EP3392485B1 - Système de régulation de carburant - Google Patents
Système de régulation de carburant Download PDFInfo
- Publication number
- EP3392485B1 EP3392485B1 EP18162782.9A EP18162782A EP3392485B1 EP 3392485 B1 EP3392485 B1 EP 3392485B1 EP 18162782 A EP18162782 A EP 18162782A EP 3392485 B1 EP3392485 B1 EP 3392485B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- engine
- threshold value
- spool
- fuel
- power threshold
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000446 fuel Substances 0.000 title claims description 78
- 230000008859 change Effects 0.000 claims description 43
- 230000009467 reduction Effects 0.000 claims description 8
- 238000000034 method Methods 0.000 claims description 5
- 230000003247 decreasing effect Effects 0.000 claims description 3
- 230000002441 reversible effect Effects 0.000 claims description 2
- 239000000314 lubricant Substances 0.000 description 4
- 230000004913 activation Effects 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000002485 combustion reaction Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000000454 anti-cipatory effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C9/00—Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
- F02C9/26—Control of fuel supply
- F02C9/28—Regulating systems responsive to plant or ambient parameters, e.g. temperature, pressure, rotor speed
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C7/00—Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
- F02C7/22—Fuel supply systems
- F02C7/232—Fuel valves; Draining valves or systems
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C9/00—Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
- F02C9/26—Control of fuel supply
- F02C9/46—Emergency fuel control
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2220/00—Application
- F05D2220/30—Application in turbines
- F05D2220/32—Application in turbines in gas turbines
- F05D2220/323—Application in turbines in gas turbines for aircraft propulsion, e.g. jet engines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2270/00—Control
- F05D2270/01—Purpose of the control system
- F05D2270/05—Purpose of the control system to affect the output of the engine
- F05D2270/052—Torque
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2270/00—Control
- F05D2270/01—Purpose of the control system
- F05D2270/09—Purpose of the control system to cope with emergencies
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2270/00—Control
- F05D2270/30—Control parameters, e.g. input parameters
- F05D2270/304—Spool rotational speed
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2270/00—Control
- F05D2270/30—Control parameters, e.g. input parameters
- F05D2270/309—Rate of change of parameters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2270/00—Control
- F05D2270/30—Control parameters, e.g. input parameters
- F05D2270/335—Output power or torque
Definitions
- the present invention relates to a fuel control system for a gas turbine engine.
- Fuel control systems for use in controlling the supply of fuel to an aircraft engine generally comprise a control unit, which may be part of the engine electronic controller (EEC), and a hydro-mechanical unit controlled by the control unit.
- the hydro-mechanical unit may include a metering valve operable to control the rate at which pressurised fuel passes from a supply line to a delivery line.
- the hydro-mechanical unit also includes a pressure drop control arrangement (e.g.
- a pressure drop control valve and an associated spill valve which is operable to maintain a substantially constant pressure drop across the metering valve, and a pressure raising and shut-off valve can then control the passage of fuel from the delivery line to one or more burner manifolds, the pressure raising and shut-off valve serving, in use, to maintain a minimum fuel pressure in a part of the fuel control system upstream thereof, so as to ensure that any fuel pressure operated devices arranged to receive fuel under pressure from the fuel control system can operate correctly.
- the hydro-mechanical unit receives the pressurised fuel from a pumping unit that is driven by, and so operates at a speed related to the operating speed of, the associated engine.
- a mechanism whereby power or thrust can be controlled in the event of a malfunctioning fuel metering valve causing fuel flow upward runaway of the engine.
- a mechanism acts to prevent over-torque in the propeller system.
- One option is to insert logic in the control unit implementing an engine power threshold (which can be scheduled against speed of the low pressure shaft driving the propeller system to be effectively a torque threshold) which when crossed causes the fuel control system to implement an emergency fuel chop.
- an engine power threshold which can be scheduled against speed of the low pressure shaft driving the propeller system to be effectively a torque threshold
- this logic could be incorrectly activated if spurious torque spikes occur e.g. due to electrical interference.
- a further consideration is that it is generally desirable to reduce torque thresholds so that the risk of unacceptably high torques in the propeller system occurring is reduced.
