17, or can only be determined in the course of the test method according to the invention, for example by dark measurements without test irradiation P and excitation irradiation L at times when no document of value 1 is present.
  • spectral channels of the scanning unit 14 are preferably read out and in the case of a broader spectrum of the remitted test irradiation P, several spectral channels are read out at the same time. Only those spectral channels of the scanning unit 14 that correspond to the spectrum of the remitted test irradiation P are evaluated by eliminating spectral components from the remission spectral values R that result from the emission radiation excited during the first irradiation phase A1.
  • the relevant parameters of this spectral filtering can in turn either be predefined in the evaluation unit 17 or can be determined in the course of the test procedure.
  • the intensity contribution of the emission radiation can be corrected on the corresponding spectral channels of the remission spectral values R.
  • estimated values for the time course of the intensity of the emission radiation are determined on the basis of a linear or exponential model, which model the temporal emission behavior of the luminescence feature 3. In this way, interference components resulting from on/off are eliminated from the sampled remission spectral values R. Decay effects of the emission radiation during the first irradiation phase A1 result.
  • a luminescence feature 3 is tested with a short on/off time compared to the duration of the first irradiation period A1, those spectral components that can be attributed to emission radiation from the luminescence feature 3 during the first irradiation phase A1 can be at least approximately eliminated directly, i.e without temporal modeling of the on/off behavior of the luminescent feature 3.
  • the reflectance spectral values R corrected in this way are then stored in a memory of the test sensor 10 for evaluation by the evaluation unit 17 together with the associated measurement positions in the value document 1.
  • the corrected emission spectral values E are also saved together with the associated measurement positions.
  • the location-dependent, possibly corrected, remission spectral values R or emission spectral values E are then combined into a spatially resolved remission curve RC or emission curve EC over the time axis t.
  • One or both curves RC, EC are then smoothed, for example by calculating a moving average, a moving median or a moving percentile from several adjacent spectral values R, E of the respective curve RC, EC. If necessary, the curves RC, EC can also be normalized to a suitable intensity value, for example to the respective intensity maximum or the respective intensity median, but in particular in the case of the emission curve EC, an additional check is carried out with regard to whether a Absolute lower intensity threshold makes sense in order to be able to reliably identify any counterfeits with feature intensity that is too low.
  • the two curves EC, RC are shifted relative to one another within the scope of the time interval between the sampling of the remission spectral values R (step S2) and the sampling of the emission spectral values E (step S4).
  • a local/temporal offset between the remission spectral values R recorded somewhat earlier in time and the emission spectral values E recorded somewhat later in time can be corrected with regard to the qualitative comparison of the curves RC, EC.
  • the actual local dimension of the document of value 1 along the transport direction T is then determined by edge detection of the reflectance curve RC, for example by digital edge or high-pass filtering.
  • those extreme positions of the reflectance curve RC can be determined at which the reflectance spectral values R rise above the intensity median or fall below the intensity median again.
  • a suitable intensity quantile e.g. 75%, corresponds to almost white
  • a minimum of the reflectance curve RC or an intensity quantile of approximately 5% and to determine from this those (two) positions of the reflectance curve RC at which the reflectance curve RC intersects the intensity quantiles of 50% (or alternatively the mean of 5% and 75% quantiles).
  • the difference between the two positions then results in the extent of the document of value 1 along the transport direction T.
  • the intensity quantiles are determined depending on the respective appearance or the expected remitted intensity distribution of the value document 1 to be checked.
  • a measure of the completeness of the value document 1 is the quotient of the number of curve points (or pixels) with significant or above-threshold emission spectral values E and the number of curve points (or pixels) with significant or above-threshold remission spectral values R, which are essentially correspond to the extent of the valuable document 1 along the transport path T.
  • the significant emission spectral values E are then those whose intensity lies between specified lower and upper threshold values or those determined during the test.
  • the method according to the invention according to Figure 1 is realized by using a test sensor 10 according to the invention.
  • the Figures 5a and 5b show two preferred embodiments of such a test sensor 10, the scanning unit 14 of which is designed with the scanning sensor 19, the test area 4, under which the document of value 1 to be checked is preferred in the transport direction T with a transport speed between 1 m / s and 13 m / s between 4m/s and 11 m/s, is passed to scan spectrally resolved.
  • the scanning unit 14 detects emission radiation emitted by the luminescence feature 3 in a specific detection spectral range of the scanning sensor 19 and supplies emission spectral values E that reflect spectral properties of the scanned emission radiation.
  • an excitation radiation source 13 irradiates the test area 4 with the excitation radiation L.
  • the excitation radiation L is matched to the luminescence feature 3 in such a way that emission radiation is caused in the optical range, for example in the ultraviolet (UV), visible (VIS) or infrared Spectral range (IR).
  • the excitation radiation L is preferably spectrally narrow-band, but can also be broad-band or comprise a superposition of different narrow-band and/or broad-band radiation components.
  • the test area 4 is also irradiated with the test radiation P by an irradiation source 12 in order to determine the presence of a document of value 1 in the test area 4 at the time of scanning based on the remitted remission spectral values R or to determine its extent in the transport direction T by evaluating the resulting remission curve RC.
  • the test radiation source 12 generates a test radiation P with a spectral distribution that partially or, if possible, completely overlaps the detection spectral range of the scanning unit 14 or the scanning sensor 19.
  • the test radiation P is particularly preferably spectrally narrow-band and can only be detected in one or a few spectral channels of the scanning sensor 19.
  • the test radiation P generated is preferably spectral in this way designed so that it does not stimulate the luminescent feature 3 to produce any significant emission radiation.
  • the proportion of emission radiation caused by the luminescence feature 3 in the intensity of the sampled remission spectral values R is less than 10%.
  • the test radiation source 12 generates the test radiation P with a suitable light source, for example a light-emitting diode or laser diode, particularly preferably with an edge emitter or a VCSEL or a VCSEL array. If necessary, additional optical units, filters or phosphor converters are introduced into the beam path of the test sensor 10 in order to ensure a desired, possibly narrow-band spectrum of the test radiation P with a corresponding spectral overlap with the spectrum of the emission radiation emanating from the luminescence feature 3 in the detection spectral range of the scanning sensor 19.
  • the optics of the test sensor 10 are designed such that the test radiation P is coupled into a beam path to the scanning unit 14 by remission or scattering on the surface of a document of value 1 as soon as the document of value 1 moves into the test area 4.
  • test sensor 10 includes a control/evaluation unit 17, which controls the test radiation source 12 and the excitation radiation source 13 in such a way that a scanning sequence A according to Figure 3a or 3b is realized.
  • the control/evaluation unit 17 also checks the value document 1 for authenticity or completeness based on the determined remission curve RC and emission curve EC.
  • the test sensor 10 directs the test radiation P directly onto the test area 4, and thus onto the valuable document 1, whereby apertures or lighting optics can also be used.
  • Test area 4 locally overlapping with the test radiation P, the excitation radiation L is coupled in from the excitation radiation source 13 via a dichroic radiation splitter 16 and directed with the optics 15 onto the document of value 1 being transported past.
  • the excitation radiation source 13 includes, for example, a light-emitting diode or a semiconductor laser, in particular a VCSEL or VCSEL array.
  • Both the test radiation P remitted by the document of value 1 and the emission radiation emitted by the luminescent feature 3 are coupled into the scanning unit 14 via the optics 15 and detected there in a spectrally resolved manner by the scanning sensor 19.
  • the scanning unit 14 includes a spectrographic device 18 and the scanning sensor 19, which records the spectral components and spectral components in spectral resolution that are generated by the spectrographic unit 18.
  • the document of value 1 can alternatively be irradiated by means of a combined irradiation unit 11, which includes suitable irradiation sources 12, 13 for generating the test radiation P and the excitation radiation L.
  • both radiations are coupled together via the dichroic radiation splitter 16 into the beam path of the test sensor 10 in the direction of the test area 4.
  • the typical polarization dependence in the spectral edge region of dielectric interference filters on dichroic mirrors can be exploited, for example by deflecting linearly polarized radiation (in particular test radiation) on a dichroic mirror with high reflectivity (preferably greater than 80%), while the document of value diffuses 1 remitted radiation also spectral components of the includes perpendicular polarization components, which are therefore transmitted sufficiently well, for example in a range of greater than 40%.

Description

Die vorliegende Erfindung betrifft ein Verfahren sowie einen Prüfsensor und eine Prüfeinrichtung zum Prüfen eines Wertdokuments auf Echtheit.The present invention relates to a method as well as a testing sensor and a testing device for checking a document of value for authenticity.

Bei der Echtheitsprüfung von Wertdokumenten, wie beispielsweise Banknoten, Ausweisdokumenten, Wertpapieren oder dergleichen, ist es insbesondere wichtig, auch deren Unversehrtheit bzw. Vollständigkeit zu prüfen, um so genannte "Schnipselfälschungen" oder Composed-Fälschungen auszuschließen. Bei denen ist das Wertdokument aus mehreren, gegebenenfalls gefälschten Teildokumenten zusammengesetzt oder bestimmte Abschnitte des Wertdokuments sind durch gefälschte Abschnitte ersetzt worden. Derartige Echtheitsprüfungen, die häufig auf der Auswertung einer Emissionsstrahlung eines Lumineszenzmerkmals basieren, das in oder auf dem Wertdokument vorliegt, werden durch kombinierte Prüfverfahren bzw. Prüfsensoren realisiert, die neben der eigentlichen Lumineszenzmessung auch eine Remissions- oder Reflektionsmessung vornehmen.When checking the authenticity of valuable documents, such as banknotes, identification documents, securities or the like, it is particularly important to also check their integrity or completeness in order to rule out so-called "snippet forgeries" or compound forgeries. In these cases, the document of value is composed of several, possibly forged, partial documents or certain sections of the document of value have been replaced by forged sections. Such authenticity tests, which are often based on the evaluation of emission radiation from a luminescence feature that is present in or on the document of value, are implemented by combined test methods or test sensors which, in addition to the actual luminescence measurement, also carry out a remission or reflection measurement.

Einen solchen Prüfsensor, bei dem ein spektral auflösender Lumineszenzsensor einen Spektraldetektor mit Beugungsgitter umfasst, beschreibt beispielsweise die DE 10 2004 035 494 A1 . Zur Remissionsmessung wird dort ein separater Detektor verwendet, wodurch der Prüfsensor einen hohen Platzbedarf aufweist und seine Herstellung einen hohen konstruktiven Aufwand erfordert.Such a test sensor, in which a spectrally resolving luminescence sensor includes a spectral detector with a diffraction grating, is described, for example, in DE 10 2004 035 494 A1 . A separate detector is used to measure reflectance, which means that the test sensor requires a lot of space and its production requires a lot of design effort.

Daneben ist aus DE 10 2008 028 689 A1 und der DE 10 2008 028 690 A1 ein spektral auflösender Lumineszenzsensor bekannt, der zu Kalibrierungszwecken zusätzlich eine Referenzstrahlungsquelle und zur Ermittlung der Lage eines zu prüfenden Wertdokuments einen Lichttasters verwendet. Die Referenzstrahlung ist derart ausgelegt, dass sie innerhalb des Spektralbereichs des Lumineszenzsensors liegt, so dass kein separater Detektor als Lichttaster benötigt wird. Um die spektralen Eigenschaften eines zu prüfenden Wertdokuments störungsfrei ermitteln zu können, wird die Referenzstrahlung abgeschaltet, sobald eine Kante des Wertdokuments erkannt wird. Dies hat jedoch den Nachteil, dass entweder keine Remissionsmessung innerhalb des Wertdokuments erfolgen kann oder bei den üblichen Transportgeschwindigkeiten der zu prüfenden Wertdokumente lediglich eine geringe Ortsauflösung der Lumineszenzmessung erreicht wird.Next is over DE 10 2008 028 689 A1 and the DE 10 2008 028 690 A1 a spectrally resolving luminescence sensor is known for calibration purposes In addition, a reference radiation source and a light scanner are used to determine the position of a document of value to be checked. The reference radiation is designed in such a way that it lies within the spectral range of the luminescence sensor, so that no separate detector is required as a light sensor. In order to be able to determine the spectral properties of a document of value to be checked without interference, the reference radiation is switched off as soon as an edge of the document of value is detected. However, this has the disadvantage that either no reflectance measurement can be carried out within the document of value or, given the usual transport speeds of the documents of value to be checked, only a low spatial resolution of the luminescence measurement is achieved.

Weiterhin ist aus der US 2010/0128964 A1 ein System zum Abbilden von Wertdokumenten bekannt. Dabei wird das Wertdokument sequentiell mit Lichtquellen beleuchtet, welche Licht unterschiedlicher Wellenlänge aussenden. Zu der jeweilige Lichtquelle wird jeweils ein Bild aufgenommen. Die aufgenommen Bilder werden überlagert, wodurch sich ein Gesamtbild ergibt. Die Teilbilder bzw. das Gesamtbild wird mit einem Eintrag in einer Vergleichstabelle geprüft.Furthermore, from the US 2010/0128964 A1 a system for mapping valuable documents is known. The document of value is illuminated sequentially with light sources that emit light of different wavelengths. An image is taken of each light source. The captured images are superimposed, creating an overall picture. The partial images or the entire image are checked with an entry in a comparison table.

Aus der US 2015/0310689 A1 ist ein Verfahren zum Prüfen einer Banknote hinsichtlich Klebestreifen bekannt. Dabei wird die Banknote durch mehrere Lichtquellen, welche jeweils Licht unterschiedlicher Wellenlänge aussenden, beleuchtet. Je Wellenlänge wird eine Bildzeile aufgenommen, wobei die Bilder jeder Wellenlänge je Bildzeile kombiniert werden.From the US 2015/0310689 A1 a method for checking a banknote for adhesive strips is known. The banknote is illuminated by several light sources, each of which emits light of different wavelengths. One image line is recorded per wavelength, with the images of each wavelength being combined per image line.

Weiterhin zeigt Dokument JP 4058246 B2 ein Verfahren zum Detektieren eines Klebestreifens auf einer Banknote. Dabei wird eine Banknote mit Licht einer ersten Wellenlänge, welche vom Klebestreifen absorbiert wird und mit Licht einer zweiten Wellenlänge, welche vom Klebestreifen nicht absorbiert wird, beleuchtet.Furthermore shows document JP 4058246 B2 a method for detecting an adhesive strip on a banknote. A banknote is exposed to light of a first wavelength, which is absorbed by the adhesive strip illuminated with light of a second wavelength, which is not absorbed by the adhesive strip.

EP 3 142 080 A1 zeigt eine Bildlesevorrichtung umfassend einen Sensor, eine Lichtquelle und eine Bilderfassungssteuerung. EP 3 142 080 A1 shows an image reading device comprising a sensor, a light source and an image capture controller.

Insofern ist es die Aufgabe der vorliegenden Erfindung, ein Verfahren zur Prüfung von Wertdokumenten vorzuschlagen, die einerseits die Verwendung eines Prüfsensors mit geringem Platzbedarf und konstruktivem Aufwand ermöglicht und andererseits eine ausreichend hohe Ortsauflösung bietet.In this respect, it is the object of the present invention to propose a method for checking documents of value which, on the one hand, enables the use of a test sensor with little space and design effort and, on the other hand, offers a sufficiently high spatial resolution.

