EP3394521B1 - Hot-water storage multi-tank domestic water heater - Google Patents

Hot-water storage multi-tank domestic water heater Download PDF

Info

Publication number
EP3394521B1
EP3394521B1 EP16819856.2A EP16819856A EP3394521B1 EP 3394521 B1 EP3394521 B1 EP 3394521B1 EP 16819856 A EP16819856 A EP 16819856A EP 3394521 B1 EP3394521 B1 EP 3394521B1
Authority
EP
European Patent Office
Prior art keywords
tank
water heater
tanks
water
heater according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16819856.2A
Other languages
German (de)
French (fr)
Other versions
EP3394521A1 (en
Inventor
Jean-Yves Gaspard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Winslim
Original Assignee
Winslim
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Winslim filed Critical Winslim
Publication of EP3394521A1 publication Critical patent/EP3394521A1/en
Application granted granted Critical
Publication of EP3394521B1 publication Critical patent/EP3394521B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/18Water-storage heaters
    • F24H1/185Water-storage heaters using electric energy supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/0026Domestic hot-water supply systems with conventional heating means
    • F24D17/0031Domestic hot-water supply systems with conventional heating means with accumulation of the heated water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/18Water-storage heaters
    • F24H1/181Construction of the tank
    • F24H1/182Insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/18Water-storage heaters
    • F24H1/20Water-storage heaters with immersed heating elements, e.g. electric elements or furnace tubes
    • F24H1/201Water-storage heaters with immersed heating elements, e.g. electric elements or furnace tubes using electric energy supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/18Water-storage heaters
    • F24H1/20Water-storage heaters with immersed heating elements, e.g. electric elements or furnace tubes
    • F24H1/201Water-storage heaters with immersed heating elements, e.g. electric elements or furnace tubes using electric energy supply
    • F24H1/203Water-storage heaters with immersed heating elements, e.g. electric elements or furnace tubes using electric energy supply with electrodes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/02Casings; Cover lids; Ornamental panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D2020/0065Details, e.g. particular heat storage tanks, auxiliary members within tanks
    • F28D2020/0082Multiple tanks arrangements, e.g. adjacent tanks, tank in tank

Definitions

  • the present invention relates to a sanitary storage water heater. It finds its application in the field of installations, in particular domestic, for the production of hot water.
  • the water heater in question is connectable to a cold water supply network.
  • the storage water heaters allow the storage of a determined quantity of water at a temperature higher than a cold water inlet temperature for immediate delivery.
  • water heaters generally consist of a single tank, most often of cylindrical shape and in which a resistive electrical device for heating water is immersed.
  • a storage water heater comprising two identical tanks placed so as to form a series circuit and each having an individual heating device making it possible, according to this prior art, to heat the water in the most downstream tank following the circuit adopted by water at a temperature lower than the tank preceding it.
  • These two tanks are placed in a rectangular parallelepiped envelope so as to give this system a flattened external shape.
  • a drawback of such a configuration is that the multiplication of cylindrical tanks in parallel increases the heat exchange surface outside the walls of the tanks so that, even if such devices have an advantage in terms of aesthetics and '' external dimensions, they are significantly penalized by their lack of thermal efficiency in comparison with traditional cylindrical single-tank water heaters.
  • a potential objective of the invention is to improve the thermal efficiency of water heaters with several cylindrical tanks.
  • this water heater is such that the longitudinal axes of the tanks are included in a median plane with a thickness dimension of the envelope, and in that the downstream tank has a diameter less than that of the upstream tank .
  • the flattened shape of the water heater is preserved but the insulation of the downstream tank is increased because the amount of insulation surrounding it is higher than for the other tanks.
  • the internal design is therefore heterogeneous in shape in this water heater but, however, the external form remains flat.
  • the downstream tank is configured so that the temperature within it is higher or possibly equal to that of the other tanks; despite this, the heat loss from the tank downstream are not increased relative to the other tanks because the insulation is better. This allows, at the outlet of the water heater, to have a more efficient final heating.
  • the arrangement of the invention ensures a significant improvement in efficiency for a flat water heater, close or even identical to that of a cylindrical external shape water heater.
  • This arrangement allows the temperatures of the tanks to be advantageously differentiated; a higher final heating can be assigned in the downstream tank, the previous tanks providing preheating; in this context, if the heating power in the downstream tank authorizes it, there may occur at this location, before the outlet, a strong gradient heating, possibly almost instantaneous.
  • the water heater then offers great flexibility of use. For example, these functional arrangements can be used to adapt the operation of the water heater to situations of use that can vary widely.
  • Another aspect of the invention relates to a method for regulating the temperature of a multi-tank water heater.
  • the present invention comprises a plurality of tanks, with a downstream tank 1 and at least one upstream tank 2.
  • the example of the figure 1 illustrated a water heater provided with three tanks, with two upstream tanks 2. This example is not limiting and only two tanks may be present, or more than three tanks.
  • the cross section of the tanks 1, 2 relative to a longitudinal direction marked Z is circular so as to give the tanks 1, 2 a cylindrical geometric shape elongated along a longitudinal axis parallel to the longitudinal direction Z of the figure 1 . It is understood that this cylindrical geometry delimits, inside, a volume for receiving water in each tank.
  • Each tank is also equipped with a bottom 4 at one end of the cylindrical shape and with an upper wall so as to close the water storage volume.
  • the thickness of insulation around the downstream tank 1 is at least as great between its outer wall and the side wall 18 of the casing 15 and between its outer wall and the bottom and / or top wall of the envelope 15, that between its wall and the main walls 16 of the envelope 15.
  • the downstream tank 1 has a diameter less than that of at least one upstream tank 2.
  • the upstream tanks have the same diameter and the downstream tank 1 has a diameter less than the latter.
  • the upstream tanks can have decreasing diameters and greater than that of the downstream tank, in the downstream direction along the circuit taken by the water.
  • the diameter of the downstream tank can be between 100 and 180 mm and is for example between 120 and 160 mm and more preferably be 140 mm.
  • the diameter of at least one of the upstream tanks can be greater than that of the downstream tank by at least 20% and preferably at least 30% and preferably less than 50%.
  • the upstream tanks can have a diameter of 180 mm.
  • the representation of the figure 1 also provides an illustration of the path that water can follow between an inlet to an outlet of the water heater. More precisely, through the tanks, the water can circulate from an inlet 5 opening at the bottom 4 of a first upstream tank 2, traversing the upstream tank 2 in the longitudinal direction Z to reach, via a fluid connection 8 by example of tubular shape opening into the above-mentioned upstream tank 2 and into an upstream tank 2 which follows it, into the second upstream tank 2 so as to receive additional heating.
  • the fluidic connection is for example a conduit, such as a tube, connecting two zones, one of a first tank, the other of a next tank.
  • the connector extends along the longitudinal axis of the tanks so as to reinject the water leaving a upper end of a tank at the opposite end of the next tank so as to capture water at the hottest point of a tank and to reintroduce it at the coldest point of the next tank.
  • This principle can be renewed along the circuit, between all the tanks, and at the outlet, for the collection of water in the zone of higher temperature.
  • a fluid connection for example similar to the fluid connection, is arranged near the top of the intermediate upstream tank 2, to connect from said tank to the downstream tank 1.
  • the water thus enters the downstream tank 1 so as to be heated therein in a final manner until reaching an outlet 6 opening at the upper level of the downstream tank 1 and the lower end of which is visible in figure 2 , at the outlet of the water heater.
  • Any series / parallel configuration in the connection of the tanks is possible.
  • Certain connections or conduits can also be internal to the tanks, for example for outlet 6 which can extend into the tank to draw water at a height greater than that of its external mouth.
  • the casing 15 is configured to surround at least the tanks, but not necessarily all of the fluid communication connections between tanks or at the inlet / outlet of the plurality of tanks.
  • the water heater is advantageously positioned so that the longitudinal direction Z corresponding to the direction of the longitudinal axes of the tanks 2 and 1, is positioned along the vertical.
  • This provision is however not limiting and in particular the water heater can be oriented horizontally.
  • the water flowing through the tanks is brought to be heated preferably by electrical means. More specifically, it is advantageous to equip each tank with an electric heating device. In this way, the power supplied to each of the tanks can be individually regulated so as to control the level of heating of the water individually in the tanks.
  • the electric heating device fitted to each tank or at least one of them is of a resistive nature and for example comprises a resistance plunging directly or into a sheath into the interior volume of the tank considered.
  • the inductive heating device is, in the tanks considered, immersed in the cylindrical interior volume. It obeys an inductive operation, namely that an electrical energy is supplied to an inductor itself designed to generate a magnetic field such that an induced current is produced in a charge, in a magnetic material preferably metallic, the charge being configured to transmit energy in the form of heat to the water stored in the tank.
  • This energy transmission can be direct or indirect, for example with a thermally conductive element intermediate between the load and the water to be heated.
  • each tank is fitted with an inductor immersed in its internal volume, an example of which is more precisely visible in Figures 4 and 5 .
  • the inductor 20 comprises an elongated electrically conductive element, of oblong shape, and here in the shape of a closed contour.
  • the inductor 20 has electrical connections 23 allowing the access of an electric current to the inductor 20.
  • the inductor 20 is advantageously electrically isolated from its external environment, for example by an insulating lining. or any other coating or by a waterproof sheath surrounding it.
  • the inductor 20 travels a length between 30 and 80% of the length of the cylindrical portion of the tank which it equips.
  • the load 21 can be in two parts, in particular essentially symmetrical around a plane, and assembled together around the inductor 20, for example by studs 22.
  • the interior surface of the load 21 is thus kept at a distance from the inductor 20 but relatively close so as to generate in the load an induced current suitable for its heating to in turn heat the water.
  • the power supply of the inductor can be between 1000 and 3700 W, more preferably between 1500 and 2500 W.
  • the load 21 may have a plurality of holes.
  • the water can circulate between the load 21 and the inductor 20. This circulation obviously promotes the efficiency of the heating, allows a more dynamic circulation of the water and, advantageously, limits or even eliminates the formation of limestone due to proximity phenomena, in particular magnetic and vibratory, at the level of the charge.
  • the longitudinal axes of the tanks are parallel and placed in a plane itself corresponding to a plane parallel to one of the faces of the casing 15 of the water heater described in detail later.
  • This plane is preferably in the middle of the thickness dimension marked “X” of the envelope 19.
  • the electrical heating devices present in the tanks are preferably also oriented along a longitudinal axis, the longitudinal axes of the heating devices themselves being also aligned.
  • the three electric heating devices are linked, their axis being oriented in a median plane of the envelope like the longitudinal axes of the tanks.
  • Inductive technology preferably requires the use of a generator represented in a supply device 10 aux figures 1 and 2 .
  • the power supply device 10 may be contained in a box 11, and may include an electrical input connectable to an electricity network, for example to a domestic network.
  • the power supply device 10 provides the electrical conversion making it possible to generate an electrical signal adapted to the operation of the inductive electrical devices preferentially equipping the water heater.
  • the power supply device 10 can comprise an inverter system for reducing the frequency of the signal to be supplied. This type of device generally produces a significant amount of heat which generally requires a forced flow heatsink to cool it down.
  • an exchanger 12 is located in electrical conduction with the supply device 10 to recover at least a portion of the calories dissipated and comprises an exchange surface with a water circuit going from a connection of inlet 14 connectable for example to a domestic water network towards the inlet 5 of the upstream tank 2 of cold water inlet. It is understood that the water passing inside the exchanger 12 benefits from a first heating.
  • the tri-tank or generally multi-tank configuration of the invention present in an application of inductive heating the advantage of offering selective cooling of the supply device 10 at a tank in which the water is the coldest.
  • each of the tanks of the water heater of the invention is equipped with an inductive electric heating device.
  • a single supply device can be provided for all of these tank heating devices.
  • the supply device 10 alternately supplies each tank heating device, via switching means.
  • This switching can be controlled according to a temperature regulation of each tank (each tank can have at least one temperature sensor).
  • a switching instruction can be given so as to produce the generation of an inductive heating in one tank after the other.
  • the multi-tank configuration including the example of the figure 1 gives a tri-tank arrangement, there is covered with an envelope 15 for example corresponding to that of the figure 2 having a rectangular parallelepiped shape.
  • a rectangular parallelepiped shape is meant the fact that the outer surface of this part of the water heater has substantially two parallel and flat main faces 16 spaced apart by side walls 18, a bottom wall 17 and an upper wall. All of these faces and advantageously planar, which includes provisions comprising surface patterns, in particular for aesthetic purposes, or even rounded angles at the junction of the different walls.
  • the expression rectangular parallelepiped covers similar provisions capable of being substantially delimited in a rectangular parallelepiped shape.
  • the supply device included in the box 11 is outside the envelope 15.
  • the casing 15 constitutes the external appearance of the water heater of the invention at least for its hot water storage part. It also ensures the definition of an interior volume that can be filled with an insulating material 19 for example in the form of foam polymers advantageously taking all or part of the interstitial volume between the exterior surface of the tanks and the interior wall of the envelope 15 Preferably, the entire interstitial interior volume is filled with the insulator 19.
  • the heat losses at the level of the downstream tank are therefore more limited. It is advantageous to benefit from this increase in insulation for temperature regulation. More specifically, in a preferred embodiment, the temperature setpoint given to the downstream tank 1 is advantageously higher, at least in certain cycles of use, than the temperature of at least one of the upstream tanks 2. Thus, it is possible to obtain a water storage temperature in the downstream tank at a higher level while reducing the normally higher heat losses in this context. While the skilled person would have sought to optimize the volume of water stored, the present invention takes the opposite by choosing in this example a smaller diameter for the downstream tank which certainly limits the amount of water stored but allows with a high thermal efficiency, much higher terminal heating.
  • the setpoint temperature of the downstream tank can be 5 to 30 ° higher than the setpoint in the tank which precedes it with in particular a maximum temperature to be reached of 90 ° C last tank, with a safety margin so as not to boil, knowing that the other tanks are typically at 65 ° C, or 25 ° C more.
  • the electric heating devices equipping the tanks are identical so as to simplify the design of the water heater but also to ensure that the maximum heating power available at the level of the heating device equipping the downstream tank 1 is equivalent to that of other devices.
  • the interior volume of the downstream tank being smaller, it follows a more brutal heating of the water which can make it possible, in certain cases, to obtain an almost instantaneous additional heating during the delivery of hot water.
  • the supply device 10 is configured to supply the electrical device for heating the downstream tank when a delivery of water at the outlet 6 is carried out.
  • a flow detector can be used at the level of the water heater, and in particular at the level of outlet 6 for this purpose.
  • the supply device can be configured to switch periodically between the different tanks.
  • the supply device is configured to switch to another tank as soon as the set temperature assigned to the tank for which the electric heating device is active is reached.
  • the supply device then switches to the heating device fitted to the tank in which the current temperature is furthest from the set temperature which is assigned to it.
  • having 3 or more tanks gives modular heating. If we need little hot water, we will concentrate the heating on the last tank, and if more water is required we will heat more, the last and the penultimate, or even more, the 3 tanks .
  • the invention can also implement, in particular at the level of the supply device 10, a learning device so as to adapt the operation of the supply control according to the habits of the place in which the water heater is located.
  • the learning device can comprise a computer program product stored in a memory accessible by a processor and capable of taking into account as an operating parameter the average hours of hot water withdrawal at the level of the water heater.
  • This device can also take into account regulation of tariffs, in particular off-peak and peak hours.
  • the figure 6 presents an alternative for the construction of inductive devices. Indeed, the previous figures illustrated electrical heating devices inserted in the tanks. On the contrary, the figure 6 shows an inductive heating device operating from the outside of the tanks.
  • an inductor 20 equips a tank and is in the form of a winding covering all or part of the length of the cylindrical part of the equipped tank. This winding is, as previously, connected to the supply device 10.
  • At least part of the wall of the equipped tank is in this frame made of a magnetic material, preferably metallic, to form a charge in which an induced current will develop and provide by joule effect as previously a heating of the water. Conduction through the thickness of the wall of the tank will be used to transmit this heating to the water stored internally.
  • means are formed to keep the inductor 20 wound apart relative to the wall of the equipped tank.
  • an insulator 22 or any other holding element spaced between the load part and the inductor part can be formed.
  • the wall of the equipped tank is entirely metallic depending on its thickness and is then covered with an insulator in the form of a sheet traversing the entire surface intended to be covered with the inductor winding. This arrangement makes it possible to equip tank diameters which can be relatively small without penalizing the storage volume of the tanks.
  • one or more of the tanks can be equipped with an immersive inductive device while another part of the tanks can be equipped with an inductive device from the outside.
  • the invention can combine at least one inductive device with at least one resistive tank heating device.
  • one or more of the tanks can be equipped with a plurality of inductors.
  • a tank can for example comprise two inductors each traversing a part of the length of the tank in a plunging manner.
  • a tank may have a plurality of windings on its outer wall.
  • a tank can be equipped with one or more exterior winding systems and one or more interior plunging systems.
  • water is introduced via the inlet connector 14 to the inlet 5 of the first upstream tank 2. Before even reaching it or at this level it has already benefited from a first heating allowing the at least partial dissipation of the thermal energy developed by the supply device 10.
  • the water undergoes a first heating by an electric heating device equipping the first upstream tank and arrives via the fluid connection in the second upstream tank 2 where it undergoes another heating, by the electric device equipping this tank.
  • the water reaches the downstream tank 1 (in the lower part) via the intermediate fluid connection.
  • the water undergoes a final heating to a temperature higher than that of storage of the upstream tanks 2 so as to be available at an outlet temperature setpoint at the outlet 6. If a large quantity of water at the set temperature must be supplied, all the tanks can obviously be heated to the desired temperature.

