EP3386921A1 - Cathode material for li-ion batteries - Google Patents

Cathode material for li-ion batteries

Info

Publication number
EP3386921A1
EP3386921A1 EP16819337.3A EP16819337A EP3386921A1 EP 3386921 A1 EP3386921 A1 EP 3386921A1 EP 16819337 A EP16819337 A EP 16819337A EP 3386921 A1 EP3386921 A1 EP 3386921A1
Authority
EP
European Patent Office
Prior art keywords
lithium
electrode material
material according
cathode
capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP16819337.3A
Other languages
German (de)
French (fr)
Inventor
Jean-François COLIN
Carole Bourbon
Quentin JACQUET
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA, Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP3386921A1 publication Critical patent/EP3386921A1/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/76Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by a space-group or by other symmetry indications
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/50Agglomerated particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the field of use of the present invention relates to the storage of electrical energy, and more particularly to lithium-ion batteries.
  • a lithium-ion battery typically includes the following assembly:
  • a positive electrode comprising a lithium-based material, a lithium salt-based electrolyte
  • a negative electrode (anode), generally based on carbon, for example graphite.
  • JP 2013-206746 discloses the material Li 2 NiSii_ x Ti x 0 4 with 0 ⁇ x ⁇ l whose capacity is 120 mAh / g at C / 20 between 4V and 2V,
  • the present invention relates to an electrode material of formula Li 2 + x Ni u Ti v Nb w 0 4 in which:
  • the formula above comprises at least one of the following parameters:
  • the material of formula Li 2 + x Ni u Ti v Nb w 04 is particularly suitable for use as a cathode material, in particular in a lithium-ion battery.
  • the material according to the invention may be in the form of particles or agglomerates of particles.
  • it is formed of agglomerates of 1 to 5 microns made of particles.
  • the particles are preferentially spherical. Their average diameter is advantageously between 30 and 100 nanometers.
  • the material is washed with distilled water to remove the salt mixture and then dried at 80 ° C. in air.
  • the electrode thus produced is introduced into a cell type "button cell” format 2032.
  • the negative electrode is made of lithium metal.
  • Two types of separators are used: a polypropylene film (Celgard 2400) and a polyolefin film (Viledon ® ).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

The present invention relates to an electrode material of formula Li2+xNiuTivNbwO4, in which: 0 < x < 0.3, u > 0 and w > 0, x+u+v+w = 2, x+2u+4v+5w = 6; the electrode material having a disordered crystalline NaCl structure. The present invention likewise relates to the cathode having said material as electronically active material, but also to the lithium-ion battery containing said cathode.