Diese Aufgabe wird durch ein Verfahren und einen Prüfsensor sowie einer Prüfeinrichtung mit den Merkmalen der unabhängigen Ansprüche gelöst. In den davon abhängigen Ansprüchen sind vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung angegeben.This task is solved by a method and a test sensor and a test device with the features of the independent claims. Advantageous refinements and developments of the invention are specified in the claims dependent thereon.

Zum Prüfen eines Wertdokuments, insbesondere auf dessen Unversehrtheit bzw. Vollständigkeit, wird das Wertdokument in einer Transportrichtung an dem erfindungsgemäßen Prüfsensor vorbeigeführt. Das zu prüfende Wertdokument weist hierbei einen Sicherheitsbereich auf, der sich über die gesamte zu prüfende Ausdehnung des Wertdokuments in Transportrichtung erstreckt, und in dem oder auf dem ein im Wesentlichen homogen verteiltes Lumineszenzmerkmal vorliegt. Das Lumineszenzmerkmal ist hierbei in dem Sicherheitsbereich möglichst homogen bzw. gleichverteilt in das Volumen des Wertdokuments eingebracht, oder es ist in dem Sicherheitsbereich als Beschichtung oder Lackierung des Wertdokuments aufgebracht, beispielsweise in Form einer lumineszierende Farbe oder Lacks. Vorzugsweise erstreckt sich der Sicherheitsbereich über das gesamte Wertdokument, so dass das Lumineszenzmerkmal in oder auf dem gesamten Wertdokument im Wesentlichen gleichverteilt vorliegt. Das in oder auf dem Sicherheitsbereich vorliegende Lumineszenzmerkmal kann hierbei mittels einer Anregungsstrahlung zur Lumineszenz, also zur Phosphoreszenz und/oder Fluoreszenz, angeregt werden.To check a document of value, in particular for its integrity or completeness, the document of value is guided past the test sensor according to the invention in a transport direction. The document of value to be checked has a security area which extends over the entire extent of the document of value to be checked in the transport direction, and in or on which a substantially homogeneously distributed luminescence feature is present. The luminescent feature is introduced into the volume of the document of value in the security area as homogeneously or evenly distributed as possible, or it is applied in the security area as a coating or varnish on the document of value, for example in the form of a luminescent paint or varnish. The security area preferably extends over the entire document of value, so that the luminescent feature is essentially evenly distributed in or on the entire document of value. The luminescence feature present in or on the security area can be excited to luminescence, i.e. to phosphorescence and/or fluorescence, by means of an excitation radiation.

Erfindungsgemäß wird das Wertdokument geprüft durch eine sich während des Vorbeitransports des Wertdokuments an dem Prüfsensor mehrfach wiederholende Abtastsequenz, in deren Rahmen das Wertdokument bestrahlt und abgetastet wird. An die mehrfach wiederholte Abtastsequenz schließt sich vorzugsweise dann die eigentliche Prüfung auf Unversehrtheit und/ oder Echtheit an, bei der die zuvor abgetasteten Spektralwerte geeignet ausgewertet werden.According to the invention, the document of value is checked by a scanning sequence that is repeated several times as the document of value is transported past the test sensor, in the context of which the document of value is irradiated and scanned. The scanning sequence repeated several times is then preferably followed by the actual test for integrity and/or authenticity, in which the previously scanned spectral values are appropriately evaluated.

Die sich mehrfach wiederholende Abtastsequenz umfasst hierbei eine erste Bestrahlungsphase und eine sich daran anschließende zweite Bestrahlungsphase. In der ersten Bestrahlungsphase wird der Sicherheitsbereich des Wertdokuments in einem Erfassungs- bzw. Prüfbereich des Prüfsensors mit einer Prüfstrahlung und einer Anregungsstrahlung bestrahlt. Die Prüfstrahlung ist hierbei derart ausgelegt, dass der von dem Sicherheitsbereich remittierte Anteil der Prüfstrahlung wenigstens teilweise in einem Detektionsspektralbereich des Prüfsensors liegt. Entsprechend ist die Anregungsstrahlung ausgelegt, eine Emissionsstrahlung des Lumineszenzmerkmals zu bewirken, die ebenfalls zumindest teilweise in dem Detektionsspektralbereich des Prüfsensors emittiert.The scanning sequence, which is repeated several times, includes a first irradiation phase and a subsequent second irradiation phase. In the first irradiation phase, the security area of the valuable document is irradiated with test radiation and excitation radiation in a detection or test area of the test sensor. The test radiation is designed in such a way that the portion of the test radiation remitted by the safety area lies at least partially in a detection spectral range of the test sensor. Accordingly, the excitation radiation is designed to cause emission radiation of the luminescent feature, which also emits at least partially in the detection spectral range of the test sensor.

Während der ersten Bestrahlungsphase, in der der Sicherheitsbereich gleichzeitig mit der Prüfstrahlung und der Anregungsstrahlung bestrahlt wird, vorzugsweise gegen Ende der ersten Bestrahlungsphase, wird ein ortsabhängiger Remissionsspektralwert spektral aufgelöst abgetastet, der einerseits Anteile der remittierten Prüfstrahlung und andererseits Anteile der aufgrund der Anregungsstrahlung emittierten Emissionsstrahlung des Lumineszenzmerkmals umfasst. Nach der ersten Bestrahlungsphase wird der Sicherheitsbereich in einer zweiten Bestrahlungsphase in dem Prüfbereich des Prüfsensors nur noch mit der Anregungsstrahlung bestrahlt und es wird, vorzugsweise am Ende der zweiten Bestrahlungsphase, zumindest ein ortsabhängiger Emissionsspektralwert spektral aufgelöst abgetastet.During the first irradiation phase, in which the safety area is irradiated simultaneously with the test radiation and the excitation radiation, preferably towards the end of the first irradiation phase, a Location-dependent remission spectral value is sampled in a spectrally resolved manner, which includes, on the one hand, portions of the remitted test radiation and, on the other hand, portions of the emission radiation of the luminescence feature emitted due to the excitation radiation. After the first irradiation phase, the safety area is irradiated only with the excitation radiation in a second irradiation phase in the test area of the test sensor and, preferably at the end of the second irradiation phase, at least one location-dependent emission spectral value is sampled with spectral resolution.

Die Prüfung des Wertdokuments erfolgt auf deren Echtheit. Dabei erfolgt eine Klassifikation als echt oder unecht auf der Basis der ortsaufgelöst mehrfach abgetasteten, insbesondere an verschiedenen Orten, zumindest einen ortsabhängigen Remissionsspektralwert sowie der ortsaufgelöst mehrfach abgetasteten, insbesondere an verschiedenen Orten, zumindest einen ortsabhängigen Emissionsspektralwerte.The document of value is checked for authenticity. A classification as genuine or fake is carried out on the basis of at least one spatially-resolved remission spectral value that has been sampled several times in a spatially resolved manner, in particular at different locations, and at least one location-dependent emission spectral value that has been sampled several times in a spatially resolved manner, in particular at different locations.

Hierbei ist zu beachten, dass eine Intensität des Remissionsspektralwerts einerseits Intensitätsanteile der remittierten Prüfstrahlung und andererseits auch Intensitätsanteile einer durch die Anregungsstrahlung angeregten Emissionsstrahlung des Lumineszenzmerkmals umfasst, da der Sicherheitsbereich während der ersten Bestrahlungsphase sowohl mit der Prüfstrahlung als auch mit der Anregungsstrahlung bestrahlt wird.It should be noted here that an intensity of the remission spectral value includes, on the one hand, intensity components of the remitted test radiation and, on the other hand, also intensity components of an emission radiation of the luminescent feature excited by the excitation radiation, since the safety area is irradiated with both the test radiation and the excitation radiation during the first irradiation phase.

In einer Ausführungsform wird zur Prüfung insbesondere der Echtheit des Wertdokuments aus den im Laufe der mehreren Abtastsequenzen erfassten, ortsabhängigen Remissionsspektralwerten eine ortsaufgelöste Remissionskurve gebildet, die die entlang des Sicherheitsbereichs in Transportrichtung abgetasteten Remissionsspektralwerte wiedergibt. Entsprechend wird aus den im Laufe der mehreren Abtastsequenzen erfassten, ortsabhängigen Emissionsspektralwerten eine ortsaufgelöste Emissionskurve gebildet, die die entlang des Sicherheitsbereichs in Transportrichtung abgetasteten Emissionsspektralwerte wiedergibt. Jeder Remissions-/ Emissionsspektralwert der Remissions-/ Emissionskurve gibt somit die remittierte/ emittierte Strahlungsintensität an einer dezidierten Position des Sicherheitsbereichs des Wertdokuments wieder, die durch die erste oder zweite Bestrahlungsphase bewirkt wird.In one embodiment, in order to check in particular the authenticity of the document of value, a spatially resolved reflectance curve is formed from the location-dependent reflectance spectral values recorded in the course of the several scanning sequences, which reflects the reflectance spectral values scanned along the security area in the transport direction. Accordingly, a spatially resolved emission curve is formed from the location-dependent emission spectral values recorded in the course of the several scanning sequences, which reproduces the emission spectral values scanned along the safety area in the transport direction. Each remission/emission spectral value of the remission/emission curve thus reflects the remitted/emitted radiation intensity at a specific position of the security area of the document of value, which is caused by the first or second irradiation phase.

Die Remissionskurve gibt die Ausdehnung des Wertdokuments in Transportrichtung wieder, während die Emissionskurve denjenigen Bereich des Wertdokuments in Transportrichtung wiedergibt, in dem das Lumineszenzmerkmal detektiert werden konnte.The remission curve reflects the extent of the valuable document in the transport direction, while the emission curve reflects that area of the valuable document in the transport direction in which the luminescence feature could be detected.

In einer Ausführungsform wird das Wertdokument, nachdem es vollständig an dem Prüfsensor vorbeigeführt wurde, schließlich als vollständig und/ oder echt klassifiziert, wenn die Remissionskurve und die Emissionskurve einen qualitativ vergleichbaren Kurvenverlauf aufweisen, denn dies bedeutet, dass das Lumineszenzmerkmal entlang der gesamten Ausdehnung des Wertdokuments in Transportrichtung vorhanden ist. Falls die beiden Kurven Verläufe aufweisen, die qualitativ nicht vergleichbar sind, ist von einer Fälschung auszugehen, da das Lumineszenzmerkmal in einem Fälschungsbereich des Wertdokuments, der sich aus der Emissionskurve ergibt ist, nicht vorhanden ist.In one embodiment, the document of value is finally classified as complete and/or genuine after it has been passed completely past the test sensor if the remission curve and the emission curve have a qualitatively comparable curve, because this means that the luminescence feature is present along the entire extent of the document of value is present in the transport direction. If the two curves have curves that are not qualitatively comparable, a counterfeit can be assumed since the luminescent feature is not present in a counterfeit area of the value document that results from the emission curve.

Zur Durchführung des erfindungsgemäßen Verfahrens wird ein entsprechender erfindungsgemäßer Prüfsensor verwendet. Dieser umfasst eine Prüfstrahlungsquelle, die eine Prüfstrahlung erzeugt, welche von dem Wertdokument wenigstens teilweise in dem Detektionsspektralbereich des Prüfsensors remittiert wird, sowie eine Anregungsstrahlungsquelle, die eine Anregungsstrahlung erzeugt, welche das Lumineszenzmerkmal zu einer Emissionsstrahlung anregt, die auch wenigstens teilweise in dem Detektionsspektralbereich des Prüfsensors emittiert. Ferner umfasst der Prüfsensor eine Abtasteinheit, die von dem Wertdokument remittierte Prüfstrahlung und von dem Lumineszenzmerkmal emittierte Emissionsstrahlung als ortsabhängige Remissionsspektralwerte und ortsabhängige Emissionsspektralwerte in dem Detektionsspektralbereich abtastet. Die Detektion der Emissionsspektralwerte und der Remissionsspektralwerte erfolgt spektral aufgelöst mit bevorzugt mehr als zwei Spektralkanälen, insbesondere mehr als acht Spektralkanälen und besonders bevorzugt mit mehr als sechzehn Spektralkanälen. Eine Steuereinheit des Prüfsensors koordiniert die Strahlungsquellen und die Abtasteinheit derart, dass die Abtastsequenz kontinuierlich wiederholt wird, während das Wertdokument an dem Prüfsensor vorbeigeführt wird. Eine Auswerteeinheit des Prüfsensors bildet schließlich in der zuvor beschriebenen Weise die Remissionskurve und die Emissionskurve und vergleicht deren Kurvenverläufe qualitativ.To carry out the method according to the invention, a corresponding test sensor according to the invention is used. This includes a test radiation source which generates test radiation which is at least partially remitted by the document of value in the detection spectral range of the test sensor, and an excitation radiation source which generates an excitation radiation which excites the luminescence feature to produce emission radiation which is also at least partially in the detection spectral range of the test sensor emitted. Furthermore, the test sensor comprises a scanning unit which scans test radiation remitted by the document of value and emission radiation emitted by the luminescence feature as location-dependent remission spectral values and location-dependent emission spectral values in the detection spectral range. The detection of the emission spectral values and the remission spectral values is carried out in a spectrally resolved manner with preferably more than two spectral channels, in particular more than eight spectral channels and particularly preferably with more than sixteen spectral channels. A control unit of the test sensor coordinates the radiation sources and the scanning unit in such a way that the scanning sequence is continuously repeated while the document of value is guided past the test sensor. An evaluation unit of the test sensor finally forms the remission curve and the emission curve in the manner described above and compares their curve profiles qualitatively.

Die Erfindung bietet einerseits den Vorteil, dass für die Erfassung der Remissionsspektralwerte kein zusätzlicher Abtast- bzw. Detektionskanal benötig wird, da sowohl die Emissionsspektralwerte als auch die Remissionsspektralwerte wenigstens teilweise in demselben Detektionsspektralbereich des Prüfsensors liegen. Dies ermöglicht einen vergleichsweise kompakten Prüfsensor bei reduziertem konstruktivem Herstellungsaufwand.On the one hand, the invention offers the advantage that no additional scanning or detection channel is required for detecting the remission spectral values, since both the emission spectral values and the remission spectral values are at least partially in the same detection spectral range of the test sensor. This enables a comparatively compact test sensor with reduced design manufacturing effort.

Ferner ermöglicht die Erfindung eine maximale Ortsauflösung und Intensität der Emissionskurve, da das Lumineszenzmerkmal bereits während der Bestrahlung des Wertdokuments mit der Prüfstrahlung in der ersten Bestrahlungsphase zur Emission angeregt wird, und nicht etwa erst nach Abschalten der Prüfstrahlung mit der einsetzenden zweiten Bestrahlungsphase. Der örtliche/ zeitliche Abstand aufeinanderfolgender Emissionsspektralwerte wird dadurch gegenüber herkömmlichen Lösungen um die Länge der ersten Bestrahlungsphase reduziert. Da erfindungsgemäß auch die erste Bestrahlungsphase für die Anregung des Lumineszenzmerkmals genutzt wird, fallen auch die Intensitäten bzw. Amplituden der Emissionsspektralwerte deutlicher aus, da das Lumineszenzmerkmals über die maximal zur Verfügung stehende Zeit optisch aufgepumpt werden kann.Furthermore, the invention enables maximum spatial resolution and intensity of the emission curve, since the luminescent feature is already excited to emit during the irradiation of the document of value with the test radiation in the first irradiation phase, and not only after the test radiation has been switched off with the onset of the second irradiation phase. The spatial/temporal distance between successive emission spectral values is thereby reduced by the length of the first irradiation phase compared to conventional solutions. Since, according to the invention, the first irradiation phase is also used to excite the luminescence feature, the intensities or amplitudes of the emission spectral values are also clearer, since the luminescence feature can be optically inflated over the maximum time available.