Description

La présente invention concerne un chauffe-eau sanitaire à accumulation. Elle trouve son application dans le domaine des installations, notamment domestiques, pour la production d'eau chaude. Le Chauffe-eau en question est raccordable à un réseau de fourniture en eau froide.The present invention relates to a sanitary storage water heater. It finds its application in the field of installations, in particular domestic, for the production of hot water. The water heater in question is connectable to a cold water supply network.

Les chauffe-eaux à accumulation permettent le stockage d'une quantité déterminée d'eau à une température supérieure à une température d'entrée d'eau froide pour une délivrance immédiate. Dans ce domaine, les chauffe-eaux sont généralement constitués d'une cuve unique, le plus souvent de forme cylindrique et dans laquelle plonge un dispositif électrique résistif de chauffage de l'eau.The storage water heaters allow the storage of a determined quantity of water at a temperature higher than a cold water inlet temperature for immediate delivery. In this field, water heaters generally consist of a single tank, most often of cylindrical shape and in which a resistive electrical device for heating water is immersed.

Ces dispositifs donnent globalement satisfaction mais présentent l'inconvénient d'une géométrie de section circulaire laquelle, bien que pouvant apparaître comme optimale du point de vue de la résistance mécanique et du volume de stockage d'eau, n'est pas sans inconvénient en termes d'esthétisme et d'encombrement extérieur.These devices are generally satisfactory but have the drawback of a circular cross-section geometry which, although it may appear to be optimal from the point of view of mechanical strength and the volume of water storage, is not without drawback in terms aesthetics and external bulk.

Compte tenu de ces derniers inconvénients, on a proposé, dans la demande de brevet WO 2011 104 592 A1 , un chauffe-eau à accumulation comportant deux cuves identiques placées de sorte à former un circuit série et disposant chacune d'un dispositif de chauffage individuel permettant, suivant cette antériorité, de chauffer l'eau dans la cuve la plus en aval suivant le circuit adopté par l'eau à une température inférieure à la cuve la précédant. Ces deux cuves sont placées dans une enveloppe parallélépipédique rectangle de sorte à conférer à ce système une forme extérieure aplatie. Un inconvénient d'une telle configuration est que la multiplication de cuves cylindriques en parallèle augmente la surface d'échange thermique à l'extérieur des parois des cuves si bien que, même si de tels dispositifs ont un intérêt en termes d'esthétisme et d'encombrement extérieur, ils sont sensiblement pénalisés par leur manque d'efficacité thermique en comparaison avec les chauffe-eaux mono-cuve cylindriques traditionnels.In view of these latter drawbacks, it has been proposed in the patent application WO 2011 104 592 A1 , a storage water heater comprising two identical tanks placed so as to form a series circuit and each having an individual heating device making it possible, according to this prior art, to heat the water in the most downstream tank following the circuit adopted by water at a temperature lower than the tank preceding it. These two tanks are placed in a rectangular parallelepiped envelope so as to give this system a flattened external shape. A drawback of such a configuration is that the multiplication of cylindrical tanks in parallel increases the heat exchange surface outside the walls of the tanks so that, even if such devices have an advantage in terms of aesthetics and '' external dimensions, they are significantly penalized by their lack of thermal efficiency in comparison with traditional cylindrical single-tank water heaters.

Un objectif potentiel de l'invention est d'améliorer l'efficacité thermique de chauffe-eaux à plusieurs cuves cylindriques.A potential objective of the invention is to improve the thermal efficiency of water heaters with several cylindrical tanks.