- reducing the torque threshold results in an increased risk of incorrect activation due to spurious torque spikes.
- EP 0,398,839 discloses a helicopter control in which the speed of the free turbine of the engine is compared with the helicopter rotor speed.
- US 2008/275597 discloses a fuel control system according to the prior art.
- the present invention provides a fuel control system for a gas turbine engine having a core engine comprising at least one core engine spool in which a compressor and a turbine are interconnected by a shaft, the system including: a metering valve operable to control the rate at which pressurised fuel is delivered to a combustor of the engine, when the fuel control system is installed and in use;
- the system helps to prevent incorrect activation of emergency fuel reductions by effectively confirming fuel flow upward runaway with a further, generally independent parameter, which is the rate of change of speed of the core engine spool.
- the present invention provides a gas turbine engine having a core engine comprising at least one core engine spool in which a compressor and a turbine are interconnected by a shaft, and further comprising a fuel control system according to the first aspect.
- the present invention provides a method of controlling fuel supplied to a gas turbine engine having a core engine comprising at least one core engine spool in which a compressor and a turbine are interconnected by a shaft, the method including:
- the method corresponds to the fuel control system of the first aspect.
- the present invention provides the use of the fuel control system of the first aspect to control fuel supplied to a gas turbine engine having a core engine comprising at least one core engine spool in which a compressor and a turbine are interconnected by a shaft.
- the reduction in fuel supplied to the engine can be a complete cut in supplied fuel, i.e. an emergency fuel chop.
- the engine may be a turboprop engine further having a propeller driven by a low pressure spool including a free power turbine and a shaft which transmits power from the free power turbine to the propeller.
- the first engine sensor may determine the power output of the engine by measuring twist of the shaft of the low pressure spool, and by measuring rotational speed of the low pressure spool.
- the control unit may be further configured to also adjust the power threshold value as a function of the sensed power output of the engine.
- the control unit may adjust the power threshold value by increasing the power threshold value when the measured rate of change of speed of the core engine spool is zero or negative.
- the power threshold value may be increased relative to the power threshold value when the measured rate of change of speed of the core engine spool is positive.
- the increase may be a step change in power threshold value at zero rate of change of speed or at a predetermined negative rate of change of speed.
- control unit may adjust the power threshold value by decreasing the power threshold value when the measured rate of change of speed of the core engine spool is greater than a predetermined positive rate of change of speed.
- the power threshold value may be decreased relative to the power threshold value when the measured rate of change of speed is less than the predetermined positive rate of change of speed.
- the decrease may be a step change in power threshold value at the predetermined positive rate of change of speed.
- the adjustments to the power threshold value are typically reversible. However, the control unit may prevent further adjustments to the power threshold value as a function of the measured rate of change of speed of the core engine spool when the determined power output exceeds the power threshold value. In this way adjustments (and particularly step change adjustments) can be latched when fuel flow upward runaway events are confirmed.
- the core engine may comprise a high pressure core engine spool and an intermediate pressure core engine spool.
- the second engine sensor may measure the rate of change of speed of the high pressure core engine spool or the intermediate pressure core engine spool.
- control unit can be a sub-system of an engine electronic controller of the engine.
- the fuel control system may further include a metering valve operable to control the rate at which pressurised fuel is delivered to a combustor of the engine.
- the fuel control system may further include a fuel shut-off valve commandable by the control unit.
- a fuel shut-off valve commandable by the control unit.
- the fuel shut-off valve can implement the reduction in fuel supplied to the engine in the form of an emergency fuel chop.
- the propulsion unit shown in Figure 1 comprises a core engine 2 comprising a high pressure compressor 4 and a high pressure turbine 6 which are interconnected by a high pressure shaft 8.
- a combustor 10 is situated between the compressor 4 and the turbine 6.
- An accessory gearbox 12 has an input driven from the shaft 8 by means of a radial power off-take shaft 14. Outputs of the accessory gearbox 12 drive various components, including a fuel pump 16 which provides a pressurised fuel supply for the combustor 10, and a turbomachinery lubricant pump 18 which supplies lubricant, such as oil, to various systems of the engine, including the accessory gearbox 12 and bearings of the shaft 8. Lubricant supplied by the lubricant pump 18 is filtered and cooled by a filtering and cooling system 20.
