EP3388162B1 - Operating unit for a profiling line - Google Patents

Operating unit for a profiling line Download PDF

Info

Publication number
EP3388162B1
EP3388162B1 EP18157664.6A EP18157664A EP3388162B1 EP 3388162 B1 EP3388162 B1 EP 3388162B1 EP 18157664 A EP18157664 A EP 18157664A EP 3388162 B1 EP3388162 B1 EP 3388162B1
Authority
EP
European Patent Office
Prior art keywords
operating unit
profiled element
contact
rollers
conical portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18157664.6A
Other languages
German (de)
French (fr)
Other versions
EP3388162A1 (en
Inventor
Andrea Anesi
Luciano Micali
Fabio Barbolini
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fives Oto SpA
Original Assignee
Fives Oto SpA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fives Oto SpA filed Critical Fives Oto SpA
Publication of EP3388162A1 publication Critical patent/EP3388162A1/en
Application granted granted Critical
Publication of EP3388162B1 publication Critical patent/EP3388162B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D5/00Bending sheet metal along straight lines, e.g. to form simple curves
    • B21D5/06Bending sheet metal along straight lines, e.g. to form simple curves by drawing procedure making use of dies or forming-rollers, e.g. making profiles
    • B21D5/08Bending sheet metal along straight lines, e.g. to form simple curves by drawing procedure making use of dies or forming-rollers, e.g. making profiles making use of forming-rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B27/00Rolls, roll alloys or roll fabrication; Lubricating, cooling or heating rolls while in use
    • B21B27/02Shape or construction of rolls
    • B21B27/028Variable-width rolls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B1/24Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B13/00Metal-rolling stands, i.e. an assembly composed of a stand frame, rolls, and accessories
    • B21B13/08Metal-rolling stands, i.e. an assembly composed of a stand frame, rolls, and accessories with differently-directed roll axes, e.g. for the so-called "universal" rolling process
    • B21B13/10Metal-rolling stands, i.e. an assembly composed of a stand frame, rolls, and accessories with differently-directed roll axes, e.g. for the so-called "universal" rolling process all axes being arranged in one plane
    • B21B13/103Metal-rolling stands, i.e. an assembly composed of a stand frame, rolls, and accessories with differently-directed roll axes, e.g. for the so-called "universal" rolling process all axes being arranged in one plane for rolling bars, rods or wire
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B27/00Rolls, roll alloys or roll fabrication; Lubricating, cooling or heating rolls while in use
    • B21B27/02Shape or construction of rolls
    • B21B27/024Rolls for bars, rods, rounds, tubes, wire or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D5/00Bending sheet metal along straight lines, e.g. to form simple curves
    • B21D5/06Bending sheet metal along straight lines, e.g. to form simple curves by drawing procedure making use of dies or forming-rollers, e.g. making profiles
    • B21D5/08Bending sheet metal along straight lines, e.g. to form simple curves by drawing procedure making use of dies or forming-rollers, e.g. making profiles making use of forming-rollers
    • B21D5/086Bending sheet metal along straight lines, e.g. to form simple curves by drawing procedure making use of dies or forming-rollers, e.g. making profiles making use of forming-rollers for obtaining closed hollow profiles