Bei der Auswertung werden die Emissions- und Remissionskurve auf qualitative Vergleichbarkeit geprüft. Dies bedeutet insbesondere, dass kein quantitativer Vergleich oder eine signaltheoretische Korrelation der Kurven vorgenommen wird, sondern dass die beiden Kurven lediglich hinsichtlich ihrer örtlichen/ zeitlichen Breiten verglichen werden, die bei einem echten Wertdokument jeweils im Wesentlichen dessen Ausdehnung entlang der Transportrichtung bzw. der Dauer des Vorbeitransports an dem Prüfsensor entsprechen. So können die beiden Kurven beispielsweise, gegebenenfalls nach einer geeigneten Rauschkorrektur bzw. örtlichen/ zeitlichen Tiefpassfilterung, einer Kantendetektion unterzogen werden, zum Beispiel mittels Kanten- bzw. Hochpassfiltern. Vorher können die beiden Kurven mittels geeigneter Intensitätsschwellenwerte bearbeitet werden, um signifikante bzw. überschwellige Remissions-/ Emissionsspektralwerte von rauschabhängigen oder störungsbedingten Spektralwerten zu trennen, die nicht auf eine Remission der Prüfstrahlung oder eine Emission des Lumineszenzmerkmals zurückzuführen sind.During the evaluation, the emission and remission curves are checked for qualitative comparability. This means in particular that no quantitative comparison or a signal-theoretical correlation of the curves is made, but that the two curves are only compared with regard to their local/temporal widths, which in the case of a genuine document of value essentially correspond to its extent along the direction of transport or the duration of the Transport past the test sensor. For example, the two curves can, if necessary after suitable noise correction or local/temporal low-pass filtering, be subjected to edge detection, for example using edge or high-pass filters. Beforehand, the two curves can be processed using suitable intensity threshold values in order to obtain significant or above-threshold reflectance/emission spectral values of noise-dependent ones or interference-related spectral values that cannot be attributed to a remission of the test radiation or an emission of the luminescence feature.

Vorzugsweise ermittelt die Auswerteeinheit die Anzahl der signifikanten bzw. überschwelligen Remissions-/ Emissionsspektralwerte bzw. der entsprechenden Pixel unter der vorzugsweise geglätteten Remissions-/ Emissionskurve. Die Emissionskurve und die Remissionskurve werden dann als qualitativ vergleichbar angesehen, wenn die Emissionskurve im Wesentlichen an denjenigen Orts-/ Zeitpositionen bzw. Pixeln signifikante Intensitäten aufweist, an denen auch die Remissionskurve signifikante Intensitäten ausbildet.The evaluation unit preferably determines the number of significant or above-threshold reflectance/emission spectral values or the corresponding pixels under the preferably smoothed reflectance/emission curve. The emission curve and the remission curve are considered to be qualitatively comparable if the emission curve essentially has significant intensities at those location/time positions or pixels at which the remission curve also forms significant intensities.

Hierbei kann der Quotient aus den Pixeln mit signifikanten Intensitäten in der Remissionskurve und in der Emissionskurve gebildet werden, so dass von einer qualitativen Vergleichbarkeit der beiden Kurven ausgegangen werden kann, wenn dieser Quotient etwa Eins ist. Um rausch- oder erfassungsbedingte Messfehler auszugleichen, kann für den Quotient abhängig von der Ortsauflösung der beiden Kurven ein geeignetes Intervall gewählt werden, beispielsweise ein Intervall zwischen 0,9 und 1,1 oder, bevorzugt, ein Intervall zwischen 0,95 und 1,05.Here, the quotient can be formed from the pixels with significant intensities in the remission curve and in the emission curve, so that it can be assumed that the two curves are qualitatively comparable if this quotient is approximately one. In order to compensate for noise or detection-related measurement errors, a suitable interval can be selected for the quotient depending on the spatial resolution of the two curves, for example an interval between 0.9 and 1.1 or, preferably, an interval between 0.95 and 1.05 .

Alternativ dazu ermittelt die Auswerteeinheit die Anzahl der Pixel, bei denen zwar die Remissionskurve signifikante Intensitäten aufweist aber die Emissionskurve unterschwellige Werte aufweist. Hier wird dann das Wertdokument als unecht klassifiziert wenn diese Anzahl der fälschungsverdächtigen Pixel einen bestimmten Schwellwert von z.B. 0, 1, 2, etc. übersteigt.Alternatively, the evaluation unit determines the number of pixels in which the remission curve has significant intensities but the emission curve has subthreshold values. Here the document of value is classified as inauthentic if this number of pixels suspected of being counterfeit exceeds a certain threshold value of, for example, 0, 1, 2, etc.

Vorzugsweise wird die Zeitdauer der ersten Bestrahlungsphase zwischen 0,5 µs und 500 µs angesetzt, besonders bevorzugt zwischen 1µs und 50 µs. Das Verhältnis zwischen der Zeitdauer der ersten Bestrahlungsphase und der Zeitdauer der gesamten Abtastsequenz liegt vorzugsweise zwischen 1:1000 und 1:4, besonders bevorzugt zwischen 1:100 und 1:5. Dies bedeutet, dass der Anteil der ersten Bestrahlungsphase, in der das Wertdokument sowohl mit der Prüfstrahlung als auch mit der Anregungsstrahlung bestrahlt wird, an der gesamten Zeitdauer der Abtastsequenz, also der Gesamtdauer der Bestrahlung mit der Anregungsstrahlung, zwischen etwa 0,1% und 25% liegt und bevorzugt zwischen etwa 1% und 20% liegt. Die Transportgeschwindigkeit, mit der ein zu prüfendes Wertdokument an dem Prüfsensor vorbeigeführt wird, liegt zwischen 1 m/s und 13 m/s, vorzugsweise liegt sie im Bereich von 4-12 m/s.The duration of the first irradiation phase is preferably set between 0.5 µs and 500 µs, particularly preferably between 1 µs and 50 µs. The ratio between the duration of the first irradiation phase and the duration of the entire scanning sequence is preferably between 1:1000 and 1:4, particularly preferably between 1:100 and 1:5. This means that the proportion of the first irradiation phase, in which the document of value is irradiated with both the test radiation and the excitation radiation, in the total duration of the scanning sequence, i.e. the total duration of the irradiation with the excitation radiation, is between approximately 0.1% and 25 % and is preferably between about 1% and 20%. The transport speed at which a document of value to be checked is guided past the test sensor is between 1 m/s and 13 m/s, preferably in the range of 4-12 m/s.

Erfindungsgemäß ist die Abtastsequenz derart ausgestaltet, dass die Anregungsbestrahlung unterbrechungsfrei erfolgen kann, indem sich die erste Bestrahlungsphase einer Abtastsequenz unmittelbar an die zweite Bestrahlungsphase der vorhergehenden Abtastsequenz anschließt. Die Bestrahlung mit der Prüfstrahlung erfolgt dann pulsweise während der ersten Bestrahlungsphase, jeweils unterbrochen durch die zweite Bestrahlungsphase.According to the invention, the scanning sequence is designed such that the excitation irradiation can take place without interruption, in that the first irradiation phase of a scanning sequence immediately follows the second irradiation phase of the previous scanning sequence. The irradiation with the test radiation then takes place in pulses during the first irradiation phase, each interrupted by the second irradiation phase.

Der zumindest eine Remissionsspektralwert wird hierbei gegen Ende der ersten Bestrahlungsphase, vorzugsweise mit dem Ende der ersten Bestrahlungsphase abgetastet, während der zumindest eine Emissionsspektralwert gegen Ende der zweiten Bestrahlungsphase abgetastet wird, vorzugsweise mit dem Ende der zweiten Bestrahlungsphase. Durch diese Ausgestaltung der Abtastsequenz kann einerseits eine maximale Ortsauflösung der Emissionskurve sichergestellt und andererseits eine maximale Intensität der Emissionsspektralwerte erreicht werden.The at least one remission spectral value is sampled towards the end of the first irradiation phase, preferably with the end of the first irradiation phase, while the at least one emission spectral value is sampled towards the end of the second irradiation phase, preferably with the end of the second irradiation phase. Through this design of the scanning sequence, on the one hand, maximum spatial resolution of the emission curve can be ensured and, on the other hand, maximum intensity of the emission spectral values can be achieved.

Bei einer alternativen erfindungsgemäßen Ausgestaltung der Abtastsequenz schließt sich an die zweite Bestrahlungsphase unmittelbar eine Ruhephase an, in der weder eine Bestrahlung durch die Prüfstrahlung noch durch die Anregungsstrahlung erfolgt. Bei dieser Ausführungsform erfolgt also auch die Bestrahlung durch die Anregungsstrahlung pulsweise, jeweils während der ersten und zweiten Bestrahlungsphase und unterbrochen durch die Ruhephase. Die erste Bestrahlungsphase einer Abtastsequenz schließt sich dann unmittelbar an die Ruhephase der vorhergehenden Abtastsequenz an. Hierbei werden Emissionsspektralwerte auch während der Ruhephase erfasst, vorzugsweise gegen Ende der Ruhephase, so dass eine maximale Intensität der Emissionsspektralwerte sichergestellt werden kann, wenn der Lumineszenzmarker noch emittiert, nachdem die Anregungsstrahlung abgeschaltet wurde.In an alternative embodiment of the scanning sequence according to the invention, the second irradiation phase is immediately followed by a rest phase in which there is neither irradiation by the test radiation nor by the excitation radiation. In this embodiment, the irradiation by the excitation radiation also takes place in pulses, each during the first and second irradiation phases and interrupted by the rest phase. The first irradiation phase of a scanning sequence then immediately follows the rest phase of the previous scanning sequence. In this case, emission spectral values are also recorded during the rest phase, preferably towards the end of the rest phase, so that a maximum intensity of the emission spectral values can be ensured if the luminescence marker is still emitting after the excitation radiation has been switched off.

Die gepulste Bestrahlung mit der Anregungsstrahlung erlaubt die mehrfache Abtastung von Emissionsspektralwerten innerhalb einer Abtastsequenz während und/ oder nach dem Anregungsstrahlungspuls, so dass durch Vergleich der innerhalb einer Abtastsequenz abgetasteten Emissionsspektralwerte auch das zeitliche An-/Abklingverhalten des Lumineszenzmerkmals ortsabhängig ermittelt werden kann. Dieses ortsabhängige An-/ Abklingverhalten kann dann bei der Echtheitsprüfung berücksichtigt werden, da der zeitliche Verlauf der Emissionsspektralwerte innerhalb einer Abtastsequenz Aufschluss über die Emissionseigenschaften und die genaue Art des geprüften Lumineszenzmerkmals erlaubt. Die mehrfach abgetasteten Emissionsspektralwertekönnen beispielsweise mit entsprechend ortsabhängigen Referenzspektralwerten verglichen werden, die für das betreffende Wertdokument vorab ermittelt wurden.The pulsed irradiation with the excitation radiation allows the multiple sampling of emission spectral values within a scanning sequence during and/or after the excitation radiation pulse, so that the temporal onset/decay behavior of the luminescence feature can also be determined depending on the location by comparing the emission spectral values sampled within a scanning sequence. This location-dependent onset/decay behavior can then be taken into account during the authenticity test, since the temporal progression of the emission spectral values within a scanning sequence provides information about the emission properties and the exact type of luminescence feature being tested. The emission spectral values sampled several times can be compared, for example, with corresponding location-dependent reference spectral values that were determined in advance for the document of value in question.

Vorzugsweise wird das Wertdokument mit einer spektral schmalbandigen Prüfstrahlung bestrahlt, so dass diese nur in einem oder wenigen Spektralkanälen des Detektors nachgewiesen wird. Die Prüfstrahlung ist bevorzugt nicht geeignet um nennenswert Lumineszenz im Wertdokument anzuregen.Preferably, the document of value is irradiated with a spectrally narrow-band test radiation so that it is only detected in one or a few spectral channels of the detector. The test radiation is preferably not suitable for significantly stimulating luminescence in the valuable document.

Weiterhin wird das Wertdokument mit einer vorzugsweise schmalbandigen Anregungsstrahlung bestrahlt, wobei die Anregungsstrahlung im ultravioletten (UV), im sichtbaren (VIS) und/ oder im infraroten Spektralbereich (IR) stattfindet. Diese kann auch mehrere unterschiedliche Wellenlängenbereiche umfassen. Dadurch wird sichergestellt, dass die Prüfstrahlung keine oder nur eine geringe Emissionsstrahlung des Lumineszenzmerkmals in dem Detektionsspektralbereich bewirkt, so dass die abgetasteten Emissionsspektralwerte möglichst ausschließlich auf die Anregungsbestrahlung und möglichst wenig auf die Prüfbestrahlung zurückzuführen sind.Furthermore, the document of value is irradiated with a preferably narrow-band excitation radiation, the excitation radiation taking place in the ultraviolet (UV), in the visible (VIS) and/or in the infrared spectral range (IR). This can also include several different wavelength ranges. This ensures that the test radiation causes no or only a small amount of emission radiation of the luminescence feature in the detection spectral range, so that the sampled emission spectral values can be traced back as far as possible exclusively to the excitation radiation and as little as possible to the test irradiation.

Vorzugsweise umfasst die Prüfstrahlungsquelle eine LED- oder Halbleiterlaser-Strahlungsquelle, z.B. eine Kantenemitter-Laserdiode. Besonders bevorzugt umfasst die Prüfstrahlungsquelle eine schmalbandige VCSEL- bzw. Oberflächenemitter-Strahlungsquelle. Entsprechend umfasst die Anregungsstrahlungsquelle vorzugsweise eine LED- oder Halbleiterlaser-Strahlungsquelle, besonders bevorzugt eine schmalbandige VCSEL- bzw. Oberflächenemitter-Strahlungsquelle.Preferably, the test radiation source comprises an LED or semiconductor laser radiation source, for example an edge emitter laser diode. The test radiation source particularly preferably comprises a narrow-band VCSEL or surface emitter radiation source. Accordingly, the excitation radiation source preferably comprises an LED or semiconductor laser radiation source, particularly preferably a narrow-band VCSEL or surface emitter radiation source.

Um eine möglichst gute Auswertung der Remissions- und Emissionswerte zu erlauben, werden die Remissionsspektralwerte und/ oder Emissionsspektralwerte vorzugsweise hinsichtlich von Rausch- und Störeinflüssen korrigiert. So können Streustrahlungsanteile oder elektronische bzw. elektromagnetische Störstrahlungsanteile durch eine Offset-Korrektur aus den Remissionsspektralwerten und/ oder Emissionsspektralwerten eliminiert werden, wobei die entsprechenden Korrekturparameter entweder vorab durch die Abtastung eines Referenzsubstrats mit dem Prüfsensor ermittelt werden oder, bevorzugt, durch eine Abtastung während der Echtheitsprüfung zu Zeitpunkten, an denen kein Wertdokument an dem Prüfsensor vorbeigeführt wird (Dunkelmessung), beispielsweise vor Beginn der Echtheitsprüfung oder zwischen zwei aufeinanderfolgenden, zu prüfenden Wertdokumenten.In order to allow the best possible evaluation of the reflectance and emission values, the reflectance spectral values and/or emission spectral values are preferably corrected with regard to noise and interference influences. Scattered radiation components or electronic or electromagnetic interference radiation components can be eliminated from the remission spectral values and/or emission spectral values by an offset correction are, whereby the corresponding correction parameters are determined either in advance by scanning a reference substrate with the test sensor or, preferably, by scanning during the authenticity test at times when no document of value is passed by the test sensor (dark measurement), for example before the start of the authenticity test or between two consecutive documents of value to be checked.

Die Remissionsspektralwerte werden vorzugsweise weiterhin derart korrigiert, dass in sie nur diejenigen abgetasteten Spektralanteile eingehen, die tatsächlich auf die Prüfbestrahlung und deren Remission durch das Wertdokument zurückzuführen sind. Entsprechend werden aus den abgetasteten Remissionsspektralwerten diejenigen abgetasteten Spektralanteile und/ oder Intensitätsanteile bzw. Intensitäten herausgefiltert bzw. eliminiert, die auf eine Emissionsstrahlung des Lumineszenzmerkmals in Folge der Anregungsbestrahlung zurückzuführen sind. Zur effizienten Differenzierung zwischen den jeweiligen Spektralanteilen der remittierten Remissionsbestrahlung und der von dem Lumineszenzmerkmal emittierten Emissionsstrahlung eignet sich besonders eine schmalbandige Prüfstrahlung, so dass die spektral aufgelöst abgetasteten Remissions-/ Emissionsspektralwerte wirksam gefiltert werden können.The reflectance spectral values are preferably further corrected in such a way that only those sampled spectral components which are actually attributable to the test irradiation and their remission by the document of value are included in them. Accordingly, those sampled spectral components and/or intensity components or intensities that are attributable to emission radiation of the luminescence feature as a result of the excitation irradiation are filtered out or eliminated from the sampled remission spectral values. For efficient differentiation between the respective spectral components of the remitted remission radiation and the emission radiation emitted by the luminescence feature, a narrow-band test radiation is particularly suitable, so that the remission/emission spectral values sampled with spectral resolution can be effectively filtered.

Anstelle von Spektralanteilen können auch Intensitätsanteile bzw. Intensitäten zur der remittierten Strahlung ermittelt werden.Instead of spectral components, intensity components or intensities of the remitted radiation can also be determined.

Alternativ kann aus jeweils den zum späteren Zeitpunkt gemessenen Emissionsspektralwerten und deren zeitlichem Verlauf der zu dem früheren Zeitpunkt der Abtastung des Remissionsspektralwerts erwartete Beitrag interpoliert werden und so in guter Näherung abgezogen werden.Alternatively, the contribution expected at the earlier time of sampling of the remission spectral value can be interpolated from the emission spectral values measured at the later time and their time course and can thus be deducted to a good approximation.

Zwischen der Remissionskurve und der Emissionskurve kann sich bei höheren Transportgeschwindigkeiten ein nicht vernachlässigbarer örtlicher bzw. zeitlicher Versatz ausbilden, da das zu prüfende Wertdokument zwischen dem Abtasten der Remissionsspektralwerte und dem Abtasten der Emissionsspektralwerte weiterbewegt wird. Dieser Versatz kann im Rahmen der Echtheitsprüfung kompensiert werden, indem die Emissionskurve um genau dasjenige Zeitintervall gegenüber der Remissionskurve verschoben wird, das zwischen dem Abtasten der Remissionsspektralwerte und dem Abtasten der Emissionsspektralwerte liegt.At higher transport speeds, a non-negligible local or temporal offset can develop between the remission curve and the emission curve, since the document of value to be checked is moved further between the scanning of the remission spectral values and the scanning of the emission spectral values. This offset can be compensated for as part of the authenticity test by shifting the emission curve relative to the remission curve by exactly the time interval that lies between the sampling of the remission spectral values and the sampling of the emission spectral values.

Der erfindungsgemäße Prüfsensor bildet zusammen mit der Transporteinrichtung, die das Wertdokument während der Echtheitsprüfung derart an dem Prüfsensor vorbeiführt, dass der Prüfbereich des Prüfsensors kontinuierlich über den Sicherheitsbereich des Wertdokuments wandert, eine erfindungsgemäße Prüfeinrichtung. Hierbei werden die Transportgeschwindigkeit des Wertdokuments und die Zeitdauer einer Abtastsequenz vorzugsweise derart aufeinander abgestimmt, dass die resultierende Ortsauflösung der Remissionskurve und/oder Emissionskurve ausreichend hoch ist, um eine zuverlässige Echtheitsprüfung zu ermöglichen. Eine ausreichende Ortsauflösung liegt zum Beispiel dann vor, wenn die Grenzen des Wertdokuments oder des Sicherheitsbereichs genau detektiert werden können oder wenn die Ortsauflösung ausreicht, um wichtiges Detail des Erscheinungsbildes oder eines Aufdrucks des Wertdokuments abzubilden.The test sensor according to the invention, together with the transport device, which guides the document of value past the test sensor during the authenticity check in such a way that the test area of the test sensor moves continuously over the security area of the document of value, forms a test device according to the invention. Here, the transport speed of the document of value and the duration of a scanning sequence are preferably coordinated with one another in such a way that the resulting spatial resolution of the reflectance curve and/or emission curve is sufficiently high to enable a reliable authenticity check. A sufficient spatial resolution exists, for example, if the boundaries of the document of value or the security area can be precisely detected or if the spatial resolution is sufficient to depict an important detail of the appearance or an imprint of the document of value.

Weitere Merkmale und Vorteile der Erfindung ergeben sich aus der vorliegenden Beschreibung erfindungsgemäßer Ausführungsbeispiele sowie weiterer Ausführungsalternativen in Zusammenhang mit den folgenden Zeichnungen, die zeigen:

Figur 1
die Schritte des Verfahrensablaufs des erfindungsgemäßen Prüfverfahrens;
Figur 2
eine Illustration eines echten Wertdokuments (Fig. 2a) sowie eines gefälschten Wertdokuments (Fig. 2b);
Figur 3
zwei Ausgestaltungen einer Abtastsequenz mit kontinuierlicher Anregungsstrahlung (Fig. 3a) und gepulster Anregungsstrahlung (Fig. 3b);
Figur 4
quantitative Darstellungen der Emissions- und Remissionskurve für das echte Wertdokument gemäß Figur 2a (Fig. 4a) und das gefälschte Wertdokument gemäß Figur 2b (Fig. 4b); und
Figur 5
zwei bevorzugte Ausführungsformen des erfindungsgemäßen Prüfsensors mit getrennten Bestrahlungswegen (Fig. 5a) und einem gemeinsamen Bestrahlungsweg (Fig. 5b).
Further features and advantages of the invention result from the present description of exemplary embodiments of the invention as well as further alternative embodiments in connection with the following drawings, which show:
Figure 1
the steps of the procedure of the test method according to the invention;
Figure 2
an illustration of a real document of value ( Fig. 2a ) and a forged document of value ( Fig. 2b );
Figure 3
two embodiments of a scanning sequence with continuous excitation radiation ( Fig. 3a ) and pulsed excitation radiation ( Fig. 3b );
Figure 4
quantitative representations of the emission and remission curve for the real document of value Figure 2a ( Fig. 4a ) and the forged document of value according to Figure 2b ( Fig. 4b ); and
Figure 5
two preferred embodiments of the test sensor according to the invention with separate irradiation paths ( Fig. 5a ) and a common radiation path ( Fig. 5b ).

Figur 1 zeigt die Schritte eines Verfahrens zur Echtheitsprüfung eines Wertdokuments 1 mit einem der in Figur 5 gezeigten Prüfsensoren 10, umfassend eine die Schritte S1 bis S4 mehrfach wiederholende Abtastsequenz A und einen abschließenden Auswertungsschritt S5. Die Abtastsequenz A wird in Figur 3 veranschaulicht, während Figur 4 die Auswertung illustriert. Ein mit diesem Verfahren prüfbares Wertdokument 1 zeigt die Figur 2. Figure 1 shows the steps of a method for checking the authenticity of a document of value 1 with one of the in Figure 5 shown test sensors 10, comprising a scanning sequence A repeating steps S1 to S4 several times and a final evaluation step S5. The sampling sequence A is in Figure 3 illustrated while Figure 4 the evaluation illustrates. A value document 1 that can be verified using this method shows the Figure 2 .

Figur 2a illustriert ein echtes Wertdokument 1 mit einem Sicherheitsbereich 2, in dem oder auf dem ein oder mehrere Lumineszenzmerkmale 3 vorliegen, die durch eine geeignete Anregungsstrahlung L zur Fluoreszenz oder zur Phosphoreszenz angeregt werden. Insbesondere kann das Lumineszenzmerkmal 3 mit längeren Wellenlängen (Stokes-Lumineszenz) oder kürzeren Wellenlängen (Anti-Stokes-Lumineszenz bzw. Upconverter) angeregt werden, in einem bestimmten Emissionsspektralbereich emittieren. Das Lumineszenzmerkmal 3 ist hierbei möglichst homogen bzw. gleichverteilt über bevorzugt möglichst weite Bereiche des Volumens des Wertdokuments 1 eingebracht, welches aus Papier oder Kunststoff (Polymer) bestehen kann, oder, alternativ, vollflächig auf den Sicherheitsbereich 2 aufgedruckt oder auflackiert ist. Figure 2a illustrates a genuine document of value 1 with a security area 2, in or on which one or more luminescent features 3 are present, which are caused by a suitable excitation radiation L to produce fluorescence or be stimulated to phosphorescence. In particular, the luminescence feature 3 can be excited with longer wavelengths (Stokes luminescence) or shorter wavelengths (anti-Stokes luminescence or upconverter) and emit in a specific emission spectral range. The luminescent feature 3 is introduced as homogeneously or evenly distributed as possible over preferably the widest possible areas of the volume of the document of value 1, which can consist of paper or plastic (polymer), or, alternatively, is printed or painted over the entire surface of the security area 2.

Der Sicherheitsbereich 2 ist hierbei bevorzugt entlang der vollständigen Ausdehnung des Wertdokuments 1 in einer Transportrichtung T mit dem Lumineszenzmerkmal 3 ausgestattet. Abweichend von Figur 2a kann sich der Sicherheitsbereich 2 auch über die gesamte Fläche des Wertdokuments 1 erstrecken oder nahezu beliebige zusammenhängende geometrische Formen annehmen. Diese erstrecken sich bevorzugt über die gesamte Ausdehnung des Wertdokuments 1 in Transportrichtung.The security area 2 is preferably equipped with the luminescence feature 3 along the complete extent of the document of value 1 in a transport direction T. Deviating from Figure 2a The security area 2 can also extend over the entire surface of the document of value 1 or can take on almost any coherent geometric shape. These preferably extend over the entire extent of the document of value 1 in the transport direction.

Figur 2b illustriert demgegenüber ein gefälschtes Wertdokument 1, bei dem in einem Fälschungsbereich F eine so genannte "Schnipselfälschung" vorliegt, die den Sicherheitsbereich 2 gegenüber demjenigen der Figur 2a derart beeinträchtigt, dass das Lumineszenzmerkmal 3 nicht mehr über die gesamte Ausdehnung des Wertdokuments 1 in Transportrichtung T detektierbar ist. Figure 2b In contrast, illustrates a counterfeit value document 1, in which a so-called "snippet forgery" is present in a forgery area F, which protects the security area 2 compared to that of the Figure 2a impaired in such a way that the luminescent feature 3 can no longer be detected over the entire extent of the document of value 1 in the transport direction T.

Das erfindungsgemäße Verfahren gemäß Figur 1 basiert einerseits auf der Überlegung, dass eine durch eine Prüfstrahlung P am Wertdokument 1 hervorgerufene Remission deutlich schneller zur Detektion bzw. Abtastung zur Verfügung steht und ausgewertet werden kann, als eine durch die Anregungsstrahlung L hervorgerufene Lumineszenzemission des Lumineszenzmerkmals 3. Andererseits liegt dem erfindungsgemäßen Verfahren die Erkenntnis zugrunde, dass eine Bestrahlung des Wertdokuments 1 durch die Prüfstrahlung P auch zeitlich parallel und störungsfrei mit der Bestrahlung des Wertdokuments 1 durch die Anregungsbestrahlung L realisiert werden kann, um das Lumineszenzmerkmal 3 deutlich wirkungsvoller optisch aufzupumpen und zur Lumineszenzemission anzuregen, als bei einer sequentiellen Bestrahlung mit der Prüfstrahlung P und der Anregungsstrahlung L. Das optische Aufpumpen der Lumineszenzmerkmals 3 bereits während der Bestrahlen des Wertdokuments 1 mit der Prüfstrahlung P ist insbesondere bei Phosphoreszenzmerkmalen sinnvoll, da deren Anregungs- bzw. An- oder Abklingzeiten im Bereich von wenigen Mikrosekunden bis hin zu einigen Millisekunden liegen kann.The method according to the invention according to Figure 1 is based, on the one hand, on the consideration that a remission caused by a test radiation P on the document of value 1 is available for detection or scanning and can be evaluated much more quickly than one caused by the excitation radiation L caused luminescence emission of the luminescence feature 3. On the other hand, the method according to the invention is based on the knowledge that irradiation of the document of value 1 by the test radiation P can also be realized in parallel and without interference with the irradiation of the document of value 1 by the excitation irradiation L in order to clear the luminescence feature 3 more effectively optically pumping up and stimulating luminescence emission than with sequential irradiation with the test radiation P and the excitation radiation L. The optical pumping of the luminescence feature 3 already while the document of value 1 is irradiated with the test radiation P is particularly useful for phosphorescence features, since their excitation or .Onset or decay times can range from a few microseconds to a few milliseconds.

Während das Wertdokument 1 entlang der Transportrichtung T und über einer Zeitachse t an dem Prüfsensor 10 vorbeigeführt wird, werden die Schritte S1 bis S4 der Abtastsequenz A mehrfach wiederholt. In einem ersten Schritt S1 wird das Wertdokument 1 zunächst im Rahmen einer ersten Bestrahlungsphase A1 sowohl mit der Prüfstrahlung P als auch mit der Anregungsstrahlung L bestrahlt. Eine entsprechend eingerichtete Abtasteinheit 14 des Prüfsensors 10 tastet dann in Schritt S2 Spektralanteile sowohl der remittierten Prüfstrahlung P als auch der von dem Lumineszenzmerkmal 3 emittierten Emissionsstrahlung ab, die aus der ersten Bestrahlungsphase A1 resultieren. Anstatt Spektralanteile können spektral überlagerte Intensitätsanteile durch die Abtasteinheit 14 abgetastet werden.While the document of value 1 is guided past the test sensor 10 along the transport direction T and over a time axis t, steps S1 to S4 of the scanning sequence A are repeated several times. In a first step S1, the document of value 1 is first irradiated with both the test radiation P and the excitation radiation L as part of a first irradiation phase A1. A correspondingly set up scanning unit 14 of the test sensor 10 then scans in step S2 spectral components of both the remitted test radiation P and the emission radiation emitted by the luminescence feature 3, which result from the first irradiation phase A1. Instead of spectral components, spectrally superimposed intensity components can be sampled by the scanning unit 14.

Diese Situation ist auch in Figur 3 dargestellt, die zwei verschiedene Varianten einer erfindungsgemäßen Abtastsequenz A in dem jeweils strichlinierten Bereich illustriert. Dort ist gezeigt, dass das Wertdokument 1 während der ersten Bestrahlungsphase A1 sowohl mit der Prüfstrahlung P als auch mit der Anregungsstrahlung L bestrahlt wird, während am Ende der ersten Bestrahlungsphase A1 die Abtastung von Remissionsspektralwerten R gemäß Schritt S2 erfolgt, die sowohl remittierte Intensitätsanteile der Prüfstrahlung P als auch emittierte Intensitätsanteile der Emissionsstrahlung des Lumineszenzmerkmals 3 umfassen. Die Prüfstrahlung P wird hierbei unmittelbar von dem Wertdokument 1 remittiert, so dass neben der reinen Lichtlaufzeit keine Warte- oder Integrationszeiten nötig sind, sondern die Abtastung der Remissionsspektralwerte R im Schritt S2 direkt gegen oder am Ende der ersten Bestrahlungsphase A1 erfolgen kann.This situation is also in Figure 3 shown, which illustrates two different variants of a scanning sequence A according to the invention in the dashed area. It is shown there that the document of value 1 during the first irradiation phase A1 is irradiated with both the test radiation P and the excitation radiation L, while at the end of the first irradiation phase A1 the sampling of remission spectral values R takes place according to step S2, which includes both remitted intensity components of the test radiation P and emitted intensity components of the emission radiation of the luminescence feature 3 include. The test radiation P is remitted directly from the document of value 1, so that in addition to the pure light transit time, no waiting or integration times are necessary, but the sampling of the remission spectral values R in step S2 can take place directly against or at the end of the first irradiation phase A1.

Vorzugsweise werden die Remissionsspektralwerte R synchron und sehr schnell abgetastet, so dass die auf die einzelnen Spektralkanäle der Abtasteinheit 14 entfallenden Intensitäten parallel ausgewertet werden können. Die schnelle Abtastung verhindert ein Verschmieren der betreffenden Spektralkanäle während sich das Wertdokument 1 in Transportrichtung T bewegt. Der Abtastungsschritt S2 kann hierbei mittels Photodioden und geeigneten Sample-and-Hold-Schaltungen bzw. durch CCD- oder CMOS-Detektoren mit Ladungsakkumulation und einer geeignete Array-Architektur mit synchroner Verschiebung der Ladungen einer ganzen Spektralzeile in einen abgedunkelten Speicherbereich des Prüfsensors 10 erfolgen.The reflectance spectral values R are preferably sampled synchronously and very quickly, so that the intensities attributable to the individual spectral channels of the scanning unit 14 can be evaluated in parallel. The rapid scanning prevents the relevant spectral channels from smearing while the document of value 1 moves in the transport direction T. The sampling step S2 can be carried out using photodiodes and suitable sample-and-hold circuits or using CCD or CMOS detectors with charge accumulation and a suitable array architecture with synchronous shifting of the charges of an entire spectral line into a darkened storage area of the test sensor 10.

Am Übergang zwischen der ersten Bestrahlungsphase A1 und der zweiten Bestrahlungsphase A2, also unmittelbar nach dem Abtastschritt S2, wird die Prüfstrahlung P abgeschaltet, während die Bestrahlung mit der Anregungsstrahlung L fortgesetzt wird und während der gesamten zweiten Bestrahlungsphase A2 andauert (Schritt S3). In Schritt S4 wird schließlich die Abtasteinheit 14 erneut ausgelesen, um Emissionsspektralwerte E zu ermitteln, die aufgrund des optischen Aufpumpens des Lumineszenzmerkmals 3 bereits während der ersten Bestrahlungsphase A1 ausreichend starke Emissionsintensitäten aufweisen. Die separate Abtastung der Emissionsspektralwerte E ohne überlagerte Spektralanteile der remittierten Prüfstrahlung P in Schritt S4 erlaubt eine besonderes genaue und zuverlässige Prüfung des Lumineszenzmerkmals 3, da andernfalls fehlerhafte oder abweichende Emissionsstrahlungen, die beispielsweise von gefälschten Lumineszenzmerkmalen hervorgerufen werden, unter Umständen nicht zuverlässig erkannt werden können, wenn die Emissionsspektralwerte E nicht mit ausreichender Intensität abgetastet werden oder von der Prüfstrahlung P überdeckt werden.At the transition between the first irradiation phase A1 and the second irradiation phase A2, i.e. immediately after the scanning step S2, the test radiation P is switched off, while the irradiation with the excitation radiation L continues and lasts throughout the entire second irradiation phase A2 (step S3). Finally, in step S4, the scanning unit 14 is read out again in order to obtain emission spectral values E determine which, due to the optical pumping of the luminescence feature 3, already have sufficiently strong emission intensities during the first irradiation phase A1. The separate sampling of the emission spectral values E without superimposed spectral components of the remitted test radiation P in step S4 allows a particularly precise and reliable test of the luminescence feature 3, since otherwise incorrect or deviating emission radiation, which is caused, for example, by fake luminescence features, may not be reliably detected, if the emission spectral values E are not sampled with sufficient intensity or are covered by the test radiation P.

Wie in Figur 3a gezeigt, wird die Abtastsequenz A kontinuierlich und fortdauernd mindestens so lange wiederholt, bis das Wertdokument 1 vollständig an dem Prüfsensor 10 vorbeigeführt wurde, so dass für die Echtheitsprüfung in Schritt S5 Remissionsspektralwerte R und Emissionsspektralwerte E entlang der gesamten Ausdehnung des Wertdokuments 1 in Transportrichtung T in einer Ortsauflösung vorliegen, die einerseits von der Gesamtdauer der Abtastsequenz A und andererseits von der Transportgeschwindigkeit des Wertdokuments 1 abhängt.As in Figure 3a shown, the scanning sequence A is repeated continuously and continuously at least until the document of value 1 has been completely guided past the test sensor 10, so that for the authenticity check in step S5, remission spectral values R and emission spectral values E along the entire extent of the document of value 1 in the transport direction T in a spatial resolution, which depends on the one hand on the total duration of the scanning sequence A and on the other hand on the transport speed of the document of value 1.

Figur 3a illustriert außerdem, dass die erste Bestrahlungsphase A1 von wesentlich kürzerer Dauer ist, als die zweite Bestrahlungsphase A2. Die Prüfstrahlung P wird mit sehr kurzen Pulslängen auf das Wertdokument 1 gerichtet, damit die für die Echtheitsprüfung entscheidenden Emissionsspektralwerte E möglichst wenig durch remittierte Prüfstrahlung P gestört werden und auch eine möglichst hohe Ortsauflösung erreicht wird. Der zeitliche Anteil der ersten Beleuchtungsphase A1 an der gesamten Abtastsequenz A liegt deshalb zwischen 0,1% und 25%, und bevorzugt zwischen 1% und 20%. Bevorzugt wird hier die Dauer der gesamten Abtastsequenz A durch die Summe der Dauern der ersten Beleuchtungsphase A1 und der zweiten Beleuchtungsphase A2 gebildet. Die absolute Zeitdauer der ersten Bestrahlungsphase A1, also die Pulslänge der Prüfbestrahlung P liegt hierbei im Bereich von 0,5 µs bis 500 µs, bevorzugt im Bereich von 1 µs bis 50 µs. Figure 3a also illustrates that the first irradiation phase A1 is of significantly shorter duration than the second irradiation phase A2. The test radiation P is directed at the valuable document 1 with very short pulse lengths so that the emission spectral values E, which are crucial for the authenticity test, are disturbed as little as possible by remitted test radiation P and the highest possible spatial resolution is also achieved. The temporal proportion of the first illumination phase A1 in the entire scanning sequence A is therefore between 0.1% and 25%, and preferably between 1% and 20%. Here, the duration of the entire scanning sequence A is preferably formed by the sum of the durations of the first lighting phase A1 and the second lighting phase A2. The absolute duration of the first irradiation phase A1, i.e. the pulse length of the test irradiation P, is in the range from 0.5 µs to 500 µs, preferably in the range from 1 µs to 50 µs.

Bei derartig kurzen Pulslängen der Prüfstrahlung P kann es abhängig von der konkreten Ausgestaltung der Abtasteinheit 14 und einer Auswerteeinheit 17 des Prüfsensors 10 erforderlich sein, die Abtastung der Remissionsspektralwerte R (Schritt S2) erst nach Beendigung der ersten Bestrahlungsphase A1 vorzunehmen, um die Zeitkonstante einer entweder parasitär auftretenden oder gezielt eingebauten Tiefpassfilterung der Abtasteinheit 14 zu berücksichtigen, weil dann eine gewissen Zeit abgewartet werden muss, bis sich die durch die kurze Pulslänge der Prüfstrahlung P hervorgerufenen Remissionsspektralwerte R auch elektronisch ausgebildet haben und wirksam abgetastet werden können.With such short pulse lengths of the test radiation P, depending on the specific design of the scanning unit 14 and an evaluation unit 17 of the test sensor 10, it may be necessary to scan the remission spectral values R (step S2) only after the end of the first irradiation phase A1 in order to determine the time constant of either parasitic or deliberately installed low-pass filtering of the scanning unit 14 must be taken into account, because a certain time must then be waited until the remission spectral values R caused by the short pulse length of the test radiation P have also formed electronically and can be effectively scanned.

Das Wertdokument 1 wird nach Abschalten der Prüfstrahlung P in der zweiten Bestrahlungsphase A2 (Schritt S3) kontinuierlich weiter mit der Anregungsstrahlung L bestrahlt, um das Lumineszenzmerkmal 3 weiter optisch aufzupumpen. Gegen oder mit dem Ende dieser Phase des optischen Aufpumpens, also am Ende der zweiten Bestrahlungsphase A2, können dann Emissionsspektralwerte E abgetastet werden (Schritt S4), die im Wesentlichen ausschließlich auf die Emissionsstrahlung des optisch aufgepumpten bzw. maximal angeregten Lumineszenzmerkmals 3 zurückgehen.After the test radiation P has been switched off, the document of value 1 is continuously further irradiated with the excitation radiation L in the second irradiation phase A2 (step S3) in order to further optically pump up the luminescence feature 3. Towards or with the end of this phase of optical pumping, i.e. at the end of the second irradiation phase A2, emission spectral values E can then be sampled (step S4), which are essentially exclusively due to the emission radiation of the optically pumped or maximally excited luminescence feature 3.

Unmittelbar an die Abtastung der Emissionsspektralwerte E in Schritt S4 anschließend beginnt die Abtastsequenz A erneut mit der ersten Bestrahlungsphase A1, indem eine weitere gepulste Bestrahlung mit der Prüfstrahlung P erfolgt (Schritt S1), wie in Figur 3a gezeigt ist.Immediately following the scanning of the emission spectral values E in step S4, the scanning sequence A begins again with the first irradiation phase A1, by further pulsed irradiation with the test radiation P (step S1), as in Figure 3a is shown.

Obwohl Figur 3a nur eine Abtastung von Emissionsspektralwerten E pro Abtastsequenz vorsieht (Schritt 4), können im Verlauf der zweiten Bestrahlungsphase A2 auch mehrere Emissionsspektralwerte E zeitlich versetzt abgetastet werden (Schritt S4'), um dadurch auch das An-/ Abklingverhalten des Lumineszenzmerkmals 3 abzubilden und für eine ortsabhängige Echtheitsprüfung nutzbar zu machen. Dies zeigt beispielsweise die alternative Ausgestaltung der Abtastsequenz A gemäß Figur 3b, bei der auf die zweite Bestrahlungsphase A2 eine Ruhephase A3 folgt, bevor eine weitere Abtastsequenz A wieder mit der ersten Bestrahlungsphase A1 beginnt.Although Figure 3a If only one sampling of emission spectral values E is provided per sampling sequence (step 4), several emission spectral values E can also be sampled with a time offset in the course of the second irradiation phase A2 (step S4 '), in order to thereby also map the on/off behavior of the luminescence feature 3 and for one to make location-dependent authenticity testing usable. This shows, for example, the alternative embodiment of the scanning sequence A according to Figure 3b , in which the second irradiation phase A2 is followed by a rest phase A3 before a further scanning sequence A begins again with the first irradiation phase A1.

Bei der Abtastsequenz A gemäß Figur 3b ist nicht nur die Prüfstrahlung P gepulst, sondern auch die Anregungsstrahlung L, wenn auch mit einer wesentlich längeren Pulslänge. Die Bestrahlung mit gepulster Anregungsstrahlung L erlaubt eine einfache (Schritt S4) oder mehrfache (Schritte S4', S4) Abtastung von Emissionsspektralwerten E während und/ oder nach der gepulsten Bestrahlung mit der Anregungsstrahlung L, das heißt innerhalb der zweiten Bestrahlungsphase A2 und/ oder der Ruhephase A3, also zum Beispiel einmal innerhalb und einmal am Ende der zweiten Bestrahlungsphase A2 (Schritt S4') sowie schließlich gegen oder am Ende der Ruhephase (Schritt S4), kurz bevor die erste Bestrahlungsphase A1 der nächsten Abtastsequenz A einsetzt. Auch hierbei kann eine ortsabhängige Auswertung des An-/ Abklingverhaltens des Lumineszenzmerkmals 3 vorgenommen werden und so zu einer verbesserten Echtheitsprüfung führen, die nicht nur das bloße Vorhandensein eines Lumineszenzmerkmals 3 über die gesamte Ausdehnung des Wertdokuments entlang der Transportrichtung T berücksichtigt, sondern auch ortsabhängig das Zeitverhalten der Emission des Lumineszenzmerkmals 3. In einer bevorzugten Ausführung erfolgt eine Abtastung von Emissionsspektralwerten E relativ kurz nach dem Ende der ersten Bestrahlungsphase A1 bzw. der Abtastung der Remissionsspektralwerte R, so dass der Lumineszenzbeitrag zu den Remissionsspektralwerten R genauer abgeschätzt werden kann.With the scanning sequence A according to Figure 3b Not only is the test radiation P pulsed, but also the excitation radiation L, albeit with a significantly longer pulse length. The irradiation with pulsed excitation radiation L allows a single (step S4) or multiple (steps S4', S4) sampling of emission spectral values E during and/or after the pulsed irradiation with the excitation radiation L, that is within the second irradiation phase A2 and/or the Rest phase A3, for example once within and once at the end of the second irradiation phase A2 (step S4 ') and finally towards or at the end of the rest phase (step S4), shortly before the first irradiation phase A1 of the next scanning sequence A begins. Here too, a location-dependent evaluation of the on/off behavior of the luminescent feature 3 can be carried out and thus lead to an improved authenticity check, which not only takes into account the mere presence of a luminescent feature 3 over the entire extent of the document of value along the transport direction T, but also the time behavior depending on the location the emission of the luminescence feature 3. In a preferred embodiment, a sampling of emission spectral values E takes place relatively shortly after the end of the first irradiation phase A1 or the sampling of the remission spectral values R, so that the luminescence contribution to the remission spectral values R can be estimated more precisely.

Der zeitliche Anteil der ersten Beleuchtungsphase A1 an der gesamten Abtastsequenz A liegt deshalb zwischen 0,1% und 25%, und bevorzugt zwischen 1% und 20%. Die absolute Zeitdauer der ersten Bestrahlungsphase A1, also die Pulslänge der Prüfbestrahlung P liegt hierbei im Bereich von 0,5 µs bis 500 µs, bevorzugt im Bereich von 1 µs bis 50 µs. Bevorzugt wird die Dauer der gesamten Abtastsequenz A durch die Summe der Dauern der Phasen A1+A2+A3 bestimmt und dabei durch die Dauer der zweiten Beleuchtungsphase A2 dominiert, d.h. auch die Dauer der Ruhephase A3 ist relativ kurz bemessen. Die absolute Zeitdauer der Ruhephase A3 liegt bevorzugt im Bereich von 0,1 µs bis 500 µs, insbesondere im Bereich von 10µs bis 100 µs. Dies ermöglicht ein besonders gutes Aufpumpen auch relativ langsamer Lumineszenzmerkmale 3 bei gleichzeitig guter Ortsauflösung.The temporal proportion of the first illumination phase A1 in the entire scanning sequence A is therefore between 0.1% and 25%, and preferably between 1% and 20%. The absolute duration of the first irradiation phase A1, i.e. the pulse length of the test irradiation P, is in the range from 0.5 µs to 500 µs, preferably in the range from 1 µs to 50 µs. The duration of the entire scanning sequence A is preferably determined by the sum of the durations of the phases A1+A2+A3 and is dominated by the duration of the second lighting phase A2, i.e. the duration of the rest phase A3 is also relatively short. The absolute duration of the rest phase A3 is preferably in the range from 0.1 µs to 500 µs, in particular in the range from 10 µs to 100 µs. This enables particularly good inflation of even relatively slow luminescence features 3 while at the same time having good spatial resolution.

Abweichend von Figur 3b kann die Abtastung der Remissionsspektralwerte R, wie bereits im Zusammenhang mit der Figur 3a beschrieben, auch erst nach Beendigung der Bestrahlung durch die Prüfstrahlung P erfolgen, also erst innerhalb der Bestrahlungsphase A2, um etwaige Elektroniklaufzeiten der Abtasteinheit 14 zu kompensieren.Deviating from Figure 3b the sampling of the reflectance spectral values R, as already in connection with Figure 3a described, only take place after the end of the irradiation by the test radiation P, i.e. only within the irradiation phase A2, in order to compensate for any electronic running times of the scanning unit 14.

Zur Auswertung der gemessenen Remissions- R und Emissionsspektralwerte E in Schritt S5 werden zunächst Korrektur- und Kompensationsverfahren angewandt. Dazu werden die beiden Spektralwerte R, E einer Offset- bzw. Untergrundkorrektur unterzogen, bei der etwaige durch Streustrahlung oder elektronische/elektromagnetische Strahlung hervorgerufene Spektralanteile eliminiert werden. Die dabei verwendeten Korrekturparameter können entweder in der Auswerteeinheit 17 fest vorgegeben sein, oder erst im Verlauf des erfindungsgemäßen Prüfverfahrens ermittelt werden, beispielsweise durch Dunkelmessungen ohne Prüfbestrahlung P und Anregungsbestrahlung L zu Zeitpunkten, an denen kein Wertdokument 1 vorhanden ist. Alternativ oder zusätzlich ist es auch möglich, die abgetasteten Remissions-/Emissionsspektralwerte R, E auf vorgegebene oder aktuell detektierte Intensitäten oder auf anhand eines Kalibriersubstrats gemessenen Referenzspektralwerten zu normieren.To evaluate the measured reflectance R and emission spectral values E in step S5, correction and compensation methods are first used. For this purpose, the two spectral values R, E are subjected to an offset or background correction, in which any effects caused by scattered radiation or electronic/electromagnetic radiation Spectral components are eliminated. The correction parameters used can either be predefined in the evaluation unit 17, or can only be determined in the course of the test method according to the invention, for example by dark measurements without test irradiation P and excitation irradiation L at times when no document of value 1 is present. Alternatively or additionally, it is also possible to normalize the sampled reflectance/emission spectral values R, E to predetermined or currently detected intensities or to reference spectral values measured using a calibration substrate.

Im Falle der Remissionsspektralwerte R wird bei schmalbandiger Prüfbestrahlung P bevorzugt nur ein Spektralkanal der Abtasteinheit 14 ausgelesen und im Falle eines breiteren Spektrums der remittierten Prüfbestrahlung P werden mehrere Spektralkanäle zeitgleich ausgelesen. Dabei werden nur diejenigen Spektralkanäle der Abtasteinheit 14 ausgewertet, die dem Spektrum der remittierten Prüfbestrahlung P entsprechen, indem Spektralanteile aus den Remissionsspektralwerten R eliminiert werden, die aus der während der ersten Bestrahlungsphase A1 angeregten Emissionsstrahlung resultieren. Die betreffenden Parameter dieser Spektralfilterung können wiederum entweder in der Auswerteeinheit 17 fest vorgegeben sein oder im Verlauf des Prüfverfahrens ermittelt werden. Ebenso kann im Fall von spektraler Überlappung zwischen der Emissionsstrahlung und der Prüfstrahlung der Intensitätsbeitrag der Emissionsstrahlung an den entsprechenden Spektralkanälen der Remissionsspektralwerte R korrigiert werden. In diesem Fall werden Schätzwerte für den zeitlichen Verlauf der Intensität der Emissionsstrahlung auf Basis eines linearen oder exponentiellen Modells ermittelt, die das zeitliche Emissionsverhalten des Lumineszenzmerkmals 3 modellieren. Auf diese Weise werden aus den abgetasteten Remissionsspektralwerten R Störanteile eliminiert, die aus An-/ Abklingeffekten der Emissionsstrahlung während der ersten Bestrahlungsphase A1 resultieren.In the case of the remission spectral values R, with narrow-band test irradiation P, only one spectral channel of the scanning unit 14 is preferably read out and in the case of a broader spectrum of the remitted test irradiation P, several spectral channels are read out at the same time. Only those spectral channels of the scanning unit 14 that correspond to the spectrum of the remitted test irradiation P are evaluated by eliminating spectral components from the remission spectral values R that result from the emission radiation excited during the first irradiation phase A1. The relevant parameters of this spectral filtering can in turn either be predefined in the evaluation unit 17 or can be determined in the course of the test procedure. Likewise, in the case of spectral overlap between the emission radiation and the test radiation, the intensity contribution of the emission radiation can be corrected on the corresponding spectral channels of the remission spectral values R. In this case, estimated values for the time course of the intensity of the emission radiation are determined on the basis of a linear or exponential model, which model the temporal emission behavior of the luminescence feature 3. In this way, interference components resulting from on/off are eliminated from the sampled remission spectral values R. Decay effects of the emission radiation during the first irradiation phase A1 result.

Sofern ein Lumineszenzmerkmal 3 mit einer im Vergleich zur Zeitdauer der ersten Bestrahlungsdauer A1 kurzen An-/ Abklingzeit geprüft wird, kön-nen diejenigen Spektralanteile, die auf eine Emissionsstrahlung des Lumineszenzmerkmals 3 während der ersten Bestrahlungsphase A1 zurückzuführen sind, zumindest näherungsweise direkt eliminiert werden, also ohne eine zeitliche Modellierung des An-/ Abklingverhaltens des Lumineszenzmerkmals 3.If a luminescence feature 3 is tested with a short on/off time compared to the duration of the first irradiation period A1, those spectral components that can be attributed to emission radiation from the luminescence feature 3 during the first irradiation phase A1 can be at least approximately eliminated directly, i.e without temporal modeling of the on/off behavior of the luminescent feature 3.

Die auf diese Weise korrigierten Remissionsspektralwerte R werden dann in einem Speicher des Prüfsensors 10 zur Auswertung durch die Auswerteeinheit 17 zusammen mit den zugehörigen Messpositionen im Wertdokument 1 abgespeichert. Ebenso werden die korrigierten Emissionsspektralwerte E zusammen mit den zugehörigen Messpositionen abgespeichert. Die ortsabhängigen, gegebenenfalls korrigierten Remissionsspektralwerte R bzw. Emissionsspektralwerte E werden dann jeweils zu einer ortsaufgelösten Remissionskurve RC bzw. Emissionskurve EC über der Zeitachse t zusammengefasst.The reflectance spectral values R corrected in this way are then stored in a memory of the test sensor 10 for evaluation by the evaluation unit 17 together with the associated measurement positions in the value document 1. The corrected emission spectral values E are also saved together with the associated measurement positions. The location-dependent, possibly corrected, remission spectral values R or emission spectral values E are then combined into a spatially resolved remission curve RC or emission curve EC over the time axis t.

Anschließend erfolgt eine Glättung einer oder beider Kurven RC, EC, beispielsweise durch Berechnung eines gleitenden Mittelwerts, eines gleitenden Medians oder einer gleitenden Perzentile aus mehreren benachbarten Spektralwerten R, E der jeweiligen Kurve RC, EC. Gegebenenfalls können die Kurven RC, EC zusätzlich auf einen geeigneten Intensitätswert normiert werden, beispielsweise auf das jeweilige Intensitätsmaximum oder den jeweiligen Intensitätsmedian, wobei aber insbesondere im Fall der Emissionskurve EC eine zusätzliche Prüfung hinsichtlich des Überschreitens einer absoluten unteren Intensitätsschwelle sinnvoll ist, um etwaige Fälschungen mit zu geringer Merkmalsintensität sicher identifizieren zu können .One or both curves RC, EC are then smoothed, for example by calculating a moving average, a moving median or a moving percentile from several adjacent spectral values R, E of the respective curve RC, EC. If necessary, the curves RC, EC can also be normalized to a suitable intensity value, for example to the respective intensity maximum or the respective intensity median, but in particular in the case of the emission curve EC, an additional check is carried out with regard to whether a Absolute lower intensity threshold makes sense in order to be able to reliably identify any counterfeits with feature intensity that is too low.

Abhängig von der örtlichen Auflösung des Abtastsensors 19 und der Transportgeschwindigkeit des Wertdokuments 1 entlang der Transportrichtung T kann zusätzlich eine Bewegungskompensation durchgeführt werden. Dazu werden die beiden Kurven EC, RC im Umfang des Zeitintervalls zwischen der Abtastung der Remissionsspektralwerte R (Schritt S2) und der Abtastung der Emissionsspektralwerte E (Schritt S4) gegeneinander verschoben. Insbesondere bei einer hohen Ortsauflösung kann dadurch ein örtlicher/ zeitlicher Versatz zwischen den zeitlich etwas früher aufgezeichneten Remissionsspektralwerten R und den zeitlich etwas später aufgezeichneten Emissionsspektralwerten E im Hinblick auf den qualitativen Vergleich der Kurven RC, EC korrigiert werden.Depending on the local resolution of the scanning sensor 19 and the transport speed of the valuable document 1 along the transport direction T, additional movement compensation can be carried out. For this purpose, the two curves EC, RC are shifted relative to one another within the scope of the time interval between the sampling of the remission spectral values R (step S2) and the sampling of the emission spectral values E (step S4). Particularly with a high spatial resolution, a local/temporal offset between the remission spectral values R recorded somewhat earlier in time and the emission spectral values E recorded somewhat later in time can be corrected with regard to the qualitative comparison of the curves RC, EC.

Anschließend wird die tatsächliche örtliche Abmessung des Wertdokuments 1 entlang der Transportrichtung T durch eine Kantendetektion der Remissionskurve RC bestimmt, beispielsweise durch digitale Kanten- bzw. Hochpassfilterung. Im einfachsten Fall können diejenigen extremen Positionen der Remissionskurve RC bestimmt werden, an denen die Remissionsspektralwerte R über den Intensitätsmedian steigen bzw. wieder unter den Intensitätsmedian fallen. Weniger rauschanfällig ist es jedoch, zwischen einer geeigneten Intensitätsquantile (z.B. 75%, entspricht nahezu weiß) und einem Minimum der Remissionskurve RC oder einer Intensitätsquantile von etwa 5% linear zu interpolieren und daraus diejenigen (beiden) Positionen der Remissionskurve RC zu ermitteln, an denen die Remissionskurve RC die Intensitätsquantile von 50% (oder alternativ den Mittelwert aus 5 % und 75%-Quantile) schneidet. Aus der Differenz der beiden Positionen ergibt sich dann die Ausdehnung des Wertdokuments 1 entlang der Transportrichtung T. Die Intensitätsquantilen werden hierbei in Abhängigkeit des jeweiligen Erscheinungsbildes bzw. der zu erwartenden, remittierten Intensitätsverteilung des zu prüfenden Wertdokuments 1 bestimmt.The actual local dimension of the document of value 1 along the transport direction T is then determined by edge detection of the reflectance curve RC, for example by digital edge or high-pass filtering. In the simplest case, those extreme positions of the reflectance curve RC can be determined at which the reflectance spectral values R rise above the intensity median or fall below the intensity median again. However, it is less susceptible to noise to linearly interpolate between a suitable intensity quantile (e.g. 75%, corresponds to almost white) and a minimum of the reflectance curve RC or an intensity quantile of approximately 5% and to determine from this those (two) positions of the reflectance curve RC at which the reflectance curve RC intersects the intensity quantiles of 50% (or alternatively the mean of 5% and 75% quantiles). The difference between the two positions then results in the extent of the document of value 1 along the transport direction T. The intensity quantiles are determined depending on the respective appearance or the expected remitted intensity distribution of the value document 1 to be checked.

Die Echtheit des geprüften Wertdokuments 1 bzw. dessen Unversehrtheit oder Vollständigkeit wird zum Ausschluss einer Schnipselfälschung schließlich dann festgestellt, wenn die Breite der korrigierten Remissionskurve RC qualitativ vergleichbar ist mit der Breite der korrigierten Emissionskurve EC. Eine Maßzahl für die Vollständigkeit des Wertdokuments 1 ist hierbei der Quotient aus der Anzahl der Kurvenpunkte (bzw. Pixel) mit signifikanten bzw. überschwelligen Emissionsspektralwerten E und der Anzahl der Kurvenpunkten (bzw. Pixel) mit signifikanten bzw. überschwelligen Remissionsspektralwerten R, die im Wesentlichen der Ausdehnung des Wertdokuments 1 entlang des Transportpfades T entsprechen. Die signifikanten Emissionsspektralwerte E sind dann solche, deren Intensität zwischen vorgegebenen oder während der Prüfung ermittelten unteren und oberen Schwellenwerten liegen.The authenticity of the checked document of value 1 or its integrity or completeness is ultimately determined to rule out snippet forgery when the width of the corrected reflectance curve RC is qualitatively comparable to the width of the corrected emission curve EC. A measure of the completeness of the value document 1 is the quotient of the number of curve points (or pixels) with significant or above-threshold emission spectral values E and the number of curve points (or pixels) with significant or above-threshold remission spectral values R, which are essentially correspond to the extent of the valuable document 1 along the transport path T. The significant emission spectral values E are then those whose intensity lies between specified lower and upper threshold values or those determined during the test.

Anhand der Kurvenverläufe der Figur 4 ergibt sich auf diese Weise eine Maßzahl (Quotient) von etwa 1 für die echte Banknote gemäß Figur 2a (vgl. Fig. 4a) und eine Maßzahl (Quotient) von etwa 0,82 für das gefälschte Wertdokument gemäß Figur 2b (vgl. Fig. 4b).Based on the curves of the Figure 4 This results in a ratio (quotient) of approximately 1 for the real banknote Figure 2a (see. Fig. 4a ) and a measure (quotient) of approximately 0.82 for the counterfeit document of value Figure 2b (see. Fig. 4b ).

Das erfindungsgemäße Verfahren gemäß Figur 1 wird durch Verwendung eines erfindungsgemäßen Prüfsensors 10 realisiert. Die Figuren 5a und 5b zeigen zwei bevorzugte Ausführungsformen eines solchen Prüfsensors 10, deren Abtasteinheit 14 mit dem Abtastsensor 19 ausgelegt ist, den Prüfbereich 4, unter dem das zu prüfende Wertdokument 1 in Transportrichtung T mit einer Transportgeschwindigkeit zwischen 1 m/s und 13 m/s, bevorzugt zwischen 4m/s und 11 m/s, vorbeigeführt wird, spektral aufgelösten abzutasten.The method according to the invention according to Figure 1 is realized by using a test sensor 10 according to the invention. The Figures 5a and 5b show two preferred embodiments of such a test sensor 10, the scanning unit 14 of which is designed with the scanning sensor 19, the test area 4, under which the document of value 1 to be checked is preferred in the transport direction T with a transport speed between 1 m / s and 13 m / s between 4m/s and 11 m/s, is passed to scan spectrally resolved.

Die Abtasteinheit 14 erfasst eine von dem Lumineszenzmerkmal 3 emittierte Emissionsstrahlung in einem bestimmten Detektionsspektralbereich des Abtastsensors 19 und liefert Emissionsspektralwerte E, die spektrale Eigenschaften der abgetasteten Emissionsstrahlung wiedergeben. Zur Anregung des Lumineszenzmerkmals 3 bestrahlt eine Anregungsstrahlungsquelle 13 den Prüfbereich 4 mit der Anregungsstrahlung L. Die Anregungsstrahlung L ist auf das Lumineszenzmerkmal 3 derart abgestimmt, dass eine Emissionsstrahlung im optischen Bereich bewirkt wird, beispielsweise im ultravioletten (UV), sichtbaren (VIS) oder infraroten Spektralbereich (IR). Die Anregungsstrahlung L ist hierbei vorzugsweise spektral schmalbandig, kann aber auch breitbandig sein oder eine Überlagerung aus verschiedenen schmalbandigen und/ oder breitbandigen Strahlungsanteilen umfassen.The scanning unit 14 detects emission radiation emitted by the luminescence feature 3 in a specific detection spectral range of the scanning sensor 19 and supplies emission spectral values E that reflect spectral properties of the scanned emission radiation. To excite the luminescence feature 3, an excitation radiation source 13 irradiates the test area 4 with the excitation radiation L. The excitation radiation L is matched to the luminescence feature 3 in such a way that emission radiation is caused in the optical range, for example in the ultraviolet (UV), visible (VIS) or infrared Spectral range (IR). The excitation radiation L is preferably spectrally narrow-band, but can also be broad-band or comprise a superposition of different narrow-band and/or broad-band radiation components.

Der Prüfbereich 4 wird außerdem von einer Bestrahlungsquelle 12 mit der Prüfstrahlung P bestrahlt, um anhand der remittierten Remissionsspektralwerte R die Anwesenheit eines Wertdokuments 1 im Prüfbereich 4 zum Zeitpunkt der Abtastung festzustellen bzw. dessen Ausdehnung in Transportrichtung T durch Auswertung der resultierenden Remissionskurve RC zu ermitteln.The test area 4 is also irradiated with the test radiation P by an irradiation source 12 in order to determine the presence of a document of value 1 in the test area 4 at the time of scanning based on the remitted remission spectral values R or to determine its extent in the transport direction T by evaluating the resulting remission curve RC.

Die Prüfstrahlungsquelle 12 erzeugt hierbei eine Prüfstrahlung P mit einer spektralen Verteilung, die den Detektionsspektralbereich der Abtasteinheit 14 bzw. des Abtastsensors 19 teilweise oder möglichst vollständig überlappt. Besonders bevorzugt ist die Prüfstrahlung P spektral schmalbandig, und ist nur in einem oder in wenigen Spektralkanälen des Abtastsensors 19 nachweisbar. Die erzeugte Prüfstrahlung P ist vorzugsweise derart spektral ausgelegt, dass sie das Lumineszenzmerkmal 3 nicht zu einer nennenswerten Emissionsstrahlung anregt. Vorzugsweise beträgt der Anteil einer von dem Lumineszenzmerkmal 3 bewirkten Emissionsstrahlung an der Intensität der abgetasteten Remissionsspektralwerte R weniger als 10%.The test radiation source 12 generates a test radiation P with a spectral distribution that partially or, if possible, completely overlaps the detection spectral range of the scanning unit 14 or the scanning sensor 19. The test radiation P is particularly preferably spectrally narrow-band and can only be detected in one or a few spectral channels of the scanning sensor 19. The test radiation P generated is preferably spectral in this way designed so that it does not stimulate the luminescent feature 3 to produce any significant emission radiation. Preferably, the proportion of emission radiation caused by the luminescence feature 3 in the intensity of the sampled remission spectral values R is less than 10%.

Die Prüfstrahlungsquelle 12 erzeugt die Prüfstrahlung P mit einer geeigneten Lichtquelle, beispielsweise einer Leuchtdiode oder Laserdiode, besonders bevorzugt mit einem Kantenemitter oder einem VCSEL bzw. einem VCSEL-Array. Falls erforderlich sind zusätzliche optische Einheiten, Filter oder Leuchtstoffkonverter in den Strahlengang des Prüfsensor 10 eingebracht, um ein gewünschtes, gegebenenfalls schmalbandiges Spektrum der Prüfstrahlung P mit entsprechendem spektralem Überlapp mit dem Spektrum der von dem Lumineszenzmerkmal 3 ausgehenden Emissionsstrahlung im Detektionsspektralbereich des Abtastsensors 19 sicherzustellen. Hierbei ist die Optik des Prüfsensors 10 so ausgestaltet, dass die Prüfstrahlung P durch Remission bzw. Streuung an der Oberfläche eines Wertdokuments 1 in einen Strahlengang zur Abtasteinheit 14 eingekoppelt wird, sobald sich das Wertdokument 1 in den Prüfbereich 4 bewegt.The test radiation source 12 generates the test radiation P with a suitable light source, for example a light-emitting diode or laser diode, particularly preferably with an edge emitter or a VCSEL or a VCSEL array. If necessary, additional optical units, filters or phosphor converters are introduced into the beam path of the test sensor 10 in order to ensure a desired, possibly narrow-band spectrum of the test radiation P with a corresponding spectral overlap with the spectrum of the emission radiation emanating from the luminescence feature 3 in the detection spectral range of the scanning sensor 19. Here, the optics of the test sensor 10 are designed such that the test radiation P is coupled into a beam path to the scanning unit 14 by remission or scattering on the surface of a document of value 1 as soon as the document of value 1 moves into the test area 4.

Ferner umfasst der Prüfsensor 10 eine Steuer-/Auswerteeinheit 17, die die Prüfstrahlungsquelle 12 und die Anregungsstrahlungsquelle 13 derart ansteuert, dass eine Abtastsequenz A gemäß Figur 3a oder 3b realisiert wird. Die Steuer-/ Auswerteeinheit 17 prüft auch das Wertdokument 1 anhand der ermittelten Remissionskurve RC und Emissionskurve EC auf Echtheit bzw. Vollständigkeit.Furthermore, the test sensor 10 includes a control/evaluation unit 17, which controls the test radiation source 12 and the excitation radiation source 13 in such a way that a scanning sequence A according to Figure 3a or 3b is realized. The control/evaluation unit 17 also checks the value document 1 for authenticity or completeness based on the determined remission curve RC and emission curve EC.

Der Prüfsensor 10 gemäß Figur 5a richtet die Prüfstrahlung P direkt auf den Prüfbereich 4, und somit auf das Wertdokument 1, wobei zusätzlich auch Blenden oder Beleuchtungsoptiken zum Einsatz kommen können. In dem Prüfbereich 4 örtlich überlappend mit der Prüfstrahlung P wird die Anregungsstrahlung L von der Anregungsstrahlungsquelle 13 über einen dichroitischen Strahlungsteiler 16 eingekoppelt und mit der Optik 15 auf das vorbeitransportierte Wertdokument 1 gerichtet. Die Anregungsstrahlungsquelle 13 umfasst hierbei beispielsweise eine Leuchtdiode oder einen Halbleiterlaser, insbesondere ein VCSEL oder VCSEL-Array. Sowohl die vom Wertdokument 1 remittierte Prüfstrahlung P als auch die von dem Lumineszenzmerkmal 3 emittierte Emissionsstrahlung wird über die Optik 15 in die Abtasteinheit 14 eingekoppelt und dort von dem Abtastsensor 19 spektral aufgelöst detektiert. Zu diesem Zweck umfasst die Abtasteinheit 14 eine spektrographische Einrichtung 18 und den Abtastsensor 19, der die Spektralanteile und Spektralkomponenten spektral aufgelösten erfasst, die durch die spektrographische Einheit 18 erzeugt werden.The test sensor 10 according to Figure 5a directs the test radiation P directly onto the test area 4, and thus onto the valuable document 1, whereby apertures or lighting optics can also be used. By Test area 4 locally overlapping with the test radiation P, the excitation radiation L is coupled in from the excitation radiation source 13 via a dichroic radiation splitter 16 and directed with the optics 15 onto the document of value 1 being transported past. The excitation radiation source 13 includes, for example, a light-emitting diode or a semiconductor laser, in particular a VCSEL or VCSEL array. Both the test radiation P remitted by the document of value 1 and the emission radiation emitted by the luminescent feature 3 are coupled into the scanning unit 14 via the optics 15 and detected there in a spectrally resolved manner by the scanning sensor 19. For this purpose, the scanning unit 14 includes a spectrographic device 18 and the scanning sensor 19, which records the spectral components and spectral components in spectral resolution that are generated by the spectrographic unit 18.

Bei dem Prüfsensor 10 nach Figur 5b kann die Bestrahlung des Wertdokuments 1 alternativ mittels einer kombinierten Bestrahlungseinheit 11 erfolgen, die geeignete Bestrahlungsquellen 12,13 zur Erzeugung der Prüfstrahlung P und der Anregungsstrahlung L umfasst. Bei dieser Ausführungsform des Prüfsensors 10 werden beide Strahlungen gemeinsam über den dichroitischen Strahlungsteiler 16 in den Strahlengang des Prüfsensors 10 in Richtung des Prüfbereichs 4 eingekoppelt.With the test sensor 10 after Figure 5b The document of value 1 can alternatively be irradiated by means of a combined irradiation unit 11, which includes suitable irradiation sources 12, 13 for generating the test radiation P and the excitation radiation L. In this embodiment of the test sensor 10, both radiations are coupled together via the dichroic radiation splitter 16 into the beam path of the test sensor 10 in the direction of the test area 4.

Die typische Polarisationsabhängigkeit im spektralen Kantenbereich von dielektrischen Interferenzfiltern auf dichroitischen Spiegeln kann ausgenutzt werden, zum Beispiel indem eine linear polarisierte Strahlung (insbesondere Prüfstrahlung) an einem dichroitischen Spiegel mit hoher Reflektivität (vorzugsweise größer als 80%) umgelenkt wird, während die diffus von dem Wertdokument 1 remittierte Strahlung auch spektrale Anteile der dazu senkrechten Polarisationskomponente umfasst, die somit ausreichend gut transmittiert werden, zum Beispiel in einem Bereich von größer 40%.The typical polarization dependence in the spectral edge region of dielectric interference filters on dichroic mirrors can be exploited, for example by deflecting linearly polarized radiation (in particular test radiation) on a dichroic mirror with high reflectivity (preferably greater than 80%), while the document of value diffuses 1 remitted radiation also spectral components of the includes perpendicular polarization components, which are therefore transmitted sufficiently well, for example in a range of greater than 40%.

Claims (19)

  1. Method for checking a document of value (1) guided past a checking sensor (10) in a transport direction (T), wherein a luminescence feature (3) is present distributed substantially homogeneously in or on a security region (2) extending in the transport direction (T) over the document of value (1) and has a sampling sequence (A) repeating multiple times as the document of value (1) is guided past the checking sensor (10), the method comprising the steps of:
    - irradiating (S1) a checking region (4) of the checking sensor (10) which at least partially overlaps the security region (2) with excitation radiation (L) and checking radiation (P) in a first irradiation phase (A1), wherein the checking radiation (P) is designed to be at least partially remitted by the document of value (1) in a detection spectral range of the checking sensor (10), and the excitation radiation (L) is designed to bring about emission radiation of the luminescence feature (3) in the detection spectral range;
    - sampling (S2) at least one spatially dependent remission spectral value (R) in the checking region (4) in the first irradiation phase (A1);
    - irradiating (S3) the checking region (4) only with the excitation radiation (L) in a second irradiation phase (A2);
    - sampling (S4) at least one spatially dependent emission spectral value (E) in the checking region (4) after the first irradiation phase (A1); and
    - performing an authenticity check (S5) according to which the document of value (1) is classified as being genuine or not genuine on the basis of the at least one spatially dependent remission spectral value (R), which has been sampled multiple times in a spatially resolved manner, and of the at least one spatially dependent emission spectral value (E), which has been sampled multiple times in a spatially resolved manner, wherein the sampling (S2) of the at least one remission spectral value (R) takes place towards the end of the first irradiation phase (A1), wherein the second irradiation phase (A2) immediately follows the first irradiation phase (A1), and the sampling (S4) of the at least one emission spectral value (E) takes place towards the end of the second irradiation phase (A2), wherein the sampling sequence (A) begins again after the end of the second irradiation phase (A2) or the sampling sequence (A) comprises a rest phase (A3) which follows the second irradiation phase (A2) and in which the document of value (1) is not irradiated by the checking sensor (10), wherein the sampling sequence (A) begins again after the end of the rest phase (A3) and the sampling (S4) of the at least one spatially dependent emission spectral value (E) takes place in the rest phase (A3), preferably towards the end of the rest phase (A3).
  2. Method according to Claim 1, characterized in that the dimension of the document of value (1) in the transport direction (T) is ascertained from the number of significant remission spectral values (R), wherein an emission spectral value (E) and/or a remission spectral value (R) is considered to be significant if it lies above a lower threshold value and optionally below an upper threshold value.
  3. Method according to either of Claims 1 and 2, characterized in that for the authenticity check (55), the number of significant remission spectral values (R) in relation to the number of significant emission spectral values (E) is checked.
  4. Method according to any of Claims 1 to 3, characterized in that the document of value (1) is classified as being genuine if a spatially resolved remission curve (RC), formed from the multiply sampled, at least one spatially dependent remission spectral value (R), and a spatially resolved emission curve (EC), formed from the multiply sampled, at least one spatially dependent emission spectral value (E), have a qualitatively comparable curve profile.
  5. Method according to Claim 4, characterized in that the dimension of the document of value (1) in the transport direction (T) is ascertained from the number of significant remission spectral values (R) under the preferably smoothed remission curve (RC), and the remission curve (RC) and the emission curve (EC) are considered (S5) to be qualitatively comparable if the emission curve (EC) has emission spectral values (E) which are significant substantially at locations at which the remission curve (RC) also has significant remission spectral values (R).
  6. Method according to any of Claims 1 to 5, characterized in that the time duration of the first irradiation phase (A1) lies between 0.5 µs and 500 µs, preferably between 1 µs and 50 µs, and the ratio between the time duration of the first irradiation phase (A1) and the time duration of the sampling sequence (A) lies between 1:1000 and 1:4, preferably between 1:100 and 1:5, wherein the transport speed at which the document of value (1) is guided past the checking sensor (10) is between 1 m/s and 13 m/s, preferably between 4 and 11 m/s.
  7. Method according to any of Claims 1 to 6, characterized by sampling (S4', S4) multiple times at least one spatially dependent emission spectral value (E) within the sampling sequence (A), wherein a growth/decay behaviour of the luminescence feature (3) is ascertained on the basis of the plurality of sampled, at least one emission spectral value(s) (E), which behaviour is taken into account (S5) during the check.
  8. Method according to any of Claims 1 to 7, characterized in that, based on at least one emission spectral value (E) sampled (S4; S4') within an individual sampling sequence (A), a spatially dependent authenticity check is carried out by comparing the sampled (S4), at least one emission spectral value (E) with reference spectral values and/or by ascertaining, on the basis of a plurality of sampled (S4, S4'), at least one emission spectral value(s) (E), a growth/decay behaviour of the luminescence feature (3), which is compared with a reference growth/decay behaviour.
  9. Method according to any of Claims 1 to 8, characterized in that the document of value (1) is irradiated (S1) with narrowband checking radiation (P), which is designed to bring about no, or only little, emission radiation of the luminescence feature (3) in the detection spectral range, and is irradiated (S3) with preferably narrowband excitation radiation (L) in the ultraviolet, visible and/or infrared spectral range.
  10. Method according to any of Claims 1 to 9, characterized in that the checking radiation (P) is generated by a checking-radiation source (12) which comprises an LED or semiconductor laser radiation source, preferably a narrowband VCSEL radiation source, and in that the excitation radiation (L) is generated by an excitation-radiation source (13) which comprises an LED or semiconductor laser radiation source, preferably a narrowband VCSEL radiation source.
  11. Method according to any of Claims 1 to 10, characterized in that the sampled remission spectral values (R) and/or emission spectral values (E) are corrected, in particular before the remission curve (RC) and/or emission curve (EC), if provided, are formed (S5), by substantially eliminating stray radiation components or electronic stray radiation components from the remission spectral values (R) and/or the emission spectral values (E) by way of an offset correction, wherein correction parameters of the offset correction are ascertained by sampling a reference substrate by way of the checking sensor (10) or by sampling by way of the checking sensor (10) before a first sampling sequence (A) or between two documents of value (1) guided past the checking sensor (10).
  12. Method according to any of Claims 1 to 11, characterized in that the sampled remission spectral values (R) are corrected, in particular before the remission curve (RC), if provided, is formed (S5), by extracting those spectral components of the remission spectral values (R) which result from remitted radiation components of the checking irradiation (P) and/or eliminating those spectral components from the remission spectral values (R) which result from the emission radiation of the luminescence feature (3).
  13. Method according to Claim 4 or 5, characterized in that an offset, resulting from the document of value (1) being guided past the checking sensor (10), between the remission curve (RC) and the emission curve (EC) is compensated by shifting the emission curve (EC) in relation to the remission curve (RC) by the time duration between the sampling (S2) of the at least one remission spectral value (R) and the sampling (S4) of the at least one emission spectral value (E).
  14. Method according to Claim 4 or 5, characterized in that the transport speed at which the document of value (1) is guided past the checking sensor (10) and the time duration of the sampling sequence (A) are matched to one another such that the remission curve (RC) and/or the emission curve (EC) has a spatial resolution that is sufficient for a reliable authenticity check (S5).
  15. Checking sensor (10) for checking a document of value (1) for authenticity, comprising
    a checking-radiation source (12), which is configured to generate checking radiation (P) which is at least partially remitted by the document of value (1) in a detection spectral range of the checking sensor (10);
    an excitation-radiation source (13), which is configured to generate excitation radiation (L) which causes a luminescence feature (3) present in or on the document of value (1) to emit emission radiation in the detection spectral range;
    a sampling unit (14), which is configured to sample checking radiation (P) remitted by the document of value (1) and emitted emission radiation in the detection spectral range;
    wherein the checking sensor (10) is configured to repeat multiple times while the document of value (1) is guided past the checking sensor (10) a sampling sequence (A) in connection with which the document of value (1) is irradiated in a first irradiation phase (A1) by the checking-radiation source (12) and the excitation-radiation source (13) and is irradiated in a second irradiation phase (A2) only by the excitation-radiation source (13), wherein the sampling unit (14) samples at least one spatially dependent remission spectral value (R) in the first irradiation phase (A1) and samples at least one spatially dependent emission spectral value (E) after the first irradiation phase (A1),
    wherein the checking sensor (10) is furthermore configured such that the sampling (S2) of the at least one remission spectral value (R) takes place towards the end of the first irradiation phase (A1), wherein the second irradiation phase (A2) immediately follows the first irradiation phase (A1), and that the sampling (S4) of the at least one emission spectral value (E) takes place towards the end of the second irradiation phase (A2), wherein the sampling sequence (A) begins again after the second irradiation phase (A2) has ended, and
    wherein the checking sensor furthermore comprises an evaluation unit (17), which is configured to classify the document of value (1) as being genuine or not genuine on the basis of the at least one spatially dependent remission spectral value (R), which has been sampled multiple times in a spatially resolved manner, and of the at least one spatially dependent emission spectral value (E), which has been sampled multiple times in a spatially resolved manner, wherein the emission spectral values and the remission spectral values are detected in a spectrally resolved manner with more than two spectral channels.
  16. Checking sensor (10) according to Claim 15, characterized in that the evaluation unit (17) classifies the document of value (1) as being genuine if a spatially resolved remission curve (RC), formed from the multiply sampled, at least one spatially dependent remission spectral value (R), and an emission curve (EC), formed from the multiply sampled, at least one spatially dependent emission spectral value (E), have a qualitatively comparable curve profile.
  17. Checking sensor (10) according to Claim 15 or 16, characterized in that the checking sensor (10) is designed and configured to check a document of value (1) guided past the checking sensor (10) for authenticity and/or completeness in accordance with a method according to any of Claims 1 to 15.
  18. Checking device, comprising a checking sensor (10) according to any of Claims 15 to 17, and a transport device (20), which is configured to guide a document of value (1) in the transport direction (T) past the checking sensor (10) in a manner such that the document of value (1) can be checked for authenticity and/or completeness in accordance with a method according to any of Claims 1 to 14.
  19. Use of a checking sensor (10) according to Claim 15 to 17 for checking a document of value (1) for authenticity and/or completeness in accordance with a method according to any of Claims 1 to 14.
EP16819439.7A 2016-01-05 2016-12-21 Checking the authenticity of value documents Active EP3400583B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016000012.0A DE102016000012A1 (en) 2016-01-05 2016-01-05 Authenticity check of value documents
PCT/EP2016/002155 WO2017118466A1 (en) 2016-01-05 2016-12-21 Checking the authenticity of value documents

Publications (2)

Publication Number Publication Date
EP3400583A1 EP3400583A1 (en) 2018-11-14
EP3400583B1 true EP3400583B1 (en) 2024-02-07

Family

ID=57680202

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16819439.7A Active EP3400583B1 (en) 2016-01-05 2016-12-21 Checking the authenticity of value documents

Country Status (5)

Country Link
US (1) US11830329B2 (en)
EP (1) EP3400583B1 (en)
DE (1) DE102016000012A1 (en)
RU (1) RU2710766C1 (en)
WO (1) WO2017118466A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016000012A1 (en) * 2016-01-05 2017-07-06 Giesecke & Devrient Gmbh Authenticity check of value documents
DE102016000011A1 (en) * 2016-01-05 2017-07-06 Giesecke & Devrient Gmbh Completeness check of a value document
DE102018004884A1 (en) * 2018-06-20 2019-12-24 Giesecke+Devrient Currency Technology Gmbh Method and sensor for checking documents

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3142080A1 (en) * 2015-09-08 2017-03-15 Kabushiki Kaisha Toshiba Image reading apparatus and sheet processing apparatus

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999023601A1 (en) * 1997-10-31 1999-05-14 Cummins-Allison Corp. Currency evaluation and recording system
US6744525B2 (en) * 1997-11-25 2004-06-01 Spectra Systems Corporation Optically-based system for processing banknotes based on security feature emissions
GB0002977D0 (en) * 2000-02-09 2000-03-29 Rue De Int Ltd Detector
EP1168253A1 (en) * 2000-06-28 2002-01-02 Sicpa Holding S.A. Use of communication equipment and method for authenticating an item, specifically documents, in particular security documents, communication equipment for authenticating items, and items to be authenticated by communication equipment
JP2002197506A (en) * 2000-12-26 2002-07-12 Glory Ltd Uv and fluorescence detecting device and its sensing method
JP4058246B2 (en) 2001-04-03 2008-03-05 グローリー株式会社 Method and apparatus for detecting tape body attached to paper sheet
US7536553B2 (en) * 2001-05-10 2009-05-19 Pitney Bowes Inc. Method and system for validating a security marking
JP4596690B2 (en) * 2001-06-25 2010-12-08 日本電産コパル株式会社 Paper fluorescence detection sensor
JP2003067805A (en) * 2001-08-28 2003-03-07 Hitachi Ltd Device for discriminating truth or falsehood of sheet paper
US7873576B2 (en) * 2002-09-25 2011-01-18 Cummins-Allison Corp. Financial document processing system
US6795173B2 (en) * 2002-01-22 2004-09-21 Camille Romano Counterfeit detection viewer apparatus for paper currency
EP1403333A1 (en) * 2002-09-24 2004-03-31 Sicpa Holding S.A. Method and ink sets for marking and authenticating articles
CN100444204C (en) * 2003-02-28 2008-12-17 日本电产科宝株式会社 Check device and check method
JP4188111B2 (en) * 2003-03-13 2008-11-26 日立オムロンターミナルソリューションズ株式会社 Paper sheet authenticity discrimination device
US6994201B2 (en) * 2003-06-23 2006-02-07 International Currency Technologies Corporation Bill acceptor
CN1950857B (en) * 2004-03-09 2012-08-22 科学和工业研究理事会 Improved fake currency detector using visual and reflective spectral response
DE102004035494A1 (en) 2004-07-22 2006-02-09 Giesecke & Devrient Gmbh Device and method for checking value documents
CN101405772B (en) * 2006-03-16 2011-04-06 环球娱乐株式会社 Bank note authenticating method and bank note authenticating device
DE102008028690A1 (en) 2008-06-17 2009-12-24 Giesecke & Devrient Gmbh Sensor device for the spectrally resolved detection of value documents and a method relating to them
DE102008028689A1 (en) 2008-06-17 2009-12-24 Giesecke & Devrient Gmbh Sensor device for the spectrally resolved detection of value documents and a method relating to them
US8780206B2 (en) * 2008-11-25 2014-07-15 De La Rue North America Inc. Sequenced illumination
JP5208801B2 (en) * 2009-02-20 2013-06-12 株式会社東芝 Photodetection device and paper sheet processing apparatus provided with the photodetection device
JP5552757B2 (en) * 2009-06-01 2014-07-16 セイコーエプソン株式会社 Image reading apparatus and image reading method
US8749767B2 (en) * 2009-09-02 2014-06-10 De La Rue North America Inc. Systems and methods for detecting tape on a document
US8400509B2 (en) * 2009-09-22 2013-03-19 Honeywell International Inc. Authentication apparatus for value documents
UY32945A (en) * 2009-10-28 2011-05-31 Sicpa Holding Sa TICKET VALIDATOR
RU2421818C1 (en) * 2010-04-08 2011-06-20 Общество С Ограниченной Ответственностью "Конструкторское Бюро "Дорс" (Ооо "Кб "Дорс") Method for classification of banknotes (versions)
JP2012249237A (en) * 2011-05-31 2012-12-13 Kyocera Document Solutions Inc Image reading apparatus and image forming apparatus provided with the same
MY188580A (en) * 2015-12-17 2021-12-22 Sicpa Holding Sa Security element formed from at least two materials present in partially or fully overlapping areas, articles carrying the security element, and authentication methods
DE102016000011A1 (en) * 2016-01-05 2017-07-06 Giesecke & Devrient Gmbh Completeness check of a value document
DE102016000012A1 (en) * 2016-01-05 2017-07-06 Giesecke & Devrient Gmbh Authenticity check of value documents
US11263856B2 (en) * 2017-03-01 2022-03-01 Spectra Systems Corporation Coded polymer substrates for banknote authentication
DE102018004884A1 (en) * 2018-06-20 2019-12-24 Giesecke+Devrient Currency Technology Gmbh Method and sensor for checking documents
DE112019004255T5 (en) * 2018-09-25 2021-05-06 CCL Secure Pty Ltd. Security documents and security devices comprising infrared absorbing compositions
DE102019005656A1 (en) * 2019-08-12 2021-02-18 Giesecke+Devrient Currency Technology Gmbh Method and device for checking documents of value

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3142080A1 (en) * 2015-09-08 2017-03-15 Kabushiki Kaisha Toshiba Image reading apparatus and sheet processing apparatus

Also Published As

Publication number Publication date
DE102016000012A1 (en) 2017-07-06
RU2710766C1 (en) 2020-01-13
US20210019976A1 (en) 2021-01-21
US11830329B2 (en) 2023-11-28
WO2017118466A1 (en) 2017-07-13
EP3400583A1 (en) 2018-11-14

Similar Documents

Publication Publication Date Title
EP2577620B1 (en) Device for testing the authenticity of valuable documents
EP0824736A1 (en) Device and process for checking sheet articles such as bank notes or securities
EP2056260B1 (en) Method for checking documents of value
DE102004035494A1 (en) Device and method for checking value documents
EP1244073A2 (en) Method and sensor for validation of documents
EP1112555B1 (en) Method and device for controlling the state of securities using a dark-field and a bright-field measurement.
EP3400583B1 (en) Checking the authenticity of value documents
WO2001061654A2 (en) Methods and devices for verifying the authenticity of printed objects
EP2936455B1 (en) Sensor and method for verifying value documents
EP3400584B1 (en) Completeness check of a value document
EP1265198B1 (en) Device and method for investigating documents
EP3782136B1 (en) Method for the verification of a luminescent-material-based security feature
EP3811343B1 (en) Method and sensor for testing documents
EP4014210B1 (en) Method and device for examining value documents
DE102008064389A1 (en) Method and device for detecting optical properties of a value document
DE102017008970B4 (en) Sensor device and method for checking value documents, in particular banknotes, and value document processing system
DE19701513C2 (en) Test method and test facility for authenticity control of authenticity marks
EP4186042B1 (en) Method and sensor for testing valuable documents
EP1567991B1 (en) Method and device for verifying valuable documents
EP4000049B1 (en) Photo luminescence sensor device for verifying a security feature of an object and method for calibrating a photoluminescence sensor device
WO2021013706A1 (en) Photoluminescence sensor device for detecting a security feature of an object moving relative to the sensor device
DE102020000968A1 (en) Optical sensor for checking documents of value
WO2024012634A1 (en) Sensor and method for checking valuable documents having at least one reflective security element
DE102012016828A1 (en) Method and device for checking value documents
DE102008028250A1 (en) Camera system for use in banknote processing device, has two partial camera systems with light sources, respectively, where sources are arranged on side of object plane for transmission measurement in dark field or bright field

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180806

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20211126

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: GIESECKE+DEVRIENT CURRENCY TECHNOLOGY GMBH

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230519

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502016016362

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: G07D0007120000

Ipc: G07D0007120500

Ref legal event code: R079

RIC1 Information provided on ipc code assigned before grant

Ipc: G07D 7/202 20160101ALI20230714BHEP

Ipc: G07D 7/162 20160101ALI20230714BHEP

Ipc: G07D 7/1205 20160101AFI20230714BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20231016

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016016362

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN