EP3394866B1 - Détermination du trajet d'armature par mesure des courbes d'hystérésis - Google Patents

Détermination du trajet d'armature par mesure des courbes d'hystérésis Download PDF

Info

Publication number
EP3394866B1
EP3394866B1 EP16801793.7A EP16801793A EP3394866B1 EP 3394866 B1 EP3394866 B1 EP 3394866B1 EP 16801793 A EP16801793 A EP 16801793A EP 3394866 B1 EP3394866 B1 EP 3394866B1
Authority
EP
European Patent Office
Prior art keywords
electromagnet
valve
armature
curve
gradient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16801793.7A
Other languages
German (de)
English (en)
Other versions
EP3394866A1 (fr
Inventor
Gerald Aydt
Markus Rueckle
Klemens Steinberg
Oezguer Tuerker
Marco Beier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP3394866A1 publication Critical patent/EP3394866A1/fr
Application granted granted Critical
Publication of EP3394866B1 publication Critical patent/EP3394866B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • H01F7/1844Monitoring or fail-safe circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2432Methods of calibration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2464Characteristics of actuators
    • F02D41/2467Characteristics of actuators for injectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M65/00Testing fuel-injection apparatus, e.g. testing injection timing ; Cleaning of fuel-injection apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • H01F7/1844Monitoring or fail-safe circuits
    • H01F2007/1855Monitoring or fail-safe circuits using a stored table to deduce one variable from another
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • H01F7/1844Monitoring or fail-safe circuits
    • H01F2007/1861Monitoring or fail-safe circuits using derivative of measured variable

