EP3391765B1 - Safety helmet with rotary impact buffering function - Google Patents
Safety helmet with rotary impact buffering function Download PDFInfo
- Publication number
- EP3391765B1 EP3391765B1 EP18166784.1A EP18166784A EP3391765B1 EP 3391765 B1 EP3391765 B1 EP 3391765B1 EP 18166784 A EP18166784 A EP 18166784A EP 3391765 B1 EP3391765 B1 EP 3391765B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- buffering
- elastic
- shell
- liner
- rotary impact
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000003139 buffering effect Effects 0.000 title claims description 155
- 239000004033 plastic Substances 0.000 claims description 30
- 241001079814 Symphyotrichum pilosum Species 0.000 claims description 14
- 235000004224 Typha angustifolia Nutrition 0.000 claims description 14
- 230000000694 effects Effects 0.000 description 9
- 208000034656 Contusions Diseases 0.000 description 6
- 230000007547 defect Effects 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 230000000712 assembly Effects 0.000 description 3
- 238000000429 assembly Methods 0.000 description 3
- 238000013016 damping Methods 0.000 description 3
- 239000000741 silica gel Substances 0.000 description 3
- 229910002027 silica gel Inorganic materials 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 2
- 239000002390 adhesive tape Substances 0.000 description 2
- 230000002301 combined effect Effects 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 230000005489 elastic deformation Effects 0.000 description 2
- 239000004677 Nylon Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000013013 elastic material Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A42—HEADWEAR
- A42B—HATS; HEAD COVERINGS
- A42B3/00—Helmets; Helmet covers ; Other protective head coverings
- A42B3/04—Parts, details or accessories of helmets
- A42B3/06—Impact-absorbing shells, e.g. of crash helmets
- A42B3/062—Impact-absorbing shells, e.g. of crash helmets with reinforcing means
- A42B3/063—Impact-absorbing shells, e.g. of crash helmets with reinforcing means using layered structures
- A42B3/064—Impact-absorbing shells, e.g. of crash helmets with reinforcing means using layered structures with relative movement between layers
Definitions
- the invention relates to the field of safety protection, in particular to a safety helmet with a rotary impact buffering function.
- Safety helmets are common safety protection articles; the utility model with the Chinese patent application No. CN201520252101.8 discloses a safety helmet which comprises a safety helmet shell, a safety helmet liner, a fixing endpoint, helmet ribbons, a fixing buckle and a fixing ring, wherein the safety helmet liner made of an elastic material is fixed in the safety helmet shell through an outer ring buckle, the fixing endpoint is arranged at the top end, close to the safety helmet shell, of the safety helmet liner, and the fixing buckle is arranged at the top end in the safety helmet shell.
- the invention provides a safety helmet with a rotary impact buffering function, which can well buffer external rotary impact force and effectively protect the heads of users against bruises when suffering from the rotary impact of external force.
- the present invention is defined by the appended independent claim.
- the dependent claim is directed to optional features and a preferred embodiment.
- a safety helmet with a rotary impact buffering function comprises the features of claim 1.
- the rotary impact buffering device is arranged between the shell and the elastic liner of the safety helmet and is capable of elastically deforming in the normal direction of the safety helmet and also capable of elastically deforming in the tangential direction of the safety helmet.
- the shell When the safety helmet is impacted by external force, the shell has the tendency to rotate relative to the elastic liner under the effect of the component force applied to the shell in the tangential direction; however, in the invention, the rotary impact buffering device enabling the shell to rotate relative to the elastic liner is arranged between the shell and the elastic liner, through tangential deformation of the rotary impact buffering device, the shell can rotate relative to the elastic liner by a certain angle on the premise of keeping the elastic liner unmoved relatively, so that a rotary impact buffering function is achieved, and impact to users from external force is greatly reduced.
- the rotary impact buffering device deforms within a certain range, after the shell of the safety helmet rotates relative to the elastic liner by a certain angle, the anti-rotation damping force of the rotary impact buffering device is increased greatly, and thus the rotation angle of the shell relative to the elastic liner is controlled within a certain range.
- the defects that existing safety helmets are poor in capacity to bear the rotary impact of external force and cannot effectively protect heads against bruises when suffering from the rotary impact of external force are overcome, and the protection effect of the safety helmet on users is greatly improved.
- the safety helmet is structurally provided with the plastic nail holders connected with the shell and the elastic washers connected with the elastic liner, the plastic nail holders and the elastic washers are connected through the plastic nails, and the plastic nails are fixed relative to the elastic washers.
- the plastic nail holders and the elastic washers can transversely slide within a certain range, part of the buffering displacement for the shell to rotate relative to the elastic liner is formed accordingly, the anti-disengagement buckle heads are used for preventing the nail rods from disengaging from the plastic nail holders, and thus connection between the plastic nail holders and the elastic washers is ensured.
- the inner end refers to the end close to the elastic liner
- the outer end refers to the end, close to the shell, of the rotary impact buffering device.
- the elastic washers can compressively deform in the longitudinal direction or the transverse direction when being impacted by external force
- the compressive deformation in the longitudinal direction can buffer impact in the normal direction of the safety helmet
- the compressive deformation in the transverse direction forms the other part of the buffering displacement for the shell to rotate relative to the elastic liner.
- the plastic nail holders, the plastic nails and the elastic washers of the buffering components are matched with the elastic liner to achieve multi-buffering protection of normal impact force and rotary (tangential) impact force, and thus a better protection effect is achieved.
- the elastic washers are connected with the plastic nail holders inlaid in the inner side of the shell through the plastic nails, and thus assembling and disassembling are convenient and fast.