Description

MATERIAU DE CATHODE POUR BATTERIES Ll-ION  CATHODE MATERIAL FOR BATTERIES Ll-ION
DOMAINE DE L'INVENTION L'invention concerne un matériau à base de lithium de formule Li2+xNiuTivNbw04, ainsi que son utilisation en tant que matériau de cathode et son procédé de préparation. FIELD OF THE INVENTION The invention relates to a lithium-based material of the formula Li 2 + x Ni u Ti v Nb w 0 4 , as well as its use as a cathode material and its method of preparation.
Le domaine d'utilisation de la présente invention concerne le stockage de l'énergie électrique, et plus particulièrement les batteries lithium-ion. The field of use of the present invention relates to the storage of electrical energy, and more particularly to lithium-ion batteries.
ETAT ANTERIEUR DE LA TECHNIQUE PRIOR STATE OF THE TECHNIQUE
Les batteries lithium-ion sont particulièrement adaptées aux équipements électroniques portables eu égard à leur densité énergétique et à leur stabilité dans le temps en termes de cycles de charge et de décharge. Lithium-ion batteries are particularly suitable for portable electronic equipment with regard to their energy density and their stability over time in terms of charging and discharging cycles.
Une batterie lithium- ion comprend généralement l'assemblage suivant : A lithium-ion battery typically includes the following assembly:
une électrode positive (cathode) comprenant un matériau à base de lithium, un électrolyte à base de sel de lithium  a positive electrode (cathode) comprising a lithium-based material, a lithium salt-based electrolyte
- une électrode négative (anode), généralement à base de carbone, par exemple en graphite. a negative electrode (anode), generally based on carbon, for example graphite.
Les échanges réversibles d'ions Li+ entre la cathode et l'anode assurent son fonctionnement. Au niveau de la cathode, les matériaux présentant la plus forte énergie sont les oxydes lamellaires sur-stœchiométriques en lithium. Ils permettent d'atteindre des capacités spécifiques convenables (250mAh/g). Cependant, ils présentent de nombreux inconvénients principalement liés à la participation de l'oxygène dans les processus électrochimiques, parmi lesquels : The reversible exchanges of Li + ions between the cathode and the anode ensure its operation. At the cathode, the materials with the highest energy are the lithium super-stoichiometric lamellar oxides. They make it possible to reach suitable specific capacities (250mAh / g). However, they have many disadvantages mainly related to the participation of oxygen in the electrochemical processes, among which:
une forte irréversible au premier cycle ;  a strong irreversible in the first cycle;
- une instabilité structurale ; - structural instability;
une perte de potentiel en cyclage.  a loss of potential in cycling.
Pour remédier à ces problèmes. Il a été envisagé d'utiliser des matériaux de structures Rock-Salt (de type NaCl) par exemple : To remedy these problems. It has been envisaged to use materials of Rock-Salt structures (of the NaCl type), for example:
- le document WO 2009/120156 divulgue le matériau Li2FeTi04 ayant une capacité de 130 mAh/g à C/20 et 60°C entre 3.9V et 1.9V, le document CN 104269520 divulgue le matériau Li2FeTi04 ayant un enrobage graphite et une capacité de 200 mAh/g à C/30 entre 5V et 1.5V, the document WO 2009/120156 discloses the Li 2 FeTiO 4 material having a capacity of 130 mAh / g at C / 20 and 60 ° C between 3.9V and 1.9V, CN 104269520 discloses the Li 2 FeTiO 4 material having a graphite coating and a capacity of 200 mAh / g at C / 30 between 5V and 1.5V,
le document JP 2013-206746 divulgue le matériau Li2NiSii_xTix04 avec 0<x<l dont la capacité est 120 mAh/g à C/20 entre 4V et 2V, JP 2013-206746 discloses the material Li 2 NiSii_ x Ti x 0 4 with 0 <x <l whose capacity is 120 mAh / g at C / 20 between 4V and 2V,
- le document WO 2014/73700 décrit le matériau Li2Ni(i_x_y)CoxMnyTi04 avec x>0, y>0, dont la capacité est 230 mAh/g à C/100 entre 4.8V et 2V. the document WO 2014/73700 describes the material Li 2 Ni ( i x x y ) Co x Mn y Ti0 4 with x> 0, y> 0, whose capacity is 230 mAh / g at C / 100 between 4.8V and 2V .
Mais, même si les matériaux de type Li2NiTi04 de structure NaCl désordonnée présentent une capacité théorique élevée (290mAh/g), basée sur l'oxydation du Ni2+ en Ni4+ seulement, ces matériaux présentent une conductivité ionique trop faible, limitant ainsi les performances du matériau. But, even if the Li 2 NiTiO 4 materials of disordered NaCl structure have a high theoretical capacity (290 mAh / g), based on the oxidation of Ni 2+ to Ni 4+ only, these materials have an ionic conductivity that is too low , thus limiting the performance of the material.