RESUME DE L'INVENTIONSUMMARY OF THE INVENTION

Suivant un aspect de mode de réalisation de l'invention, la présente invention concerne un chauffe-eau sanitaire à accumulation d'eau chaude, comprenant :

  • une pluralité de cuves comprenant une cuve aval et au moins une cuve amont, chacune de forme cylindrique autour d'un axe longitudinal, les axes longitudinaux des cuves étant parallèles, chaque cuve étant configurée pour contenir un volume d'eau et comprenant un dispositif électrique de chauffage, la cuve amont étant reliée à une entrée d'eau, la cuve aval étant reliée à une sortie d'eau, la cuve amont étant en communication fluidique avec la cuve aval de sorte à former un circuit de chauffage et de distribution d'eau,
  • une enveloppe parallélépipédique rectangle délimitant un espace interne de logement des cuves, au moins une portion de l'espace interne comprise entre l'enveloppe et une paroi externe des cuves étant remplie d'un isolant.
According to one aspect of embodiment of the invention, the present invention relates to a sanitary water heater with accumulation of hot water, comprising:
  • a plurality of tanks comprising a downstream tank and at least one upstream tank, each of cylindrical shape around a longitudinal axis, the longitudinal axes of the tanks being parallel, each tank being configured to contain a volume of water and comprising an electrical device heating, the upstream tank being connected to a water inlet, the downstream tank being connected to a water outlet, the upstream tank being in fluid communication with the downstream tank so as to form a heating and distribution circuit d 'water,
  • a rectangular parallelepiped envelope delimiting an internal space for housing the tanks, at least a portion of the internal space between the envelope and an external wall of the tanks being filled with an insulator.

De manière avantageuse, ce chauffe-eau est tel que les axes longitudinaux des cuves sont compris dans un plan médian d'une dimension en épaisseur de l'enveloppe, et en ce que la cuve aval présente un diamètre inférieur à celui de la cuve amont.Advantageously, this water heater is such that the longitudinal axes of the tanks are included in a median plane with a thickness dimension of the envelope, and in that the downstream tank has a diameter less than that of the upstream tank .

Ainsi, la forme aplatie du chauffe-eau est préservée mais l'isolation de la cuve aval est augmentée car la quantité d'isolant l'entourant est plus élevée que pour les autres cuves. La conception interne est donc hétérogène en forme dans ce chauffe-eau mais, pour autant, la forme externe reste plate. De préférence, la cuve aval est configurée pour que la température en son sein soit supérieure ou éventuellement égale à celle des autres cuves ; malgré cela, les déperditions de chaleur de la cuve aval ne sont pas augmentées relativement aux autres cuves car l'isolation en est meilleure. Cela permet, en sortie du chauffe-eau, de disposer d'un échauffement final plus efficace. Finalement, même si ce type de chauffe-eau multi-cuves génère normalement plus de déperditions qu'un chauffe-eau mono cuve cylindrique, la disposition de l'invention assure une forte amélioration de rendement pour un chauffe-eau plat, proche voire identique à celui d'un chauffe-eau de forme extérieure cylindrique. Cette disposition permet de gérer les températures des cuves de manière avantageusement différentiable ; on peut affecter un chauffage final plus important dans la cuve aval, les cuves précédentes assurant un préchauffage ; dans ce cadre, si la puissance de chauffage dans la cuve aval l'autorise, il peut se produire à cet endroit, avant la sortie, un chauffage de fort gradient, éventuellement presque instantané. Le chauffe-eau offre alors une grande flexibilité d'emploi. Par exemple, ces dispositions fonctionnelles peuvent servir à adapter le fonctionnement du chauffe-eau aux situations d'emploi qui peuvent largement varier.Thus, the flattened shape of the water heater is preserved but the insulation of the downstream tank is increased because the amount of insulation surrounding it is higher than for the other tanks. The internal design is therefore heterogeneous in shape in this water heater but, however, the external form remains flat. Preferably, the downstream tank is configured so that the temperature within it is higher or possibly equal to that of the other tanks; despite this, the heat loss from the tank downstream are not increased relative to the other tanks because the insulation is better. This allows, at the outlet of the water heater, to have a more efficient final heating. Finally, even if this type of multi-tank water heater normally generates more losses than a cylindrical single-tank water heater, the arrangement of the invention ensures a significant improvement in efficiency for a flat water heater, close or even identical to that of a cylindrical external shape water heater. This arrangement allows the temperatures of the tanks to be advantageously differentiated; a higher final heating can be assigned in the downstream tank, the previous tanks providing preheating; in this context, if the heating power in the downstream tank authorizes it, there may occur at this location, before the outlet, a strong gradient heating, possibly almost instantaneous. The water heater then offers great flexibility of use. For example, these functional arrangements can be used to adapt the operation of the water heater to situations of use that can vary widely.

Un autre aspect de l'invention est relatif à un procédé de régulation de température d'un chauffe-eau multi-cuves.Another aspect of the invention relates to a method for regulating the temperature of a multi-tank water heater.

INTRODUCTION DES FIGURESINTRODUCTION OF FIGURES

L'invention sera mieux comprise au vu des dessins annexés à la présente qui présentent des modes de réalisation préférés mais non limitatifs de l'invention sur lesquels :

  • la figure 1 illustre une disposition à trois cuves du chauffe-eau de l'invention ;
  • la figure 2 présente un mode de réalisation doté d'une enveloppe entourant les cuves ;
  • la figure 3 est une vue en coupe transversale du chauffe-eau suivant le mode de réalisation de la figure 2 ;
  • les figures 4 et 5 présentent un exemple de réalisation d'un dispositif de chauffage inductif ;
  • la figure 6 schématise une alternative de chauffage inductif, par l'extérieur des cuves.
The invention will be better understood from the drawings appended to the present which show preferred but nonlimiting embodiments of the invention in which:
  • the figure 1 illustrates a three-tank arrangement of the water heater of the invention;
  • the figure 2 presents an embodiment provided with an envelope surrounding the tanks;
  • the figure 3 is a cross-sectional view of the water heater according to the embodiment of the figure 2 ;
  • the Figures 4 and 5 present an embodiment of an inductive heating device;
  • the figure 6 schematically shows an alternative to inductive heating, from the outside of the tanks.

DESCRIPTION DETAILLEEDETAILED DESCRIPTION

Avant d'entrer dans le détail descriptif de mode de réalisation de l'invention notamment mais non exclusivement en référence aux dessins, on introduit ci-après brièvement des caractéristiques que l'invention peut présenter de manière optionnelle seule ou suivant toutes combinaisons entre elles :

  • l'invention comprend un dispositif de régulation de température des cuves configuré pour que la température dans la cuve aval soit supérieure ou égale à celle dans la au moins une cuve amont ;
  • le dispositif de régulation de température des cuves configuré pour que la température dans la cuve aval soit strictement supérieure à celle dans la au moins une cuve amont ;
  • pour chaque cuve, le dispositif électrique de chauffage comprend au moins un inducteur configuré pour générer un échauffement d'une charge électrique de chauffage d'eau dans ladite cuve ;
  • l'invention comprend un générateur configuré pour alimenter au moins un inducteur d'au moins un dispositif électrique de chauffage ;
  • elle comprend également un dispositif d'échange thermique entre ledit générateur et l'eau entrant ou présente dans la au moins une cuve amont ;
  • le générateur alimente au moins deux inducteurs d'au moins deux dispositifs électriques de chauffage distincts ;
  • le générateur est configuré pour délivrer une énergie électrique d'alimentation alternativement auxdits inducteurs ;
  • le dispositif de chauffage d'au moins la cuve aval comprend un inducteur sous forme d'enroulement autour d'une surface extérieure de la paroi de la cuve aval ;
  • au moins une partie de la paroi de ladite cuve est configurée pour former une charge électrique pour l'enroulement ;
  • la paroi de ladite cuve comprend une partie cylindrique métallique recouverte d'une portion diélectrique isolant la partie cylindrique métallique de l'enroulement ; Dans un cas préféré, la portion diélectrique est d'épaisseur faible (notamment moins de 1mm, de préférence moins de 0,5mm) et/ou est en matériau assurant une bonne conduction thermique, afin que les pertes du bobinage inducteur puisse se transmettre à la paroi de la cuve et à la zone interne de la cuve ce qui a pour effet de transformer ces pertes en rendement et de pouvoir minimiser la section de fil des bobinages inducteurs pour en optimiser le prix.
  • le dispositif de chauffage d'au moins une cuve comprend un inducteur inséré dans le volume intérieur de ladite cuve ;
  • ledit inducteur est entouré d'une charge électrique plongeant dans le volume intérieur de ladite cuve ; éventuellement, on peut chauffer la cuve par l'intérieur, la charge étant dans ce cas la cuve comme pour le système inducteur externe. L'inducteur seul est dans ce cas immergé dans l'eau de la cuve et la distance entre l'inducteur et la cuve peut être plus importante, facilitant ainsi son introduction dans la cuve.
  • tous les dispositifs électriques de chauffage ont une même puissance maximale de chauffage. Ainsi, dans le cas où l'on fait une alimentation cyclique des systèmes inducteurs via par exemple un système de commutation utilisant des relais, cela permet à la cuve plus petite, d'être plus dynamique.
  • le volume de la cuve aval est au moins 25 % plus petit que celui de la cuve amont qui la précède ;
  • la pluralité de cuves comprend deux cuves amont ;
  • les cuves présentent une dimension identique suivant la direction des axes longitudinaux.
  • Il comprend un contrôleur recevant en entrée des données historique de consommation d'eau chaude d'au moins un utilisateur, comprenant des informations de volume d'eau chaude à des instants mesurés, et configuré pour déterminer un comportement prédictif de la consommation d'eau chaude dudit consommateur et pour en déduire un plan de chauffage des cuves. Le contrôleur peut comporter un processeur et le système peut disposer de moyens de stockage de données. Il peut aussi comprendre des capteurs de mesure de température dans les cuves et /ou des moyens de mesure de débit. Avantageusement le contrôleur estime un comportement prévisible du local équipé sur la base des données historiques de consommations. Ainsi, il peut commander les dispositifs de chauffage des cuves à bon escient, selon les besoins prévus. Le chauffage de la dernière cuve, avantageusement plus brutal, peut permettre de corriger ces prévisions si elles ne sont pas exactes, par exemple par un vif chauffage final en cas de sous-estimation du besoin d'eau chaude. Typiquement le contrôleur peut être raccordé ou incorporé dans le coffret d'alimentation et peut partager des composants avec la carte d'alimentation, dont le microprocesseur.
Before entering into the descriptive detail of embodiment of the invention in particular but not exclusively with reference to the drawings, the following are briefly introduced characteristics that the invention can optionally present alone or in any combination between them:
  • the invention comprises a device for regulating the temperature of the tanks configured so that the temperature in the downstream tank is greater than or equal to that in the at least one upstream tank;
  • the tank temperature control device configured so that the temperature in the downstream tank is strictly higher than that in the at least one upstream tank;
  • for each tank, the electric heating device comprises at least one inductor configured to generate heating of an electric charge for heating water in said tank;
  • the invention comprises a generator configured to supply at least one inductor for at least one electrical heating device;
  • it also includes a heat exchange device between said generator and the water entering or present in the at least one upstream tank;
  • the generator supplies at least two inductors from at least two separate electrical heating devices;
  • the generator is configured to supply electrical power supply alternately to said inductors;
  • the device for heating at least the downstream tank comprises an inductor in the form of a winding around an external surface of the wall of the downstream tank;
  • at least part of the wall of said tank is configured to form an electrical charge for the winding;
  • the wall of said tank comprises a metallic cylindrical part covered with a dielectric portion insulating the metallic cylindrical part from the winding; In a preferred case, the dielectric portion is of small thickness (in particular less than 1 mm, preferably less than 0.5 mm) and / or is made of a material ensuring good thermal conduction, so that the losses of the inductor winding can be transmitted to the wall of the tank and in the internal zone of the tank, which has the effect of transforming these losses into efficiency and of being able to minimize the cross section of wire of the inductor windings in order to optimize the price thereof.
  • the device for heating at least one tank comprises an inductor inserted into the interior volume of said tank;
  • said inductor is surrounded by an electric charge immersed in the interior volume of said tank; optionally, the tank can be heated from the inside, the load in this case being the tank as for the external inductor system. The inductor alone is in this case immersed in the tank water and the distance between the inductor and the tank can be greater, thus facilitating its introduction into the tank.
  • all electric heating devices have the same maximum heating power. Thus, in the case where a cyclic supply of the inductor systems is made via for example a switching system using relays, this allows the smaller tank to be more dynamic.
  • the volume of the downstream tank is at least 25% smaller than that of the upstream tank which precedes it;
  • the plurality of tanks comprises two upstream tanks;
  • the tanks have an identical dimension along the direction of the longitudinal axes.
  • It comprises a controller receiving as input historical data of hot water consumption from at least one user, comprising information on the volume of hot water at measured times, and configured to determine a predictive behavior of water consumption. hot of said consumer and to deduce therefrom a heating plan for the tanks. The controller may include a processor and the system may have data storage means. It may also include temperature measurement sensors in the tanks and / or flow measurement means. Advantageously, the controller estimates a predictable behavior of the premises equipped on the basis of historical consumption data. Thus, it can control the heating devices of the tanks wisely, according to the anticipated needs. The heating of the last tank, which is advantageously more brutal, can make it possible to correct these forecasts if they are not exact, for example by a sharp final heating in the event of an underestimation of the need for hot water. Typically the controller can be connected or incorporated into the power supply and can share components with the power card, including the microprocessor.