- a propeller 22 is driven through a propeller gearbox 24 by means of a low pressure, free power turbine 26, which transmits power to the propeller gearbox 24 through a low pressure shaft 28 which extends within the high pressure shaft 8.
- the low pressure shaft 28 and the turbine 26 constitute a low pressure spool of the propulsion unit, and the compressor 4, the turbine 6 and the high pressure shaft 8 constitute a high pressure spool.
- the propeller 22 comprises blades 30.
- the blades 30 have a variable pitch, which can be controlled by a pitch control unit 32.
- the core engine 2 may comprise intermediate and high pressure spools instead of just the high pressure spool 4, 6, 8 shown in Figure 1 , i.e. an intermediate pressure compressor may be provided in front of the high pressure compressor 4, with an intermediate pressure shaft connecting the intermediate pressure compressor to an intermediate pressure turbine provided between the high pressure 6 and free power 26 turbines.
- the intermediate pressure shaft then extends within the high pressure shaft 8 while the low pressure shaft 28 extends within the intermediate pressure shaft.
- the engine has a fuel control system, shown schematically in Figure 2 .
- the pressurised fuel provided by the fuel pump 16 is delivered to the combustor 10 via a fuel metering valve 34 and a pressure raising and shut-off valve 36.
- a control unit 38 which typically is a part of the engine's EEC 40, controls the metering valve to ensure that a correct amount of fuel is delivered for a desired operating condition of the engine.
- the valve may send too much fuel to the combustor, potentially causing a problem of fuel flow upward runaway (FFUR).
- the FFUR may produce over-torque in the propeller system.
- the control unit 38 compares the power output of the engine determined by a first engine sensor 42 with a value of a power threshold.
- the first engine sensor may determine the engine power output by measuring the twist of the shaft 28 of the low pressure spool, and by measuring the rotational speed of the low pressure spool.
- the power threshold value may be scheduled by the control unit against rotational speed of the low pressure spool so that effectively the power threshold is a torque threshold.
- the control unit sends an emergency fuel chop command signal to the shut-off valve 36, thereby limiting the amount of over-torque.
- FIG. 3 shows a schematic graph of power against time for an FFUR event occurring at 15s.
- the power threshold value OPP - over power protection
- the power threshold value is plotted with a dashed line.
- the OPP value is constant before 15s, but increases slightly thereafter as the rotational speed of the low pressure spool against which it is scheduled also increases (in this particular example) as a result of the FFUR event which causes a sudden increase in torque which in turn leads to a small increase in LP shaft speed due to the slightly slower response of the pitch control unit 32.
- the engine power output PWR-LPT - power from the low pressure turbine
- a second, parallel set of measurements for the determination of engine power output may be made by another first engine sensor 42 and fed to the control unit 38.
- the control unit 38 would take action to avert over-torque in the propeller system by arresting the FFUR only when PWR-LPT exceeds OPP, which occurs at about 15.14s in Figure 3 .
- the FFUR thus causes (in this particular example) a peak torque of about 176.3 kNm in the propeller system.
- Figure 4 shows, therefore, the same schematic graph as Figure 3 , but including a bold line plotting the rate of change of rotational speed (Nldot) of an intermediate pressure spool of the core engine.
- the scale of the vertical axis of the graph is appropriate for power measured in kW or rate of change of rotational speed in %/sec.
- Nldot is measured by a second engine sensor 44 ( Figure 2 ) and fed to the control unit 38. This measurement can be performed indirectly by the second engine sensor.
- the second engine sensor can sense shaft rotational speed, and the control unit can then calculate Nldot from the sensed speed.
- Nldot is zero before the FFUR event, but increases immediately when the event occurs at 15s. This behaviour of Nldot is thus used by the control unit 38 to adjust the power threshold value.
- Figure 5 shows the same schematic graph as Figure 4 , but now including a dot-dashed line plotting an adjusted power threshold value (OPP').
- OPP' adjusted power threshold value
- OPP' can be lowered relative to the previous OPP (although still scheduled against rotational speed of the low pressure spool), thereby making the comparison between the engine power output and the power threshold value performed by the control unit 38 more sensitive to departures from normal behaviour of the engine power output, and thereby providing enhanced protection (i.e. a reduced reaction time) against relatively fast FFUR events.