- the effective contact areas between the elastic washers and the plastic nail holders and the effective contact areas between the elastic washers and the elastic liner can be effectively increased through the inner convex rings and the outer convex rings, and the structural stability of the buffering components under the effect of tangential force is improved; and under the combined effect of the inner circular grooves and the outer circular grooves, the side walls of the elastic washers are each of a corrugated structure, and thus the buffering performance of the buffering components is improved.
- the contact surface between each platen and the corresponding elastic washer is of a concave spherical structure, and the inner end face of each elastic washer is of a convex spherical structure.
- the platens are matched with the elastic washers through spherical contact, and the elastic washers are matched with the elastic liner through spherical contact, so that the structural stability of the buffering components under the effect of tangential force is improved, and the buffering performance of the buffering components is improved.
- the rotary impact buffering device comprises a plurality of buffering assemblies.
- Each buffering assembly comprises a mounting plate and buffering columns, wherein the mounting plate is provided with a plurality of columnar buffering washers and connected with the inner side of the shell, the mounting plate is also provided with mounting holes, the number of mounting holes is the same as that of the buffering washers, and the buffering washers are arranged in the mounting holes in a one-to-one corresponding mode; the number of the buffering columns is the same as that of the buffering washers, and the buffering columns are embedded in inner holes of the buffering washers in a one-to-one corresponding mode; and the length of the buffering columns is smaller than the depth of the inner holes of the buffering washers, the height of the buffering washers is greater than the thickness of the mounting plate, and the inner ends of the buffering washers is connected with the elastic liner.
- each buffering assembly is provided with a plurality of buffering washers connected with the inner side of the shell, the buffering columns are inlaid in the inner holes of the buffering washers, in this way, buffering protection is achieved through elastic deformation of the buffering washers, the elastic deformation of the buffering washers is controlled within a certain range, and thus the buffering washers can restore easily.
- a plurality of outer circular grooves are formed in the outer periphery of each buffering washer
- a plurality of inner grooves are formed in the inner periphery of each buffering washer
- the outer grooves and the inner grooves are arranged in a staggered mode in the axis direction of each buffering washer.
- the side walls of the buffering washers are each of a corrugated structure, and thus the buffering performance of the buffering washers is improved.
- counter bores are formed in the inner side of the shell, the number of the counter bores is the same as that of the buffering washers, and the counter bores are in one-to-one correspondence with the buffering washers; outer flanges which are matched with the counter bores are arranged at the outer ends of the buffering washers, inner flanges are arranged at the inner ends of the buffering washers, and the buffering washers are connected with the elastic liner through the inner flanges.
- connection strength of the buffering washers and the shell can be improved through the outer flanges of the buffering washers, and the connection strength of the buffering washers and the head lock, as well as between the buffering washers and the elastic liner, can be improved through the inner flanges of the buffering washers.
- the rotary impact buffering device comprises a notch, a plurality of elastic supporting columns and a buffering pad, wherein the notch is formed in the inner side of the shell, the outer ends of the elastic supporting columns are connected with the bottom surface of the notch, the buffering pad is provided with positioning holes, the number of the positioning holes is the same as that of the elastic supporting columns, the buffering pad is arranged in the notch, the outer ends of the elastic supporting columns are sleeved with the positioning holes in a one-to-one corresponding mode, and the inner ends of the elastic supporting columns are connected with the elastic liner.
- the elastic supporting columns and the buffering pad of the buffering assembly are matched with the elastic liner to achieve multi-buffering protection against impact force and rotary impact force, and the elastic supporting columns can restore easily through the buffering pad.
- the safety helmet with a rotary impact buffering function further comprises U-shaped buffering strips, wherein one end of each U-shaped buffering strip is connected with the elastic liner, the other end of each U-shaped buffering strip is connected with one end of a connecting strip, and a buckle head is arranged at the other end of each connecting strip, buckle holes matched with the buckle heads are formed in the inner side of the shell, and the buckle heads are correspondingly clamped in the buckle holes.
- the elastic liner is integrally connected with the shell through the U-shaped buffering strips and the connecting strips, on the one hand, the U-shaped buffering strips can form a buffering structure between the elastic liner and the shell, so that a buffering function is achieved when the safety helmet suffers from tangential force, and the buffering effect is further improved when the safety helmet is impacted by rotary force; and on the other hand, excessive sliding between the elastic liner and the shell can be limited.
- the buckle heads are matched with the buckle holes to achieve fixation, and thus disassembling and assembling are convenient.
- the elastic liner is of a multi-band structure and comprises a U-shaped liner band located on the head and an annular liner band surrounding the periphery of the head; the number of the U-shaped buffering strips is two, and the two U-shaped buffering strips are separately arranged on the annular liner band located on the left side and the right side of the rear portion of the safety helmet; and two binding strips are further correspondingly arranged at the joints of the U-shaped buffering strips and the elastic liner, and the other ends of the binding strips are connected with a head lock.
- the U-shaped buffering strips are arranged on the left side and the right side of the rear portion of the safety helmet, the joints of the U-shaped buffering strips and the elastic liner are located at the same positions with the joints of the binding strips and the elastic liner, the head lock is used for adjusting the tightness of the binding strips, and through the proper tightness between the binding strips and the head, the head can be protected when the safety helmet suffers from rotary impact of external force.
- the safety helmet of this example has beneficial effects.
- the rotary impact buffering device is arranged between the shell and the elastic liner of the safety helmet of this example so that tangential component force generated when the safety helmet is impacted by external force can be greatly reduced, and impact to users from external force is greatly reduced. Furthermore, deformation of the rotary impact buffering device is in a set range, so that when the shell of the safety helmet rotates relative to the elastic liner by a certain angle, the anti-rotation damping force of the rotary impact buffering device is greatly increased, and thus the rotation angle of the shell relative to the elastic liner is controlled within a certain range. In this way, the defects that existing safety helmets are poor in capacity to bear the rotary impact of external force and cannot effectively protect the head against bruises when suffering from the rotary impact of external force are overcome, and the protection effect of the safety helmet on users is greatly improved.