Definitions

  • the present invention relates to an operating unit for a profiling line and to a method for profiling a profiled element according to the preambles of claims 1 and 9.
  • Such an operating unit and such a method are for example disclosed in JP-A-2003251413 .
  • the invention relates to an operating unit having shaped rollers for profiling lines for tubes having a polygonal section, for example rectangular or square.
  • a profiling line allows a tubular profiled element to be produced starting from a steel strip which is progressively bent back in line about a longitudinal axis thereof until it assumes a tubular conformation wherein the longitudinal edges of the strip are arranged alongside one another in the upper zone of the profiled element.
  • a profiling line substantially comprises a series of bending units, arranged in succession, each of which comprises two or more profiling rollers. The progressive bending of the profiled element takes place by making the strip pass through the rollers of the various bending units which, by contact, progressively deform it. The strip slides continuously through the bending units, being progressively deformed.
  • the longitudinal edges are welded together.
  • the profiled element is subsequently cut into portions of a pre-established length, according to known processes.
  • the whole production is performed in line, i.e. while the profiled element is continuously advancing.
  • the bending of the strip initially takes place by the operation of rollers that are located at the points in which the corners of the profiled element are to be realised.
  • rollers are positioned above and below the strip, at the corners that will progressively form.
  • On the lower or external side of the strip rotating rollers are positioned which exert an opposite pressure to the pressure exerted by the discs.
  • Discs and rollers are aligned in succession along the longitudinal axis of the strip, supported by a support structure which can assume various configurations.
  • a progressive bending is achieved about the longitudinal axis, up to obtaining a profiled element that is closed and tube-shaped.
  • the closing of the tube takes place in a terminal portion of the line, along which the two opposite edges of the strip are brought side-by-side with one another and then welded in line, for example by induction or high-frequency welding, in a known way in the sector.
  • the terminal portion of the line which produces the closing of the profiled element generally comprises a plurality of rollers, arranged outside the profiled element.
  • the rollers are positioned outside the profiled element as, physically, a sufficient space is not available to enable an internal location of sufficiently sturdy rollers.
  • the orientation of the various rollers, which can be adjustable, varies progressively along the terminal portion of the line, for progressively guiding the profiled element to the closing step.
  • the profiled element reaches such terminal portion when it has a substantially U-shaped bent section defined by a horizontal lower side, two sides that diverge from one another in an upwards direction, and two upper sides inclined upward so as to be converging towards each other.
  • the two upper sides are destined to flank one another in a horizontal position, to define the upper side of the section.
  • each cage generally comprises a lower roller, with a horizontal rotating axis, two lateral rollers, with rotating axes parallel to the sides of the profiled elements and diverging from one another in an upwards direction, and two upper rollers, which can be conical or cylindrical; in the last case with the rotating axes converging to each other in an upwards direction.
  • the rotating axes of the lateral rollers of the various cages progressively incline towards a vertical direction.
  • the rotating axes of the various upper rollers, or the taper thereof in a case where they are realised in a conical form, progressively incline towards a horizontal direction.
  • each cage must be provided with complex adjustment devices, which enable varying the inclination and the position of the rollers at least on a vertical plane.
  • the activating of these adjustment devices can be considerably laborious, and often requires the use of complex set-up software.
  • rollers at present used, associated to the respective cages often do not realise a correct closure of the profiled element.
  • the two upper sides are not always arranged perfectly coplanarly, with the edges perfectly flanked to one another, so that it is necessary to perform very accurate adjustments of the positions of the various rollers.
  • rollers at present used do not enable precisely realising the fillet radii required between the sides of the profiled element. This is because, during the closing step of the profiled element, the upper edges of the profiled element can slide in an undesired way on the surfaces of the upper rollers.
  • the object of the present invention is to disclose an operating unit for a profiling line and a method for profiling which enables obviating the drawbacks summarised.
  • An advantage of the operating unit according to the present invention is that it facilitates the correct closing of the profiled element, drastically reducing the need to adjust the position of the various rollers.
  • Another advantage of the operating unit according to the present invention is that it enables very precisely obtaining the fillet radii required between the various sides of the profiled element.
  • a further advantage of the operating unit according to the present invention is that it significantly prevents or limits any tendency of the profiled element to twist about the longitudinal axis thereof.
  • Figure 3 schematically illustrates a portion of the finishing portion of a profiling line.
  • three operating units (M) are illustrated, each provided with two shaped rollers (1) according to the present invention.
  • the operating units (M) are aligned along a longitudinal direction (Y) which also defines the longitudinal axis of the profiled element (P).
  • the profiled element (P) that enters each operating unit presents, on a section carried out with a plane perpendicular to the longitudinal direction (Y), a lower side (B), two sides (S1, S2) and two upper sides (T1, T2) inclined upward so as to be converging towards each other ( figure 2 ).
  • the lower side (B) is substantially horizontal.
  • the sides (S1, S2) can be divergent in an upwards direction, as in the represented case. Proceeding progressively along the finishing portion through the various operating units, the sides (S1, S2) assume a position progressively closer to the vertical axis, while the upper sides progressively approach a horizontal position.
  • the shaped roller of the operating unit comprises a conical portion (2) and an end portion (3), concentric with respect to a rotating axis (Z).
  • the rotating axis (Z) is preferably though not necessarily horizontal and is perpendicular to the longitudinal direction (Y).
  • the conical portion (2) is provided with a vertex section (23), in which the diameter is minimal.
  • the end portion (3) has a greater diameter than the vertex section (23). In this way, the end portion (3) defines a shoulder from the surface of the first conical portion (2).