- the adjusted power threshold value OPP' has a step change at zero Nldot and a further step change at the predetermined operation threshold for Nldot.
- the effect of adjusting the power threshold value in this way is to reduce the time at which the control unit 38 detects the example FFUR occurring at 15s by about 0.07s to about 15.07s. This results in the emergency fuel chop being performed earlier such that the peak torque in the propeller system is reduced (in this particular example) to about 144.14 kNm.
- the Nldot signal allows the control unit 38 to better differentiate between real FFUR events and spurious torque spikes, and to improve its response to these events by reducing the power threshold values when the Nldot is measured to be above a predetermined operation threshold (which can be determined empirically).
- the reduction can be temporary if a shut-off condition is not reached (i.e. PWR-LPT does not exceed OPP'). But otherwise the reduction can be permanent (i.e. the step change to the threshold latches).
- control unit 38 acts to prevent incorrect activation of FFUR emergency fuel chop logic by confirming the FFUR event with another parameter, which is a core engine spool rate of change of rotational speed.
- the anticipatory logic of the control unit improves the efficacy of FFUR detection by reducing the FFUR power threshold value for abnormally high core engine spool accelerations, and helps to avoid incorrect FFUR detection due to spurious torque spikes by increasing the FFUR power threshold value when the core engine spool is not accelerating.
- control unit 38 could also adjust the power threshold value on the basis of a measurement of the rate of change of rotational speed of the high pressure spool of the core engine.
- the present invention can also be applied to e.g. turbofan engines, helicopter engines, and industrial and marine gas turbine engines.
- the determined power output can be that of the fan (or a proxy thereof) or the gearbox in the case of a geared turbofan.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Control Of Turbines (AREA)
Claims (13)
- Système de régulation de carburant pour une turbine à gaz ayant un bloc réacteur (2) comprenant au moins un corps de bloc réacteur dans lequel un compresseur (4) et une turbine (6) sont interconnectés par un arbre (8), le système comprenant :une soupape de dosage (34) permettant de réguler la vitesse à laquelle le carburant sous pression est amené à une chambre de combustion du moteur, lorsque le système de régulation de carburant est installé et en service ;un premier capteur de moteur (42) qui détermine une puissance de sortie du moteur ;une unité de régulation (38) qui est conçue pour comparer la puissance de sortie déterminée avec une valeur de seuil de puissance, et pour commander une réduction du carburant fourni au moteur lorsque la puissance de sortie déterminée dépasse la valeur de seuil de puissance ; etun second capteur de moteur (44) qui mesure le taux de variation de la vitesse de rotation du corps de bloc réacteur ;caractérisé en ce quel'unité de régulation (38) est en outre conçue pour ajuster la valeur de seuil de puissance en fonction du taux mesuré de variation de vitesse du corps de bloc réacteur.
- Système de régulation de carburant selon la revendication 1, le moteur étant un turbopropulseur ayant en outre une hélice (22) entraînée par une bobine basse pression comprenant une turbine libre (26) et un arbre (28) qui transmet la puissance de la turbine libre (26) à l'hélice (22).
- Système de régulation de carburant selon la revendication 2, le premier capteur de moteur (42) déterminant la puissance de sortie du moteur en mesurant la torsion de l'arbre (28) du corps basse pression, et en mesurant la vitesse de rotation du corps basse pression.
- Système de régulation de carburant selon l'une quelconque des revendications précédentes, l'unité de régulation (38) étant conçue pour ajuster la valeur de seuil de puissance en augmentant la valeur de seuil de puissance lorsque le taux mesuré de variation de vitesse du corps de bloc réacteur est nul ou négatif.
- Système de régulation de carburant selon la revendication 4, l'augmentation étant une variation progressive de la valeur de seuil de puissance à un taux de changement de vitesse nul ou à un taux de changement de vitesse négatif prédéfini.
- Système de régulation de carburant selon l'une quelconque des revendications précédentes, l'unité de régulation (38) étant conçue pour ajuster la valeur de seuil de puissance en diminuant la valeur de seuil de puissance lorsque le taux mesuré de variation de vitesse du corps de bloc réacteur est supérieur à un taux de variation de vitesse positif prédéfini.
