EP3391765B1 - Schutzhelm mit drehschlagabsorption - Google Patents

Schutzhelm mit drehschlagabsorption Download PDF

Info

Publication number
EP3391765B1
EP3391765B1 EP18166784.1A EP18166784A EP3391765B1 EP 3391765 B1 EP3391765 B1 EP 3391765B1 EP 18166784 A EP18166784 A EP 18166784A EP 3391765 B1 EP3391765 B1 EP 3391765B1
Authority
EP
European Patent Office
Prior art keywords
buffering
elastic
shell
liner
rotary impact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18166784.1A
Other languages
English (en)
French (fr)
Other versions
EP3391765A3 (de
EP3391765A2 (de
Inventor
Cheng-Huei KU
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KU, CHENG-HUEI
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810210306.8A external-priority patent/CN108294394B/zh
Application filed by Individual filed Critical Individual
Publication of EP3391765A2 publication Critical patent/EP3391765A2/de
Publication of EP3391765A3 publication Critical patent/EP3391765A3/de
Application granted granted Critical
Publication of EP3391765B1 publication Critical patent/EP3391765B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A42HEADWEAR
    • A42BHATS; HEAD COVERINGS
    • A42B3/00Helmets; Helmet covers ; Other protective head coverings
    • A42B3/04Parts, details or accessories of helmets
    • A42B3/06Impact-absorbing shells, e.g. of crash helmets
    • A42B3/062Impact-absorbing shells, e.g. of crash helmets with reinforcing means
    • A42B3/063Impact-absorbing shells, e.g. of crash helmets with reinforcing means using layered structures
    • A42B3/064Impact-absorbing shells, e.g. of crash helmets with reinforcing means using layered structures with relative movement between layers