  • the conformation of the shaped roller (1) of the operating unit according to the present invention provides important advantages.
  • the conical portion (2) is predisposed to enter into contact with an upper side (T1) of the profiled element.
  • T1 As it enters into contact with the conical portion (2), such upper side (T1) assumes an inclination that is substantially coincident with the taper of the conical portion (2).
  • the shaped rollers of the operating unit according to the present invention can be arranged with the rotating axis horizontal.
  • the end portion (3) provided with a greater diameter with respect to the vertex section (23), defines a shoulder in contact with which the edge of the upper side (T1) is positioned, as schematically illustrated in figure 1 .
  • the upper side (T1) does not slide on the surface of the conical portion (2) and can be bent thereby with a high degree of precision, enabling predetermined fillet radii to be realised with the side (S1).
  • the shaped rollers (1) of the various operating units have a taper that gradually decreases in the advancement direction of the profiled element, up to reaching a very small taper or becoming substantially cylindrical so as to bring the upper sides (T1, T2) into a position that is very close to a horizontal position.
  • a welding group that, by means of an upper cylindrical roller or other means, makes the upper sides (T1, T2) substantially horizontal and ready for the subsequent welding.
  • the end portion (3) is preferably though not necessarily conical and is connected to the conical portion (2) at the vertex section (23).
  • the conical conformation of the end portion (3), the inclination of which, with respect to the rotating axis (Z), is opposite with respect to that of the conical portion (2) enables reducing the peaks of pressure which can occur at the vertex section (23) and at the edge of the upper side (T1).
  • the conical conformation of the end portion (3) facilitates overall the machining of the surface of the roller.
  • the angle included between the tapers of the conical portion (2) and of the end portion (3) is preferably but not necessarily greater than or equal to a right angle. This enables obtaining the advantages connected with the conical conformation of the end portion (3), maintaining a solid rest for the edge of the upper side (T1).
  • the shaped roller has shoulders (21, 31), i.e. zones located at the ends of the roller, having a cylindrical shape.
  • the operating unit according to the present invention comprises two shaped rollers (1), positioned with the end portions (3) thereof facing each other, i.e. positioned with the end portions facing towards the longitudinal direction (Y) and towards a vertical plane containing the longitudinal direction (Y).
  • the two shaped rollers (1) have the rotating axes (Z) thereof aligned. This solution enables reducing the dimensions of the operating unit along the longitudinal axis (Y).
  • the shaped rollers (1) are arranged so that the upper sides (T1, T2) of the profiled element are in contact with the conical portion (2). As already mentioned, as they enter into contact with the conical portion (2) of the rollers (1), the upper sides (T1, T2) assume an inclination that is substantially coincident with the taper of the conical portion (2). As already mentioned, the shaped rollers (1) of the various operating units have a taper that gradually decreases in the advancement direction of the profiled element, so as to bring the upper sides (T1, T2) in a position progressively closer to the horizontal position.
  • the operating unit can be provided with adjustment means to allow the movement of the shaped rollers (1) along one or more horizontal directions and/or along a vertical direction.
  • the adjustment means can enable the nearing or distancing of the rollers (1) along a horizontal direction parallel to the rotating axes and/or a displacement of the rollers (1) along a direction parallel to the longitudinal axis (Y).
  • the adjustment means are not illustrated in greater detail as they are known to a person skilled in the sector.
  • the possibility of adjusting the position of the shaped rollers (1) enables varying the shape and section of the profiled element (P), and varying the progression of the bending of the profiled element (P).
  • the operating unit (M) can be further provided with a lower roller (11), arranged to come into contact with the lower side (B) of the profiled element.
  • the lower roller (11) is inclined in accordance with the inclination that it is desired to obtain for the lower side (B) of the profiled element.
  • the lower roller (11) is cylindrical and is arranged with the rotating axis horizontal.
  • Adjustment means can be predisposed to enable the movement of the lower roller (11) along one or more horizontal directions and/or along a vertical direction, in order to enable various sections of the profiled element (P) to be obtained.
  • the adjustment means are not illustrated in greater detail as they are known to a person skilled in the sector.
  • a lower roller (11) is interposed between two consecutive operating units (M).
  • the operating unit (M) can further comprise a pair of lateral rollers (12, 13), arranged to come into contact with the sides (S1, S2) of the profiled element.
  • the lateral rollers (12, 13) can have a conical or cylindrical conformation (respectively figures 4 and 5 ); in the latter case with an inclinable and adjustable rotating axis. As they enter into contact with the surface of the lateral rollers (12, 13), the sides (S1, S2) assume an inclination that substantially coincides with the taper of the lateral rollers (12, 13), in the first case, or substantially coincides with the inclination of the lateral rollers (12, 13) in the second case.
  • each end portion (3) defines a reaction point for the edge of an upper side (T1, T2), which cannot therefore slide on the conical surface of the roller.
  • T1, T2 upper side
  • the lateral rollers (12,13) to press on the sides (S1, S2) in a uniform manner, given that the sides (S1, S2) cannot flex (this is because of the block of the upper sides (T1, T2) due to the end portions (3)).
  • the sides (S1, S2) exactly copy the inclination of the surface of the lateral rollers (12, 13), enabling the precise realising of the predetermined radii of curvature on the corners of the profiled element (P).
  • the lateral rollers (12, 13) of the various operating units have a taper or inclination that gradually decreases in the advancement direction of the profiled element, up to becoming substantially cylindrical or vertical. This enables bringing the sides (S1, S2) into a substantially vertical position. Adjusting means (not illustrated as known to the skilled person in the sector) can be arranged to enable a displacement of the lateral rollers (12, 13) along one or more horizontal directions and along a vertical direction.
  • the possibility of adjusting the position of the lateral rollers (12, 13) enables varying the shape and dimensions of the cross-section of the profiled element (P), and varying the progression of the bending of the sides (S1, S2), increasing the flexibility of the line and making it substantially universal (within a wide range of sections realisable for the profiled element).
  • rollers mentioned and described can be motorized or idle, in a known way for the technical expert in the sector, according to the effective production needs.

Description

  • The present invention relates to an operating unit for a profiling line and to a method for profiling a profiled element according to the preambles of claims 1 and 9.
  • Such an operating unit and such a method are for example disclosed in JP-A-2003251413 . In particular, the invention relates to an operating unit having shaped rollers for profiling lines for tubes having a polygonal section, for example rectangular or square.
  • As is known, a profiling line allows a tubular profiled element to be produced starting from a steel strip which is progressively bent back in line about a longitudinal axis thereof until it assumes a tubular conformation wherein the longitudinal edges of the strip are arranged alongside one another in the upper zone of the profiled element. For this purpose a profiling line substantially comprises a series of bending units, arranged in succession, each of which comprises two or more profiling rollers. The progressive bending of the profiled element takes place by making the strip pass through the rollers of the various bending units which, by contact, progressively deform it. The strip slides continuously through the bending units, being progressively deformed.
  • Still in line, i.e. while the profiled element is continuously advancing, the longitudinal edges are welded together. The profiled element is subsequently cut into portions of a pre-established length, according to known processes. The whole production is performed in line, i.e. while the profiled element is continuously advancing.
  • For realising a polygonal section tube, for example rectangular or square, the bending of the strip initially takes place by the operation of rollers that are located at the points in which the corners of the profiled element are to be realised. Such rollers are positioned above and below the strip, at the corners that will progressively form. On the lower or external side of the strip rotating rollers are positioned which exert an opposite pressure to the pressure exerted by the discs. Discs and rollers are aligned in succession along the longitudinal axis of the strip, supported by a support structure which can assume various configurations. When advancing the strip through the rollers and the discs a progressive bending is achieved about the longitudinal axis, up to obtaining a profiled element that is closed and tube-shaped. The closing of the tube takes place in a terminal portion of the line, along which the two opposite edges of the strip are brought side-by-side with one another and then welded in line, for example by induction or high-frequency welding, in a known way in the sector.
  • With reference to the production of quadrangular-section tubes, the terminal portion of the line which produces the closing of the profiled element generally comprises a plurality of rollers, arranged outside the profiled element. The rollers are positioned outside the profiled element as, physically, a sufficient space is not available to enable an internal location of sufficiently sturdy rollers. The orientation of the various rollers, which can be adjustable, varies progressively along the terminal portion of the line, for progressively guiding the profiled element to the closing step. The profiled element reaches such terminal portion when it has a substantially U-shaped bent section defined by a horizontal lower side, two sides that diverge from one another in an upwards direction, and two upper sides inclined upward so as to be converging towards each other. The two upper sides are destined to flank one another in a horizontal position, to define the upper side of the section.
  • The various rollers are grouped in operating units, also known as cages, each of which comprises a support frame for a determined number of rollers. For the profiling of rectangular- or square-section tubes, each cage generally comprises a lower roller, with a horizontal rotating axis, two lateral rollers, with rotating axes parallel to the sides of the profiled elements and diverging from one another in an upwards direction, and two upper rollers, which can be conical or cylindrical; in the last case with the rotating axes converging to each other in an upwards direction. Along an advancement direction of the line, the rotating axes of the lateral rollers of the various cages progressively incline towards a vertical direction. The rotating axes of the various upper rollers, or the taper thereof in a case where they are realised in a conical form, progressively incline towards a horizontal direction.
  • To enable obtaining the correct inclination of the various rollers, each cage must be provided with complex adjustment devices, which enable varying the inclination and the position of the rollers at least on a vertical plane. The activating of these adjustment devices can be considerably laborious, and often requires the use of complex set-up software.
  • Furthermore, the rollers at present used, associated to the respective cages, often do not realise a correct closure of the profiled element. In particular, the two upper sides are not always arranged perfectly coplanarly, with the edges perfectly flanked to one another, so that it is necessary to perform very accurate adjustments of the positions of the various rollers.
  • Furthermore, the rollers at present used do not enable precisely realising the fillet radii required between the sides of the profiled element. This is because, during the closing step of the profiled element, the upper edges of the profiled element can slide in an undesired way on the surfaces of the upper rollers.
  • Examples of prior art devices are disclosed in documents WO2007063060 , US4660399 and JP2003251413 . Such devices do not solve the above problems, with particular regard to the profiling of closed profiles.
  • The object of the present invention is to disclose an operating unit for a profiling line and a method for profiling which enables obviating the drawbacks summarised.
  • This object is attained by an operating unit according to the features of claim 1 and by a method according to the features of claim 9. An advantage of the operating unit according to the present invention is that it facilitates the correct closing of the profiled element, drastically reducing the need to adjust the position of the various rollers.
  • Another advantage of the operating unit according to the present invention is that it enables very precisely obtaining the fillet radii required between the various sides of the profiled element.
  • A further advantage of the operating unit according to the present invention is that it significantly prevents or limits any tendency of the profiled element to twist about the longitudinal axis thereof.
  • Further characteristics and advantages of the present invention will become more apparent in the following detailed description of an embodiment of the present invention, illustrated by way of non-limiting example in the attached figures, in which:
    • figure 1 shows a schematic view of two shaped rollers of the operating unit according to the present invention;
    • figure 2 shows a cross-section view of a quadrangular-section profiled element;
    • figure 3 shows a schematic view of a portion of the finishing portion of a profiling line, in which three operating units according to the present invention are present;
    • figure 4 shows a front view of an operating unit according to the present invention;
    • figure 5 shows a front view of an operating unit according to the present invention, in an alternative embodiment.
  • Figure 3 schematically illustrates a portion of the finishing portion of a profiling line. In particular three operating units (M) are illustrated, each provided with two shaped rollers (1) according to the present invention. The operating units (M) are aligned along a longitudinal direction (Y) which also defines the longitudinal axis of the profiled element (P).
  • The profiled element (P) that enters each operating unit presents, on a section carried out with a plane perpendicular to the longitudinal direction (Y), a lower side (B), two sides (S1, S2) and two upper sides (T1, T2) inclined upward so as to be converging towards each other (figure 2). The lower side (B) is substantially horizontal. The sides (S1, S2) can be divergent in an upwards direction, as in the represented case. Proceeding progressively along the finishing portion through the various operating units, the sides (S1, S2) assume a position progressively closer to the vertical axis, while the upper sides progressively approach a horizontal position.
  • As illustrated in figure 1, the shaped roller of the operating unit according to the present invention comprises a conical portion (2) and an end portion (3), concentric with respect to a rotating axis (Z). The rotating axis (Z) is preferably though not necessarily horizontal and is perpendicular to the longitudinal direction (Y). The conical portion (2) is provided with a vertex section (23), in which the diameter is minimal. The end portion (3) has a greater diameter than the vertex section (23). In this way, the end portion (3) defines a shoulder from the surface of the first conical portion (2).
  • The conformation of the shaped roller (1) of the operating unit according to the present invention provides important advantages. The conical portion (2) is predisposed to enter into contact with an upper side (T1) of the profiled element. As it enters into contact with the conical portion (2), such upper side (T1) assumes an inclination that is substantially coincident with the taper of the conical portion (2). On the contrary to what happens with the cylindrical rollers at present available, which have to be arranged with the rotating axis inclined and adjustable, the shaped rollers of the operating unit according to the present invention can be arranged with the rotating axis horizontal. Furthermore, the end portion (3), provided with a greater diameter with respect to the vertex section (23), defines a shoulder in contact with which the edge of the upper side (T1) is positioned, as schematically illustrated in figure 1. Owing to the end portion (3), the upper side (T1) does not slide on the surface of the conical portion (2) and can be bent thereby with a high degree of precision, enabling predetermined fillet radii to be realised with the side (S1).
  • The shaped rollers (1) of the various operating units have a taper that gradually decreases in the advancement direction of the profiled element, up to reaching a very small taper or becoming substantially cylindrical so as to bring the upper sides (T1, T2) into a position that is very close to a horizontal position. Generally, downstream of the finishing portion there is a welding group that, by means of an upper cylindrical roller or other means, makes the upper sides (T1, T2) substantially horizontal and ready for the subsequent welding.
  • The end portion (3) is preferably though not necessarily conical and is connected to the conical portion (2) at the vertex section (23). The conical conformation of the end portion (3), the inclination of which, with respect to the rotating axis (Z), is opposite with respect to that of the conical portion (2) enables reducing the peaks of pressure which can occur at the vertex section (23) and at the edge of the upper side (T1). Furthermore, the conical conformation of the end portion (3) facilitates overall the machining of the surface of the roller. The angle included between the tapers of the conical portion (2) and of the end portion (3) is preferably but not necessarily greater than or equal to a right angle. This enables obtaining the advantages connected with the conical conformation of the end portion (3), maintaining a solid rest for the edge of the upper side (T1).
  • Preferably, though not necessarily, the shaped roller has shoulders (21, 31), i.e. zones located at the ends of the roller, having a cylindrical shape.
  • The operating unit according to the present invention comprises two shaped rollers (1), positioned with the end portions (3) thereof facing each other, i.e. positioned with the end portions facing towards the longitudinal direction (Y) and towards a vertical plane containing the longitudinal direction (Y). The two shaped rollers (1) have the rotating axes (Z) thereof aligned. This solution enables reducing the dimensions of the operating unit along the longitudinal axis (Y).
  • The shaped rollers (1) are arranged so that the upper sides (T1, T2) of the profiled element are in contact with the conical portion (2). As already mentioned, as they enter into contact with the conical portion (2) of the rollers (1), the upper sides (T1, T2) assume an inclination that is substantially coincident with the taper of the conical portion (2). As already mentioned, the shaped rollers (1) of the various operating units have a taper that gradually decreases in the advancement direction of the profiled element, so as to bring the upper sides (T1, T2) in a position progressively closer to the horizontal position.
  • The operating unit can be provided with adjustment means to allow the movement of the shaped rollers (1) along one or more horizontal directions and/or along a vertical direction. For example, the adjustment means can enable the nearing or distancing of the rollers (1) along a horizontal direction parallel to the rotating axes and/or a displacement of the rollers (1) along a direction parallel to the longitudinal axis (Y). The adjustment means are not illustrated in greater detail as they are known to a person skilled in the sector. The possibility of adjusting the position of the shaped rollers (1) enables varying the shape and section of the profiled element (P), and varying the progression of the bending of the profiled element (P).
  • The operating unit (M) according to the present invention can be further provided with a lower roller (11), arranged to come into contact with the lower side (B) of the profiled element. The lower roller (11) is inclined in accordance with the inclination that it is desired to obtain for the lower side (B) of the profiled element. In the illustrated case the lower roller (11) is cylindrical and is arranged with the rotating axis horizontal. Adjustment means can be predisposed to enable the movement of the lower roller (11) along one or more horizontal directions and/or along a vertical direction, in order to enable various sections of the profiled element (P) to be obtained. In this case too, the adjustment means are not illustrated in greater detail as they are known to a person skilled in the sector. Preferably, though not necessarily, a lower roller (11) is interposed between two consecutive operating units (M).
  • The operating unit (M) according to the present invention can further comprise a pair of lateral rollers (12, 13), arranged to come into contact with the sides (S1, S2) of the profiled element. The lateral rollers (12, 13) can have a conical or cylindrical conformation (respectively figures 4 and 5); in the latter case with an inclinable and adjustable rotating axis. As they enter into contact with the surface of the lateral rollers (12, 13), the sides (S1, S2) assume an inclination that substantially coincides with the taper of the lateral rollers (12, 13), in the first case, or substantially coincides with the inclination of the lateral rollers (12, 13) in the second case. Owing to the conformation of the shaped rollers of the operating unit according to the present invention, and in particular owing to the presence of the end portions (3), the action of the lateral rollers (12, 13) on the sides (S1, S2) of the profiled element is significantly more precise than in the present operating units. In fact, as already mentioned, each end portion (3) defines a reaction point for the edge of an upper side (T1, T2), which cannot therefore slide on the conical surface of the roller. This enables the lateral rollers (12,13) to press on the sides (S1, S2) in a uniform manner, given that the sides (S1, S2) cannot flex (this is because of the block of the upper sides (T1, T2) due to the end portions (3)). In this way, the sides (S1, S2) exactly copy the inclination of the surface of the lateral rollers (12, 13), enabling the precise realising of the predetermined radii of curvature on the corners of the profiled element (P).
  • The lateral rollers (12, 13) of the various operating units have a taper or inclination that gradually decreases in the advancement direction of the profiled element, up to becoming substantially cylindrical or vertical. This enables bringing the sides (S1, S2) into a substantially vertical position. Adjusting means (not illustrated as known to the skilled person in the sector) can be arranged to enable a displacement of the lateral rollers (12, 13) along one or more horizontal directions and along a vertical direction. The possibility of adjusting the position of the lateral rollers (12, 13) enables varying the shape and dimensions of the cross-section of the profiled element (P), and varying the progression of the bending of the sides (S1, S2), increasing the flexibility of the line and making it substantially universal (within a wide range of sections realisable for the profiled element).
  • The various rollers mentioned and described can be motorized or idle, in a known way for the technical expert in the sector, according to the effective production needs.

Claims (11)

  1. An operating unit for a profiling line, arranged to receive at the inlet a profiled element that has a cross section defined by a lower side (B), two sides (S1, S2) and two upper sides (T1, T2) sloped upward so as to be converging towards each other, the operating unit comprising:
    two shaped rollers (1), each one including a conical portion (2) and an end portion (3), concentric respect to a rotating axis (Z);
    wherein the conical portion (2) is equipped with a vertex section (23) in which the diameter of the roller (1) is minimal, wherein the end portion (3) is connected to the conical portion (2) at the vertex section (23), and
    wherein the end portion (3) has greater diameter than the vertex section (23) that defines a shoulder from the surface of the first conical portion (2);
    characterized in that:
    the two shaped rollers (1) are positioned with the rotating axes (Z) thereof aligned and with the end portions (3) facing each other, and are positioned in such a way that the upper sides (T1, T2) of the profiled element are in contact with the conical portion (2);
    the end portions (3) are arranged to come into contact with the end edges of the upper sides (T1, T2).
  2. The operating unit according to claim 1, including adjustment means to allow the movement of the shaped rollers (1) along one or more horizontal directions and/or along a vertical direction.
  3. The operating unit according to claim 1, including a lower roller (11), arranged to come into contact with the lower side (B) of the profiled element.
  4. The operating unit according to claim 1, including two lateral rollers (12,13), arranged to come into contact with the sides (S1,S2) of the profiled element.
  5. The operating unit according to claim 4, wherein the lateral rollers (S1,S2) are conical.
  6. The operating unit according to claim 4, wherein the lateral rollers (S1,S2) are cylindrical, with a rotating axis that is sloped and adjustable relative to the vertical axis.
  7. The operating unit according to claim 1, wherein the end portion (3) is conical and connected to the conical portion (2) at the vertex section (23).
  8. The operating unit according to claim 7, wherein the angle included between the tapers of the conical portion (2) and of the end portion (3) is greater than or equal to a right angle.
  9. Method for profiling a profiled element, wherein the profiled element has a cross section defined by a lower side (B), two sides (S1, S2) and two upper sides (T1, T2) sloped upward so as to be converging towards each other, which comprises the following steps:
    forwarding the profiled element to a profiling line which comprises a operating unit featuring two shaped rollers (1), each one including a conical portion (2) and an end portion (3), concentric respect to a rotating axis (Z);
    wherein the conical portion (2) is equipped with a vertex section (23) in which the diameter of the roller is minimal, wherein the end portion (3) is connected to the conical portion (2) at the vertex section (23), and
    wherein the end portion (3) has greater diameter than the vertex section (23) that defines a shoulder from the surface of the first conical portion (2);
    wherein the end portions (3) are arranged to come into contact with the end edges of the upper sides (T1, T2);
    wherein the profiled element is forwarded to the operating unit with the upper sides placed in contact with the conical portion (2) and with the edges of the upper sides (T1,T2) placed in contact with the end portions (3);
    characterised in that the two shaped rollers (1) are positioned with the rotating axes (Z) thereof aligned and with the end portions (3) facing each other, and are positioned in such a way that the upper sides (T1, T2) of the profiled element are in contact with the conical portion (2).
  10. Method according to claim 9, wherein the operating unit comprises a lower roller (11), arranged to come into contact with the lower side (B) of the profiled element, and wherein the profiled element is forwarded to the operating unit with the lower side (B) placed in contact with the lower roller (11).
  11. Method according to claim 9, wherein the operating unit comprises two lateral rollers (12,13), arranged to come into contact with the sides (S1,S2) of the profiled element, and wherein the profiled element is forwarded to the operating unit with each side (S1,S2) placed in contact with a lateral roller (12,13).
EP18157664.6A 2017-04-11 2018-02-20 Operating unit for a profiling line Active EP3388162B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
IT102017000039822A IT201700039822A1 (en) 2017-04-11 2017-04-11 SHAPED ROLLER FOR A PROFILING LINE