Definitions

  • the present invention relates to a method for determining the armature stroke on an electromagnetically actuated valve and a method for determining a hysteresis curve of such a valve.
  • the anchor stroke should be between a lower threshold and an upper threshold. If the armature stroke is too small, the valve will throttle. If the armature stroke is too large, closer bouncing can occur.
  • DE 10 2010 063 009 A1 discloses a method for determining the point in time of the start of a movement of a fuel injector having a coil drive for an internal combustion engine of a motor vehicle, the method including detecting a current curve through a coil of the coil drive, detecting a voltage curve of a voltage applied to the coil, determining a magnetic hysteresis curve based on the recorded current curve and the recorded voltage curve, comparing the determined magnetic hysteresis curve with a first predetermined magnetic hysteresis curve, which is characteristic of a fuel injector fixed in a first end position, and determining the point in time of the start of the movement based on the comparison of the determined magnetic hysteresis curve with the first specified magnetic hysteresis curve.
  • the present invention consists in a method for determining a hysteresis curve of an electromagnetically actuated valve according to claim 1 and in a method for determining the armature stroke of an electromagnetically actuated valve according to claim 13.
  • Preferred method features are specified in the dependent claims. These methods are to be considered with a view to the production of an electromagnetically actuatable valve from an electromagnet, an armature that can be moved by the electromagnet and a valve body.
  • the valve body contains means for converting a movement of the armature into a Open or close the valve.
  • the electromagnet and the armature are inserted into the valve body.
  • a magnetic hysteresis curve of a combination of the electromagnet with a test armature resting on this electromagnet is recorded.
  • the slope m 1 of a first, essentially linear curve section of the hysteresis curve in the unsaturated state is determined.
  • the test armature preferably has the same dimensions and the same magnetic properties as the armature of the valve.
  • the slope m 1 * of a curve section corresponding to the first curve section of a hysteresis curve of the fully assembled valve with the armature permanently in contact with the electromagnet is determined.
  • U K is the terminal voltage across the electromagnet
  • I the current through the electromagnet
  • R the ohmic resistance of the electromagnet.
  • the dependence ⁇ (I) of the magnetic flux ⁇ on the current I through the electromagnet shows a typical ferromagnetic hysteresis loop, since magnetic energy is stored at least in the ferromagnetic core of the electromagnet and in the ferromagnetic armature. If an air gap is formed between the armature and the electromagnet as a result of the armature falling from the electromagnet to a rest position, this air gap also contains a magnetic energy amount ⁇ E, which depends on the width of the air gap and thus on the armature stroke AH sought. This energy contribution ⁇ E is reflected in a change in the ferromagnetic hysteresis curve and can therefore be evaluated from the comparison of hysteresis curves that were measured with and without an air gap.
  • the restoring force of the valve which can be a spring force, outweighs the magnetic force that the armature on the Attracts electromagnet.
  • the armature returns to its rest position, and the actual state to be examined, in which the armature is in contact with the electromagnet, is lost.
  • the inventors have recognized that the curve section of the hysteresis curve with the armature permanently attached to the electromagnet, which represents the unsaturated state of the electromagnet and in which the flux ⁇ depends essentially linearly on the current I, can be obtained at least approximately by the electromagnet before assembly is placed in the valve on a test anchor and the hysteresis curve is measured with this.
  • This curve section is essentially characterized by its gradient m 1 . From this, the slope m 1 * of the corresponding curve section of a hysteresis curve of the fully assembled valve with the armature permanently attached to the electromagnet, which is no longer accessible for direct measurement, can be determined in various ways. In this respect, the slope m 1 obtained before the assembly of the valve is a very important reference value which, after the assembly of the valve, enables the armature stroke AH of the valve to be measured in a particularly simple and transparent manner.
  • the valve has a slope m 0 which is less than the slope m 1 * .
  • the reason for this is that an air gap has formed due to the armature falling away from the electromagnet and the amount of energy ⁇ E is stored in this air gap has been. From the area between corresponding curve sections with gradients m 0 or m 1 * , the amount of energy ⁇ E, and thus ultimately the armature stroke AH sought, can be evaluated. The amount of energy ⁇ E is given by ⁇ E.
  • n is the number of turns of the coil of the electromagnet.