- FIGs: 1 shell; 2, elastic liner; 3, binding strip; 4, head lock; 5, buffering assembly; 6, buffering washer; 7, double-faced adhesive tape; 8, mounting plate; 9, buffering column; 10, mounting hole; 11, outer groove; 12, inner groove; 13, counter bore; 14, outer flange; 15, inner flange; 16, buffering component; 17, outer step hole; 18, plastic nail holder; 19, plastic nail; 20, inner step hole; 21, elastic washer; 22, platen; 23, nail rod; 24, anti-disengaging buckle head; 25, inner convex ring; 26, outer convex ring; 27, outer circular groove; 28, inner circular groove; 29, notch; 30, elastic supporting column; 31, positioning hole; 32, buffering pad; 33, U-shaped buffering strip; 34, buckle head; 35, connecting strip; 36, buckle hole; 37, U-shaped liner band; 38, annular liner band.
- a safety helmet with a rotary impact buffering function comprises a shell 1 and an elastic liner 2 arranged in the shell, and the elastic liner is made of a PC board or foam.
- a gap is formed between the shell and the elastic liner, and a rotary impact buffering device enabling the shell to rotate relative to the elastic liner is arranged between the shell and the elastic liner.
- the rotary impact buffering device comprises twenty-one buffering components 16.
- Each buffering component comprises a plastic nail holder 18, a columnar elastic washer 21 and a plastic nail 19, wherein the plastic nail holder is inlaid in the inner side of the shell and provided with an outer step hole 17 with the small-diameter end located at the inner end, the elastic washer is provided with an inner step hole 20 with the small-diameter end located at the outer end, the outer end face of the elastic washer is tightly attached to the inner end face of the plastic nail holder, and the elastic washer and the plastic nail holder are connected through the plastic nail.
- Each plastic nail comprises a platen 22, a nail rod 23 and an anti-disengaging buckle head 24, wherein the platen is located in the large-diameter section of the corresponding inner step hole, the contact surface between the platen and the elastic washer is of a concave spherical structure, the nail rod penetrates through the small-diameter section of the corresponding inner step hole and the small-diameter section of the corresponding outer step hole, one end of the nail rod is connected with the platen, the diameter of the small-diameter section of the corresponding inner step hole is matched with the outer diameter of the nail rod, and the diameter of the small-diameter section of the corresponding outer step hole is greater than the outer diameter of the nail rod, and the anti-disengaging buckle head is located in the large-diameter section of the corresponding outer step hole and connected with the other end of the nail rod.
- the platen, the nail rod and the anti-disengaging buckle head of each plastic nail are formed integrally, and the elastic washers are made of silica gel.
- the inner end face of each elastic washer is of a convex spherical structure, and the inner end face of each elastic washer is bonded with the elastic liner.
- An inner convex ring 25 and an outer convex ring 26 are separately arranged on the outer peripheries of the two ends of each elastic washer, and the elastic washers are bonded with the elastic liner through the inner convex rings.
- the safety helmet with a rotary impact buffering function further comprises U-shaped buffering strips 33, wherein one end of each U-shaped buffering strip is connected with the elastic liner, the other end of each U-shaped buffering strip is integrally connected with one end of a connecting strip 35, a buckle head 34 is arranged at the other end of each connecting strip, buckle holes 36 matched with the buckle heads are formed in the inner side of the shell, and the buckle heads are correspondingly clamped in the buckle holes.
- the elastic liner is of a two-band structure and comprises a U-shaped liner band 37 located on the head and an annular liner band 38 (as is shown in FIG.6 ) surrounding the periphery of the head; the number of the U-shaped buffering strips is two, and the two U-shaped buffering strips are separately arranged on the annular liner band located on the left side and the right side of the rear portion of the safety helmet; and two binding strips 3 are further correspondingly arranged at the joints of the U-shaped buffering strips and the elastic liner, and the other ends of the binding strips are connected with a head lock 4.
- the rotary impact buffering device comprises seven buffering assemblies 5.
- Each buffering assembly comprises a mounting plate 8 and buffering columns 9, wherein the mounting plate 8 is provided with three columnar buffering washers 6 and connected with the inner side of the shell through double-faced adhesive tape 7, the mounting plate is also provided with mounting holes 10, the number of mounting holes is the same as that of the buffering washers 6, and the buffering washers are arranged in the mounting holes in a one-to-one corresponding mode; the number of the buffering columns is the same as that of the buffering washers, and the buffering columns are embedded in inner holes of the buffering washers in a one-to-one corresponding mode; the buffering washers and the buffering columns are made of silica gel, the length of the buffering columns is smaller than the depth of the inner holes of the buffering washers, the height of the buffering washers is greater than the thickness of the mounting plate, and the inner ends of the buffering washers are bonded with the elastic line
- Three outer grooves 11 are formed in the outer periphery of each buffering washer, two inner grooves 12 are formed in the periphery of the inner hole side of each buffering washer, and the outer grooves and the inner grooves are arranged in a staggered mode in the axis direction of each buffering washer.
- Counter bores 13 are formed in the inner side of the shell, the number of the counter bores is the same as that of the buffering washers, and the counter bores are in one-to-one correspondence with the buffering washers.
- Outer flanges 14 which are matched with the counter bores are arranged at the outer ends of the buffering washers, inner flanges 15 are arranged at the inner ends of the buffering washers, and the buffering washers are bonded with the elastic liner through the inner flanges.
- the second embodiment is the same as the first embodiment in other aspects.