D'une manière générale, la présente invention comporte une pluralité de cuves, avec une cuve aval 1 et au moins une cuve amont 2. L'exemple de la figure 1 illustre un chauffe-eau pourvu de trois cuves, avec deux cuves amont 2. Cet exemple n'est pas limitatif et seulement deux cuves peuvent être présentes, ou plus de trois cuves. Ainsi que représenté, la section transversale des cuves 1, 2 relativement à une direction longitudinale repérée Z, est circulaire de sorte à conférer aux cuves 1, 2 une forme géométrique cylindrique allongée suivant un axe longitudinal parallèle à la direction longitudinale Z de la figure 1. On comprend que cette géométrie cylindrique délimite, en son intérieur, un volume de réception d'eau dans chaque cuve. Chaque cuve est par ailleurs équipée d'un fond 4 à une extrémité de la forme cylindrique et d'une paroi supérieure de sorte à fermer le volume de stockage d'eau.In general, the present invention comprises a plurality of tanks, with a downstream tank 1 and at least one upstream tank 2. The example of the figure 1 illustrated a water heater provided with three tanks, with two upstream tanks 2. This example is not limiting and only two tanks may be present, or more than three tanks. As shown, the cross section of the tanks 1, 2 relative to a longitudinal direction marked Z, is circular so as to give the tanks 1, 2 a cylindrical geometric shape elongated along a longitudinal axis parallel to the longitudinal direction Z of the figure 1 . It is understood that this cylindrical geometry delimits, inside, a volume for receiving water in each tank. Each tank is also equipped with a bottom 4 at one end of the cylindrical shape and with an upper wall so as to close the water storage volume.

Suivant une possibilité, l'épaisseur d'isolant autour de la cuve aval 1 est au moins aussi importante entre sa paroi extérieure et la paroi latérale 18 de l'enveloppe 15 et entre sa paroi extérieure et la paroi de fond et/ou de dessus de l'enveloppe 15, qu'entre sa paroi et les parois principales 16 de l'enveloppe 15.According to one possibility, the thickness of insulation around the downstream tank 1 is at least as great between its outer wall and the side wall 18 of the casing 15 and between its outer wall and the bottom and / or top wall of the envelope 15, that between its wall and the main walls 16 of the envelope 15.

Ainsi que représenté à la figure 1, la cuve aval 1 présente un diamètre inférieur à celui d'au moins une cuve amont 2. Dans l'exemple représenté, les cuves amont disposent d'un même diamètre et la cuve aval 1 d'un diamètre inférieur à ce dernier. Dans une alternative, il est possible qu'une seule des cuves amont, celle située la plus en amont suivant le chemin emprunté par l'eau depuis l'entrée vers la sortie d'eau chaude, soit de diamètre supérieur. De même, suivant une autre alternative, les cuves amont peuvent présenter des diamètres décroissants et supérieurs à celui de la cuve aval, en direction aval suivant le circuit emprunté par l'eau.As shown in the figure 1 , the downstream tank 1 has a diameter less than that of at least one upstream tank 2. In the example shown, the upstream tanks have the same diameter and the downstream tank 1 has a diameter less than the latter. In an alternative, it is possible that only one of the upstream tanks, the one located most upstream along the path taken by the water from the inlet to the hot water outlet, is of greater diameter. Similarly, according to another alternative, the upstream tanks can have decreasing diameters and greater than that of the downstream tank, in the downstream direction along the circuit taken by the water.

A titre d'exemple, le diamètre de la cuve aval peut être compris entre 100 et 180 mm et est par exemple entre 120 et 160 mm et plus préférentiellement être de 140 mm. Le diamètre d'au moins une des cuves amont peut être supérieur à celui de la cuve aval d'au moins 20 % et de préférence d'au moins 30 % et de préférence inférieur à 50 %. Par exemple, les cuves amont peuvent avoir un diamètre de 180 mm.For example, the diameter of the downstream tank can be between 100 and 180 mm and is for example between 120 and 160 mm and more preferably be 140 mm. The diameter of at least one of the upstream tanks can be greater than that of the downstream tank by at least 20% and preferably at least 30% and preferably less than 50%. For example, the upstream tanks can have a diameter of 180 mm.

La représentation de la figure 1 procure par ailleurs une illustration du chemin que peut suivre l'eau entre une entrée jusqu'à une sortie du chauffe-eau. Plus précisément, au travers des cuves, l'eau peut circuler depuis une entrée 5 débouchant au niveau du fond 4 d'une première cuve amont 2, parcourir la cuve amont 2 suivant la direction longitudinale Z pour parvenir, via un raccord fluidique 8 par exemple de forme tubulaire débouchant dans la cuve amont 2 précitée et dans une cuve amont 2 qui la suit, dans la deuxième cuve amont 2 de sorte à recevoir un chauffage supplémentaire. Le raccord fluidique est par exemple un conduit, tel un tube, raccordant deux zones, l'une d'une première cuve, l'autre d'une cuve suivante. De préférence, le raccord s'étend suivant l'axe longitudinal des cuves de sorte à réinjecter l'eau sortie d'une extrémité supérieure d'une cuve au niveau de l'extrémité opposée de la cuve suivante de sorte à capter l'eau au point le plus chaud d'une cuve et à la réintroduire au point le plus froid de la cuve suivante. Ce principe peut être renouvelé le long du circuit, entre toutes les cuves, et à la sortie, pour le captage de l'eau dans la zone de plus haute température.The representation of the figure 1 also provides an illustration of the path that water can follow between an inlet to an outlet of the water heater. More precisely, through the tanks, the water can circulate from an inlet 5 opening at the bottom 4 of a first upstream tank 2, traversing the upstream tank 2 in the longitudinal direction Z to reach, via a fluid connection 8 by example of tubular shape opening into the above-mentioned upstream tank 2 and into an upstream tank 2 which follows it, into the second upstream tank 2 so as to receive additional heating. The fluidic connection is for example a conduit, such as a tube, connecting two zones, one of a first tank, the other of a next tank. Preferably, the connector extends along the longitudinal axis of the tanks so as to reinject the water leaving a upper end of a tank at the opposite end of the next tank so as to capture water at the hottest point of a tank and to reintroduce it at the coldest point of the next tank. This principle can be renewed along the circuit, between all the tanks, and at the outlet, for the collection of water in the zone of higher temperature.

A l'extrémité de la cuve amont 2 en question, située entre les deux autres cuves, un raccord fluidique, par exemple semblable au raccord fluidique, est disposé à proximité du haut de la cuve amont 2 intermédiaire, pour raccorder de ladite cuve à la cuve aval 1. L'eau pénètre ainsi dans la cuve aval 1 pour y être réchauffée de manière finale jusqu'à parvenir à une sortie 6 débouchant au niveau supérieur de la cuve aval 1 et dont l'extrémité inférieure est visible en figure 2, en sortie du chauffe-eau. Toutes configurations série/parallèle dans la connexion des cuves est possible. Certains raccords ou conduits peuvent aussi être internes aux cuves, par exemple pour la sortie 6 qui peut s'étendre dans la cuve pour soutirer de l'eau à une hauteur supérieure à celle de son embouchure externe.At the end of the upstream tank 2 in question, located between the other two tanks, a fluid connection, for example similar to the fluid connection, is arranged near the top of the intermediate upstream tank 2, to connect from said tank to the downstream tank 1. The water thus enters the downstream tank 1 so as to be heated therein in a final manner until reaching an outlet 6 opening at the upper level of the downstream tank 1 and the lower end of which is visible in figure 2 , at the outlet of the water heater. Any series / parallel configuration in the connection of the tanks is possible. Certain connections or conduits can also be internal to the tanks, for example for outlet 6 which can extend into the tank to draw water at a height greater than that of its external mouth.

Par ailleurs l'enveloppe 15 est configurées pour entourer au moins les cuves, mais pas forcément l'ensemble des raccords de communication fluidique entre cuves ou en entrée/sortie de la pluralité de cuves.Furthermore, the casing 15 is configured to surround at least the tanks, but not necessarily all of the fluid communication connections between tanks or at the inlet / outlet of the plurality of tanks.