Definitions

  • the invention relates to the field of safety protection, in particular to a safety helmet with a rotary impact buffering function.
  • Safety helmets are common safety protection articles; the utility model with the Chinese patent application No. CN201520252101.8 discloses a safety helmet which comprises a safety helmet shell, a safety helmet liner, a fixing endpoint, helmet ribbons, a fixing buckle and a fixing ring, wherein the safety helmet liner made of an elastic material is fixed in the safety helmet shell through an outer ring buckle, the fixing endpoint is arranged at the top end, close to the safety helmet shell, of the safety helmet liner, and the fixing buckle is arranged at the top end in the safety helmet shell.
  • the invention provides a safety helmet with a rotary impact buffering function, which can well buffer external rotary impact force and effectively protect the heads of users against bruises when suffering from the rotary impact of external force.
  • the present invention is defined by the appended independent claim.
  • the dependent claim is directed to optional features and a preferred embodiment.
  • a safety helmet with a rotary impact buffering function comprises the features of claim 1.
  • the rotary impact buffering device is arranged between the shell and the elastic liner of the safety helmet and is capable of elastically deforming in the normal direction of the safety helmet and also capable of elastically deforming in the tangential direction of the safety helmet.
  • the shell When the safety helmet is impacted by external force, the shell has the tendency to rotate relative to the elastic liner under the effect of the component force applied to the shell in the tangential direction; however, in the invention, the rotary impact buffering device enabling the shell to rotate relative to the elastic liner is arranged between the shell and the elastic liner, through tangential deformation of the rotary impact buffering device, the shell can rotate relative to the elastic liner by a certain angle on the premise of keeping the elastic liner unmoved relatively, so that a rotary impact buffering function is achieved, and impact to users from external force is greatly reduced.
  • the rotary impact buffering device deforms within a certain range, after the shell of the safety helmet rotates relative to the elastic liner by a certain angle, the anti-rotation damping force of the rotary impact buffering device is increased greatly, and thus the rotation angle of the shell relative to the elastic liner is controlled within a certain range.
  • the defects that existing safety helmets are poor in capacity to bear the rotary impact of external force and cannot effectively protect heads against bruises when suffering from the rotary impact of external force are overcome, and the protection effect of the safety helmet on users is greatly improved.
  • the safety helmet is structurally provided with the plastic nail holders connected with the shell and the elastic washers connected with the elastic liner, the plastic nail holders and the elastic washers are connected through the plastic nails, and the plastic nails are fixed relative to the elastic washers.
  • the plastic nail holders and the elastic washers can transversely slide within a certain range, part of the buffering displacement for the shell to rotate relative to the elastic liner is formed accordingly, the anti-disengagement buckle heads are used for preventing the nail rods from disengaging from the plastic nail holders, and thus connection between the plastic nail holders and the elastic washers is ensured.
  • the inner end refers to the end close to the elastic liner
  • the outer end refers to the end, close to the shell, of the rotary impact buffering device.
  • the elastic washers can compressively deform in the longitudinal direction or the transverse direction when being impacted by external force
  • the compressive deformation in the longitudinal direction can buffer impact in the normal direction of the safety helmet
  • the compressive deformation in the transverse direction forms the other part of the buffering displacement for the shell to rotate relative to the elastic liner.
  • the plastic nail holders, the plastic nails and the elastic washers of the buffering components are matched with the elastic liner to achieve multi-buffering protection of normal impact force and rotary (tangential) impact force, and thus a better protection effect is achieved.
  • the elastic washers are connected with the plastic nail holders inlaid in the inner side of the shell through the plastic nails, and thus assembling and disassembling are convenient and fast.
  • the effective contact areas between the elastic washers and the plastic nail holders and the effective contact areas between the elastic washers and the elastic liner can be effectively increased through the inner convex rings and the outer convex rings, and the structural stability of the buffering components under the effect of tangential force is improved; and under the combined effect of the inner circular grooves and the outer circular grooves, the side walls of the elastic washers are each of a corrugated structure, and thus the buffering performance of the buffering components is improved.
  • the contact surface between each platen and the corresponding elastic washer is of a concave spherical structure, and the inner end face of each elastic washer is of a convex spherical structure.