  • ⁇ 0 is the magnetic permeability of the vacuum.
  • a 1 and A 2 are cross-sectional areas of the air gap that are independent of its width, that is, of the armature stroke AH.
  • m 1 as a reference value before the valve is installed and the subsequent determination of m 1 * from m 1 enables the armature stroke AH to be determined on the finished valve by determining m 0 from a further hysteresis curve.
  • a hysteresis curve of the magnetic circuit which is recorded in the fully assembled state of the valve, is referred to below as the "hysteresis curve of the valve”.
  • the slope m 1 * is determined from the slope m 1 via a predetermined first functional relationship.
  • m 1 * is identical to m 1 .
  • the first functional relationship can advantageously be refined in such a way that this influence is taken into account. The more precisely m 1 * is determined, the more precisely the armature stroke AH can be determined from this.
  • the armature of the solenoid valve was determined and the hysteresis curve was recorded in this state.
  • This valve is a special test or data entry copy which differs from the series-produced valves in that the armature stroke AH is always zero and the valve cannot switch. Apart from this difference, the valve behaves magnetically exactly like the series-produced valves.
  • the first hysteresis curve is recorded on the magnetic circuit of a valve before assembly and m 1 is determined from this, and after this magnetic circuit has been assembled in the valve, the second hysteresis curve is recorded and m 1 * is determined from this.
  • the slope m 1 * can also be obtained, for example, from the slope m 1 by using numerical methods, such as the finite element method, to calculate the influence of other ferromagnetic materials in the valve on the magnetic circuit formed by the electromagnet and armature.
  • m 1 * can also be refined by comparing reference values of further variables determined before the valve was installed with values of these variables determined after the valve was installed.
  • the slope m 2 of a second linear curve section of the hysteresis curve, which is recorded on the combination of the electromagnet with the test armature, is determined in the saturated state before the electromagnet is inserted into the valve body.
  • the current value I 0 is advantageously also determined, at which a linear continuation of the second curve section to the current axis I intersects the current axis I.
  • Both variables are also accessible for measurement on the fully assembled valve, because when the electromagnet is saturated, the armature is attracted to the electromagnet, so that the magnetic circuit is in the same state as during the reference measurement on the combination of the electromagnet and the test armature.
  • a further magnetic hysteresis curve of the valve is advantageously recorded after the valve has been installed.
  • the slope m 3 of a second, essentially linear curve section of the further magnetic hysteresis curve, which represents the saturated state, is determined.
  • This second curve section corresponds to the second curve section of the magnetic hysteresis curve measured before the assembly of the valve on the combination of electromagnet and test armature.
  • the current value I 1 is also advantageously determined at which a linear continuation of the second curve section to the current axis I intersects the current axis I.
  • the inventors have recognized that the comparison of the current value I 1 with the current value I 0 offers an additional possibility of quality control for the magnetic properties of the components used in the valve.
  • it can be monitored whether the armature and / or a residual air gap disc (RLSS) arranged between the armature and the electromagnet corresponds to the desired specification.
  • RLSS residual air gap disc
  • a large deviation of the current value I 1 from the current value I 0 can indicate a relevant standard deviation or also an undesirable particle formation on the contact surfaces of the residual air gap disc to the armature and / or to the electromagnet.
  • the absolute difference ⁇ l between the current value I 1 and the current value I 0 is determined and the valve is classified as faulty if this absolute difference exceeds a predetermined threshold value.
  • a parameterized approach to the form I. 0 k 1 ⁇ m 2 m 1 + k 0 can be set up with two parameters ko and k 1 .
  • the refined approximate value for m 1 * can be used to evaluate the amount of energy ⁇ E and finally the armature stroke AH according to equations (1) and (2).
  • the functional relationship according to equation (3) can be represented by the parameters k 0 and k 1 .
  • the mass production of the electromagnets can then be decoupled in a particularly simple manner from the mass production of the electromagnetically actuated valves.
  • a plant can pre-produce electromagnets for several other plants, which use them to manufacture various types of electromagnetically actuated valves.
  • the machine-readable information carrier can for example contain a data matrix code, for example a QR code.