- Système de régulation de carburant selon la revendication 6, la diminution étant une variation progressive de la valeur de seuil de puissance au taux positif prédéfini de variation de vitesse.
- Système de régulation de carburant selon l'une quelconque des revendications précédentes, les ajustements de la valeur de seuil de puissance étant réversibles, excepté que l'unité de régulation (38) est conçue pour empêcher d'autres ajustements de la valeur de seuil de puissance en fonction du taux mesuré de variation de vitesse du corps de bloc réacteur lorsque la puissance de sortie déterminée dépasse la valeur de seuil de puissance.
- Système de régulation de carburant selon l'une quelconque des revendications précédentes, le bloc réacteur (2) comprenant un corps de bloc réacteur haute pression et un corps de bloc réacteur de pression intermédiaire.
- Système de régulation de carburant selon la revendication 9, le second capteur de moteur (44) mesurant le taux de changement de vitesse du corps de bloc réacteur haute pression ou du corps de bloc réacteur de pression intermédiaire.
- Système de régulation de carburant selon l'une quelconque des revendications précédentes, le système de régulation de carburant pouvant en outre comprendre un robinet d'arrêt carburant (36) pouvant être commandé par l'unité de régulation (38) lorsque la puissance de sortie déterminée dépasse la valeur de seuil de puissance pour réaliser la réduction du carburant fourni au moteur sous la forme d'une coupure de carburant d'urgence.
- Turbine à gaz ayant un bloc réacteur (2) comprenant au moins un corps de bloc réacteur dans lequel un compresseur (4) et une turbine (6) sont interconnectés par un arbre (8), et comprenant en outre un système de régulation de carburant selon l'une des revendications précédentes.
- Procédé de commande du carburant fourni à une turbine à gaz ayant un bloc réacteur (2) comprenant au moins un corps de bloc réacteur dans lequel un compresseur (4) et une turbine (6) sont interconnectés par un arbre (8), le procédé comprenant les étapes consistant à :déterminer une puissance de sortie du moteur ;mesurer le taux de variation de vitesse de rotation du corps de bloc réacteur ;ajuster une valeur de seuil de puissance en fonction du taux mesuré de variation de vitesse du corps de bloc réacteur ;comparer la puissance de sortie déterminée à la valeur de seuil de puissance, etréduire la quantité de carburant fournie au moteur lorsque la puissance de sortie déterminée dépasse la valeur de seuil de puissance.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GBGB1706269.6A GB201706269D0 (en) | 2017-04-20 | 2017-04-20 | Fuel control system |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3392485A1 EP3392485A1 (fr) | 2018-10-24 |
EP3392485B1 true EP3392485B1 (fr) | 2019-12-25 |
Family
ID=58795807
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP18162782.9A Active EP3392485B1 (fr) | 2017-04-20 | 2018-03-20 | Système de régulation de carburant |
Country Status (3)
Country | Link |
---|---|
US (1) | US20180306125A1 (fr) |
EP (1) | EP3392485B1 (fr) |
GB (1) | GB201706269D0 (fr) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE542084C2 (en) * | 2017-07-14 | 2020-02-25 | Lean Marine Sweden Ab | Method for controlling the propulsion of a ship by determined cylinder top pressure |
US11092136B2 (en) * | 2018-05-04 | 2021-08-17 | Raytheon Technologies Corporation | Systems and methods for optimal speed protection for power turbine governing |
SE543261C2 (en) * | 2019-07-03 | 2020-11-03 | Lean Marine Sweden Ab | Method and System for Controlling Propulsive Power Output of Ship |
US11346290B2 (en) * | 2020-02-21 | 2022-05-31 | Raytheon Technologies Corporation | Speed limiting for power turbine governing and protection in a turboshaft engine |
GB2593715A (en) * | 2020-03-31 | 2021-10-06 | Rolls Royce Deutschland & Co Kg | In-flight monitoring of aero engine health |
US20240318605A1 (en) * | 2023-03-24 | 2024-09-26 | Hamilton Sundstrand Corporation | Single processor, single channel electronic engine control overspeed protection for gas turbine engines |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4648797A (en) * | 1983-12-19 | 1987-03-10 | United Technologies Corporation | Torque control system |
US5020316A (en) * | 1989-05-19 | 1991-06-04 | Coltec Industries Inc. | Helicopter control with multiple schedule rotor speed decay anticipator |
US5775090A (en) * | 1996-12-23 | 1998-07-07 | Allison Engine Company | Torque signal synthesis method and system for a gas turbine engine |
FR2902408B1 (fr) * | 2006-06-19 | 2008-08-08 | Eurocopter France | Equilibrage en puissance de deux turbomoteurs d'un aeronef |
-
2017
- 2017-04-20 GB GBGB1706269.6A patent/GB201706269D0/en not_active Ceased
-
2018
- 2018-03-20 EP EP18162782.9A patent/EP3392485B1/fr active Active
- 2018-04-20 US US15/958,039 patent/US20180306125A1/en not_active Abandoned
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
GB201706269D0 (en) | 2017-06-07 |
EP3392485A1 (fr) | 2018-10-24 |