Le Demandeur a mis au point un nouveau matériau lithié ayant une conductivité ionique supérieure à celle de matériaux de type Li2NiTi04 et une capacité spécifique théorique pouvant atteindre ou dépasser 250 mAh/g. The Applicant has developed a novel lithiated material having an ionic conductivity greater than that of Li 2 NiTiO 4 type materials and a theoretical specific capacity that can reach or exceed 250 mAh / g.
EXPOSE DE L'INVENTION SUMMARY OF THE INVENTION
La présente invention concerne un matériau d'électrode de formule Li2+xNiuTivNbw04 dans laquelle : The present invention relates to an electrode material of formula Li 2 + x Ni u Ti v Nb w 0 4 in which:
0 < x < 0.3, 0 <x <0.3,
u>0 et w>0, u> 0 and w> 0,
x + u + v + w = 2, x + u + v + w = 2,
x + 2u + 4v + 5w = 6. x + 2u + 4v + 5w = 6.
Dans cette formule, u et w sont différents de 0. En revanche, v peut être égal à 0 ; dans ce cas, le titane est intégralement substitué par du nickel et du niobium. In this formula, u and w are different from 0. On the other hand, v can be equal to 0; in this case, the titanium is completely substituted by nickel and niobium.
De manière avantageuse, la formule ci-dessus comprend au moins un des paramètres suivants : Advantageously, the formula above comprises at least one of the following parameters:
u peut être compris entre 0.9 et 4/3.  u can be between 0.9 and 4/3.
v peut être compris entre 0 et 0.6.  v can be between 0 and 0.6.
w peut être compris entre 0.3 et 0.77. Le matériau de formule Li2+xNiuTivNbw04 est particulièrement adapté pour une utilisation en tant que matériau de cathode, notamment dans une batterie lithium- ion. w can be between 0.3 and 0.77. The material of formula Li 2 + x Ni u Ti v Nb w 04 is particularly suitable for use as a cathode material, in particular in a lithium-ion battery.
De manière générale, ce matériau présente une structure cristalline de type NaCl désordonnée. In general, this material has a disordered NaCl crystal structure.
Une structure de type NaCl correspond à deux sous-réseaux cubiques à faces centrées (atomes répartis aux 8 sommets d'un cube et au centre de chacune des faces de ce cube). Ces deux sous-réseaux sont décalés de la moitié du côté de la maille. An NaCl-type structure corresponds to two cubic face-centered subnetworks (atoms distributed at the 8 vertices of a cube and in the center of each face of this cube). These two subnets are offset by half the mesh side.
Une structure désordonnée correspond à un cristal dont les atomes sont placés régulièrement dans les sites, mais dont la répartition des atomes est irrégulière. A disordered structure corresponds to a crystal whose atoms are regularly placed in the sites, but whose distribution of atoms is irregular.
Comme déjà indiqué, le matériau selon l'invention présente une capacité spécifique théorique pouvant atteindre ou dépasser 250 mAh/g sans faire intervenir une activité électrochimique de l'oxygène du réseau grâce au couple Ni2+/Ni4+. En outre, la substitution du titane par le lithium et par un métal (nickel et/ou niobium) permet d'améliorer ses propriétés de conductivité ionique et donc ses performances. De manière générale, les oxydes lamellaires enrichis en lithium permettent d'obtenir de fortes capacités car une partie de l'oxygène dont ils sont constitués participe à la réaction électrochimique en s 'oxydant en charge, comme les métaux, ce qui crée une instabilité structurale. Le matériau selon l'invention permet d'atteindre 250mAh/g sans que l'oxygène de la structure s'oxyde, car le couple Ni2+/Ni4+ fournit suffisamment d'électrons. As already indicated, the material according to the invention has a theoretical specific capacity that can reach or exceed 250 mAh / g without involving an electrochemical activity of the oxygen of the network thanks to the Ni 2+ / Ni 4+ pair. In addition, the substitution of titanium by lithium and by a metal (nickel and / or niobium) makes it possible to improve its ionic conductivity properties and therefore its performance. In general, the lithium enriched lamellar oxides make it possible to obtain high capacities because a part of the oxygen of which they are constituted participates in the electrochemical reaction by oxidizing the charge, such as metals, which creates a structural instability. . The material according to the invention makes it possible to reach 250mAh / g without the oxygen of the structure being oxidized, since the Ni 2+ / Ni 4+ pair provides enough electrons.