  • the platens are matched with the elastic washers through spherical contact, and the elastic washers are matched with the elastic liner through spherical contact, so that the structural stability of the buffering components under the effect of tangential force is improved, and the buffering performance of the buffering components is improved.
  • the rotary impact buffering device comprises a plurality of buffering assemblies.
  • Each buffering assembly comprises a mounting plate and buffering columns, wherein the mounting plate is provided with a plurality of columnar buffering washers and connected with the inner side of the shell, the mounting plate is also provided with mounting holes, the number of mounting holes is the same as that of the buffering washers, and the buffering washers are arranged in the mounting holes in a one-to-one corresponding mode; the number of the buffering columns is the same as that of the buffering washers, and the buffering columns are embedded in inner holes of the buffering washers in a one-to-one corresponding mode; and the length of the buffering columns is smaller than the depth of the inner holes of the buffering washers, the height of the buffering washers is greater than the thickness of the mounting plate, and the inner ends of the buffering washers is connected with the elastic liner.
  • each buffering assembly is provided with a plurality of buffering washers connected with the inner side of the shell, the buffering columns are inlaid in the inner holes of the buffering washers, in this way, buffering protection is achieved through elastic deformation of the buffering washers, the elastic deformation of the buffering washers is controlled within a certain range, and thus the buffering washers can restore easily.
  • a plurality of outer circular grooves are formed in the outer periphery of each buffering washer
  • a plurality of inner grooves are formed in the inner periphery of each buffering washer
  • the outer grooves and the inner grooves are arranged in a staggered mode in the axis direction of each buffering washer.
  • the side walls of the buffering washers are each of a corrugated structure, and thus the buffering performance of the buffering washers is improved.
  • counter bores are formed in the inner side of the shell, the number of the counter bores is the same as that of the buffering washers, and the counter bores are in one-to-one correspondence with the buffering washers; outer flanges which are matched with the counter bores are arranged at the outer ends of the buffering washers, inner flanges are arranged at the inner ends of the buffering washers, and the buffering washers are connected with the elastic liner through the inner flanges.
  • connection strength of the buffering washers and the shell can be improved through the outer flanges of the buffering washers, and the connection strength of the buffering washers and the head lock, as well as between the buffering washers and the elastic liner, can be improved through the inner flanges of the buffering washers.
  • the rotary impact buffering device comprises a notch, a plurality of elastic supporting columns and a buffering pad, wherein the notch is formed in the inner side of the shell, the outer ends of the elastic supporting columns are connected with the bottom surface of the notch, the buffering pad is provided with positioning holes, the number of the positioning holes is the same as that of the elastic supporting columns, the buffering pad is arranged in the notch, the outer ends of the elastic supporting columns are sleeved with the positioning holes in a one-to-one corresponding mode, and the inner ends of the elastic supporting columns are connected with the elastic liner.
  • the elastic supporting columns and the buffering pad of the buffering assembly are matched with the elastic liner to achieve multi-buffering protection against impact force and rotary impact force, and the elastic supporting columns can restore easily through the buffering pad.
  • the safety helmet with a rotary impact buffering function further comprises U-shaped buffering strips, wherein one end of each U-shaped buffering strip is connected with the elastic liner, the other end of each U-shaped buffering strip is connected with one end of a connecting strip, and a buckle head is arranged at the other end of each connecting strip, buckle holes matched with the buckle heads are formed in the inner side of the shell, and the buckle heads are correspondingly clamped in the buckle holes.
  • the elastic liner is integrally connected with the shell through the U-shaped buffering strips and the connecting strips, on the one hand, the U-shaped buffering strips can form a buffering structure between the elastic liner and the shell, so that a buffering function is achieved when the safety helmet suffers from tangential force, and the buffering effect is further improved when the safety helmet is impacted by rotary force; and on the other hand, excessive sliding between the elastic liner and the shell can be limited.
  • the buckle heads are matched with the buckle holes to achieve fixation, and thus disassembling and assembling are convenient.
  • the elastic liner is of a multi-band structure and comprises a U-shaped liner band located on the head and an annular liner band surrounding the periphery of the head; the number of the U-shaped buffering strips is two, and the two U-shaped buffering strips are separately arranged on the annular liner band located on the left side and the right side of the rear portion of the safety helmet; and two binding strips are further correspondingly arranged at the joints of the U-shaped buffering strips and the elastic liner, and the other ends of the binding strips are connected with a head lock.