US20180306125A1 (en) | 2018-10-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3392485B1 (fr) | Système de régulation de carburant | |
EP3284932B1 (fr) | Détection de l'état de d'une pompe à carburant | |
EP3121389B1 (fr) | Procédés de contrôle de moteur à turbine à gaz avec action correctrice en cas de détection de rupture d'arbre potentielle | |
CA2687110C (fr) | Fonctionnement d'un moteur d'avion apres arret d'urgence | |
EP2955334B1 (fr) | Procédé et appareil permettant de commander un compresseur d'une turbine à gaz | |
EP1444428B1 (fr) | Procede et dispositif pour prevenir le pompage dans une turbine a gaz | |
JP5465950B2 (ja) | 航空機用ガスタービン・エンジンの制御装置 | |
EP2884075B1 (fr) | Système de moteur d'avion comprenant un moteur principal, un démarreur et une unité de puissance auxiliaire | |
CA3114227C (fr) | Gestion de puissance de sortie d'un aeronef | |
EP2356327B1 (fr) | Systeme a securite integree adaptatif pour turbines a gaz commandees par regulation automatique a pleine autorite redondante | |
CN105745399B (zh) | 涡轮发动机和控制方法 | |
EP2762711B1 (fr) | Système de commande de carburant d'un moteur | |
US7530232B2 (en) | Method for regulating the flow rate of fuel to a turboshaft engine in acceleration or in deceleration | |
EP3738875B1 (fr) | Procédé et système pour faire fonctionner un moteur de giravion | |
CN111216903A (zh) | 集成式螺旋桨和发动机控制器 | |
US10150569B2 (en) | Method of stopping a rotorcraft engine in overspeed, and a system and a rotorcraft associated therewith | |
US8800295B2 (en) | Device and a method for regulating a turbine engine, and an aircraft | |
US10309249B2 (en) | Control apparatus for a gas-turbine aeroengine | |
CA3147201A1 (fr) | Systeme et methode pour detecter une panne d'unite de commande d'helice | |
US10683810B2 (en) | Shaft shear detection for gas turbine engines | |
EP4368500A1 (fr) | Systèmes et procédés de commande de pression de fluide d'unité de commande d'hélice | |
CA2929833C (fr) | Detection de defaillance d'arbre au moyen de methodes de controle passives |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20190305 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
INTG | Intention to grant announced |
Effective date: 20191029 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602018001725 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1217379 Country of ref document: AT Kind code of ref document: T Effective date: 20200115 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: ROLLS-ROYCE PLC |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20191225 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200326 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191225 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191225 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191225 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191225 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191225 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191225 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191225 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191225 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191225 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191225 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200520 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191225 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191225 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191225 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200425 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602018001725 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191225 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191225 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191225 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1217379 Country of ref document: AT Kind code of ref document: T Effective date: 20191225 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191225 |
|
26N | No opposition filed |
Effective date: 20200928 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20200331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200320 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191225 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191225 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200320 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200331 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191225 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210331 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191225 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191225 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191225 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191225 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230528 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240328 Year of fee payment: 7 Ref country code: GB Payment date: 20240319 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240327 Year of fee payment: 7 |