Publications (2)

Publication Number Publication Date
EP3388162A1 EP3388162A1 (en) 2018-10-17
EP3388162B1 true EP3388162B1 (en) 2020-04-01

Family

ID=59811745

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18157664.6A Active EP3388162B1 (en) 2017-04-11 2018-02-20 Operating unit for a profiling line

Country Status (6)

Country Link
US (1) US20180290192A1 (en)
EP (1) EP3388162B1 (en)
JP (1) JP2018176273A (en)
BR (1) BR102018005227A2 (en)
IT (1) IT201700039822A1 (en)
MX (1) MX2018003260A (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4660399A (en) * 1985-06-03 1987-04-28 Suter Frank L Mobile roll-forming machine
FI965070A0 (en) * 1996-12-17 1996-12-17 Samesor Smt International Oy In this case, the roll forming of the left metal product is rolled
US6148654A (en) * 1997-10-15 2000-11-21 Asc Machine Tools, Inc. Convertible roll forming apparatus
US6938389B2 (en) * 2001-10-03 2005-09-06 Steel Stitch Corporation Roll formed staple-in awning frame and method
JP3975783B2 (en) * 2002-03-04 2007-09-12 株式会社デンソー Roll forming method and apparatus
ITVE20050059A1 (en) * 2005-12-01 2007-06-02 Stam S P A PROFILING MACHINE.-
IT1394852B1 (en) * 2009-07-21 2012-07-20 Olimpia 80 Srl VARIABLE LINEAR GEOMETRY MACHINE TO FORM SQUARE TUBES CONTINUOUSLY

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
IT201700039822A1 (en) 2018-10-11
JP2018176273A (en) 2018-11-15
EP3388162A1 (en) 2018-10-17
MX2018003260A (en) 2018-11-09
BR102018005227A2 (en) 2018-12-18
US20180290192A1 (en) 2018-10-11

Similar Documents

Publication Publication Date Title
EP3225321B1 (en) A method of producing a steel pipe
CN106132577A (en) Bending and stamping mould
KR20110061620A (en) System for cold roll profiling profiles having variable cross-sections
CN110461488B (en) Press die and method for manufacturing steel pipe
EP3388162B1 (en) Operating unit for a profiling line
EP3436228B1 (en) Nozzle/header design for polystyrene
CN210647920U (en) Spiral pipe bending machine device
CN205852268U (en) Angle steel welding and straightening system and angle steel pinch roller bed device
CA2979430A1 (en) Method for induction bend forming a compression-resistant pipe having a large wall thickness and a large diameter, and induction pipe bending device
JP2011147992A (en) Apparatus and method for manufacturing flat tube
CN107081501B (en) Groove machining device and method for narrow and thick steel plate
CN108076631B (en) Method for producing a slotted pipe from sheet metal
DE102013013762B4 (en) Forming mandrel with a bending elastic deformable pressure jacket and forming device with such a mandrel
EP3243577B1 (en) A forming unit for a profiling machine line
RU2486981C1 (en) Production of large-diameter welded tubes
KR100956830B1 (en) Metal pipe forming device
CN107000013B (en) Device and method for producing profiles
CN218079992U (en) Stretch bending die for extruded Y-shaped material
JPH0312977B2 (en)
EP1420901A1 (en) Method and device for extruding curved extrusion profiles
JP2005279745A (en) Method for bending large diameter steel pipe
JP2023552346A (en) Method for preforming sheet metal and computer program and apparatus for carrying out the method
EP2165779B1 (en) Machine of variable linear structure for the formation of tubes
RU169825U1 (en) BENDING MACHINE
JP6791397B2 (en) Manufacturing method of steel pipe and press die

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190321

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIC1 Information provided on ipc code assigned before grant

Ipc: B21D 5/08 20060101AFI20190417BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190725

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200108

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1250712

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200415

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602018003348

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200401

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200702

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200801

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200817

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1250712

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602018003348

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

26N No opposition filed

Effective date: 20210112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210220

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220220

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230227

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20180220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240228

Year of fee payment: 7