Le matériau selon l'invention peut être choisi dans le groupe comprenant : Li2.iNiTio.6Nbo.304 ; Lizo5NiTio.8Nbo.15O4 ; et Li2.2NiTio.2Nb0.604. A titre d'exemple de matériau selon l'invention : The material according to the invention may be chosen from the group comprising: Li 2 .iNiTio. 6 Nbo.304; Lizo5NiTio.8Nbo.15O4; and Li 2 . 2 NiTio. 2 Nb 0 .60 4 . By way of example of material according to the invention:
Li2.2NiTio.2Nbo.604 (x=0.2 ; u=l ; v=0.2 ; w=0.6) présente une capacité théorique, sans intervention de l'oxygène, de 263 mAh/g. Li 2 . 2 NiTio. 2 Nbo.604 (x = 0.2, u = 1, v = 0.2, w = 0.6) has a theoretical capacity, without oxygen intervention, of 263 mAh / g.
Liz1NiTio.6Nbo.3O4 (x=0.1 ; u=l ; v=0.6 ; w=0.3) présente une capacité théorique, sans intervention de l'oxygène, de 276 mAh/g. De manière générale, la capacité spécifique massique théorique du matériau selon l'invention peut être comprise entre 240 et 285 mAh/g. Liz1NiTio.6Nbo.3O4 (x = 0.1, u = 1, v = 0.6, w = 0.3) has a theoretical capacity, without oxygen intervention, of 276 mAh / g. In general, the theoretical specific specific capacity of the material according to the invention may be between 240 and 285 mAh / g.
Le matériau selon l'invention présente une conductivité ionique supérieure à celle de matériaux conventionnels de type Li2NiTi04, grâce à l'augmentation du nombre de chemins de percolation pour le lithium. En effet, le lithium étant le seul ion mobile dans la structure, il ne peut diffuser que si l'un des sites voisins est également occupé par un ion lithium. L'augmentation du ratio lithium/métal permet d'augmenter la probabilité d'occurrence de cette configuration et donc de multiplier les chemins de percolation possible. The material according to the invention has an ionic conductivity higher than that of conventional Li 2 NiTiO 4 type materials, thanks to the increase in the number of percolation paths for lithium. Since lithium is the only mobile ion in the structure, it can only diffuse if one of the neighboring sites is also occupied by a lithium ion. The increase of the lithium / metal ratio makes it possible to increase the probability of occurrence of this configuration and thus to multiply the possible percolation paths.
Le matériau selon l'invention peut se présenter sous la forme de particules ou d'agglomérats de particules. De manière avantageuse, il est formé d'agglomérats de 1 à 5 micromètres constitués de particules. Les particules sont préférentiellement sphériques. Leur diamètre moyen est avantageusement compris entre 30 et 100 nanomètres. The material according to the invention may be in the form of particles or agglomerates of particles. Advantageously, it is formed of agglomerates of 1 to 5 microns made of particles. The particles are preferentially spherical. Their average diameter is advantageously between 30 and 100 nanometers.
La présente invention concerne également le procédé de fabrication du matériau de formule Li2+xNiuTivNbw04. The present invention also relates to the process for manufacturing the material of formula Li 2 + x Ni u Ti v Nb w 04.
Il peut notamment s'agir d'une synthèse par voie solide, ou sol-gel, ou hydrothermale, ou fondue (sels fondus). De manière avantageuse, il est réalisé par voie sels fondus. Ces techniques de synthèse font partie des connaissances générales de l'homme du métier et ne nécessitent pas de conditions particulières. It may especially be a solid, sol-gel or hydrothermal synthesis, or melted (molten salts) synthesis. Advantageously, it is carried out by molten salt. These synthetic techniques are part of the general knowledge of those skilled in the art and do not require special conditions.
A titre d'exemple, la synthèse peut être réalisée par voie sels fondus à partir de précurseurs de lithium, nickel, titane et niobium dans un mélange de sels NaCl/KCl. By way of example, the synthesis can be carried out by melted salts from precursors of lithium, nickel, titanium and niobium in a mixture of NaCl / KCl salts.
Les précurseurs utilisés dans ce cas peuvent notamment être Li2C03, Ni(CH3COO)2. 4H20, Ti02 et Nb205. The precursors used in this case can in particular be Li 2 CO 3 , Ni (CH 3 COO) 2 . 4H 2 O, TiO 2 and Nb 2 O 5 .