  • the U-shaped buffering strips are arranged on the left side and the right side of the rear portion of the safety helmet, the joints of the U-shaped buffering strips and the elastic liner are located at the same positions with the joints of the binding strips and the elastic liner, the head lock is used for adjusting the tightness of the binding strips, and through the proper tightness between the binding strips and the head, the head can be protected when the safety helmet suffers from rotary impact of external force.
  • the safety helmet of this example has beneficial effects.
  • the rotary impact buffering device is arranged between the shell and the elastic liner of the safety helmet of this example so that tangential component force generated when the safety helmet is impacted by external force can be greatly reduced, and impact to users from external force is greatly reduced. Furthermore, deformation of the rotary impact buffering device is in a set range, so that when the shell of the safety helmet rotates relative to the elastic liner by a certain angle, the anti-rotation damping force of the rotary impact buffering device is greatly increased, and thus the rotation angle of the shell relative to the elastic liner is controlled within a certain range. In this way, the defects that existing safety helmets are poor in capacity to bear the rotary impact of external force and cannot effectively protect the head against bruises when suffering from the rotary impact of external force are overcome, and the protection effect of the safety helmet on users is greatly improved.
  • FIGs: 1 shell; 2, elastic liner; 3, binding strip; 4, head lock; 5, buffering assembly; 6, buffering washer; 7, double-faced adhesive tape; 8, mounting plate; 9, buffering column; 10, mounting hole; 11, outer groove; 12, inner groove; 13, counter bore; 14, outer flange; 15, inner flange; 16, buffering component; 17, outer step hole; 18, plastic nail holder; 19, plastic nail; 20, inner step hole; 21, elastic washer; 22, platen; 23, nail rod; 24, anti-disengaging buckle head; 25, inner convex ring; 26, outer convex ring; 27, outer circular groove; 28, inner circular groove; 29, notch; 30, elastic supporting column; 31, positioning hole; 32, buffering pad; 33, U-shaped buffering strip; 34, buckle head; 35, connecting strip; 36, buckle hole; 37, U-shaped liner band; 38, annular liner band.
  • a safety helmet with a rotary impact buffering function comprises a shell 1 and an elastic liner 2 arranged in the shell, and the elastic liner is made of a PC board or foam.
  • a gap is formed between the shell and the elastic liner, and a rotary impact buffering device enabling the shell to rotate relative to the elastic liner is arranged between the shell and the elastic liner.
  • the rotary impact buffering device comprises twenty-one buffering components 16.
  • Each buffering component comprises a plastic nail holder 18, a columnar elastic washer 21 and a plastic nail 19, wherein the plastic nail holder is inlaid in the inner side of the shell and provided with an outer step hole 17 with the small-diameter end located at the inner end, the elastic washer is provided with an inner step hole 20 with the small-diameter end located at the outer end, the outer end face of the elastic washer is tightly attached to the inner end face of the plastic nail holder, and the elastic washer and the plastic nail holder are connected through the plastic nail.
  • Each plastic nail comprises a platen 22, a nail rod 23 and an anti-disengaging buckle head 24, wherein the platen is located in the large-diameter section of the corresponding inner step hole, the contact surface between the platen and the elastic washer is of a concave spherical structure, the nail rod penetrates through the small-diameter section of the corresponding inner step hole and the small-diameter section of the corresponding outer step hole, one end of the nail rod is connected with the platen, the diameter of the small-diameter section of the corresponding inner step hole is matched with the outer diameter of the nail rod, and the diameter of the small-diameter section of the corresponding outer step hole is greater than the outer diameter of the nail rod, and the anti-disengaging buckle head is located in the large-diameter section of the corresponding outer step hole and connected with the other end of the nail rod.
  • the platen, the nail rod and the anti-disengaging buckle head of each plastic nail are formed integrally, and the elastic washers are made of silica gel.
  • the inner end face of each elastic washer is of a convex spherical structure, and the inner end face of each elastic washer is bonded with the elastic liner.
  • An inner convex ring 25 and an outer convex ring 26 are separately arranged on the outer peripheries of the two ends of each elastic washer, and the elastic washers are bonded with the elastic liner through the inner convex rings.
  • the safety helmet with a rotary impact buffering function further comprises U-shaped buffering strips 33, wherein one end of each U-shaped buffering strip is connected with the elastic liner, the other end of each U-shaped buffering strip is integrally connected with one end of a connecting strip 35, a buckle head 34 is arranged at the other end of each connecting strip, buckle holes 36 matched with the buckle heads are formed in the inner side of the shell, and the buckle heads are correspondingly clamped in the buckle holes.
  • the elastic liner is of a two-band structure and comprises a U-shaped liner band 37 located on the head and an annular liner band 38 (as is shown in FIG.6 ) surrounding the periphery of the head; the number of the U-shaped buffering strips is two, and the two U-shaped buffering strips are separately arranged on the annular liner band located on the left side and the right side of the rear portion of the safety helmet; and two binding strips 3 are further correspondingly arranged at the joints of the U-shaped buffering strips and the elastic liner, and the other ends of the binding strips are connected with a head lock 4.
  • the rotary impact buffering device comprises seven buffering assemblies 5.
  • Each buffering assembly comprises a mounting plate 8 and buffering columns 9, wherein the mounting plate 8 is provided with three columnar buffering washers 6 and connected with the inner side of the shell through double-faced adhesive tape 7, the mounting plate is also provided with mounting holes 10, the number of mounting holes is the same as that of the buffering washers 6, and the buffering washers are arranged in the mounting holes in a one-to-one corresponding mode; the number of the buffering columns is the same as that of the buffering washers, and the buffering columns are embedded in inner holes of the buffering washers in a one-to-one corresponding mode; the buffering washers and the buffering columns are made of silica gel, the length of the buffering columns is smaller than the depth of the inner holes of the buffering washers, the height of the buffering washers is greater than the thickness of the mounting plate, and the inner ends of the buffering washers are bonded with the elastic line
  • Three outer grooves 11 are formed in the outer periphery of each buffering washer, two inner grooves 12 are formed in the periphery of the inner hole side of each buffering washer, and the outer grooves and the inner grooves are arranged in a staggered mode in the axis direction of each buffering washer.
  • Counter bores 13 are formed in the inner side of the shell, the number of the counter bores is the same as that of the buffering washers, and the counter bores are in one-to-one correspondence with the buffering washers.
  • Outer flanges 14 which are matched with the counter bores are arranged at the outer ends of the buffering washers, inner flanges 15 are arranged at the inner ends of the buffering washers, and the buffering washers are bonded with the elastic liner through the inner flanges.
  • the second embodiment is the same as the first embodiment in other aspects.
  • the rotary impact buffering device comprises a notch 29, twenty-four elastic supporting columns 30 and a buffering pad 32, wherein the notch is formed in the inner side of the shell, the outer ends of the twenty-four elastic supporting columns are connected with the bottom surface of the notch, the buffering pad is provided with positioning holes 31, and the number of the positioning holes is the same as that of the elastic supporting columns; and the buffering pad is arranged in the notch, the outer ends of the elastic supporting columns are sleeved with the positioning holes in a one-to-one corresponding mode, and the inner ends of the elastic supporting columns are bonded with the elastic liner.
  • the elastic supporting columns are made of nylon
  • the cross section of the elastic supporting columns is in a regular hexagon shape
  • the buffering pad 32 is made of silica gel.
  • the third embodiment is the same as the first embodiment in other aspects.
  • the rotary impact buffering device is arranged between the shell and the elastic liner and is capable of elastically deforming in the normal direction of the safety helmet and also capable of elastically deforming in the tangential direction of the safety helmet.
  • the shell has the tendency to rotate relative to the elastic liner under the effect of the component force applied to the shell in the tangential direction; however, the rotary impact buffering device enabling the shell to rotate relative to the elastic liner is arranged between the shell and the elastic liner of the invention, through tangential deformation of the rotary impact buffering device, the shell can rotate relative to the elastic liner by a certain angle on the premise of keeping the elastic liner unmoved relatively, so that a rotary impact buffering function is achieved, and the impact to users from external force is greatly reduced.
  • the rotary impact buffering device deforms within a certain range, after the shell of the safety helmet rotates relative to the elastic liner by a certain angle, the anti-rotation damping force of the rotary impact buffering device is increased greatly, and thus the rotation angle of the shell relative to the elastic liner is controlled within a certain range.
  • the elastic liner is integrally connected with the shell through the U-shaped buffering strips and the connecting strips, and thus the buffering effect is further improved when the safety helmet is impacted by rotary force. In this way, the defects that existing safety helmets are poor in capacity to bear the rotary impact of external force and cannot effectively protected the heads of users against bruises when suffering from the rotary impact of external force are overcome, and the protection effect of the safety helmet on users is greatly improved.

Landscapes

  • Helmets And Other Head Coverings (AREA)
  • Vibration Dampers (AREA)

Claims (2)

  1. Schutzhelm mit einer rotierenden Stoßdämpferfunktion, umfassend eine Schale (1); weiter umfassend eine elastische Auskleidung (2), die in der Schale (1) angeordnet ist, wobei zwischen der Schale (1) und der elastischen Auskleidung (2) ein Spalt ausgebildet ist, und zwischen der Schale (1) und der elastischen Auskleidung (2) eine rotierende Stoßdämpfervorrichtung angeordnet ist, die es der Schale (1) erlaubt, relativ zu der elastischen Auskleidung (2) zu rotieren,
    dadurch gekennzeichnet, dass die rotierende Stoßdämpfervorrichtung eine Vielzahl von Dämpferkomponenten (16) umfasst; jede Dämpferkomponente (16) einen Kunststoffnagelhalter (18), eine säulenförmige elastische Unterlegscheibe (21) und einen Kunststoffnagel (19) umfasst, wobei der Kunststoffnagelhalter (18) in die Innenseite der Schale (1) eingelegt und mit einem äußeren Stufenloch (17) bereitgestellt ist, wobei sich das Ende mit kleinem Durchmesser am inneren Ende befindet, die elastische Unterlegscheibe (21) mit einem inneren Stufenloch (20) bereitgestellt ist, wobei sich das Ende mit kleinem Durchmesser am äußeren Ende befindet, die äußere Stirnfläche der elastischen Unterlegscheibe (21) fest an der inneren Stirnfläche des Kunststoffnagelhalters (18) befestigt ist und die elastische Unterlegscheibe (21) und der Kunststoffnagelhalter (18) durch den Kunststoffnagel (19) verbunden sind; jeder Kunststoffnagel (19) eine Andruckplatte (22), einen Nagelstab (23) und einen ausklinksicheren Schnallenkopf (24) umfasst, wobei sich die Andruckplatte (22) in dem Abschnitt mit großem Durchmesser des entsprechenden inneren Stufenlochs befindet, der Nagelstab durch den Abschnitt mit kleinem Durchmesser des entsprechenden inneren Stufenlochs (20) und den Abschnitt mit kleinem Durchmesser des entsprechenden äußeren Stufenlochs (17) hindurchtritt, ein Ende des Nagelstabs (23) mit der Andruckplatte (22) verbunden ist, der Durchmesser des Abschnitts mit kleinem Durchmesser des entsprechenden inneren Stufenlochs (20) auf den Außendurchmesser der Nagelstange (23) abgestimmt ist, und der Durchmesser des entsprechenden Abschnitts mit kleinem Durchmesser des äußeren Stufenlochs (17) größer als der Außendurchmesser der Nagelstange (23) ist, und der ausklinksichere Schnallenkopf (24) in dem Abschnitt mit großem Durchmesser des äußeren Stufenlochs (17) angeordnet und mit dem anderen Ende der Nagelstange (23) verbunden ist, und die innere Stirnseite der elastischen Unterlegscheibe (21) mit der elastischen Auskleidung (2) verbunden ist,
    wobei ein innerer konvexer Ring (25) und ein äußerer konvexer Ring (26) getrennt an den äußeren Umfängen der beiden Enden jeder elastischen Unterlegscheibe (21) angeordnet sind, wobei die elastischen Unterlegscheiben (21) mit der elastischen Auskleidung (2) durch die inneren konvexen Ringe (25) verbunden sind, eine Vielzahl von äußeren kreisförmigen Nuten (27) in dem äußeren Umfang jeder elastischen Unterlegscheibe (21) zwischen dem entsprechenden inneren konvexen Ring (25) und dem entsprechenden äußeren konvexen Ring (25) gebildet ist, und eine Vielzahl von inneren kreisförmigen Nuten (28) in dem inneren Umfang des Abschnitts mit großem Durchmesser des inneren Stufenlochs (20) jeder elastischen Unterlegscheibe (21) gebildet ist.
  2. Schutzhelm mit einer rotierenden Stoßdämpferfunktion nach Anspruch 1, dadurch gekennzeichnet, dass die Kontaktfläche zwischen jeder Andruckplatte (19) und der entsprechenden elastischen Unterlegscheibe (21) eine konkav-kugelförmige Struktur aufweist und die innere Endfläche jeder elastischen Unterlegscheibe (21) eine konvexkugelförmige Struktur aufweist.
EP18166784.1A 2017-04-18 2018-04-11 Schutzhelm mit drehschlagabsorption Active EP3391765B1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201720409239 2017-04-18
CN201710693725 2017-08-14
EP17197035 2017-10-18
CN201810210306.8A CN108294394B (zh) 2017-03-27 2018-03-14 旋转冲击缓冲安全帽

Publications (3)

Publication Number Publication Date
EP3391765A2 EP3391765A2 (de) 2018-10-24
EP3391765A3 EP3391765A3 (de) 2018-12-12
EP3391765B1 true EP3391765B1 (de) 2020-03-25

Family

ID=61971944

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18166784.1A Active EP3391765B1 (de) 2017-04-18 2018-04-11 Schutzhelm mit drehschlagabsorption

Country Status (1)

Country Link
EP (1) EP3391765B1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201918754D0 (en) * 2019-12-18 2020-01-29 Mips Ab Connector
CN112882223B (zh) * 2021-03-05 2023-12-01 遵义市妇幼保健院(遵义市儿童医院遵义市妇产医院) 一种小儿外科手术辅助装置
EP4082373A1 (de) * 2021-04-29 2022-11-02 George TFE SCP Befestigungsvorrichtung für zellulare energieabsorbierende struktur
CN114850509B (zh) * 2022-03-23 2023-08-04 南京铖联激光科技有限公司 一种用于3d打印中的保护气装置出气口连接防破损组件

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE534868C2 (sv) * 2010-05-07 2012-01-24 Mips Ab Hjälm med glidningsfrämjare anordnad vid ett energiabsorberande lager
US9474317B2 (en) * 2013-10-02 2016-10-25 Bret Berry Dual shell helmet for minimizing rotational acceleration
GB201409041D0 (en) * 2014-05-21 2014-07-02 Leatt Corp Helmet

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3391765A3 (de) 2018-12-12
EP3391765A2 (de) 2018-10-24

Similar Documents

Publication Publication Date Title
US10660390B2 (en) Safety helmet with rotary impact buffering function
EP3391765B1 (de) Schutzhelm mit drehschlagabsorption
US20200253314A1 (en) Omnidirectional energy management systems and methods
US8707470B1 (en) Enhanced impact absorption strips for protective head gear
US10980306B2 (en) Helmet omnidirectional energy management systems
US9750297B1 (en) Lever-activated shock abatement system and method
EP3756496B1 (de) Zur absorption von multidirektionalen stössen fähiger sicherheitshelm
US20200305534A1 (en) Helmet
EP3310197A1 (de) Systeme und verfahren zur omnidirektionalen helmenergieverwaltung
US20200121015A1 (en) Buffer structure of helmet
US20220322780A1 (en) Omnidirectional energy management systems and methods
US20190166944A1 (en) Mechanical shock abatement system incorporating sacrificial systems
CN111120821A (zh) 一种电子信息设备安全保护装置
CN209825335U (zh) 一种头盔的防护装置
CN109965438B (zh) 头盔的防护装置
KR20230069140A (ko) 충격 완화 구조
CN210294960U (zh) 一种计算机硬盘的保护装置
CN209931610U (zh) 一种头盔的抗冲击装置
CN211902205U (zh) 一种电子信息设备安全保护装置
CA3021377C (en) Buffer structure of helmet
CN216089101U (zh) 一种安全帽内部卡扣结构
CN210823634U (zh) 一种精密仪器防震产品包装盒
EP3639685A1 (de) Stossdämpfer für einen helm
CN210445815U (zh) 一种建筑施工用安全帽
CN212959469U (zh) 一种防缓冲紧固垫圈

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180411

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: A42B 3/06 20060101AFI20181105BHEP

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: KU, CHENG-HUEI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KU, CHENG-HUEI

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20191204

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602018003195

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1247508

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200415

Ref country code: IE

Ref legal event code: FG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200625

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200626

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200625

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200325

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200818

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200725

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1247508

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602018003195

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200411

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200430

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

26N No opposition filed

Effective date: 20210112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230412

Year of fee payment: 6

Ref country code: DE

Payment date: 20220615

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230413

Year of fee payment: 6