- the rotary impact buffering device comprises a notch 29, twenty-four elastic supporting columns 30 and a buffering pad 32, wherein the notch is formed in the inner side of the shell, the outer ends of the twenty-four elastic supporting columns are connected with the bottom surface of the notch, the buffering pad is provided with positioning holes 31, and the number of the positioning holes is the same as that of the elastic supporting columns; and the buffering pad is arranged in the notch, the outer ends of the elastic supporting columns are sleeved with the positioning holes in a one-to-one corresponding mode, and the inner ends of the elastic supporting columns are bonded with the elastic liner.
- the elastic supporting columns are made of nylon
- the cross section of the elastic supporting columns is in a regular hexagon shape
- the buffering pad 32 is made of silica gel.
- the third embodiment is the same as the first embodiment in other aspects.
- the rotary impact buffering device is arranged between the shell and the elastic liner and is capable of elastically deforming in the normal direction of the safety helmet and also capable of elastically deforming in the tangential direction of the safety helmet.
- the shell has the tendency to rotate relative to the elastic liner under the effect of the component force applied to the shell in the tangential direction; however, the rotary impact buffering device enabling the shell to rotate relative to the elastic liner is arranged between the shell and the elastic liner of the invention, through tangential deformation of the rotary impact buffering device, the shell can rotate relative to the elastic liner by a certain angle on the premise of keeping the elastic liner unmoved relatively, so that a rotary impact buffering function is achieved, and the impact to users from external force is greatly reduced.
- the rotary impact buffering device deforms within a certain range, after the shell of the safety helmet rotates relative to the elastic liner by a certain angle, the anti-rotation damping force of the rotary impact buffering device is increased greatly, and thus the rotation angle of the shell relative to the elastic liner is controlled within a certain range.
- the elastic liner is integrally connected with the shell through the U-shaped buffering strips and the connecting strips, and thus the buffering effect is further improved when the safety helmet is impacted by rotary force. In this way, the defects that existing safety helmets are poor in capacity to bear the rotary impact of external force and cannot effectively protected the heads of users against bruises when suffering from the rotary impact of external force are overcome, and the protection effect of the safety helmet on users is greatly improved.
Landscapes
- Vibration Dampers (AREA)
- Helmets And Other Head Coverings (AREA)
Description
- The invention relates to the field of safety protection, in particular to a safety helmet with a rotary impact buffering function.
- Safety helmets are common safety protection articles; the utility model with the Chinese patent application No.
CN201520252101.8 US 2015/089724 A1 ,WO 2015/177747 A1 andUS 2014/096311 A1 . - To overcome the defects that existing safety helmets are poor in capacity to bear the rotary impact of external force and cannot effectively protect the heads of users against bruises when suffering from the rotary impact of external force, the invention provides a safety helmet with a rotary impact buffering function, which can well buffer external rotary impact force and effectively protect the heads of users against bruises when suffering from the rotary impact of external force.
- The present invention is defined by the appended independent claim. The dependent claim is directed to optional features and a preferred embodiment.
- According to the specific technical scheme of the invention, a safety helmet with a rotary impact buffering function comprises the features of
claim 1. In the invention, the rotary impact buffering device is arranged between the shell and the elastic liner of the safety helmet and is capable of elastically deforming in the normal direction of the safety helmet and also capable of elastically deforming in the tangential direction of the safety helmet. When the safety helmet is impacted by external force, the shell has the tendency to rotate relative to the elastic liner under the effect of the component force applied to the shell in the tangential direction; however, in the invention, the rotary impact buffering device enabling the shell to rotate relative to the elastic liner is arranged between the shell and the elastic liner, through tangential deformation of the rotary impact buffering device, the shell can rotate relative to the elastic liner by a certain angle on the premise of keeping the elastic liner unmoved relatively, so that a rotary impact buffering function is achieved, and impact to users from external force is greatly reduced. In addition, the rotary impact buffering device deforms within a certain range, after the shell of the safety helmet rotates relative to the elastic liner by a certain angle, the anti-rotation damping force of the rotary impact buffering device is increased greatly, and thus the rotation angle of the shell relative to the elastic liner is controlled within a certain range. In this way, the defects that existing safety helmets are poor in capacity to bear the rotary impact of external force and cannot effectively protect heads against bruises when suffering from the rotary impact of external force are overcome, and the protection effect of the safety helmet on users is greatly improved. - Further in the invention, the safety helmet is structurally provided with the plastic nail holders connected with the shell and the elastic washers connected with the elastic liner, the plastic nail holders and the elastic washers are connected through the plastic nails, and the plastic nails are fixed relative to the elastic washers. As the outer diameter of the nail rods of the plastic nails is far smaller than the diameter of the small-diameter sections of the outer step holes, the plastic nail holders and the elastic washers can transversely slide within a certain range, part of the buffering displacement for the shell to rotate relative to the elastic liner is formed accordingly, the anti-disengagement buckle heads are used for preventing the nail rods from disengaging from the plastic nail holders, and thus connection between the plastic nail holders and the elastic washers is ensured. In the description, the inner end refers to the end close to the elastic liner, and the outer end refers to the end, close to the shell, of the rotary impact buffering device. Furthermore, the elastic washers can compressively deform in the longitudinal direction or the transverse direction when being impacted by external force, the compressive deformation in the longitudinal direction can buffer impact in the normal direction of the safety helmet, and the compressive deformation in the transverse direction forms the other part of the buffering displacement for the shell to rotate relative to the elastic liner. In this way, the plastic nail holders, the plastic nails and the elastic washers of the buffering components are matched with the elastic liner to achieve multi-buffering protection of normal impact force and rotary (tangential) impact force, and thus a better protection effect is achieved. The elastic washers are connected with the plastic nail holders inlaid in the inner side of the shell through the plastic nails, and thus assembling and disassembling are convenient and fast.