La présente invention concerne également une cathode dans laquelle le matériau électroniquement actif est le matériau, décrit ci-dessus, de formule Li2+xNiuTivNbw04. La présente invention concerne également une batterie (ou accumulateur) lithium-ion comprenant cette cathode. The present invention also relates to a cathode in which the electronically active material is the material, described above, of formula Li 2 + x Ni u Ti v Nb w 0 4 . The present invention also relates to a lithium-ion battery (or accumulator) comprising this cathode.
Cette batterie lithium- ion comprend notamment l'assemblage d'une cathode selon l'invention, d'un électrolyte à base de sel de lithium et d'une anode, généralement à base de carbone (graphite par exemple). This lithium-ion battery comprises in particular the assembly of a cathode according to the invention, an electrolyte based on lithium salt and an anode, generally based on carbon (for example graphite).
L'homme du métier saura préparer cette batterie en faisant appel à ses connaissances générales pour mettre en œuvre les techniques conventionnelles, notamment par dépôt d'une encre comprenant le matériau Li2+xNiuTivNbw04. The person skilled in the art will know how to prepare this battery by using his general knowledge to implement conventional techniques, in particular by depositing an ink comprising the material Li 2 + x Ni u Ti v Nb w 0 4 .
L'invention et les avantages qui en découlent ressortiront mieux des figures et exemples suivants donnés afin d'illustrer l'invention et non de manière limitative. DESCRIPTION DES FIGURES The invention and the advantages thereof will appear more clearly from the following figures and examples given to illustrate the invention and not in a limiting manner. DESCRIPTION OF THE FIGURES
La figure 1 illustre les diffractogrammes des composés Li2+xNiTii_4xNb3X04, avec x=0.05, 0.10, 0.20. Figure 1 illustrates the diffractograms of the compounds Li 2 + x NiTii 4x Nb 3 X 04, with x = 0.05, 0.10, 0.20.
La figure 2 correspond à un agrandissement des diffractogrammes des composés Li2+xNiTii_4xNb3x04 (x=0.05, 0.10, 0.20) entre 30 et 50 °C. Figure 2 corresponds to an enlargement of the diffractograms of the compounds Li 2 + x NiTii 4x Nb 3 × 04 (x = 0.05, 0.10, 0.20) between 30 and 50 ° C.
La figure 3 illustre la capacité en charge et en décharge du matériau Li2NiTi04 en fonction du nombre de cycles. FIG. 3 illustrates the charging and discharging capacity of Li 2 NiTiO 4 material as a function of the number of cycles.
La figure 4 illustre la capacité en charge et en décharge du matériau Li2iiNiTioi6Nbo,304 en fonction du nombre de cycles. Figure 4 illustrates the charging and discharging capacity of the material Li 2i iNiTio i6 Nbo, 4 depending on the number of cycles.
La figure 5 illustre la tension du matériau Li2NiTi04 en fonction de la capacité spécifique. FIG. 5 illustrates the voltage of Li 2 NiTiO 4 material as a function of the specific capacitance.
La figure 6 illustre la tension du matériau Li2iiNiTio,6Nbo,304 en fonction de la capacité spécifique. Figure 6 illustrates the voltage of Li 2i material iNiTio, 6 Nbo, 3 0 4 depending on the specific capacity.
La figure 7 illustre le potentiel en fonction de la capacité en charge des matériaux Li2+xNiTii_4xNb3x04 (x=0.05, 0.10, 0.20). FIG. 7 illustrates the potential as a function of the load capacity of materials Li 2 + x NiTii_ 4x Nb 3x 0 4 (x = 0.05, 0.10, 0.20).
La figure 8 représente une image obtenue par microscope électronique à balayage du matériau Li2 NiTi0,6Nbo,304. EXEMPLES DE REALISATION DE L'INVENTION Figure 8 shows an image obtained by scanning electron microscope of NiTi material Li 2 0, 6Nbo, 3 0 4. EXAMPLES OF CARRYING OUT THE INVENTION
Synthèse Les matériaux Li2+xNiTii_4XNb3X04 (x=0.05, 0.10, 0.20) ont été synthétisés en voie sel fondus selon le protocole suivant, sous air. Synthesis The Li 2 + x NiTii 4 X Nb 3 X 04 materials (x = 0.05, 0.10, 0.20) were synthesized in the molten salt route according to the following protocol, under air.
Les précurseurs Li2C03, Ni(CH3COO)2. 4H20, Ti02 et Nb205 sont ajoutés en proportions stœchio métriques à un mélange eutectique NaCl/KCl (4eq mol). The precursors Li 2 CO 3 , Ni (CH 3 COO) 2 . 4H 2 O, TiO 2 and Nb 2 O 5 are added in stoichiometric proportions to a eutectic mixture NaCl / KCl (4e mol).
Après mélange, l'ensemble est porté à 350°C pendant 2 heures, puis à 670°C pendant 3 heures. After mixing, the mixture is heated at 350 ° C. for 2 hours and then at 670 ° C. for 3 hours.
Après refroidissement le matériau est lavé à l'eau distillée pour éliminer le mélange de sels, puis séché à 80°C sous air. After cooling, the material is washed with distilled water to remove the salt mixture and then dried at 80 ° C. in air.