Selon l'invention, le chauffe-eau est avantageusement positionné de sorte à ce que la direction longitudinale Z correspondant à la direction des axes longitudinaux des cuves 2 et 1, soit positionnée suivant la verticale. Cette disposition n'est cependant pas limitative et notamment le chauffe-eau peut être orienté à l'horizontale. En outre, il est possible d'envisager en plus de la sortie 6 en aval de la cuve aval 1, au moins une sortie intermédiaire, par exemple au niveau de la cuve amont 2 située juste en avant de la cuve aval 1, comme représenté au repère 7 uniquement en figure 2.According to the invention, the water heater is advantageously positioned so that the longitudinal direction Z corresponding to the direction of the longitudinal axes of the tanks 2 and 1, is positioned along the vertical. This provision is however not limiting and in particular the water heater can be oriented horizontally. In addition, it is possible to envisage, in addition to the outlet 6 downstream of the downstream tank 1, at least one intermediate outlet, for example at the level of the upstream tank 2 located just in front of the downstream tank 1, as shown at mark 7 only in figure 2 .

L'eau parcourant les cuves est amenée à être chauffée de préférence par des moyens électriques. Plus précisément, il est avantageux d'équiper chaque cuve d'un dispositif électrique de chauffage. De la sorte, on peut réguler individuellement la puissance fournie à chacune des cuves de sorte à piloter le niveau de chauffage de l'eau de manière individuelle dans les cuves. Suivant une possibilité, le dispositif électrique de chauffage équipant chaque cuve ou au moins une d'entre elles est de nature résistive et par exemple comprend une résistance plongeant directement ou dans un fourreau dans le volume intérieur de la cuve considérée.The water flowing through the tanks is brought to be heated preferably by electrical means. More specifically, it is advantageous to equip each tank with an electric heating device. In this way, the power supplied to each of the tanks can be individually regulated so as to control the level of heating of the water individually in the tanks. According to one possibility, the electric heating device fitted to each tank or at least one of them is of a resistive nature and for example comprises a resistance plunging directly or into a sheath into the interior volume of the tank considered.

De manière alternative, au moins une des cuves est équipée d'un dispositif de chauffage électrique utilisant une technologie inductive. De préférence, toutes les cuves comprennent ce type de chauffage inductif. Dans l'exemple représenté en figures 1 à 5, le dispositif de chauffage inductif est, dans les cuves considérées, plongeant dans le volume intérieur cylindrique. Il obéit à un fonctionnement inductif à savoir qu'une énergie électrique est fournie à un inducteur lui-même conçu pour générer un champ magnétique tel qu'un courant induit est produit dans une charge, en un matériau magnétique de préférence métallique, la charge étant configurée pour transmettre de l'énergie sous forme de chaleur à l'eau stockée dans la cuve. Cette transmission d'énergie peut être directe ou indirecte, par exemple avec un élément thermiquement conductif intermédiaire entre la charge et l'eau à chauffer.Alternatively, at least one of the tanks is equipped with an electric heating device using inductive technology. Preferably, all the tanks include this type of inductive heating. In the example shown in Figures 1 to 5 , the inductive heating device is, in the tanks considered, immersed in the cylindrical interior volume. It obeys an inductive operation, namely that an electrical energy is supplied to an inductor itself designed to generate a magnetic field such that an induced current is produced in a charge, in a magnetic material preferably metallic, the charge being configured to transmit energy in the form of heat to the water stored in the tank. This energy transmission can be direct or indirect, for example with a thermally conductive element intermediate between the load and the water to be heated.

Dans l'exemple de la figure 1, chaque cuve est équipée d'un inducteur plongeant dans son volume intérieur dont un exemple est plus précisément visible en figures 4 et 5. En figure 4, l'inducteur 20 comprend un élément électriquement conducteur allongé, de forme oblongue, et ici en forme de contour fermé. L'inducteur 20 dispose de raccords électriques 23 permettant l'accès d'un courant électrique à l'inducteur 20. Pour éviter les courts-circuits, l'inducteur 20 est avantageusement électriquement isolé de son environnement extérieur, par exemple par une garniture isolante ou tout autre enrobage ou par un fourreau étanche l'entourant. A titre d'exemple, l'inducteur 20 parcourt une longueur comprise entre 30 et 80 % de la longueur de la portion cylindrique de la cuve qu'il équipe. Une charge 21, dans l'exemple sous forme d'un élément grillagé, entoure l'inducteur 20 sans être en contact avec celui-ci. Par exemple, la charge 21 peut être en deux parties, notamment essentiellement symétriques autour d'un plan, et assemblées entre elles autour de l'inducteur 20, par exemple par l'intermédiaire de plots 22. La surface intérieure de la charge 21 est ainsi maintenue à distance de l'inducteur 20 mais relativement à proximité de sorte à générer dans la charge un courant induit approprié à son échauffement pour à son tour échauffer l'eau. Par exemple, la puissance d'alimentation de l'inducteur peut être comprise entre 1000 et 3700 W, de manière plus préférentielle entre 1500 et 2500 W.In the example of the figure 1 , each tank is fitted with an inductor immersed in its internal volume, an example of which is more precisely visible in Figures 4 and 5 . In figure 4 , the inductor 20 comprises an elongated electrically conductive element, of oblong shape, and here in the shape of a closed contour. The inductor 20 has electrical connections 23 allowing the access of an electric current to the inductor 20. To avoid short circuits, the inductor 20 is advantageously electrically isolated from its external environment, for example by an insulating lining. or any other coating or by a waterproof sheath surrounding it. For example, the inductor 20 travels a length between 30 and 80% of the length of the cylindrical portion of the tank which it equips. A load 21, in the example in the form of a mesh element, surrounds the inductor 20 without being in contact with it. For example, the load 21 can be in two parts, in particular essentially symmetrical around a plane, and assembled together around the inductor 20, for example by studs 22. The interior surface of the load 21 is thus kept at a distance from the inductor 20 but relatively close so as to generate in the load an induced current suitable for its heating to in turn heat the water. For example, the power supply of the inductor can be between 1000 and 3700 W, more preferably between 1500 and 2500 W.

Comme représentée, la charge 21 peut présenter une pluralité de trous. De cette façon, l'eau peut circuler entre la charge 21 et l'inducteur 20. Cette circulation favorise bien évidemment l'efficacité de l'échauffement, permet une circulation plus dynamique de l'eau et, de manière avantageuse, limite voire supprime la formation de calcaire de par les phénomènes de proximité, notamment magnétique et vibratoire, au niveau de la charge.As shown, the load 21 may have a plurality of holes. In this way, the water can circulate between the load 21 and the inductor 20. This circulation obviously promotes the efficiency of the heating, allows a more dynamic circulation of the water and, advantageously, limits or even eliminates the formation of limestone due to proximity phenomena, in particular magnetic and vibratory, at the level of the charge.

De manière préférée, les axes longitudinaux des cuves sont parallèles et placés dans un plan correspondant lui-même à un plan parallèle à une des faces de l'enveloppe 15 du chauffe-eau décrite en détail ultérieurement. Ce plan est de préférence au milieu de la dimension en épaisseur repérée « X » de l'enveloppe 19. Dans ce cadre, de façon encore plus préférentielle, les dispositifs électriques de chauffage présents dans les cuves sont de préférence également orientés suivant un axe longitudinal, les axes longitudinaux des dispositifs de chauffage étant eux-mêmes également alignés. Ainsi, dans la disposition visible à la figure 3, les trois dispositifs électriques de chauffage s'enchainent, leur axe étant orienté dans un plan médian de l'enveloppe comme les axes longitudinaux des cuves.Preferably, the longitudinal axes of the tanks are parallel and placed in a plane itself corresponding to a plane parallel to one of the faces of the casing 15 of the water heater described in detail later. This plane is preferably in the middle of the thickness dimension marked “X” of the envelope 19. In this context, even more preferably, the electrical heating devices present in the tanks are preferably also oriented along a longitudinal axis, the longitudinal axes of the heating devices themselves being also aligned. Thus, in the arrangement visible at the figure 3 , the three electric heating devices are linked, their axis being oriented in a median plane of the envelope like the longitudinal axes of the tanks.

La technologie inductive requiert de préférence l'emploi d'un générateur représenté dans un dispositif d'alimentation 10 aux figures 1 et 2. Le dispositif d'alimentation 10 peut être contenu dans un coffret 11, et peut comporter une entrée électrique raccordable à un réseau d'électricité par exemple à un réseau domestique. Le dispositif d'alimentation 10 assure la conversion électrique permettant de générer un signal électrique adapté au fonctionnement des dispositifs électriques inductifs équipant de manière préférentielle le chauffe-eau. Notamment, le dispositif d'alimentation 10 peut comprendre un système à onduleur pour la démultiplication de la fréquence du signal à fournir. Ce type de dispositif produit en général un dégagement de chaleur non négligeable qui nécessite généralement un dissipateur à flux forcé pour assurer son refroidissement. Pour en profiter, dans la mesure où le chauffe-eau est destiné à produire un réchauffement, on exploite avantageusement la dissipation d'énergie thermique du dispositif d'alimentation 10 pour effectuer une partie du chauffage de l'eau. A cet effet, un échange de chaleur est opéré entre ledit dispositif d'alimentation 10 et l'eau soit avant son entrée dans la première cuve du chauffe-eau, soit à l'intérieur d'une des cuves. Dans l'exemple illustré, un échangeur 12 est situé en conduction électrique avec le dispositif d'alimentation 10 pour en récupérer au moins une partie des calories dissipées et comporte une surface d'échange avec un circuit d'eau allant depuis un raccord d'entrée 14 raccordable par exemple à un réseau d'eaux domestiques vers l'entrée 5 de la cuve amont 2 d'entrée d'eau froide. On comprend que l'eau passant à l'intérieur de l'échangeur 12 bénéficie d'un premier réchauffement. En outre, il est avantageux que ce premier réchauffement se produise au niveau de la cuve située en entrée de l'ensemble du chauffe-eau dans la mesure où elle est la plus froide à ce niveau. Par conséquent, c'est à ce niveau qu'elle est la plus efficace pour refroidir le dispositif d'alimentation 10. Ainsi, la configuration tri-cuves ou d'une façon générale multi-cuves de l'invention présente dans une application de chauffage inductive l'avantage d'offrir un refroidissement sélectif du dispositif d'alimentation 10 au niveau d'une cuve dans laquelle l'eau est la plus froide.Inductive technology preferably requires the use of a generator represented in a supply device 10 aux figures 1 and 2 . The power supply device 10 may be contained in a box 11, and may include an electrical input connectable to an electricity network, for example to a domestic network. The power supply device 10 provides the electrical conversion making it possible to generate an electrical signal adapted to the operation of the inductive electrical devices preferentially equipping the water heater. In particular, the power supply device 10 can comprise an inverter system for reducing the frequency of the signal to be supplied. This type of device generally produces a significant amount of heat which generally requires a forced flow heatsink to cool it down. To take advantage of this, insofar as the water heater is intended to produce heating, advantage is taken of the dissipation of thermal energy from the supply device 10 to perform part of the heating of the water. To this end, heat is exchanged between said supply device 10 and the water either before it enters the first tank of the water heater, or inside one of the tanks. In the example illustrated, an exchanger 12 is located in electrical conduction with the supply device 10 to recover at least a portion of the calories dissipated and comprises an exchange surface with a water circuit going from a connection of inlet 14 connectable for example to a domestic water network towards the inlet 5 of the upstream tank 2 of cold water inlet. It is understood that the water passing inside the exchanger 12 benefits from a first heating. In addition, it is advantageous for this first heating to occur at the level of the tank located at the inlet of the entire water heater since it is the coldest at this level. Consequently, it is at this level that it is most effective for cooling the supply device 10. Thus, the tri-tank or generally multi-tank configuration of the invention present in an application of inductive heating the advantage of offering selective cooling of the supply device 10 at a tank in which the water is the coldest.