- Further in the invention, the effective contact areas between the elastic washers and the plastic nail holders and the effective contact areas between the elastic washers and the elastic liner can be effectively increased through the inner convex rings and the outer convex rings, and the structural stability of the buffering components under the effect of tangential force is improved; and under the combined effect of the inner circular grooves and the outer circular grooves, the side walls of the elastic washers are each of a corrugated structure, and thus the buffering performance of the buffering components is improved.
- Preferably, the contact surface between each platen and the corresponding elastic washer is of a concave spherical structure, and the inner end face of each elastic washer is of a convex spherical structure. The platens are matched with the elastic washers through spherical contact, and the elastic washers are matched with the elastic liner through spherical contact, so that the structural stability of the buffering components under the effect of tangential force is improved, and the buffering performance of the buffering components is improved.
- As an optional example, the rotary impact buffering device comprises a plurality of buffering assemblies. Each buffering assembly comprises a mounting plate and buffering columns, wherein the mounting plate is provided with a plurality of columnar buffering washers and connected with the inner side of the shell, the mounting plate is also provided with mounting holes, the number of mounting holes is the same as that of the buffering washers, and the buffering washers are arranged in the mounting holes in a one-to-one corresponding mode; the number of the buffering columns is the same as that of the buffering washers, and the buffering columns are embedded in inner holes of the buffering washers in a one-to-one corresponding mode; and the length of the buffering columns is smaller than the depth of the inner holes of the buffering washers, the height of the buffering washers is greater than the thickness of the mounting plate, and the inner ends of the buffering washers is connected with the elastic liner. When the safety helmet of this structure is impacted by external force, the buffering washers and the buffering columns of the buffering assemblies are matched with the elastic liner to achieve multi-buffering protection against normal impact force and rotary (tangential) impact force, and thus the buffering effect is good. The mounting plate of each buffering assembly is provided with a plurality of buffering washers connected with the inner side of the shell, the buffering columns are inlaid in the inner holes of the buffering washers, in this way, buffering protection is achieved through elastic deformation of the buffering washers, the elastic deformation of the buffering washers is controlled within a certain range, and thus the buffering washers can restore easily.
- In one example, a plurality of outer circular grooves are formed in the outer periphery of each buffering washer, a plurality of inner grooves are formed in the inner periphery of each buffering washer, the outer grooves and the inner grooves are arranged in a staggered mode in the axis direction of each buffering washer. Under the combined effect of the outer grooves and the inner grooves, the side walls of the buffering washers are each of a corrugated structure, and thus the buffering performance of the buffering washers is improved.
- In one example, counter bores are formed in the inner side of the shell, the number of the counter bores is the same as that of the buffering washers, and the counter bores are in one-to-one correspondence with the buffering washers; outer flanges which are matched with the counter bores are arranged at the outer ends of the buffering washers, inner flanges are arranged at the inner ends of the buffering washers, and the buffering washers are connected with the elastic liner through the inner flanges. The connection strength of the buffering washers and the shell can be improved through the outer flanges of the buffering washers, and the connection strength of the buffering washers and the head lock, as well as between the buffering washers and the elastic liner, can be improved through the inner flanges of the buffering washers.
- In one example, the rotary impact buffering device comprises a notch, a plurality of elastic supporting columns and a buffering pad, wherein the notch is formed in the inner side of the shell, the outer ends of the elastic supporting columns are connected with the bottom surface of the notch, the buffering pad is provided with positioning holes, the number of the positioning holes is the same as that of the elastic supporting columns, the buffering pad is arranged in the notch, the outer ends of the elastic supporting columns are sleeved with the positioning holes in a one-to-one corresponding mode, and the inner ends of the elastic supporting columns are connected with the elastic liner. Through the structure, when the safety helmet suffers from the rotary impact of external force, the elastic supporting columns and the buffering pad of the buffering assembly are matched with the elastic liner to achieve multi-buffering protection against impact force and rotary impact force, and the elastic supporting columns can restore easily through the buffering pad.
- In one example, the safety helmet with a rotary impact buffering function further comprises U-shaped buffering strips, wherein one end of each U-shaped buffering strip is connected with the elastic liner, the other end of each U-shaped buffering strip is connected with one end of a connecting strip, and a buckle head is arranged at the other end of each connecting strip, buckle holes matched with the buckle heads are formed in the inner side of the shell, and the buckle heads are correspondingly clamped in the buckle holes. The elastic liner is integrally connected with the shell through the U-shaped buffering strips and the connecting strips, on the one hand, the U-shaped buffering strips can form a buffering structure between the elastic liner and the shell, so that a buffering function is achieved when the safety helmet suffers from tangential force, and the buffering effect is further improved when the safety helmet is impacted by rotary force; and on the other hand, excessive sliding between the elastic liner and the shell can be limited. The buckle heads are matched with the buckle holes to achieve fixation, and thus disassembling and assembling are convenient.
- In one example, the elastic liner is of a multi-band structure and comprises a U-shaped liner band located on the head and an annular liner band surrounding the periphery of the head; the number of the U-shaped buffering strips is two, and the two U-shaped buffering strips are separately arranged on the annular liner band located on the left side and the right side of the rear portion of the safety helmet; and two binding strips are further correspondingly arranged at the joints of the U-shaped buffering strips and the elastic liner, and the other ends of the binding strips are connected with a head lock.
- In one example, the U-shaped buffering strips are arranged on the left side and the right side of the rear portion of the safety helmet, the joints of the U-shaped buffering strips and the elastic liner are located at the same positions with the joints of the binding strips and the elastic liner, the head lock is used for adjusting the tightness of the binding strips, and through the proper tightness between the binding strips and the head, the head can be protected when the safety helmet suffers from rotary impact of external force.