Les diffractogrammes des figures 1 et 2 montrent les différentes phases substituées au Nb, montrant une évolution linéaire des paramètres de maille, ce qui indique que la substitution aboutit à une solution solide. The diffractograms of FIGS. 1 and 2 show the different phases substituted for Nb, showing a linear evolution of the mesh parameters, which indicates that the substitution results in a solid solution.
Tests électrochimiques a) Préparation de l'électrode positive Le matériau actif de formule Li2+xNiTii_4XNb3x04 (x=0.05, 0.10, 0.20) est mélangé à 80% en masse avec du noir de carbone (carbone Super P, 10%) et un liant PVDF (polyfluorure de vinylidène 10%>) dissous dans de la N-méthyl-2-pyrrolidone. Electrochemical tests a) Preparation of the positive electrode The active material of formula Li 2 + x NiTii 4 X Nb 3 × 04 (x = 0.05, 0.10, 0.20) is mixed with 80% by mass with carbon black (Super P carbon, 10%) and PVDF binder (10% polyvinylidene fluoride) dissolved in N-methyl-2-pyrrolidone.
Ce mélange est ensuite enduit sur une feuille d'aluminium (100 micromètres), puis séché à 60°C. b) Montage de l'accumulateur This mixture is then coated on an aluminum foil (100 micrometers) and then dried at 60 ° C. b) Assembly of the accumulator
L'électrode ainsi réalisée est introduite dans une cellule type « pile bouton » au format 2032. L'électrode négative est constituée de lithium métallique. Deux types de séparateurs sont utilisés : un film de polypropylène (Celgard 2400) et un film en polyoléfîne (Viledon®). The electrode thus produced is introduced into a cell type "button cell" format 2032. The negative electrode is made of lithium metal. Two types of separators are used: a polypropylene film (Celgard 2400) and a polyolefin film (Viledon ® ).
L'électrolyte utilisé est un composé de carbonate d'éthylène, de carbonate de propylène, de carbonate de diméthyle et d'hexafluorophosphate de lithium (LiPF6) (Electrolyte LP100). c) Cyclage galvanostatique A température ambiante, un courant est imposé au système afin d'obtenir un régime de C/50, c'est-à-dire l'extraction/insertion d'un ion lithium en 50 heures. d) Résultats Les figures 3 et 4 montrent que la substitution du titane par le lithium et le niobium aboutit à une capacité plus importante (80mAh/g vs. 91mAh/g) et plus stable lors du cyclage à C/50 entre 4.8V et 2 V (figures 5 et 6). The electrolyte used is a compound of ethylene carbonate, propylene carbonate, dimethyl carbonate and lithium hexafluorophosphate (LiPF 6 ) (Electrolyte LP100). c) Galvanostatic Cycling At room temperature, a current is imposed on the system in order to obtain a C / 50 regime, that is to say the extraction / insertion of a lithium ion in 50 hours. d) Results FIGS. 3 and 4 show that the substitution of titanium by lithium and niobium results in a higher capacity (80 mAh / g vs. 91 mAh / g) and is more stable during the C / 50 cycling between 4.8V and 2 V (Figures 5 and 6).
Cette amélioration est attribuée à une meilleure conductivité ionique du matériau car la polarisation diminue avec la substitution. This improvement is attributed to a better ionic conductivity of the material because the polarization decreases with the substitution.
La figure 7 correspond au potentiel en fonction de la capacité en charge. Elle met en évidence l'importance de la substitution d'atomes de titane par des atomes de lithium et de niobium. Plus le taux de substitution est important plus la capacité atteignable en première charge est importante. Pour le taux de substitution le plus élevé (x=0.2), 87% de la capacité théorique sont atteints à température ambiante et 95% à 55°C. Figure 7 corresponds to the potential as a function of the load capacity. It highlights the importance of the substitution of titanium atoms by lithium and niobium atoms. The higher the substitution rate, the higher the capacity achievable in the first load. For the highest substitution rate (x = 0.2), 87% of the theoretical capacity is reached at room temperature and 95% at 55 ° C.
La figure 8 correspond à une image obtenue par microscope électronique à balayage du matériau Li2,iNiTioi6Nbo,304. Elle illustre la présence d'agglomérats de particules globalement sphériques. Figure 8 corresponds to an image obtained by scanning electron microscope of Li 2 material, iNiTio i6 Nbo, 304. It illustrates the presence of agglomerates of globally spherical particles.