La configuration représentée n'est pas limitative de l'échangeur thermique implémentable selon l'invention. En effet, le générateur pourrait être intégré à l'intérieur d'une des cuves et notamment la première cuve amont, être positionné en contact conductif thermiquement de la surface du fond 17 de cette cuve de sorte à produire une conduction de chaleur vers l'intérieur ou suivant d'autres configurations. De manière préférée, chacune des cuves du chauffe-eau de l'invention est équipée d'un dispositif de chauffage électrique inductif. Dans ce cadre, de manière optionnelle, un seul dispositif d'alimentation peut être prévu pour l'ensemble de ces dispositifs de chauffage de cuve. Cette configuration correspond à celle des figures 1 et 2 au niveau desquelles des entrées électriques 13 ont été présentées pour le dispositif inductif équipant chaque cuve. N'a pas été représenté le raccordement électrique physique entre le dispositif d'alimentation et chacune de ces entrées électriques 13.The configuration shown is not limitative of the heat exchanger that can be implemented according to the invention. Indeed, the generator could be integrated inside of one of the tanks and in particular the first upstream tank, be positioned in thermally conductive contact with the bottom surface 17 of this tank so as to produce heat conduction inwards or according to other configurations. Preferably, each of the tanks of the water heater of the invention is equipped with an inductive electric heating device. In this context, optionally, a single supply device can be provided for all of these tank heating devices. This configuration corresponds to that of figures 1 and 2 at which electrical inputs 13 have been presented for the inductive device fitted to each tank. The physical electrical connection between the power supply device and each of these electrical inputs 13 has not been shown.

Suivant une possibilité, le dispositif d'alimentation 10 alimente alternativement chaque dispositif de chauffage de cuve, via des moyens de commutation. Cette commutation peut être pilotée suivant une régulation en température de chaque cuve (chaque cuve peut présenter au moins un capteur de température). Ainsi, une consigne de commutation peut être donnée de sorte à produire la génération d'un échauffement inductif dans une cuve après l'autre.According to one possibility, the supply device 10 alternately supplies each tank heating device, via switching means. This switching can be controlled according to a temperature regulation of each tank (each tank can have at least one temperature sensor). Thus, a switching instruction can be given so as to produce the generation of an inductive heating in one tank after the other.

On réalise ainsi une mutualisation du générateur ce qui limite le prix de l'ensemble inductif. Cela permet aussi de bénéficier à plein de l'effet de refroidissement du dispositif d'alimentation permettant de réchauffer préliminairement l'eau entrant. Si les dispositifs sont identiques, la configuration du générateur est en outre simplifiée car les paramètres électroniques, par exemple d'impédance sont identiques pour toutes les cuves.There is thus a mutualisation of the generator which limits the price of the inductive assembly. This also makes it possible to take full advantage of the cooling effect of the supply device making it possible to preheat the incoming water. If the devices are identical, the configuration of the generator is further simplified because the electronic parameters, for example of impedance are identical for all the tanks.

Telle qu'évoquée précédemment, la configuration multi-cuves dont l'exemple de la figure 1 donne une disposition tri-cuves, y est recouverte d'une enveloppe 15 par exemple correspondant à celle de la figure 2 ayant une forme parallélépipédique rectangle. On entend par une forme parallélépipédique rectangle le fait que la surface extérieure de cette partie du chauffe-eau a sensiblement deux faces principales 16 parallèles et planes espacées par des parois latérales 18, une paroi de fond 17 et une paroi supérieure. L'ensemble de ces faces et avantageusement plan ce qui inclut des dispositions comportant des motifs de surface notamment à des fins esthétiques ou encore des angles arrondis au niveau de la jonction des différentes parois. Ainsi, l'expression parallélépipédique rectangle couvre des dispositions similaires susceptibles d'être substantiellement délimitées dans une forme parallélépipédique rectangle. Dans le cas de la figure 2, le dispositif d'alimentation inclus dans le coffret 11 est extérieur à l'enveloppe 15. Cette situation n'est cependant qu'indicative. L'enveloppe 15 constitue l'aspect extérieur du chauffe-eau de l'invention au moins pour sa partie de stockage de l'eau chaude. Elle assure aussi la définition d'un volume intérieur pouvant être rempli d'un matériau isolant 19 par exemple sous forme de polymères en mousse prenant avantageusement tout ou partie du volume interstitiel entre la surface extérieur des cuves et la paroi intérieure de l'enveloppe 15. De manière préférée, l'ensemble du volume intérieur interstitiel est rempli de l'isolant 19.As mentioned above, the multi-tank configuration including the example of the figure 1 gives a tri-tank arrangement, there is covered with an envelope 15 for example corresponding to that of the figure 2 having a rectangular parallelepiped shape. By a rectangular parallelepiped shape is meant the fact that the outer surface of this part of the water heater has substantially two parallel and flat main faces 16 spaced apart by side walls 18, a bottom wall 17 and an upper wall. All of these faces and advantageously planar, which includes provisions comprising surface patterns, in particular for aesthetic purposes, or even rounded angles at the junction of the different walls. Thus, the expression rectangular parallelepiped covers similar provisions capable of being substantially delimited in a rectangular parallelepiped shape. In the case of figure 2 , the supply device included in the box 11 is outside the envelope 15. This situation is however only indicative. The casing 15 constitutes the external appearance of the water heater of the invention at least for its hot water storage part. It also ensures the definition of an interior volume that can be filled with an insulating material 19 for example in the form of foam polymers advantageously taking all or part of the interstitial volume between the exterior surface of the tanks and the interior wall of the envelope 15 Preferably, the entire interstitial interior volume is filled with the insulator 19.

On a précédemment indiqué que le diamètre de la cuve aval était inférieur avantageusement à celui de la ou des cuves amont 2. De ce fait, comme le révèle la figure 3, la quantité d'isolant entourant la cuve aval 1 est supérieure.It was previously indicated that the diameter of the downstream tank was advantageously less than that of the upstream tank (s) 2. Therefore, as revealed by figure 3 , the amount of insulation surrounding the downstream tank 1 is greater.

Les pertes thermiques au niveau de la cuve aval sont donc plus limitées. Il est avantageux de bénéficier de cet accroissement d'isolation pour la régulation en température. Plus précisément, dans un mode de réalisation préféré, la consigne en température donnée à la cuve aval 1 est avantageusement supérieure, au moins dans certains cycles d'utilisation, à la température d'au moins une des cuves amont 2. Ainsi, il est possible d'obtenir une température de stockage d'eau dans la cuve aval à un niveau supérieur tout en réduisant les déperditions thermiques normalement supérieures dans ce contexte. Alors que l'homme du métier aurait cherché à optimiser le volume d'eau stocké, la présente invention en prend le contrepied en choisissant dans cet exemple un diamètre inférieur pour la cuve aval qui certes limite la quantité d'eau stockée mais permet avec une grande efficacité thermique un échauffement terminal bien supérieur. Par exemple, dans un cycle d'utilisation non exclusif, la température de consigne de la cuve aval peut être de 5 à 30° supérieure à la consigne dans la cuve qui la précède avec notamment une température maximale à atteindre de 90°C en dernière cuve, avec une marge de sécurité pour ne pas bouillir, sachant que les autres cuves sont typiquement à 65°C, soit 25°C de plus.The heat losses at the level of the downstream tank are therefore more limited. It is advantageous to benefit from this increase in insulation for temperature regulation. More specifically, in a preferred embodiment, the temperature setpoint given to the downstream tank 1 is advantageously higher, at least in certain cycles of use, than the temperature of at least one of the upstream tanks 2. Thus, it is possible to obtain a water storage temperature in the downstream tank at a higher level while reducing the normally higher heat losses in this context. While the skilled person would have sought to optimize the volume of water stored, the present invention takes the opposite by choosing in this example a smaller diameter for the downstream tank which certainly limits the amount of water stored but allows with a high thermal efficiency, much higher terminal heating. For example, in a non-exclusive use cycle, the setpoint temperature of the downstream tank can be 5 to 30 ° higher than the setpoint in the tank which precedes it with in particular a maximum temperature to be reached of 90 ° C last tank, with a safety margin so as not to boil, knowing that the other tanks are typically at 65 ° C, or 25 ° C more.