- The safety helmet of this example has beneficial effects. The rotary impact buffering device is arranged between the shell and the elastic liner of the safety helmet of this example so that tangential component force generated when the safety helmet is impacted by external force can be greatly reduced, and impact to users from external force is greatly reduced. Furthermore, deformation of the rotary impact buffering device is in a set range, so that when the shell of the safety helmet rotates relative to the elastic liner by a certain angle, the anti-rotation damping force of the rotary impact buffering device is greatly increased, and thus the rotation angle of the shell relative to the elastic liner is controlled within a certain range. In this way, the defects that existing safety helmets are poor in capacity to bear the rotary impact of external force and cannot effectively protect the head against bruises when suffering from the rotary impact of external force are overcome, and the protection effect of the safety helmet on users is greatly improved.
-
-
FIG. 1 is a structural sectional view of the first embodiment of the invention; -
FIG. 2 is a structural sectional view of a buffering component in the first embodiment of the invention; -
FIG. 3 is a structural sectional view of the second embodiment not forming part of the claimed invention; -
FIG. 4 is a structural sectional view of a buffering assembly in the second embodiment; -
FIG. 5 is a structural sectional view of the third embodiment not forming part of the claimed invention; and -
FIG. 6 is a structural bottom view of the invention. - In the
FIGs: 1 , shell; 2, elastic liner; 3, binding strip; 4, head lock; 5, buffering assembly; 6, buffering washer; 7, double-faced adhesive tape; 8, mounting plate; 9, buffering column; 10, mounting hole; 11, outer groove; 12, inner groove; 13, counter bore; 14, outer flange; 15, inner flange; 16, buffering component; 17, outer step hole; 18, plastic nail holder; 19, plastic nail; 20, inner step hole; 21, elastic washer; 22, platen; 23, nail rod; 24, anti-disengaging buckle head; 25, inner convex ring; 26, outer convex ring; 27, outer circular groove; 28, inner circular groove; 29, notch; 30, elastic supporting column; 31, positioning hole; 32, buffering pad; 33, U-shaped buffering strip; 34, buckle head; 35, connecting strip; 36, buckle hole; 37, U-shaped liner band; 38, annular liner band. - A further description of the invention is given with accompanying drawings as follows.
- As is shown in
FIG. 1 and FIG. 2 , in the first embodiment of the invention, a safety helmet with a rotary impact buffering function comprises ashell 1 and anelastic liner 2 arranged in the shell, and the elastic liner is made of a PC board or foam. A gap is formed between the shell and the elastic liner, and a rotary impact buffering device enabling the shell to rotate relative to the elastic liner is arranged between the shell and the elastic liner. The rotary impact buffering device comprises twenty-onebuffering components 16. Each buffering component comprises aplastic nail holder 18, a columnarelastic washer 21 and aplastic nail 19, wherein the plastic nail holder is inlaid in the inner side of the shell and provided with anouter step hole 17 with the small-diameter end located at the inner end, the elastic washer is provided with aninner step hole 20 with the small-diameter end located at the outer end, the outer end face of the elastic washer is tightly attached to the inner end face of the plastic nail holder, and the elastic washer and the plastic nail holder are connected through the plastic nail. Each plastic nail comprises aplaten 22, anail rod 23 and ananti-disengaging buckle head 24, wherein the platen is located in the large-diameter section of the corresponding inner step hole, the contact surface between the platen and the elastic washer is of a concave spherical structure, the nail rod penetrates through the small-diameter section of the corresponding inner step hole and the small-diameter section of the corresponding outer step hole, one end of the nail rod is connected with the platen, the diameter of the small-diameter section of the corresponding inner step hole is matched with the outer diameter of the nail rod, and the diameter of the small-diameter section of the corresponding outer step hole is greater than the outer diameter of the nail rod, and the anti-disengaging buckle head is located in the large-diameter section of the corresponding outer step hole and connected with the other end of the nail rod. In the invention, the platen, the nail rod and the anti-disengaging buckle head of each plastic nail are formed integrally, and the elastic washers are made of silica gel. The inner end face of each elastic washer is of a convex spherical structure, and the inner end face of each elastic washer is bonded with the elastic liner. Aninner convex ring 25 and anouter convex ring 26 are separately arranged on the outer peripheries of the two ends of each elastic washer, and the elastic washers are bonded with the elastic liner through the inner convex rings. Six outercircular grooves 27 are formed in the outer periphery of each elastic washer between the corresponding inner convex ring and the corresponding outer convex ring, and three innercircular grooves 28 are formed in the inner periphery of the large-diameter section of the inner step hole of each elastic washer. - The safety helmet with a rotary impact buffering function further comprises U-shaped buffering strips 33, wherein one end of each U-shaped buffering strip is connected with the elastic liner, the other end of each U-shaped buffering strip is integrally connected with one end of a connecting
strip 35, abuckle head 34 is arranged at the other end of each connecting strip, buckle holes 36 matched with the buckle heads are formed in the inner side of the shell, and the buckle heads are correspondingly clamped in the buckle holes. In the embodiment, the elastic liner is of a two-band structure and comprises aU-shaped liner band 37 located on the head and an annular liner band 38 (as is shown inFIG.6 ) surrounding the periphery of the head; the number of the U-shaped buffering strips is two, and the two U-shaped buffering strips are separately arranged on the annular liner band located on the left side and the right side of the rear portion of the safety helmet; and twobinding strips 3 are further correspondingly arranged at the joints of the U-shaped buffering strips and the elastic liner, and the other ends of the binding strips are connected with ahead lock 4. - As is shown in
FIG. 3 and FIG. 4 , in the second embodiment, the rotary impact buffering device comprises sevenbuffering assemblies 5. Each buffering assembly comprises a mountingplate 8 andbuffering columns 9, wherein the mountingplate 8 is provided with threecolumnar buffering washers 6 and connected with the inner side of the shell through double-faced adhesive tape 7, the mounting plate is also provided with mountingholes 10, the number of mounting holes is the same as that of thebuffering washers 6, and the buffering washers are arranged in the mounting holes in a one-to-one corresponding mode; the number of the buffering columns is the same as that of the buffering washers, and the buffering columns are embedded in inner holes of the buffering washers in a one-to-one corresponding mode; the buffering washers and the buffering columns are made of silica gel, the length of the buffering columns is smaller than the depth of the inner holes of the buffering washers, the height of the buffering washers is greater than the thickness of the mounting plate, and the inner ends of the buffering washers are bonded with the elastic liner. Threeouter grooves 11 are formed in the outer periphery of each buffering washer, twoinner grooves 12 are formed in the periphery of the inner hole side of each buffering washer, and the outer grooves and the inner grooves are arranged in a staggered mode in the axis direction of each buffering washer. Counter bores 13 are formed in the inner side of the shell, the number of the counter bores is the same as that of the buffering washers, and the counter bores are in one-to-one correspondence with the buffering washers.Outer flanges 14 which are matched with the counter bores are arranged at the outer ends of the buffering washers,inner flanges 15 are arranged at the inner ends of the buffering washers, and the buffering washers are bonded with the elastic liner through the inner flanges. The second embodiment is the same as the first embodiment in other aspects. - As is shown in
FIG. 5 , in the third embodiment, the rotary impact buffering device comprises anotch 29, twenty-four elastic supportingcolumns 30 and abuffering pad 32, wherein the notch is formed in the inner side of the shell, the outer ends of the twenty-four elastic supporting columns are connected with the bottom surface of the notch, the buffering pad is provided withpositioning holes 31, and the number of the positioning holes is the same as that of the elastic supporting columns; and the buffering pad is arranged in the notch, the outer ends of the elastic supporting columns are sleeved with the positioning holes in a one-to-one corresponding mode, and the inner ends of the elastic supporting columns are bonded with the elastic liner. In the embodiment, the elastic supporting columns are made of nylon, the cross section of the elastic supporting columns is in a regular hexagon shape, and thebuffering pad 32 is made of silica gel. The third embodiment is the same as the first embodiment in other aspects. - Tests show that compared with traditional safety helmets, the safety helmet with a rotary impact buffering function in the three embodiments has the following advantages:
- under the conditions that the falling height is 1m, the falling speed is 4.43 m/s and the rotational accelerations at test points are 4065(r/s2), 5527 (r/s2) and 6548 (r/s2) separately, damage to the safety helmet with a rotary impact buffering function in the three embodiments is reduced by 26.4-45.7%;
- under the conditions that the falling height is 1.5m, the falling speed is 5.42 m/s and the rotational accelerations at test points are 5683(r/s2), 6294 (r/s2) and 7094 (r/s2) separately, damage to the safety helmet with a rotary impact buffering function in the three embodiments is reduced by 33.1-32.3%.
- According to the safety helmet of the invention, the rotary impact buffering device is arranged between the shell and the elastic liner and is capable of elastically deforming in the normal direction of the safety helmet and also capable of elastically deforming in the tangential direction of the safety helmet. When the safety helmet is impacted by external force, the shell has the tendency to rotate relative to the elastic liner under the effect of the component force applied to the shell in the tangential direction; however, the rotary impact buffering device enabling the shell to rotate relative to the elastic liner is arranged between the shell and the elastic liner of the invention, through tangential deformation of the rotary impact buffering device, the shell can rotate relative to the elastic liner by a certain angle on the premise of keeping the elastic liner unmoved relatively, so that a rotary impact buffering function is achieved, and the impact to users from external force is greatly reduced. In addition, the rotary impact buffering device deforms within a certain range, after the shell of the safety helmet rotates relative to the elastic liner by a certain angle, the anti-rotation damping force of the rotary impact buffering device is increased greatly, and thus the rotation angle of the shell relative to the elastic liner is controlled within a certain range. Furthermore, the elastic liner is integrally connected with the shell through the U-shaped buffering strips and the connecting strips, and thus the buffering effect is further improved when the safety helmet is impacted by rotary force. In this way, the defects that existing safety helmets are poor in capacity to bear the rotary impact of external force and cannot effectively protected the heads of users against bruises when suffering from the rotary impact of external force are overcome, and the protection effect of the safety helmet on users is greatly improved.
- Besides the above embodiments, those skilled in the field can create novel embodiments by reselecting and recombining the technical characteristics or technical data of the invention within the scope defined by the claims.
Claims (2)
- A safety helmet with a rotary impact buffering function, comprising a shell (1); further comprising an elastic liner (2) arranged in the shell (1), wherein a gap is formed between the shell (1) and the elastic liner (2), and a rotary impact buffering device enabling the shell (1) to rotate relative to the elastic liner (2) is arranged between the shell (1) and the elastic liner (2),
characterized in that the rotary impact buffering device comprises a plurality of buffering components (16); each buffering component (16) comprises a plastic nail holder (18), a columnar elastic washer (21) and a plastic nail (19), wherein the plastic nail holder (18) is inlaid in the inner side of the shell (1) and provided with an outer step hole (17) with the small-diameter end located at the inner end, the elastic washer (21) is provided with an inner step hole (20) with the small-diameter end located at the outer end, the outer end face of the elastic washer (21) is tightly attached to the inner end face of the plastic nail holder (18), and the elastic washer (21) and the plastic nail holder (18) are connected through the plastic nail (19); each plastic nail (19) comprises a platen (22), a nail rod (23) and an anti-disengaging buckle head (24), wherein the platen (22) is located in the large-diameter section of the corresponding inner step hole, the nail rod penetrates through the small-diameter section of the corresponding inner step hole (20) and the small-diameter section of the corresponding outer step hole (17), one end of the nail rod (23) is connected with the platen (22), the diameter of the small-diameter section of the corresponding inner step hole (20) is matched with the outer diameter of the nail rod (23), and the diameter of the corresponding small-diameter section of the outer step hole (17) is greater than the outer diameter of the nail rod (23), and the anti-disengaging buckle head (24) is located in the large-diameter section of the outer step hole (17) and connected with the other end of the nail rod (23), and the inner end face of the elastic washer (21) is connected with the elastic liner (2),
wherein an inner convex ring (25) and an outer convex ring (26) are separately arranged on the outer peripheries of the two ends of each elastic washer (21), the elastic washers (21) are connected with the elastic liner (2) through the inner convex rings (25), a plurality of outer circular grooves (27) are formed in the outer periphery of each elastic washer (21) between the corresponding inner convex ring (25) and the corresponding outer convex ring (25), and a plurality of inner circular grooves (28) are formed in the inner periphery of the large-diameter section of the inner step hole (20) of each elastic washer (21). - The safety helmet with a rotary impact buffering function according to Claim 1, characterized in that the contact surface between each platen (19) and the corresponding elastic washer (21) is of a concave spherical structure, and the inner end face of each elastic washer is (21) of a convex spherical structure.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201720409239 | 2017-04-18 | ||
CN201710693725 | 2017-08-14 | ||
EP17197035 | 2017-10-18 | ||
CN201810210306.8A CN108294394B (en) | 2017-03-27 | 2018-03-14 | Rotary impact buffering safety helmet |
Publications (3)
Publication Number | Publication Date |
---|---|
EP3391765A2 EP3391765A2 (en) | 2018-10-24 |
EP3391765A3 EP3391765A3 (en) | 2018-12-12 |
EP3391765B1 true EP3391765B1 (en) | 2020-03-25 |
Family
ID=61971944
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP18166784.1A Active EP3391765B1 (en) | 2017-04-18 | 2018-04-11 | Safety helmet with rotary impact buffering function |
Country Status (1)
Country | Link |
---|---|
EP (1) | EP3391765B1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB201918754D0 (en) * | 2019-12-18 | 2020-01-29 | Mips Ab | Connector |
CN112882223B (en) * | 2021-03-05 | 2023-12-01 | 遵义市妇幼保健院(遵义市儿童医院遵义市妇产医院) | Pediatric surgery auxiliary device |
EP4082373B1 (en) * | 2021-04-29 | 2024-06-26 | George TFE SCP | Cellular energy-absorbing structure fastening device |
CN114850509B (en) * | 2022-03-23 | 2023-08-04 | 南京铖联激光科技有限公司 | A breakage-proof subassembly is connected to protection gas device gas outlet for in 3D prints |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE534868C2 (en) * | 2010-05-07 | 2012-01-24 | Mips Ab | Helmet with sliding promoter provided at an energy absorbing bearing |
US9474317B2 (en) * | 2013-10-02 | 2016-10-25 | Bret Berry | Dual shell helmet for minimizing rotational acceleration |
GB201409041D0 (en) * | 2014-05-21 | 2014-07-02 | Leatt Corp | Helmet |
-
2018
- 2018-04-11 EP EP18166784.1A patent/EP3391765B1/en active Active
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
EP3391765A3 (en) | 2018-12-12 |
EP3391765A2 (en) | 2018-10-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10660390B2 (en) | Safety helmet with rotary impact buffering function | |
EP3391765B1 (en) | Safety helmet with rotary impact buffering function | |
US9750297B1 (en) | Lever-activated shock abatement system and method | |
US8707470B1 (en) | Enhanced impact absorption strips for protective head gear | |
US10980306B2 (en) | Helmet omnidirectional energy management systems | |
US10561192B2 (en) | Omnidirectional energy management systems and methods | |
US20200305534A1 (en) | Helmet | |
US20190373976A1 (en) | Safety helmet capable of absorbing multi-direction impact | |
CN106455738A (en) | Helmet | |
US20220322780A1 (en) | Omnidirectional energy management systems and methods | |
US20190166944A1 (en) | Mechanical shock abatement system incorporating sacrificial systems | |
WO2016209740A1 (en) | Helmet omnidirectional energy management systems and methods | |
US20200121015A1 (en) | Buffer structure of helmet | |
US20160219964A1 (en) | Multi-Layered Protective Helmet with Enhanced Absorption of Torsional Impact | |
CN111120821A (en) | Electronic information equipment safety arrangement | |
KR20230069140A (en) | shock mitigation structure | |
CN209825335U (en) | Protective device of helmet | |
CN211902205U (en) | Electronic information equipment safety arrangement | |
CN109965438B (en) | Protective device for helmet | |
CN211006320U (en) | Shock absorption, isolation and anti-falling beam support | |
CN209931610U (en) | Impact resistance device of helmet | |
US20240277095A1 (en) | Safety helmet capable of absorbing multi-direction impact | |
CA3021377C (en) | Buffer structure of helmet | |
CN216089101U (en) | Inside buckle structure of safety helmet | |
CN210823634U (en) | Precision instruments product packaging box that takes precautions against earthquakes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20180411 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: A42B 3/06 20060101AFI20181105BHEP |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: KU, CHENG-HUEI |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: KU, CHENG-HUEI |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20191204 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602018003195 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1247508 Country of ref document: AT Kind code of ref document: T Effective date: 20200415 Ref country code: IE Ref legal event code: FG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200625 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200626 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200625 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20200325 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200818 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200725 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1247508 Country of ref document: AT Kind code of ref document: T Effective date: 20200325 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602018003195 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200411 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20200430 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200430 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 |
|
26N | No opposition filed |
Effective date: 20210112 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200411 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210430 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240404 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240415 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240417 Year of fee payment: 7 |