  • the decoupling of the production of electromagnets on the one hand and valves on the other hand can be simplified in a further particularly advantageous embodiment of the invention by adding a large number of electromagnets according to the value of the slopes m 1 and / or m 2 , and / or according to the functional relationship and / or the correlation between the slopes m 1 and m 2 , is classified.
  • the functional relationship can, for example, be classified using the parameters k 0 and k 1 in equation (3).
  • the classification discretizes the accuracy of the reference values for the electromagnet, but speeds up mass production, since electromagnets from one class can be processed in an identical form and no longer have to go into magnet-specific reference values. Furthermore, conspicuous electromagnets that cannot be assigned to any class according to the specification can be sorted out as scrap from the start.
  • the invention also relates to a method for determining the armature stroke AH on an electromagnetically actuated valve.
  • This valve comprises an electromagnet, an armature that can be moved by the electromagnet and preferably a valve body, within which the electromagnet, the armature and means for converting a movement of the armature into opening or closing of the valve are arranged.
  • a magnetic hysteresis curve of the valve is recorded and a first slope m 0 of a first linear curve section of the hysteresis curve of the valve in the unsaturated state is determined. In this state, the armature has fallen away from the electromagnet due to the restoring force effective in the valve, so that an air gap exists between the armature and the electromagnet.
  • the magnetic energy ⁇ E in the air gap is derived from the difference between the first slope m 0 and a second slope m 1 * of the first, essentially linear curve section, which corresponds to the first curve section of the hysteresis curve, of a further magnetic hysteresis curve which the valve would have evaluated with the armature held on the electromagnet.
  • the second slope m 1 * at least one reference value m 1 for this slope m 1 * determined before the electromagnet is inserted into the valve body can be used.
  • the reference value m 1 can in particular have been obtained in the context of the production method described above.
  • the second slope m 1 * is derived from the slope m 3 of a second linear curve section of the magnetic hysteresis curve of the valve in the saturated state in connection with a functional relationship and / or a correlation between the slopes m 1 , m 2 of the curve sections of the further hysteresis curve are determined.
  • the correlation or the functional relationship can also be determined before the electromagnet is inserted into the valve body and preserved as a reference value.
  • Equation (3) can have been preserved in the form of the parameters k 0 and k 1 .
  • the armature stroke AH is evaluated in the air gap between the armature and the electromagnet, work synergistically hand in hand in order to ultimately enable an exact determination of the armature stroke AH.
  • the armature stroke AH determined according to the invention can particularly advantageously be used as a feedback in order to precisely set the armature stroke in the factory during the production of electromagnetically operated valves for fuel injectors and to monitor it during operation.
  • valve 1 shown here by way of example as a 2/2-way valve comprises a valve body 5 with an inlet 1a and an outlet 1b.
  • the valve 1 switches the flow of a medium between the inlet 1a and the outlet 1b.
  • an electromagnet 2 is arranged within the valve body 5 and consists of a ferromagnetic magnetic core 2a and a coil 2b wound onto the ferromagnetic magnetic core 2a.
  • a machine-readable information carrier 7 which contains a barcode with reference values is attached to the electromagnet 2. These reference values were measured on a combination 6 of the electromagnet 2 with a test anchor 3 a before the electromagnet 2 was inserted into the valve body 5.
  • an armature 3 is arranged relative to the electromagnet 2 in such a way that the electromagnet 2 can attract the armature 3.
  • the actuator 4c of the valve 1 is then counteracted by the return force exerted by the valve spring 4b from the in Figure 1a switching position shown in which the valve 1 is closed, into the in Figure 1a switching position, not shown, in which the valve 1 is open, transferred.
  • the coupling mechanism 4a, the valve spring 4b and the actuator 4c together form the means 4 which convert the movement of the armature 3 into opening or closing of the valve 1.
  • the electromagnet 2 and the armature 3 together form a magnetic circuit through which a magnetic flux ⁇ passes. From this magnetic flux ⁇ are in Figure 1a two flow lines drawn as an example.
  • Figure 1b shows the combination 6 of the electromagnet 2 and the test anchor 3a, on which at least the slope m 1 of a curve section 11 of a hysteresis curve 10 in the unsaturated state is determined as a reference value.
  • the test anchor 3a is in Figure 1b Means not shown also kept in contact with the magnetic core 2a of the electromagnet 2 when the coil 2b of the electromagnet 2 is not energized.
  • Figure 2 shows a section of the hysteresis curve 10, which was recorded on the combination 6 of the electromagnet 2 and the test anchor 3a.
  • the magnetic flux ⁇ is plotted against the current I through the coil 2b of the electromagnet 2.
  • a first curve section 11 which represents the unsaturated state of the electromagnet 2
  • a second curve section 12 which represents the saturated state of the electromagnet 2
  • a linear continuation 13 of this second curve section 12 with the same slope m 2 to the current axis I intersects the current axis I at the current value I 0 .
  • the in Figure 2 The section of the hysteresis curve 10 shown was recorded on the basis of the saturated state of the electromagnet 2. Starting from the highest current I through the coil 2b of the electromagnet 2, the current I was successively reduced.
  • Figure 3 shows a section of the hysteresis curve 20 that was recorded on the fully assembled valve 1.
  • the magnetic flux ⁇ in the magnetic circuit of the valve 1 formed from the electromagnet 2 and armature 3 is plotted against the current I through the coil 2b of the electromagnet 2.
  • Analogous to Figure 1 the highest value of the current I in the saturated state of the electromagnet 2 was assumed and the current I was successively reduced.
  • FIG 4 shows the second functional relationship 8 between the slope ratio m 2 / m 1 and the current value l 0 , which in a Serial examination of electromagnet 2 was determined.
  • the second functional relationship 8 corresponds to equation (3).
  • Each measuring point marked with a rhombus as a symbol represents an electromagnet 2 to which the second functional relationship 8 applies approximately.
  • Each measuring point marked with a circle as a symbol represents an electromagnet 2 that deviates significantly from the second functional relationship 8.
  • two groups 8a and 8b of such outliers can be seen. Electromagnets 2 that are conspicuous in this way are preferably sorted out as rejects.
  • Figure 5 shows, for a better understanding, a complete hysteresis curve 20 of the valve 1 with symmetrical control.
  • branch 28 is first traversed towards lower current values I.
  • the second curve section 21 which runs essentially linearly, is passed.
  • the magnetic flux ⁇ in the sloping curve section 24 decreases faster than linearly, before the armature 3 drops off the electromagnet 2 at point 27a due to the restoring force exerted by the valve spring 4b of the valve 1 and the air gap 9 between the armature 3 and the electromagnet 2 is formed. This can be seen in a discontinuous decrease in the magnetic flux ⁇ .
  • the branch 28 of the hysteresis curve 20 then changes over to the first curve section 21 in the unsaturated state.
  • the magnetic flux ⁇ runs essentially linearly with the current l.
  • the branch 29 of the hysteresis curve 20 is traversed.
  • the hysteresis curve 20 changes again into a falling curve section 24 in which the armature 3 drops from the electromagnet 2 at point 27b.
  • the branch 29 of the hysteresis curve 29 crosses into the right upper quadrant, the next attractive one begins Curve section 25.
  • armature 3 is again attracted to electromagnet 2.
  • Figure 6 uses a few examples to illustrate how the specimen variance between different electromagnets 2 can influence the course of the hysteresis curve 10 of a combination 6 of the respective electromagnet 2 with the test armature 3a.
  • Figure 6b shows the opposite case, that within a series of five electromagnets 2 the hysteresis curves 10, 10a-10d measured in the combination 6 with a test anchor 3a only differ significantly in the saturated state, while the hysteresis curves 10, 10a-10d practically in the unsaturated state run parallel to each other.
  • the second curve sections 12 and 12a of the hysteresis curves 10 and 10a have different slopes m 2 in the saturated state, and the linear continuations 13 and 13a of these second curve sections 12 and 12a for The current axis I intersect the current axis I at different current values l 0 .
  • the slope m 1 in the unsaturated state is almost identical for all hysteresis curves 10, 10a-10d.
  • Figure 6c shows the case that within a series of three electromagnets 2, the hysteresis curves 10, 10a, 10b measured in combination 6 with a test anchor 3a are both in their slopes m 1 in the unsaturated area and in their slopes m 2 in the second Clearly distinguish curve sections 12, 12a in the saturated area.
  • the linear continuations 13, 13a of the second curve sections 12, 12a for the current axis I also intersect the current axis l at different current values l 0 .
  • the manufacturing method can be used in a simplified form. There is then no need to record a hysteresis curve 10 on each individual electromagnet 2. Instead, it is sufficient to measure a random sample of a few electromagnets 2 of a batch of nominally identically dimensioned and manufactured electromagnets 2 and from this to determine the functional relationship 8 according to equation (3). For example, reference valves in which the armature 3 is fixed as a test armature 3a on the electromagnet 2 can be used for this random sample. m 1 can then be evaluated for all further electromagnets 2 from the batch according to equation (4).