Dans un cas de réalisation, les dispositifs de chauffage électriques équipant les cuves sont identiques de sorte à simplifier la conception du chauffe-eau mais aussi à faire en sorte que la puissance maximale de chauffage disponible au niveau du dispositif de chauffage équipant la cuve aval 1 soit équivalente à celle des autres dispositifs. Le volume intérieur de la cuve aval étant plus petit, il s'en suit un échauffement de l'eau plus brutal qui peut permettre, dans certains cas, de procurer un échauffement supplémentaire quasi instantané lors de la délivrance d'eau chaude. Ainsi, dans un cycle de fonctionnement possible de l'invention mais non limitatif, le dispositif d'alimentation 10 est configuré pour alimenter le dispositif électrique de chauffage de la cuve aval lorsqu'une délivrance d'eau au niveau de la sortie 6 est opérée. Un détecteur de débit peut être employé au niveau du chauffe-eau, et en particulier au niveau de la sortie 6 à cet effet. L'analyse continue par le microprocesseur du générateur des évolutions de température dans les cuves permet d'avoir une idée assez précise des tirages et donc l'emploi d'un dispositif couteux de mesure de débit n'est pas nécessaire). Dans un autre cycle de fonctionnement, le dispositif d'alimentation peut être configuré pour commuter de façon périodique entre les différentes cuves. Suivant un autre mode de réalisation, le dispositif d'alimentation est configuré pour commuter vers une autre cuve dès que la température de consigne affectée à la cuve pour laquelle le dispositif électrique de chauffage est actif est atteinte. Avantageusement, le dispositif d'alimentation commute alors vers le dispositif de chauffage équipant la cuve dans laquelle la température courante est la plus éloignée de la température de consigne qui lui est affectée. Alternativement, le fait d'avoir 3 cuves ou plus donne une modularité de chauffe. Si on a besoin de peu d'eau chaude, on va concentrer la chauffe sur la dernière cuve, et si plus d'eau est demandée on chauffera plus, la dernière et l'avant dernière, ou d'encore plus, les 3 cuves.In one embodiment, the electric heating devices equipping the tanks are identical so as to simplify the design of the water heater but also to ensure that the maximum heating power available at the level of the heating device equipping the downstream tank 1 is equivalent to that of other devices. The interior volume of the downstream tank being smaller, it follows a more brutal heating of the water which can make it possible, in certain cases, to obtain an almost instantaneous additional heating during the delivery of hot water. Thus, in a possible but non-limiting operating cycle of the invention, the supply device 10 is configured to supply the electrical device for heating the downstream tank when a delivery of water at the outlet 6 is carried out. . A flow detector can be used at the level of the water heater, and in particular at the level of outlet 6 for this purpose. Ongoing analysis by the microprocessor of the generator of temperature changes in the tanks makes it possible to have a fairly precise idea of the draws and therefore the use of an expensive device for measuring flow is not necessary). In another operating cycle, the supply device can be configured to switch periodically between the different tanks. According to another embodiment, the supply device is configured to switch to another tank as soon as the set temperature assigned to the tank for which the electric heating device is active is reached. Advantageously, the supply device then switches to the heating device fitted to the tank in which the current temperature is furthest from the set temperature which is assigned to it. Alternatively, having 3 or more tanks gives modular heating. If we need little hot water, we will concentrate the heating on the last tank, and if more water is required we will heat more, the last and the penultimate, or even more, the 3 tanks .

Il est possible d'estimer la quantité d'eau chaude dont l'utilisateur va avoir besoin. On peut utiliser pour cela des algorithmes connus d'apprentissage, à savoir que l'on mesure les décroissances de température des différentes cuves sur les jours de la semaine de façon à anticiper les chauffes par rapport à ces acquisitions. Ceci est rendu possible car l'utilisation de l'eau chaude sanitaire est très périodique sur une semaine. La production sera réglée pour être toujours un peu supérieure à la consommation de façon à ce que l'utilisateur ne manque jamais d'eau chaude. L'avantage de ce système est son économie énergétique car on ne produit pas trop d'eau chaude qui se mettrait alors à refroidir de par les déperditions naturelles des cuves liées à leur isolation thermique imparfaite. Il est par contre difficile de prévoir exactement toute les situations et dans des cas exceptionnels, le système pourrait affecter la puissance maximale du générateur sur la petite cuve (aval) de façon à produire le plus rapidement possible un complément d'eau chaude sanitaire, ce qui est impossible avec des grands chauffe-eau possédant une unique cuve.It is possible to estimate the quantity of hot water that the user will need. Known learning algorithms can be used for this, namely that the temperature decreases of the different tanks are measured on the days of the week so as to anticipate the heating with respect to these acquisitions. This is made possible because the use of domestic hot water is very periodic over a week. The production will be adjusted to always be a little higher than the consumption so that the user never runs out of hot water. The advantage of this system is its energy saving because it does not produce too much hot water which would then start to cool due to the natural losses of the tanks linked to their imperfect thermal insulation. On the other hand, it is difficult to predict exactly all the situations and in exceptional cases, the system could affect the maximum power of the generator on the small tank (downstream) so as to produce as quickly as possible an additional domestic hot water, which which is impossible with large water heaters with a single tank.

L'invention peut aussi mettre en oeuvre, notamment au niveau du dispositif d'alimentation 10, un dispositif d'apprentissage de sorte à adapter le fonctionnement de la commande d'alimentation en fonction des habitudes du lieu dans lequel le chauffe-eau est implanté. Par exemple, le dispositif d'apprentissage peut comprendre un produit programme d'ordinateur stocké dans une mémoire accessible par un processeur et susceptible de prendre en compte comme paramètre de fonctionnement les heures moyennes de soutirage d'eau chaude au niveau du chauffe-eau. Ce dispositif peut aussi tenir compte de régulation de tarifs notamment heures creuses et heures pleines.The invention can also implement, in particular at the level of the supply device 10, a learning device so as to adapt the operation of the supply control according to the habits of the place in which the water heater is located. . For example, the learning device can comprise a computer program product stored in a memory accessible by a processor and capable of taking into account as an operating parameter the average hours of hot water withdrawal at the level of the water heater. This device can also take into account regulation of tariffs, in particular off-peak and peak hours.

La figure 6 présente une alternative de constitution des dispositifs inductifs. En effet, les figures précédentes illustraient des dispositifs de chauffage électriques insérés dans les cuves. Au contraire, la figure 6 montre un dispositif de chauffage inductif fonctionnant par l'extérieur des cuves. Dans cette variante, un inducteur 20 équipe une cuve et se présente sous la forme d'un enroulement parcourant tout ou partie de la longueur de la partie cylindrique de la cuve équipée. Cet enroulement est, comme précédemment, relié au dispositif d'alimentation 10. Au moins une partie de la paroi de la cuve équipée est dans ce cadre réalisée dans un matériau magnétique, de préférence métallique, pour former une charge dans laquelle un courant induit va se développer et fournir par effet joule comme précédemment un échauffement de l'eau. La conduction au travers de l'épaisseur de la paroi de la cuve servira à transmettre cet échauffement à l'eau stockée intérieurement. De manière préférée, des moyens sont constitués pour maintenir espacé l'inducteur 20 enroulé relativement à la paroi de la cuve équipée. A cet effet, un isolant 22 ou tout autre élément de maintien écarté entre la partie de charge et la partie d'inducteur peut être formé. Dans l'exemple, la paroi de la cuve équipée est entièrement métallique suivant son épaisseur puis est recouverte d'un isolant sous forme d'une feuille parcourant l'ensemble de la surface destinée à être recouverte de l'enroulement d'inducteur. Cette disposition permet d'équiper des diamètres de cuve pouvant être relativement faibles sans pénaliser le volume de stockage des cuves.The figure 6 presents an alternative for the construction of inductive devices. Indeed, the previous figures illustrated electrical heating devices inserted in the tanks. On the contrary, the figure 6 shows an inductive heating device operating from the outside of the tanks. In this variant, an inductor 20 equips a tank and is in the form of a winding covering all or part of the length of the cylindrical part of the equipped tank. This winding is, as previously, connected to the supply device 10. At least part of the wall of the equipped tank is in this frame made of a magnetic material, preferably metallic, to form a charge in which an induced current will develop and provide by joule effect as previously a heating of the water. Conduction through the thickness of the wall of the tank will be used to transmit this heating to the water stored internally. Preferably, means are formed to keep the inductor 20 wound apart relative to the wall of the equipped tank. For this purpose, an insulator 22 or any other holding element spaced between the load part and the inductor part can be formed. In the example, the wall of the equipped tank is entirely metallic depending on its thickness and is then covered with an insulator in the form of a sheet traversing the entire surface intended to be covered with the inductor winding. This arrangement makes it possible to equip tank diameters which can be relatively small without penalizing the storage volume of the tanks.

Il n'est pas exclu par l'invention de combiner les différentes techniques inductives précédemment décrites. En particulier, une ou plusieurs des cuves peuvent être équipées d'un dispositif inductif plongeant alors qu'une autre partie des cuves peut être équipée d'un dispositif inductif par l'extérieur. De même, l'invention peut combiner au moins un dispositif inductif avec au moins un dispositif résistif de chauffage de cuve. En outre, une ou plusieurs des cuves peuvent être équipées d'une pluralité d'inducteurs. Une cuve peut par exemple comprendre deux inducteurs parcourant chacun une partie de la longueur de la cuve de manière plongeante. Ou encore, une cuve peut comporter une pluralité d'enroulements sur sa paroi extérieure. Ou encore, une cuve peut être équipée d'un ou plusieurs systèmes à enroulement extérieur et d'un ou plusieurs systèmes plongeants intérieurement.It is not excluded by the invention to combine the different inductive techniques previously described. In particular, one or more of the tanks can be equipped with an immersive inductive device while another part of the tanks can be equipped with an inductive device from the outside. Likewise, the invention can combine at least one inductive device with at least one resistive tank heating device. In addition, one or more of the tanks can be equipped with a plurality of inductors. A tank can for example comprise two inductors each traversing a part of the length of the tank in a plunging manner. Or, a tank may have a plurality of windings on its outer wall. Alternatively, a tank can be equipped with one or more exterior winding systems and one or more interior plunging systems.

Suivant un exemple de fonctionnement, l'eau est introduite via le raccord d'entrée 14 jusqu'à l'entrée 5 de la première cuve amont 2. Avant même d'y parvenir ou à ce niveau elle a déjà bénéficié d'un premier échauffement permettant la dissipation au moins partielle de l'énergie thermique développée par le dispositif d'alimentation 10.According to an example of operation, water is introduced via the inlet connector 14 to the inlet 5 of the first upstream tank 2. Before even reaching it or at this level it has already benefited from a first heating allowing the at least partial dissipation of the thermal energy developed by the supply device 10.

L'eau subit un premier échauffement par un dispositif électrique de chauffage équipant la première cuve amont et parvient via le raccord fluidique dans la deuxième cuve amont 2 où elle subit un autre échauffement, par le dispositif électrique équipant cette cuve. A l'extrémité opposée (ici supérieure) de la cuve amont 2 en question, l'eau parvient jusqu'à la cuve aval 1 (en partie inférieure) via le raccord fluidique intermédiaire. Dans un cas préféré, dans la cuve aval 1, l'eau subit un dernier échauffement à une température supérieure à celle de stockage des cuves amont 2 de sorte à être disponible à une température de consigne de sortie au niveau de la sortie 6. Si une grande quantité d'eau à la température de consigne doit être fournie, l'ensemble des cuves peut bien évidemment être chauffé à la température souhaitée.The water undergoes a first heating by an electric heating device equipping the first upstream tank and arrives via the fluid connection in the second upstream tank 2 where it undergoes another heating, by the electric device equipping this tank. At the opposite end (here upper) of the upstream tank 2 in question, the water reaches the downstream tank 1 (in the lower part) via the intermediate fluid connection. In a preferred case, in the downstream tank 1, the water undergoes a final heating to a temperature higher than that of storage of the upstream tanks 2 so as to be available at an outlet temperature setpoint at the outlet 6. If a large quantity of water at the set temperature must be supplied, all the tanks can obviously be heated to the desired temperature.

REFERENCESREFERENCES

1.1.
Cuve avalDownstream tank
2.2.
Cuve amontUpstream tank
3.3.
Corps cylindriqueCylindrical body
4.4.
FondBackground
5.5.
EntréeEntrance
6.6.
SortieExit
7.7.
Sortie intermédiaireIntermediate outlet
10.10.
Dispositif d'alimentationFeeding device
11.11.
CoffretBox
12.12.
EchangeurHeat exchanger
13.13.
Entrée électriqueElectric input
14.14.
Raccord d'entréeInlet fitting
15.15.
EnveloppeEnvelope
16.16.
Paroi principaleMain wall
17.17.
Paroi de fondBack wall
18.18.
Paroi latéraleSide wall
19.19.
IsolantInsulating
20.20.
InducteurInductor
21.21.
ChargeCharge
22.22.
IsolantInsulating

Claims (18)

  1. Hot-water storage multi-tank domestic water heater, comprising:
    - a plurality of tanks comprising a downstream tank (1) and at least one upstream tank (2, 3), each cylindrically-shaped about a longitudinal axis, the longitudinal axes of the tanks being parallel, each tank being configured to contain a water volume and comprising an electrical heating device, the upstream tank (2, 3) being connectable to a water inlet, the downstream tank (1) being connectable to a water outlet, the upstream tank (2, 3) being in fluid communication with the downstream tank (1) so as to form a heating circuit and water distribution,
    - a rectangular parallelepiped casing (15) delimiting an inner space for housing tanks, at least one portion of the inner space comprised between the casing and an outer wall of the tanks being filled with an insulator,
    characterised in that the longitudinal axes of the tanks are comprised in a median plane of a thickness dimension of the casing (15), and in that the downstream tank (1) has a diameter less than that of the upstream tank (2, 3).
  2. Water heater according to the preceding claim, comprising a tank temperature regulation device configured such that the temperature in the downstream tank (1) is greater than or equal to that in the at least one upstream tank (2, 3).
  3. Water heater according to the preceding claim, wherein the tank temperature regulation device is configured such that the temperature in the downstream tank (1) is strictly greater than that in the at least one upstream tank (2, 3).
  4. Water heater according to one of the preceding claims, wherein, for each tank, the electrical heating device comprises at least one inductor (20) configured to generate a heating of an electrical charge (21) for heating water in said tank.
  5. Water heater according to the preceding claim, comprising a generator configured to supply at least one indicator (10) with at least one electrical heating device.
  6. Water heater according to the preceding claim, comprising a thermal exchange device between said generator and incoming water or present in the at least one upstream tank.
  7. Water heater according to one of the two preceding claims, wherein the generator supplies at least two inductors (10) with at least two separate electrical heating devices.
  8. Water heater according to the preceding claim, wherein the generator is configured to deliver an electrical supply energy alternatively to said inductors.
  9. Water heater according to one of the five preceding claims, wherein the device for heating at least the downstream tank (1) comprises an inductor (10) in the form of a coiling around an outer surface of the wall of the downstream tank (1).
  10. Water heater according to the preceding claim, wherein at least one portion of the wall of said tank is configured to form an electrical charge for the coiling.
  11. Water heater according to the preceding claim, wherein the wall of said tank comprises a metal cylindrical portion covered with a dielectric portion insulating the metal cylindrical portion of the coiling.
  12. Water heater according to one of claims 4 to 11, wherein the device for heating at least one tank comprises an inductor (10) inserted in the inner volume of said tank.
  13. Water heater according to the preceding claim, wherein said inductor is surrounded by an electrical charge being immersed in the inner volume of said tank.
  14. Water heater according to one of the preceding claims, wherein all the electrical heating device have one same maximum heating power.
  15. Water heater according to one of the preceding claims, wherein the volume of the downstream tank is at least 25% smaller than that of the upstream tank which precedes it.
  16. Water heater according to one of the preceding claims, wherein the plurality of tanks comprises two upstream tanks (2, 3).
  17. Water heater according to one of the preceding claims, wherein the tanks have an identical dimension along the direction of the longitudinal axes.
  18. Water heater according to one of the preceding claims, comprising a controller receiving, at the inlet, historical hot water consumption data from at least lone user, comprising information about hot water volume at measured instants, and configured to determine a behaviour predicting the hot water consumption of said consumer and to deduce from this, a plan for heating the tanks.
EP16819856.2A 2015-12-22 2016-12-15 Hot-water storage multi-tank domestic water heater Active EP3394521B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1563142A FR3045789B1 (en) 2015-12-22 2015-12-22 MULTI-TANK HEATING WATER HEATER WITH HOT WATER ACCUMULATION
PCT/EP2016/081233 WO2017108579A1 (en) 2015-12-22 2016-12-15 Hot-water storage multi-tank domestic water heater

Publications (2)

Publication Number Publication Date
EP3394521A1 EP3394521A1 (en) 2018-10-31
EP3394521B1 true EP3394521B1 (en) 2020-04-22

Family

ID=55759741

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16819856.2A Active EP3394521B1 (en) 2015-12-22 2016-12-15 Hot-water storage multi-tank domestic water heater

Country Status (5)

Country Link
EP (1) EP3394521B1 (en)
CN (1) CN108603684B (en)
ES (1) ES2808975T3 (en)
FR (1) FR3045789B1 (en)
WO (1) WO2017108579A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3951307A4 (en) * 2019-04-03 2022-03-23 Mitsubishi Electric Corporation Heat exchange device and method for manufacturing same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040079749A1 (en) * 2002-10-28 2004-04-29 Young Randy S. Multi-tank water heater
CN2605528Y (en) * 2003-02-26 2004-03-03 王一民 Split duat-water-tank solar electric water heater
CN100520190C (en) * 2007-09-29 2009-07-29 江苏天舒电器有限公司 Method for forecasting and controlling heat pump hot-water system dynamic energy conservation operation
CN101650088A (en) * 2009-06-30 2010-02-17 黄炜放 Solar water heater and water tank thereof
IT1397805B1 (en) * 2010-01-29 2013-02-01 Ariston Thermo Spa FLAT WATER HEATER PROVIDED WITH REDUCED VOLUME TANKS
EP2453179A1 (en) * 2010-11-15 2012-05-16 Roth Werke GmbH Modular warm water system
FR2994474B1 (en) * 2012-08-13 2018-06-29 Winslim Sarl WATER HEATER ASSEMBLY HAVING A HEATING BODY COMPRISING A VOLUME OF WATER AND AT LEAST ONE GENERATOR OF AN INDUCTIVE MODULE DEDICATED TO AN ELECTRICAL APPARATUS

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
ES2808975T3 (en) 2021-03-02
FR3045789B1 (en) 2017-12-08
FR3045789A1 (en) 2017-06-23
CN108603684B (en) 2021-04-06
EP3394521A1 (en) 2018-10-31
CN108603684A (en) 2018-09-28
WO2017108579A1 (en) 2017-06-29

Similar Documents

Publication Publication Date Title
EP2883006B1 (en) Device for the induction heating of a water heater and water heater provided with such a device
EP2399084B1 (en) Continuous flow heater for hot water
EP1945074A1 (en) Dispositif de chauffage de liquide pour appareil electromenager
EP3030845A1 (en) Water heater
EP3394521B1 (en) Hot-water storage multi-tank domestic water heater
EP2066980A2 (en) Boiler/sanitary water heater combination
FR2913582A1 (en) Feeding bottle/small pot heating device, has control unit managing powering of heating element, rechargeable battery permitting powering of heating element and replacing electric socket, and transportable charger for recharging battery
EP2883005B1 (en) Assembly composed of a water heater comprising a heater comprising a water volume and of at least one generator for an inductive module for an electric apparatus
CA3044349C (en) Heating apparatus of the electric radiator type including a voltage converter
WO2007080261A1 (en) Water-heating device for a household electrical appliance
GB2577929A (en) Point-of-use induction water heater
EP0029010B1 (en) Electric storage heater
FR3052793A1 (en) DEVICE FOR RAPIDLY TRANSFERRING HOT WATER FROM A SOURCE TO A USER OR A MACHINE.
WO2016151242A2 (en) Boiler, heat exchanger for said boiler and door to said boiler
EP2418331B1 (en) Modular domestic-water heating device suitable for being built in
FR2669717A1 (en) Sanitary water heating by recovery from waste water
EP1563230A1 (en) Water heater with an external electric winding
WO1992012389A1 (en) Device for producing hot water for domestic use or heating
FR2533676A1 (en) Method for electrical central heating with the production of hot water for sanitary use incorporated, and boiler for the implementation thereof.
FR2679631A1 (en) Device for producing domestic hot water with built-in thermosiphon
EP3477211B1 (en) Device for heating a fluid flowing in a pipe and thermal installation comprising such a device
WO2017029536A1 (en) Mobile hot water production device, and hot water dispensing apparatus intended to be connected to the device
EP2306114A1 (en) Heater
FR2671170A1 (en) Appliance for producing hot water for washing
FR3113719A1 (en) Instantaneous electric water heater comprising a front face capable of capturing and emitting waste heat lost by the heating tank and installation

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180705

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20191217

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602016034720

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1260642

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200515

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602016034720

Country of ref document: DE

Representative=s name: BECKER KURIG & PARTNER PATENTANWAELTE MBB, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 602016034720

Country of ref document: DE

Representative=s name: BECKER & KURIG PARTNERSCHAFT PATENTANWAELTE MB, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602016034720

Country of ref document: DE

Representative=s name: BECKER KURIG & PARTNER PATENTANWAELTE MBB, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 602016034720

Country of ref document: DE

Representative=s name: BECKER & KURIG PARTNERSCHAFT PATENTANWAELTE MB, DE

Ref country code: CH

Ref legal event code: NV

Representative=s name: STOLMAR AND PARTNER INTELLECTUAL PROPERTY S.A., CH

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200822

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200723

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200824

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1260642

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602016034720

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2808975

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20210302

26N No opposition filed

Effective date: 20210125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201215

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20221213

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20230105

Year of fee payment: 7

Ref country code: CH

Payment date: 20221229

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20231124

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231221

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: MC

Payment date: 20231214

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231211

Year of fee payment: 8

Ref country code: FR

Payment date: 20231220

Year of fee payment: 8

Ref country code: DE

Payment date: 20231208

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20231212

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240108

Year of fee payment: 8