Claims

REVENDICATIONS
1. Matériau d'électrode de formule Li2+xNiuTivNbw04 dans laquelle : 1. An electrode material of formula Li 2 + x Ni u Ti v Nb w 04 in which:
0 < x < 0.3,  0 <x <0.3,
u>0 et w>0,  u> 0 and w> 0,
x + u + v + w = 2,  x + u + v + w = 2,
x + 2u + 4v + 5w = 6,  x + 2u + 4v + 5w = 6,
le matériau d'électrode présentant une structure cristalline de type NaCl désordonnée.  the electrode material having a disordered NaCl crystal structure.
2. Matériau d'électrode selon la revendication 1, caractérisé en ce que u est compris entre 0.9 et 4/3. Electrode material according to claim 1, characterized in that u is between 0.9 and 4/3.
3. Matériau d'électrode selon la revendication 1 ou 2, caractérisé en ce que v est compris entre 0 et 0.6. Electrode material according to claim 1 or 2, characterized in that v is between 0 and 0.6.
Matériau d'électrode selon l'une des revendications 1 à 3, caractérisé en ce que w est compris entre 0.3 et 0.77. Electrode material according to one of Claims 1 to 3, characterized in that w is between 0.3 and 0.77.
Matériau d'électrode selon l'une des revendications 1, 2 ou 4, caractérisé en ce qu'il est choisi dans le groupe comprenant : Li2.iNiTi0.6Nbo.304 ; Lizo5NiTio.8Nbo.15O4 ; et Li2.2NiTi0.2Nb0.6O4. Electrode material according to one of claims 1, 2 or 4, characterized in that it is selected from the group consisting of: Li 2 .iNiTi 0 . 6 Nbo.304; Lizo5NiTio.8Nbo.15O4; and Li 2 . 2 NiTi 0 . 2 Nb 0 .6O 4 .
Matériau d'électrode selon l'une des revendications 1 à 5, caractérisé en ce qu'il est formé d'agglomérats de 1 à 5 micromètres constitués de particules dont le diamètre moyen est compris entre 30 et 100 nanomètres. Electrode material according to one of claims 1 to 5, characterized in that it is formed of agglomerates of 1 to 5 micrometers consisting of particles whose average diameter is between 30 and 100 nanometers.
Cathode ayant pour matériau électroniquement actif le matériau objet de l'une des revendications 1 à 6. Cathode having as electronically active material the material of one of claims 1 to 6.
Batterie lithium-ion contenant la cathode objet de la revendication 7. Lithium-ion battery containing the cathode object of claim 7.
Procédé de préparation du matériau objet de l'une des revendications 1 à 6, caractérisé en ce qu'il est réalisé par voie sels fondus. Process for the preparation of the material according to one of Claims 1 to 6, characterized in that it is carried out by molten salt route.
EP16819337.3A 2015-12-09 2016-11-29 Cathode material for li-ion batteries Pending EP3386921A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1562097A FR3045211B1 (en) 2015-12-09 2015-12-09 CATHODE MATERIAL FOR LI-ION BATTERIES
PCT/FR2016/053133 WO2017098113A1 (en) 2015-12-09 2016-11-29 Cathode material for li-ion batteries

Publications (1)

Publication Number Publication Date
EP3386921A1 true EP3386921A1 (en) 2018-10-17

Family

ID=55236746

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16819337.3A Pending EP3386921A1 (en) 2015-12-09 2016-11-29 Cathode material for li-ion batteries

Country Status (5)

Country Link
US (1) US10644313B2 (en)
EP (1) EP3386921A1 (en)
JP (1) JP6861208B2 (en)
FR (1) FR3045211B1 (en)
WO (1) WO2017098113A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110247049A (en) * 2019-04-30 2019-09-17 上海德朗能动力电池有限公司 A kind of lithium battery metal oxide negative electrode material and its preparation method and application