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Magnetically Actuated Valves (AREA)
  • Valve Device For Special Equipments (AREA)

Claims (15)

  1. Procédé permettant de déterminer une courbe d'hystérésis d'une soupape à commande électromagnétique (1) composée d'un électroaimant (2, 2a, 2b), d'une armature (3) pouvant être déplacée par l'électroaimant (2, 2a, 2b) et d'un corps de soupape (5) dotés de moyens (4, 4a, 4b, 4c) pour transformer un mouvement de l'armature (3) en ouverture ou fermeture de la soupape (1), l'électroaimant (2, 2a, 2b) et l'armature (3) étant insérés dans le corps de soupape (5), dans lequel, avant l'insertion de l'électroaimant (2, 2a, 2b) dans le corps de soupape (5), une courbe d'hystérésis magnétique (10) d'une combinaison (6) de l'électroaimant (2, 2a, 2b) avec une armature de test (3a) appliquée à cet électroaimant (2, 2a, 2b) est enregistrée,
    caractérisé en ce que la pente m1 d'un premier segment de courbe (11) substantiellement linéaire de la courbe d'hystérésis (10) à l'état non saturé est déterminée, et en ce qu'à partir de la pente m1 on détermine la pente m1 * d'un segment de courbe (31) correspondant au premier segment de courbe (11) d'une courbe d'hystérésis (30) de la soupape entièrement assemblée (1) avec l'armature (3) appliquée de façon permanente à l'électroaimant (2, 2a, 2b).
  2. Procédé selon la revendication 1, caractérisé en ce que la pente m1 * sur un premier lien fonctionnel prédéfini est déterminée à partir de la pente m1.
  3. Procédé selon la revendication 2, caractérisé en ce que pour la détermination du premier lien fonctionnel, sur au moins une soupape (1) entièrement assemblée, l'armature (3) est immobilisée sur l'électroaimant (2, 2a, 2b), et dans cet état, une courbe d'hystérésis (30) est enregistrée.
  4. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce qu'avant l'insertion de l'électroaimant (2, 2a, 2b) dans le corps de soupape (5), on détermine en plus la pente m2 d'un deuxième segment de courbe (12) substantiellement linéaire de la courbe d'hystérésis (10) de la combinaison (6) à l'état saturé.
  5. Procédé selon la revendication 4, caractérisé en ce que l'on détermine en plus la valeur de courant I0 à laquelle un prolongement linéaire (13) du deuxième segment de courbe (12) jusqu'à l'axe de courant I intersecte l'axe de courant I.
  6. Procédé selon l'une quelconque des revendications 4 et 5, caractérisé en ce qu'après l'assemblage de la soupape (1), une courbe d'hystérésis magnétique supplémentaire (20) de la soupape (1) est enregistrée, et en ce que la pente m3 d'un deuxième segment de courbe (22) de la courbe d'hystérésis magnétique supplémentaire (20), substantiellement linéaire et correspondant au deuxième segment de courbe (12) de la courbe d'hystérésis magnétique (10), est déterminée à l'état saturé.
  7. Procédé selon la revendication 6, caractérisé en ce que l'on détermine en plus la valeur de courant I1 à laquelle un prolongement linéaire (23) du deuxième segment de courbe (22) de la courbe d'hystérésis supplémentaire (20) jusqu'à l'axe de courant I intersecte l'axe de courant I.
  8. Procédé selon la revendication 7 lorsqu'elle dépend de la revendication 5, caractérisé en ce que la différence de valeur ΔI entre la valeur de courant I1 et la valeur de courant I0 est déterminée et la soupape (1) est classifiée comme défectueuse si la différence de valeur ΔI dépasse une valeur seuil prédéfinie.
  9. Procédé selon l'une quelconque des revendications 4 à 8, caractérisé en ce que l'on détermine à partir des pentes m1 et m2 une corrélation et/ou un deuxième lien fonctionnel (8) entre les pentes m1 et m2.
  10. Procédé selon la revendication 9 lorsqu'elle dépend de la revendication 5, caractérisé en ce que le deuxième lien fonctionnel (8) met le rapport m2/m1 en relation linéaire avec la valeur de courant I0.
  11. Procédé selon l'une quelconque des revendications 1 à 10, caractérisé en ce que la pente m1, la pente m2, la pente m1 * et/ou le premier lien fonctionnel et/ou le deuxième lien fonctionnel (8) et/ou la corrélation entre les pentes m1 et m2 sont notés sur l'électroaimant (2, 2a, 2b) et/ou sur un support d'information (7) lisible par machine et relié à l'électroaimant (2, 2a, 2b) et/ou sont associés de manière univoque à l'électroaimant (2, 2a, 2b) dans une base de données.
  12. Procédé selon l'une quelconque des revendications 1 à 11, caractérisé en ce qu'une pluralité d'électroaimants (2, 2a, 2b) est classifiée selon la valeur des pentes m1 et/ou m2, et/ou selon le deuxième lien fonctionnel (8) et/ou selon la corrélation entre les pentes m1 et m2.
  13. Procédé permettant de déterminer le trajet d'armature (AH) sur une soupape (1) à commande électromagnétique comprenant un électroaimant (2, 2a, 2b) et une armature (3) pouvant être déplacée par l'électroaimant (2, 2a, 2b),
    caractérisé en ce qu'une courbe d'hystérésis magnétique (20) de la soupape (1) est enregistrée et une première pente m0 d'un premier segment de courbe (21) substantiellement linéaire de la courbe d'hystérésis (20) de la soupape (1) est déterminée à l'état non saturé,
    dans lequel, à partir de la différence entre la première pente m0 et une deuxième pente m1* du premier segment de courbe (31), substantiellement linéaire et correspondant au premier segment de courbe (21) de la courbe d'hystérésis (20), d'une courbe d'hystérésis magnétique supplémentaire (30) que la soupape (1) présenterait si l'armature (3) était maintenue sur l'électroaimant (2, 2a, 2b), l'énergie magnétique ΔE dans un entrefer (9) formé entre l'armature (3) et l'électroaimant (2, 2a, 2b) et ainsi le trajet d'armature (AH) à déterminer sont évalués.
  14. Procédé selon la revendication 13, dans lequel la soupape (1) comprend un corps de soupape (5), et dans lequel l'électroaimant (2, 2a, 2b), l'armature (3) ainsi que des moyens (4, 4a, 4b, 4c) pour transformer un mouvement de l'armature (3) en ouverture ou fermeture de la soupape (1) sont disposés à l'intérieur du corps de soupape (5), caractérisé en ce que pour la détermination de la deuxième pente m1*, au moins une valeur de référence m1 déterminée avant l'insertion de l'électroaimant (2, 2a, 2b) dans le corps de soupape (5) est utilisée pour cette pente m1*.
  15. Procédé selon l'une quelconque des revendications 13 et 14, caractérisé en ce que la deuxième pente m1* est déterminée à partir de la pente m3 d'un deuxième segment de courbe linéaire (22) de la courbe d'hystérésis magnétique (20) de la soupape (1) à l'état saturé en relation avec un deuxième lien fonctionnel (8) et/ou une corrélation entre les pentes m1, m2 des segments de courbe (11, 12) d'une courbe d'hystérésis supplémentaire (10) qui a été enregistrée avant l'insertion de l'électroaimant dans le corps de soupape avec une armature de test appliquée à l'électroaimant, dans lequel m1 représente la pente d'un premier segment de courbe substantiellement linéaire de cette courbe d'hystérésis à l'état non saturé et m2 représente la pente d'un deuxième segment de courbe substantiellement linéaire de cette courbe d'hystérésis à l'état saturé.
EP16801793.7A 2015-12-21 2016-11-28 Détermination du trajet d'armature par mesure des courbes d'hystérésis Active EP3394866B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015226189.1A DE102015226189A1 (de) 2015-12-21 2015-12-21 Ankerhubbestimmung durch Messung magnetischer Hysteresekurven
PCT/EP2016/079028 WO2017108342A1 (fr) 2015-12-21 2016-11-28 Détermination de course d'induit par mesure de courbes d'hystérésis magnétiques

Publications (2)

Publication Number Publication Date
EP3394866A1 EP3394866A1 (fr) 2018-10-31
EP3394866B1 true EP3394866B1 (fr) 2020-10-21

Family

ID=57406252

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16801793.7A Active EP3394866B1 (fr) 2015-12-21 2016-11-28 Détermination du trajet d'armature par mesure des courbes d'hystérésis

Country Status (6)

Country Link
US (1) US10770212B2 (fr)
EP (1) EP3394866B1 (fr)
KR (1) KR102560239B1 (fr)
CN (1) CN108431909B (fr)
DE (1) DE102015226189A1 (fr)
WO (1) WO2017108342A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113586789B (zh) * 2021-07-14 2024-03-29 杭州群科荟科技有限公司 一种气隙磁导式电磁阀的磁导计算方法及行程取值方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6208497B1 (en) * 1997-06-26 2001-03-27 Venture Scientifics, Llc System and method for servo control of nonlinear electromagnetic actuators
DE102010036941B4 (de) * 2010-08-11 2012-09-13 Sauer-Danfoss Gmbh & Co. Ohg Verfahren und Vorrichtung zur Ermittlung des Zustands eines elektrisch angesteuerten Ventils
DE102010063009B4 (de) * 2010-12-14 2020-10-08 Vitesco Technologies GmbH Verfahren und Vorrichtung zur Charakterisierung einer Bewegung eines Kraftstoffinjektors mittels Erfassung und Auswertung einer magnetischen Hysteresekurve
AT510600B1 (de) * 2011-06-07 2012-05-15 Ge Jenbacher Gmbh & Co Ohg Endlageüberwachung eines gaseinblaseventils
DE102012206484A1 (de) 2012-04-19 2013-10-24 Robert Bosch Gmbh Kraftstoffinjektor mit einer Vorrichtung zur Messung eines Ankerhubs
DE102013223121A1 (de) 2013-11-13 2015-05-13 Robert Bosch Gmbh Kraftstoffinjektor
DE102014224321A1 (de) * 2014-11-27 2016-06-02 Robert Bosch Gmbh Verfahren zum Ermitteln des Ankerhubs eines Magnetaktors

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3394866A1 (fr) 2018-10-31
CN108431909A (zh) 2018-08-21
US20190006073A1 (en) 2019-01-03
KR20180095630A (ko) 2018-08-27
WO2017108342A1 (fr) 2017-06-29
DE102015226189A1 (de) 2017-06-22
CN108431909B (zh) 2020-12-08
KR102560239B1 (ko) 2023-07-28
US10770212B2 (en) 2020-09-08

Similar Documents

Publication Publication Date Title
EP2422066B1 (fr) Procédé permettant de faire fonctionner une soupape d'injection
DE102011075521B4 (de) Verfahren zum Erkennen eines Schließzeitpunktes eines einen Spulenantrieb aufweisenden Ventils und Ventil
DE102011005672B4 (de) Verfahren, Vorrichtung und Computerprogramm zur elektrischen Ansteuerung eines Aktuators zur Bestimmung des Zeitpunkts eines Ankeranschlags
DE102011087418B4 (de) Bestimmung des Öffnungsverhaltens eines Kraftstoffinjektors mittels einer elektrischen Test-Erregung ohne eine magnetische Sättigung
WO2011042281A1 (fr) Procédé et appareil de commande du fonctionnement d'une soupape
WO1998038656A1 (fr) Procede de reconnaissance de mouvements, utile notamment pour regler la vitesse d'impact d'un induit sur un element electromagnetique d'actionnement, et element d'actionnement pour mettre en oeuvre ce procede
DE102010041880B4 (de) Ermitteln der ballistischen Flugbahn eines elektromagnetisch angetriebenen Ankers eines Spulenaktuators
EP1819566A1 (fr) Appareil de regulation a commande electromagnetique et procede pour le realiser et/ou le regler
EP1165944B1 (fr) Procede permettant de determiner la position d'un induit
EP1651485A1 (fr) Procede et dispositif pour produire et/ou ajuster un actionneur pouvant etre commande de maniere electromagnetique
DE102011016895A1 (de) Verfahren zur Bestimmung des Verschleißzustandes eines elektromagnetischen Aktors während dessen Betriebs
EP3394866B1 (fr) Détermination du trajet d'armature par mesure des courbes d'hystérésis
WO2008090047A1 (fr) Dispositif et procédé pour la commande d'une soupape électromagnétique
DE102015206739A1 (de) Bestimmung eines Hubes eines Magnetventils
DE102018207417A1 (de) Bestimmung einer Kenngröße eines magnetischen Schaltventils
WO2016102255A1 (fr) Soupape d'injection pour injecter un fluide, utilisation d'une soupape d'injection et procédé de fabrication d'une soupape d'injection
EP1651486B1 (fr) Procede et dispositif pour mesurer une pression de fluide au moyen d'un organe de regulation
DE102008040250A1 (de) Verfahren und Vorrichtung zum Betreiben eines elektromagnetischen Aktors
DE102016217415A1 (de) Verfahren und Vorrichtung zum Kalibrieren von Kraftstoffinjektoren mit Leerhub
DE10062107C1 (de) Aktorregelung
DE4425987A1 (de) Verfahren und Vorrichtung zur Ansteuerung eines elektromagnetischen Verbrauchers
DE102009054589A1 (de) Verfahren und Steuergerät zum Betreiben eines Ventils
DE102008001397A1 (de) Verfahren und Vorrichtung zum Betreiben eines elektromagnetischen Aktors
WO2000052715A1 (fr) Procede de detection du deplacement d'un induit vers un actionneur electromagnetique
WO2011082901A1 (fr) Procédé et dispositif de commande pour faire fonctionner une soupape

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180723

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ROBERT BOSCH GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F02M 65/00 20060101ALI20200527BHEP

Ipc: F02D 41/24 20060101ALI20200527BHEP

Ipc: F02D 41/20 20060101ALI20200527BHEP

Ipc: H01F 7/18 20060101AFI20200527BHEP

INTG Intention to grant announced

Effective date: 20200622

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016011517

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1326686

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201115

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20201021

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210121

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210222

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210122

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210121

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210221

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016011517

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201128

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201130

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

26N No opposition filed

Effective date: 20210722

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210221

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1326686

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211128

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231130

Year of fee payment: 8

Ref country code: FR

Payment date: 20231124

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240123

Year of fee payment: 8