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SI22771A (en) 2008-03-27 2009-10-31 Kemijski inštitut Titanates of transition metals as materials for cathode in lithium batteries
JP5670105B2 (en) * 2009-09-29 2015-02-18 日本碍子株式会社 Positive electrode active material and lithium secondary battery
JP2012033279A (en) * 2010-07-28 2012-02-16 Nec Energy Devices Ltd Lithium ion secondary battery
JP5909131B2 (en) 2012-03-28 2016-04-26 株式会社Gsユアサ Active material for lithium secondary battery, electrode for lithium secondary battery and lithium secondary battery using the same
JP5964729B2 (en) 2012-11-12 2016-08-03 国立大学法人九州大学 Positive electrode active material for lithium battery, and lithium battery containing the positive electrode active material for lithium battery
TW201439371A (en) * 2013-01-21 2014-10-16 Kinestral Technologies Inc Process for preparing a multi-layer electrochromic structure
US9341910B2 (en) * 2013-01-21 2016-05-17 Kinestral Technologies, Inc. Electrochromic lithium nickel Group 5 mixed metal oxides
CN104269520A (en) 2014-09-24 2015-01-07 南京工业大学 Li with graphene as carrier2FeTiO4-G composite cathode material and preparation method thereof

Also Published As

Publication number Publication date
US10644313B2 (en) 2020-05-05
JP2019504437A (en) 2019-02-14
JP6861208B2 (en) 2021-04-21
FR3045211A1 (en) 2017-06-16
WO2017098113A1 (en) 2017-06-15
US20180331359A1 (en) 2018-11-15
FR3045211B1 (en) 2020-06-05

Similar Documents

Publication Publication Date Title
CA2942194C (en) Long-life lithium-ion batteries
US9368786B2 (en) Positive active material and lithium battery including the same
EP3042410B1 (en) Additives for improving the ionic conductivity of lithium-ion battery electrodes
FR2932175A1 (en) POSITIVE ELECTRODE MATERIAL FORMED OF A LAMELLAR TYPE OXIDE FOR LITHIUM ACCUMULATOR.
JP6509363B2 (en) ELECTRODE FOR ELECTROCHEMICAL DEVICE, METHOD FOR MANUFACTURING THE SAME, AND ELECTROCHEMICAL DEVICE INCLUDING THE SAME
EP2757068B1 (en) Method for synthesising a LiM1-x-y-zNyQzFexPO4 compound and use thereof as electrode material for a lithium battery
EP3331064B1 (en) Use of 4,5-imidazoledicarboxylic acid as an electrode active material
CN113557615A (en) Negative electrode for nonaqueous electrolyte secondary battery
WO2017098113A1 (en) Cathode material for li-ion batteries
WO2019097189A1 (en) Use of a salt mixture as an additive in a lithium-gel battery
EP3230207B1 (en) Electrode material of formula life(1-x)coxbo3, and production method thereof
WO2021195778A1 (en) Electrode materials comprising a tunnel-type oxide of sodium and of a metal, electrodes comprising same and use thereof in electrochemistry
EP3218306B1 (en) Electrode material of formula limnxco(1-x)bo3, and production method thereof
CA3138162A1 (en) Electrode materials comprising a layered oxide that contains potassium and a metal, electrodes comprising said materials and use thereof in electrochemistry
EP3647443A1 (en) Specific negative electrode made of lithium and lithium electrochemical generator including such a negative electrode
WO2019227218A1 (en) Ceramics, methods for the production thereof and uses of same
EP3255712A1 (en) Method for manufacturing an electrode for a battery operating on the principle of ion insertion and removal or alloy formation
EP4254543A1 (en) Specific negative electrode based on lithium and lithium electrochemical generator comprising such a negative electrode
WO2010082240A1 (en) Composite oxide, process for production thereof, and non-aqueous electrolyte secondary battery using the composite oxide
WO2022185245A1 (en) Zinc - manganese dioxide - nickel hydroxide secondary electrochemical generator
JP2010055989A (en) Negative electrode material for lithium-ion battery
FR3033213A1 (en) ELECTRODE ACTIVE MATERIAL COMPRISING COPPER

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180502

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20201016

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS