EP3383551B1 - Dispositif de pulverisation a transducteur piezoelectrique couple a un concentrateur acoustique, avec detection du niveau de liquide interne - Google Patents

Dispositif de pulverisation a transducteur piezoelectrique couple a un concentrateur acoustique, avec detection du niveau de liquide interne Download PDF

Info

Publication number
EP3383551B1
EP3383551B1 EP16819135.1A EP16819135A EP3383551B1 EP 3383551 B1 EP3383551 B1 EP 3383551B1 EP 16819135 A EP16819135 A EP 16819135A EP 3383551 B1 EP3383551 B1 EP 3383551B1
Authority
EP
European Patent Office
Prior art keywords
liquid
piezoelectric element
value
representative
active surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16819135.1A
Other languages
German (de)
English (en)
Other versions
EP3383551A1 (fr
Inventor
Michel Gschwind
Abbas SABRAOUI
Frédéric Richard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Areco Finances et Technologie ARFITEC SAS
Original Assignee
Areco Finances et Technologie ARFITEC SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Areco Finances et Technologie ARFITEC SAS filed Critical Areco Finances et Technologie ARFITEC SAS
Publication of EP3383551A1 publication Critical patent/EP3383551A1/fr
Application granted granted Critical
Publication of EP3383551B1 publication Critical patent/EP3383551B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B17/00Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
    • B05B17/04Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
    • B05B17/06Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations
    • B05B17/0607Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers
    • B05B17/0615Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers spray being produced at the free surface of the liquid or other fluent material in a container and subjected to the vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B12/00Arrangements for controlling delivery; Arrangements for controlling the spray area
    • B05B12/08Arrangements for controlling delivery; Arrangements for controlling the spray area responsive to condition of liquid or other fluent material to be discharged, of ambient medium or of target ; responsive to condition of spray devices or of supply means, e.g. pipes, pumps or their drive means
    • B05B12/081Arrangements for controlling delivery; Arrangements for controlling the spray area responsive to condition of liquid or other fluent material to be discharged, of ambient medium or of target ; responsive to condition of spray devices or of supply means, e.g. pipes, pumps or their drive means responsive to the weight of a reservoir or container for liquid or other fluent material; responsive to level or volume of liquid or other fluent material in a reservoir or container
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B17/00Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
    • B05B17/04Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
    • B05B17/06Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations
    • B05B17/0607Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers
    • B05B17/0653Details
    • B05B17/0669Excitation frequencies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B17/00Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
    • B05B17/04Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
    • B05B17/06Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations
    • B05B17/0607Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers
    • B05B17/0653Details
    • B05B17/0676Feeding means

Definitions

  • the invention relates to the technical field of spray devices capable of producing a mist of micro-droplets from a liquid.
  • the droplets are generated by a piezoelectric element coupled to an acoustic concentrator. More specifically, the invention relates to such a device comprising detection of the level of the liquid to be sprayed.
  • Spray devices capable of producing a mist of micro-droplets from a liquid by piezoelectric excitation are known as such.
  • the piezoelectric element can be associated with a micro-perforated membrane or with an acoustic concentrator in order to promote the production of fog.
  • the piezoelectric transducer is coupled to a micro-perforated membrane, which is in contact with the liquid to be sprayed.
  • WO 2013/110248 Nebu Tec
  • WO 2012/020262 and WO 05/15822 Technology Partnership
  • EP 2 244 314 Zerobele Holding
  • US 2006/213503 and US 2005/224076 Parenter
  • WO 2001/85240 Pezzopane
  • FR 2 929 861 L'Oréal
  • US 8,870,090 Aptar
  • WO 2008/058941 Telemaq
  • JP 2001/300375 Panasonic
  • the piezoelectric transducer is coupled directly to the liquid to be sprayed, with which it is in contact. More precisely, these systems generally use a tank provided with a concentration nozzle and a piezoelectric element, as described for example in the documents EP 0 691 162 A1 and EP 0 782 885 A1 (IMRA Europe). These devices are very reliable and are commonly used for humidifying and cooling fresh produce on sales stalls, as described in the documents. FR 2 899 135 A1 , FR 2 921 551 A1 , WO 2014/023907 A1 , WO 2013/034847 A1 (ARECO), FR 2 690 510 A1 (Techsonic).
  • these devices do not run the risk of being disturbed in their operation by clogging problems; they have an average lifespan of 5000 hours.
  • these devices have a significant size which is mainly related to the thickness of water necessary for the proper functioning of the piezoelectric element (generally from 20 to 35 mm) and also to the height of the diffusion chamber necessary for the creation of an almost vertical and very powerful acoustic jet (generally 40 to 100 mm).
  • the lack of water can be momentary, for example when the water level of the system moves due to the permanent or occasional movement of the system; this problem can arise for nebulization systems on board vehicles. Lack of water can also be linked to lack of water supply.
  • the water replenishment can be automatic or manual. However, it is known that the flow of mist generated by the system depends, at equal power dissipation, on the water level above the piezoelectric element.
  • piezoelectric excitation nebulization systems are equipped with a water level sensor.
  • These sensors can be of the optical, capacitive, ultrasonic, electromechanical, magnetic, etc. type. They present typically a problem of size, precision, price and reliability. More precisely: the bulkiness of the sensor can become a problem in miniaturized systems. Accuracy can become an issue because many level sensors have a low trigger point and a high trigger point. Price can become a problem with miniaturized systems that open up new applications as long as they are inexpensive. Reliability can become a problem due to the inevitable fouling of the sensor's active surface.
  • the problem which the present invention seeks to solve is to present an improved piezoelectric excitation nebulization system, which exhibits better reliability, allows a more compact construction, less expensive, and a better precision of adjustment, and which lends itself in particular to applications. miniaturized systems.
  • the inventors have found that the problem posed can be surprisingly solved without resorting to a liquid level sensor, by making use of the piezoelectric element itself as a means of detecting the liquid. Indeed, the inventors have observed a link between the characteristics of the nebulization jet and the current consumption of the piezoelectric element.
  • a parameter representative of the current consumed by the piezoelectric element is measured.
  • This parameter can be the current consumed itself.
  • it may be a quantity, such as the voltage, from which a person skilled in the art can access the current consumed.
  • the figure 1 shows the system 1 according to the invention in a normal operating situation, that is to say with a so-called appropriate or optimal liquid level Iopt.
  • the system 1 comprises a tank 10, forming a container, a piezoelectric element 20 and an acoustic concentrator 30.
  • the piezoelectric element 20 is generally in the form of a circular shaped wafer. In the example of figure 1 it is arranged vertically, its active surface (here also called “emitting face”) 21 being oriented in the direction of the acoustic concentrator 30.
  • the angle formed by the horizontal and the main direction of the aforementioned active surface is denoted by ⁇ . In the example illustrated, this angle has a value of 90 °.
  • this angle ⁇ is between 45 ° and 135 °, it can for example be between 70 and 110 °.
  • This element 20 generates ultrasonic waves 40 which are emitted in the direction of the acoustic concentrator 30.
  • the latter may have a parabolic or other shape; its focal point here bears the reference 50.
  • the acoustic concentrator 30 is advantageously made of a hard material (for example metallic) capable of reflecting ultrasound waves.
  • the frequency of the ultrasounds used in the context of the present invention is advantageously between 1.3 MHz and 3 MHz, it can be for example 1.68 MHz.
  • the active surface 21 of the piezoelectric element 20 is completely covered with liquid and the ultrasounds 40 are emitted into the liquid where they impact against the surface of the acoustic concentrator 30.
  • the latter is designed in such a way, and the liquid level is adjusted so that the focal point 50 of the ultrasound 40 is located slightly below the liquid level Iopt . This ensures a stable nebulization jet 70 and a maximum generation of mist 60.
  • the operation of the system is optimal.
  • the current consumption of the piezoelectric element 20 is stable and varies linearly with the applied voltage. In a functional case given here by way of example, the voltage applied to the excitation card is 12 volts (V), the current required corresponds to 400 milliamperes (mA).
  • the figure 2 shows the same system as the figure 1 , but with a liquid level Iint , called intermediate, which is abnormally low: the liquid no longer covers the whole of the active surface 21 of the piezoelectric element 20.
  • This has two consequences: first of all, knowing that the point focal 50 of the acoustic waves 40 is now located above the intermediate liquid level Iint , the waves generate a jet of liquid 70, but little fog 60.
  • the non-submerged part 22 of the active surface 21 emits only a negligible part of the air.
  • electrical power absorbed in the form of ultrasound the remainder is reflected on the surface of the non-submerged part 22 and dissipated in heat.
  • this heating modifies the power consumption of the piezoelectric element 20, as will be detailed with reference to figure 8 . More precisely, this heating modifies the current absorbed; this difference amounts to a few percent, but it is sufficient to be detected.
  • the piezoelectric element 20 is powered by fixed voltage pulse trains, these pulses being close to the resonant frequency of the piezoelectric element 20.
  • the current absorbed by the piezoelectric element 20 it is noted that this current increases with temperature.
  • the piezoelectric element was supplied with a voltage of 12 volts and the absorbed current was 400 mA in normal operation; this current is 440 mA when part of the active surface of the piezoelectric element is not immersed.
  • the inventors observed that when the non-submerged part of the active surface of the piezoelectric element 20 increases, the absorbed current decreases and passes to a value close to zero in the total absence of liquid ( figure 3 ).
  • the piezoelectric element 20 cannot emit in the air as in the liquid, its impedance is therefore limited and its current consumption is much lower than that Iopt in optimal mode as well as that Iint in intermediate mode.
  • the figure 8 summarizes the variation of the current consumed I as a function of the height H of liquid in the tank. More precisely, the percentage of the height of the active surface, covered by the liquid, is plotted on the abscissa.
  • the value 0 corresponds to an empty tank ( figure 3 )
  • the value 100 corresponds to the liquid covering the entire active surface ( figure 1 )
  • the value 50 corresponds to the liquid covering half of the height of the active surface ( figure 2 ).
  • the current consumed has a so-called optimal value Iopt , which is also found when the liquid is present in excess (right part of the curve corresponding to the values 110 and 120).
  • Iopt optimal value
  • the value of the current consumed increases slightly, from the optimum value Iopt above to a so-called intermediate value Iint. This value of current consumed is then substantially constant as the liquid level drops, until it drops substantially to a so-called critical value Icrit corresponding to an empty tank of liquid.
  • said liquid can be water, optionally comprising substances (ionic or nonionic) in solution or in dispersion.
  • the water can comprise one or more organic products, miscible or not, such as an alcohol or an essential oil.
  • Each of the curves representing an operating mode, shows the linearity between the voltage applied to the terminals of the piezoelectric element 20 and the current consumed. It follows that this variation in current consumption as a function of the liquid level cannot be used directly to detect the liquid level: a calibration must be carried out.
  • the figure 5 schematically shows a control method which is based on measuring the current and voltage of the piezoelectric element to detect the presence or absence of water and nebulization.
  • the piezoelectric element is supplied with direct current (for example at a voltage of 24 V DC), modulated by the resonant frequency of the piezoelectric element.
  • direct current for example at a voltage of 24 V DC
  • the active surface of the piezoelectric element is completely covered with liquid; the nebulization is operating, and the current consumption is stable (typically at about 2.3 A for a diameter of the active surface of between approximately 10mm and approximately 20mm).
  • the inventors have observed a current drop which is significant and extremely rapid (in less than 100 ms). This drop may be of the order of 30 to 40% of the nominal value of the current absorbed by the piezoelectric element completely covered with liquid (in the example approximately 2.3 A). These indicators make it possible to react quickly in order to cut off the power supply to the piezoelectric element or to reduce the electric power supplied by said power supply to the piezoelectric element, and / or to trigger a new filling of water. Thus it is possible to return to an operating mode in which the active surface is completely immersed.
  • This indicator which is linked to the drop in current observed, can be correlated with a time measurement in order to estimate the nebulization flow rate of our system and possibly trigger alarms in the event of a problem due to the filling or proper functioning of the l. piezoelectric element.
  • the first three steps are typically implemented when the device is used for the first time. Indeed, the intrinsic characteristics of the various piezoelectric elements can vary from one device to another. These steps provide access to knowledge of these characteristics.
  • the voltage A is varied from a minimum operating value to a maximum operating value (for example from 6 V to 12 V), and the value of the current B is measured and recorded for each voltage. These values will be used as a reference to detect the variation of the current during the nebulization and to indicate to the users the presence or absence of water.
  • the voltage A is varied between the above minimum and maximum operating values, and the value of current B is measured and recorded for each voltage. These values will be used as a reference to detect the variation of the current during the nebulization and to indicate to the users the presence or absence of water.
  • the voltage A is varied between the above minimum and maximum operating values, and the value of current B is measured and recorded for each voltage. These values will be used as a reference to detect the variation of the current during the nebulization and to indicate to the users the presence or absence of water.
  • the different values of current consumed for each voltage observed are recorded in the control command of the piezoelectric C.
  • the Iopt values are recorded in particular. , Iint and Icrit as defined above.
  • the value of the current consumed by the piezoelectric element is measured. This measurement can be continuous or, alternatively, regular measurements can be made at an appropriate frequency. As long as the instantaneous value of this current I does not reach the threshold value as shown in figure 8 , there is no feedback. In other words, it is not necessary to add liquid to the tank.
  • the regulation system C makes it possible to control the solenoid valve E ensuring the filling of the tank R when the current consumption of the piezoelectric 20 becomes excessive. More precisely, when the measured instantaneous value of current consumed reaches the threshold value Iint defined above, the regulation system triggers an alert which is directed to the solenoid valve E. The latter then controls the arrival of additional liquid in the tank, which has the effect of lowering the value of the current consumed. The device regains an optimal configuration, as defined above, so that the water inlet is then stopped.
  • the alert triggered by the regulation system may not be transmitted to a solenoid valve, but to a signaling device.
  • the latter then emits a signal perceptible by the user, in particular of visual and / or sound type.
  • the addition of liquid to the tank is, in this case, provided directly by the user and not by a mechanical element of the device.
  • the regulation system C is able to stop the piezoelectric to limit the breakage of the latter when it detects a low consumption of the current by the piezoelectric element 20.
  • the regulation system triggers an alert which is directed to means for automatically cutting the piezoelectric element. This makes it possible to guarantee the mechanical integrity of this element, which would be endangered if this situation of lack of water were to continue.
  • the alert triggered by the regulation system may not be transmitted to cut-off means, but to a signaling device.
  • the latter then emits a signal perceptible by the user, in particular of visual and / or sound type.
  • the stopping of the piezoelectric element is, in this case, ensured directly by the user and not by a mechanical element of the device.
  • both the need for water supply and the need to shut off the piezoelectric element can be served directly to the user.
  • the figure 6 implements an electronic assembly.
  • the assembly is controlled by a card 190, the power supply of which is done remotely by a power supply module 180.
  • the DC voltage supplied can be between 6 and 40 volts.
  • This card is built around the microcontroller 200 allowing the application management of the steps stated above.
  • This microcontroller 200 also manages the connectivity of the input / output modules.
  • This card includes an all-or-nothing (discrete) analog input module 210 and an output module 220. These assemblies are used to control the water supply to the receptacle in the event of an intermediate or empty level or to control the information signal allowing to warn the user of the need to fill the reservoir supplying the receptacle.
  • a sub-assembly 230 is present to constitute the piezoelectric control 25, this one makes it possible to define the excitation frequency, the voltage, the duty cycle. This module also makes it possible to obtain information on the current consumed 260 as well as the temperature 270 of the piezoelectric 20.
  • the last module 240 of this card 190 is the control and command element of the piezoelectric.
  • This module is the interface allowing the sending of the voltage signal making it possible to excite the piezoelectric 20 and in return to obtain the temperature of said element 20.
  • the card 100 is built around the microcontroller, which has the role of managing the signal generator and subsequently the piezoelectric control.
  • Card 100 also has a 12V switching regulator for controlling the transistor via the driver (120), and a 5V linear regulator for adapting the input control signal.
  • the principle of the driver (120) is to be able to supply for a short time the large current necessary for switching the transistor 130 at high frequencies.
  • the inrush current of the control of the transistor 130 is very high, and supplying sufficient current allows rapid switching, limiting the transient states causing heating of the transistor 130.
  • the transistor driver 120 uses several capacitors in parallel upstream of the component.
  • the control voltage of the transistor is fixed at 12V, thus minimizing the effect of its Ron characteristic and therefore the heating of the component.
  • the excitation frequency of the piezoelectric 20 is generated by the component 110, which produces a square wave of programmable frequency (by default 1.7 MHz).
  • the impedance matching circuit 140 of the piezoelectric 20 consists of a coil and a capacitor in series with a capacitor in parallel on the output.
  • the value of the impedance of the piezoelectric element will change and introduce an electrical impedance mismatch to the entire circuit and subsequently change its current consumption.
  • the piezoelectric 20 is driven by a transistor 130, having an excellent control load and on-state resistance ratio, and a very fast response time allowing it to operate at high frequency (1.7 MHz), allowing both a good signal and a moderate warm-up.
  • a control driver 120 capable of delivering up to 2 x 5A is placed upstream.
  • the current measurements 150 are performed using a low value shunt resistor, between 0.01 and 0.1 ohm depending on the current consumed, and a voltmeter type component measuring the potential difference across the resistor and multiplying by 10 the result in order to have a more readable value for the microcontroller.
  • the microcontroller subsequently will compare the values of the current drawn in order to define the operating state of the piezoelectric. This state will enable the process step to be validated.

Landscapes

  • Special Spraying Apparatus (AREA)

Description

    Domaine technique de l'invention
  • L'invention concerne le domaine technique des dispositifs de pulvérisation capables de produire un brouillard de micro-gouttelettes à partir d'un liquide. Les gouttelettes sont générées par un élément piézoélectrique couplé à un concentrateur acoustique. Plus précisément, l'invention concerne un tel dispositif comprenant une détection du niveau du liquide à pulvériser.
  • Etat de la technique
  • Les dispositifs de pulvérisation capables de produire un brouillard de micro-gouttelettes à partir d'un liquide par excitation piézoélectrique sont connus en tant que tels. Dans ces systèmes l'élément piézoélectrique peut être associé à une membrane micro-perforée ou à un concentrateur acoustique afin de favoriser la production de brouillard.
  • Dans les systèmes à membrane micro-perforée, le transducteur piézoélectrique est couplé à une membrane micro-perforée, qui est en contact avec le liquide à pulvériser. Ces systèmes sont décrits par exemple dans les documents WO 2013/110248 (Nebu Tec), WO 2012/020262 et WO 05/15822 (Technology Partnership), EP 2 244 314 (Zobele Holding), US 2006/213503 et US 2005/224076 (Pari Pharma), WO 2001/85240 (Pezzopane), FR 2 929 861 (L'Oréal), US 8 870 090 (Aptar), WO 2008/058941 (Telemaq), JP 2001/300375 (Panasonic). Ces systèmes sont simples et compacts, mais en règle générale leur débit est très faible, c'est-à-dire ils produisent une quantité de brouillard très faible. Leur durée de vie est assez limitée (souvent moins de 1000 heures). Ils peuvent convenir pour certaines utilisations (par exemple pour diffuser des parfums dans une pièce), mais pas pour d'autres. Par ailleurs, ces dispositifs nécessitent une maintenance attentive car la membrane risque de se colmater. Ces systèmes sont également relativement sensibles à la pression d'eau au-dessus de la membrane et à la pression d'air dans le volume de diffusion ; des problèmes de fuite d'eau peuvent apparaître. Ce manque de robustesse des dispositifs utilisant une membrane perforée peut limiter leur intérêt pour certains types d'applications, notamment industrielles et surtout les produits destinés au grand public (frigo, cave électrique), qui nécessitent une durée de vie importante (de l'ordre de 5 à 10 ans) et pour lesquels des procédures d'entretien complexes et fréquentes ne sont pas envisageables.
  • Dans les systèmes à concentrateur acoustique, le transducteur piézoélectrique est couplé directement au liquide à pulvériser, avec lequel il est en contact. Plus précisément, ces systèmes utilisent en règle générale une cuve pourvue d'une buse à concentration et d'un élément piézoélectrique, comme décrit par exemple dans les documents EP 0 691 162 A1 et EP 0 782 885 A1 (IMRA Europe). Ces dispositifs sont très fiables et sont utilisés couramment pour humidifier et rafraîchir des produits frais sur des étals de vente, comme décrit dans les documents FR 2 899 135 A1 , FR 2 921 551 A1 , WO 2014/023907 A1 , WO 2013/034847 A1 (ARECO), FR 2 690 510 A1 (Techsonic). Leur débit est important et convient pour de nombreuses utilisations techniques et industrielles. Ne comportant pas de membranes perforées, ces dispositifs ne risquent pas d'être perturbés dans leur fonctionnement par des problèmes de colmatage ; ils présentent une durée de vie de 5000 heures en moyenne. En revanche, ces dispositifs ont une taille significative qui est principalement liée à l'épaisseur d'eau nécessaire pour le bon fonctionnement de l'élément piezoélectrique (généralement de 20 à 35 mm) et aussi à la hauteur du chambre de diffusion nécessaire pour la création d'un jet acoustique presque vertical et très puissant (généralement de 40 à 100 mm).
  • On connaît en outre, par EP 2 208 950 , un réfrigérateur équipé au moyen d'un nébulisateur électrostatique. Comme expliqué dans la description de ce document, un tel nébulisateur est fondé sur le principe d'une décharge électrique. Par conséquent, il présente des différences structurelles et fonctionnelles significatives, par rapport à un nébulisateur piézoélectrique, tel que plus spécifiquement visé par la présente demande de brevet.
  • Il existe des dispositifs dont le rendement « débit d'eau / puissance électrique » a été optimisé. Ces systèmes sont généralement équipés des buses agissant comme concentrateurs des ondes acoustiques générées par l'élément piézoélectrique travaillant à très haute fréquence (de l'ordre de quelques MHz), d'une pompe de circulation d'eau, d'un ventilateur et d'une alimentation électrique spécifique. L'intégration de tous ces éléments dans un volume réduit reste un point bloquant pour beaucoup d'applications qui nécessitent un système très performant (rapport débit / puissance électrique) et d'une très grande fiabilité (surtout l'élément piézoélectrique, le ventilateur, la pompe, les générateurs à haute fréquence, le capteur de niveau, les électrovannes de remplissage).
  • Dans un système de nébulisation par excitation piézoélectrique il est toujours nécessaire de surveiller la présence et le volume de l'eau devant le transducteur piézoélectrique, pour les deux raisons suivantes :
    D'une part, il faut protéger le transducteur d'un manque d'eau, qui peut conduire à la destruction de l'élément piézoélectrique, surtout dans les cas des fortes puissances électriques absorbées. En effet, les gaz (tels que l'air) présentent une impédance acoustique beaucoup plus importante pour les ondes acoustiques que les liquides (tels que l'eau). Si la céramique piézoélectrique n'est pas recouverte d'un liquide, l'énergie acoustique se dissipe donc dans la céramique piézoélectrique elle-même, conduisant à son échauffement. Si cet échauffement est important ou prolongé, cela peut conduire à la dégradation, voire à la destruction fonctionnelle de l'élément piézoélectrique.
  • Il faut également garantir une bonne stabilité de la densité de nébulisation au cours du temps ; cet aspect est particulièrement important dans les applications qui nécessitent un niveau d'humidité bien précis et maitrisé.
  • Le manque d'eau peut être momentané, par exemple lorsque le niveau d'eau du système bouge suite au mouvement permanent ou occasionnel du système ; ce problème peut se poser pour des systèmes de nébulisation embarqués dans des véhicules. Le manque d'eau peut être aussi lié au manque d'approvisionnement en eau. Le réapprovisionnement en eau peut être automatique ou manuel. Cependant, on sait que le débit en brouillard généré par le système dépend, à puissance dissipée égale, du niveau d'eau au-dessus de l'élément piézoélectrique.
  • Pour répondre à ces problématiques, la plupart des systèmes de nébulisation à excitation piézoélectrique sont équipés d'un capteur de niveau d'eau. Ces capteurs peuvent être de type optique, capacitif, à ultrasons, électromécanique, magnétique, etc. Ils présentent typiquement un problème d'encombrement, de précision, de prix et de fiabilité. Plus précisément : l'encombrement du capteur peut devenir un problème dans des systèmes miniaturisés. La précision peut devenir un problème car de nombreux capteurs de niveau présentent un point de déclenchement bas et un point de déclenchement haut. Le prix peut devenir un problème dans le cas de systèmes miniaturisés qui ouvrent des applications nouvelles à condition d'être peu onéreux. La fiabilité peut devenir un problème à cause de l'inévitable encrassement de la surface active du capteur.
  • Le problème que la présente invention cherche à résoudre est de présenter un système de nébulisation à excitation piézoélectrique amélioré, qui présente une meilleure fiabilité, permet une construction plus compacte, moins coûteuse, et une meilleure précision de réglage, et qui se prête en particulier aux systèmes miniaturisés.
  • Objets de l'invention
  • A cet effet, l'invention a pour objet un dispositif de nébulisation à excitation piézoélectrique, comprenant :
    • une cuve apte à contenir un liquide,
    • un élément piézoélectrique disposé au moins en partie dans le volume intérieur de la cuve, cet élément présentant une surface active apte à émettre des ondes acoustiques dans le liquide, lorsque cette surface active est au moins en partie recouverte de liquide, en vue de la nébulisation de ce liquide,
    ce dispositif étant caractérisé en ce qu'il comprend en outre :
    • des moyens de mesure aptes à mesurer un paramètre représentatif du courant consommé par l'élément piézoélectrique ;
    • des moyens d'alerte, propres à être activés en réponse auxdits moyens de mesure, lorsque la valeur instantanée dudit paramètre représentatif se situe en dehors d'une plage prédéterminée.
  • Selon d'autres caractéristiques de ce dispositif de nébulisation, prises isolément ou selon toute combinaison techniquement compatible :
    • le dispositif comprend en outre des premiers moyens de commande, propres à activer des moyens d'arrivée de liquide dans la cuve, en réponse auxdits moyens d'alerte ;
    • le dispositif comprend en outre des seconds moyens de commande, propres à activer des moyens d'arrêt de l'élément piézoélectrique, en réponse auxdits moyens d'alerte ;
    • le dispositif comprend en outre au moins un organe d'alerte, propre à émettre au moins un signal perceptible par un utilisateur, en réponse auxdits moyens d'alerte.
    • les moyens d'alimentation en liquide comprennent une électrovanne ;
    • la surface active de l'élément piézoélectrique est inclinée par rapport à l'horizontale selon un angle compris entre 45° et 135°, notamment selon un angle de 90° ;
    • le paramètre représentatif du courant consommé par l'élément piézoélectrique est le courant consommé par l'élément piézoélectrique.
  • L'invention a également pour objet un procédé de mise en oeuvre d'un dispositif de nébulisation tel défini ci-dessus, comprenant :
    • une cuve de liquide,
    • un élément piézoélectrique disposé au moins en partie dans le volume intérieur de la cuve, cet élément présentant une surface active apte à émettre des ondes acoustiques dans le liquide en vue de la nébulisation de ce liquide ;
    • des moyens de mesure aptes à mesurer un paramètre représentatif du courant consommé par l'élément piézoélectrique ;
    • des moyens d'alerte, propres à être activés en réponse auxdits moyens de mesure, lorsque la valeur instantanée dudit paramètre représentatif se situe en dehors d'une plage prédéterminée ;
    ce procédé comprenant les étapes suivantes :
    • on mesure un paramètre représentatif du courant consommé par l'élément piézoélectrique ;
    • on active les moyens d'alerte lorsque la valeur instantanée dudit paramètre représentatif se situe en dehors d'une plage prédéterminée.
  • Selon d'autres caractéristiques de ce procédé, prises isolément ou selon toute combinaison techniquement compatible :
    • on active les premiers moyens de commande, de manière à provoquer une arrivée de liquide dans la cuve, lorsque la valeur instantanée dudit paramètre représentatif atteint une première valeur prédéterminée, dite valeur seuil haute ;
    • on émet un premier type de signal grâce à l'organe d'alerte, lorsque la valeur instantanée dudit paramètre représentatif atteint une première valeur prédéterminée, dite valeur seuil haute ;
    • la première valeur prédéterminée est déterminée en fonction d'une valeur dite optimale dudit paramètre, correspondant à une mise en oeuvre du dispositif où la surface active est entièrement recouverte de liquide ;
    • la première valeur prédéterminée est comprise entre 110% et 120% de la valeur optimale ;
    • le procédé comprend en outre une étape de calibration, dans laquelle on détermine la variation du courant consommé en fonction de la tension aux bornes de l'élément piézoélectrique dans un état dit optimal du dispositif, pour lequel la surface active est entièrement recouverte de liquide, ainsi que dans un état dit intermédiaire du dispositif, pour lequel la surface active est partiellement recouverte de liquide ;
    • on active les seconds moyens de commande, de manière à provoquer l'arrêt de l'élément piézoélectrique, lorsque la valeur instantanée dudit paramètre représentatif atteint une seconde valeur prédéterminée, dite valeur seuil basse ;
    • on émet un second type de signal, différent dudit premier type de signal, lorsque la valeur instantanée dudit paramètre représentatif atteint une seconde valeur prédéterminée, dite valeur seuil basse ;
    • le procédé comprend en outre une autre étape de calibration, dans laquelle on détermine la variation du courant consommé en fonction de la tension aux bornes de l'élément piézoélectrique dans un état dit critique du dispositif, pour lequel la surface active n'est pas du tout recouverte de liquide ;
    • le paramètre représentatif du courant consommé par l'élément piézoélectrique est le courant consommé par l'élément piézoélectrique.
  • Les inventeurs ont trouvé que le problème posé peut être résolu d'une manière surprenante sans recourir à un capteur de niveau de liquide, en se servant de l'élément piézoélectrique lui-même comme moyen de détection du liquide. En effet, les inventeurs ont constaté un lien entre les caractéristiques du jet de nébulisation et la consommation de courant de l'élément piézoélectrique.
  • Selon l'invention, on mesure un paramètre représentatif du courant consommé par l'élément piézoélectrique. Ce paramètre peut être le courant consommé proprement dit. A titre de variante, il peut s'agir d'une grandeur, telle que la tension, à partir de laquelle l'homme du métier peut accéder au courant consommé.
  • Description des figures
  • Les figures 1 à 8 illustrent des modes de réalisation de l'invention, mais ne limitent pas la portée de l'invention.
    • La figure 1 est une vue schématique, illustrant un dispositif de nébulisation conforme à l'invention, dont le récipient est entièrement rempli de liquide ;
    • La figure 2 est une vue schématique, analogue à la figure 1, dans laquelle le liquide présente un niveau de remplissage intermédiaire dans le récipient ;
    • La figure 3 est une vue schématique, analogue à la figure 1, dans laquelle le récipient est dépourvu de liquide ;
    • La figure 4 est un graphe, illustrant les variations du courant consommé par l'élément piézoélectrique appartenant au dispositif conforme à l'invention, en fonction de la tension appliquée aux bornes de cet élément, pour chacun des trois niveaux de liquide des figures 1 à 3 ;
    • La figure 5 est une vue schématique, illustrant certains organes de commande de l'élément piézoélectrique appartenant au dispositif conforme à l'invention ;
    • La figure 6 est une vue schématique, illustrant de façon plus détaillée certains autres organes de commande de l'élément piézoélectrique ;
    • La figure 7 est un schéma électronique du dispositif de nébulisation conforme à l'invention ;
    • La figure 8 est un graphe, illustrant la variation du courant consommé par l'élément piézoélectrique, en fonction du niveau de remplissage du récipient.
  • Les références numériques suivantes sont utilisées dans la présente description:
    1 Système selon l'invention 10 Cuve
    20 Elément piézoélectrique 21 Surface active de 20
    22 Partie non immergée de 20 30 Concentrateur acoustique
    40 Ondes acoustiques 50 Point focal de 30
    60 Brouillard 70 Jet de liquide
    Iopt Hauteur optimale Hint Hauteur intermédiaire
    A Angle de 21 Iopt Intensité de courant optimale
    Iint Intensité de courant intermédiaire Icrit Intensité de courant critique
    C Système de régulation E Electrovanne
    100 Carte 120 Driver
    130 Transistor 140 Circuit d'adaptation
    180 Module d'alimentation 190 Carte électronique
    200 Microcontrôleur 210 Module d'entrées
    220 Module de sortie 230 Sous ensemble
    240 Module de 190 250 Elément de commande de 40
    260 Informations sur le courant 270 Informations sur la température
  • Description détaillée
  • La figure 1 montre le système 1 selon l'invention en situation de fonctionnement normal, c'est-à-dire avec un niveau de liquide dit approprié ou optimal Iopt. Le système 1 comprend une cuve 10, formant récipient, un élément piézoélectrique 20 et un concentrateur acoustique 30. L'élément piézoélectrique 20 se présente en règle générale sous la forme d'une plaquette de forme circulaire. Dans l'exemple de la figure 1 il est disposé verticalement, sa surface active (appelée ici aussi « face émettrice ») 21 étant orientée en direction du concentrateur acoustique 30. On note α l'angle formé par l'horizontale et la direction principale de la surface active précitée. Dans l'exemple illustré, cet angle présente une valeur de 90°. Néanmoins, l'invention trouve son application à d'autres valeurs de cet angle, de façon générale à tout élément piézoélectrique non horizontal, à savoir pour lequel l'angle α est différent de 0° et de 180°. Typiquement, cet angle α est compris entre 45° et 135°, il peut par exemple être compris entre 70 et 110°.
  • Cet élément 20 génère des ondes d'ultrasons 40 qui sont émises en direction du concentrateur acoustique 30. Ce dernier peut avoir une forme parabolique ou autre ; son point focal porte ici la référence 50. Le concentrateur acoustique 30 est avantageusement réalisé en un matériau dur (par exemple métallique) apte à réfléchir les ondes d'ultrasons. La fréquence des ultrasons utilisés dans le cadre de la présente invention se situe avantageusement entre 1,3 MHz et 3 MHz, elle peut être par exemple de 1,68 MHz.
  • En fonctionnement normal du système 1, la surface active 21 de l'élément piézoélectrique 20 est entièrement recouverte de liquide et les ultrasons 40 sont émis dans le liquide où ils impactent contre la surface du concentrateur acoustique 30. Ce dernier est conçu de manière, et le niveau de liquide est réglé de manière, à ce que le point focal 50 des ultrasons 40 se situe légèrement au-dessous du niveau de liquide Iopt. Cela assure un jet de nébulisation 70 stable et une génération maximale de brouillard 60. Dans le cas de la figure 1, le fonctionnement du système est optimal. La consommation de courant de l'élément piézoélectrique 20 est stable et varie de manière linéaire en fonction de la tension appliquée. Dans un cas fonctionnel donné ici à titre d'exemple, la tension appliquée à la carte d'excitation est de 12 volts (V), le courant nécessaire correspond à 400 milliampères (mA).
  • La figure 2 montre le même système que la figure 1, mais avec un niveau de liquide Iint, dit intermédiaire, qui est anormalement bas : le liquide ne recouvre plus la totalité de la surface active 21 de l'élément piézoélectrique 20. Cela a deux conséquences : tout d'abord, sachant que le point focal 50 des ondes acoustiques 40 se situe maintenant au-dessus du niveau de liquide intermédiaire Iint, les ondes génèrent un jet de liquide 70, mais peu de brouillard 60. De plus, compte tenu du fait que l'impédance acoustique de l'air est très supérieure à celle du liquide, la partie non immergée 22 de la surface active 21 n'émet qu'une partie négligeable de la puissance électrique absorbée sous la forme d'ultrasons : le reste est réfléchi sur la surface de la partie non immergée 22 et dissipé en chaleur.
  • Les inventeurs ont observé que cet échauffement modifie la consommation électrique de l'élément piézoélectrique 20, comme cela sera détaillé en référence à la figure 8. Plus précisément, cet échauffement modifie le courant absorbé ; cette différence s'élève à quelques pourcents, mais elle est suffisante pour être détectée.
  • De manière typique, dans un système de nébulisation à excitation piézoélectrique, l'élément piézoélectrique 20 est alimenté par des trains d'impulsions à tension fixe, ces impulsions étant proches de la fréquence de résonance de l'élément piézoélectrique 20. Lorsque l'on mesure le courant absorbé par l'élément piézoélectrique 20, on constate que ce courant augmente avec la température. A titre d'exemple, dans un système de nébulisation à excitation piézoélectrique, on a alimenté l'élément piézoélectrique avec une tension de 12 volts et le courant absorbé était de 400 mA en fonctionnement normal ; ce courant est de 440 mA lorsqu'une partie de la surface active de l'élément piézoélectrique n'est pas immergée.
  • De manière surprenante, les inventeurs ont observé que lorsque la partie non immergée de la surface active de l'élément piézoélectrique 20 augmente, le courant absorbé diminue et passe à une valeur proche de zéro en l'absence totale de liquide ( figure 3 ). L'élément piézoélectrique 20 ne peut émettre dans l'air comme dans le liquide, son impédance est donc limitée et sa consommation de courant est bien inférieure à celle Iopt en régime optimal ainsi qu'à celle Iint en régime intermédiaire.
  • La figure 8 récapitule la variation du courant consommé I en fonction de la hauteur H de liquide dans la cuve. Plus précisément, le pourcentage de la hauteur de la surface active, recouverte par le liquide, est porté en abscisses. La valeur 0 correspond à une cuve vide (figure 3), la valeur 100 correspond au liquide recouvrant l'intégralité de la surface active (figure 1), la valeur 50 correspond au liquide recouvrant la moitié de la hauteur de la surface active (figure 2).
  • Lorsque le liquide recouvre toute la hauteur de la surface, le courant consommé présente une valeur dite optimale Iopt, que l'on retrouve également lorsque le liquide est présent en excès (partie droite de la courbe correspondant aux valeurs 110 et 120). Quand le niveau de liquide diminue, la valeur du courant consommé augmente légèrement, depuis la valeur optimale Iopt ci-dessus jusqu'à une valeur dite intermédiaire Iint. Cette valeur de courant consommé est alors sensiblement constante au fur et à mesure que le niveau de liquide baisse, jusqu'à descendre sensiblement jusqu'à une valeur dite critique Icrit correspondant à une cuve vide de liquide.
  • Il existe donc trois valeurs caractéristiques de courant consommé en fonction du niveau d'eau, qui correspondent à trois états du dispositif : optimal quand le niveau de liquide est satisfaisant, intermédiaire quand le niveau de liquide est insuffisant mais que l'intégrité de l'élément piézoélectrique n'est pas remise en cause, et enfin critique quand il n'y a plus de liquide dans la cuve. Typiquement, Iint est légèrement supérieure à Iopt, d'environ 10 à 20%, alors que Icrit est très inférieure à Iopt.
  • Dans tous les modes de réalisation de la présente invention ledit liquide peut être de l'eau, éventuellement comprenant des substances (ioniques ou non ioniques) en solution ou en dispersion. Par exemple, l'eau peut comprendre un ou plusieurs produits organiques, miscibles ou non, tel qu'un alcool ou une huile essentielle.
  • La figure 4 représente le diagramme de réponse en consommation de courant par l'élément piézoélectrique 20 selon les modes de fonctionnement décris ci-dessus. Chacune des courbes comprend plusieurs échantillons de valeurs de courant consommé (en ordonnées) en fonction de différentes tensions appliquées à l'élément piézoélectrique (en abscisses). Chaque courbe représente un mode de fonctionnement présenté comme suit :
    • La courbe constituée de carrés correspond à un fonctionnement optimal de l'élément piézoélectrique. Ce fonctionnement optimal correspond à la figure 1 quand le système comprend la hauteur définie ci-dessus Iopt de liquide recouvrant entièrement l'élément piézoélectrique 20.
    • La courbe constituée de cercles correspond à un fonctionnement intermédiaire de l'élément piézoélectrique 20. Ce fonctionnement intermédiaire correspond à la figure 2 quand le système comprend la hauteur Iint de liquide définie ci-dessus.
    • La courbe constituée de triangles correspond à un fonctionnement à vide comme précédemment décrit en référence à la figure 3.
  • Chacune des courbes, représentant un mode de fonctionnement, montre la linéarité entre la tension appliquée aux bornes de l'élément piézoélectrique 20 et le courant consommé. Il s'ensuit que cette variation de la consommation de courant en fonction du niveau de liquide ne peut être exploitée directement pour détecter le niveau de liquide : il faut effectuer une calibration.
  • La figure 5 montre de manière schématique un procédé de régulation qui se base sur la mesure du courant et de la tension de l'élément piézoélectrique pour détecter la présence ou l'absence de l'eau et de la nébulisation.
  • Dans le cas d'un circuit électronique à forte puissance où un générateur de signal alimente l'élément piézoélectrique à une fréquence fixe on constate que le courant au niveau de l'alimentation du circuit varie en fonction de la fraction surfacique de la surface active de l'élément piézoélectrique qui est recouverte d'eau.
    Dans un mode de réalisation typiquement, l'élément piézoélectrique est alimenté en courant direct (par exemple à une tension de 24 V DC), modulé par la fréquence de résonance de l'élément piézoélectrique. Dans un tel mode de fonctionnement normal, la surface active de l'élément piézoélectrique est totalement recouverte de liquide ; la nébulisation fonctionne, et la consommation de courant est stable (typiquement à environ 2,3 A pour un diamètre de la surface active compris entre environ 10mm et environ 20mm).
  • Dans le cas où la surface active de l'élément piézoélectrique est seulement partiellement recouvert de liquide, les inventeurs ont observé une chute de courant qui est significative et extrêmement rapide (en moins de 100 ms). Cette chute peut être de l'ordre de 30 à 40% de la valeur nominale du courant absorbé par l'élément piézoélectrique totalement recouvert de liquide (dans l'exemple environ 2,3 A). Ces indicateurs permettent de réagir rapidement afin de couper l'alimentation de l'élément piézoélectrique ou de diminuer la puissance électrique fournie par ladite alimentation à l'élément piézoélectrique, et/ou pour déclencher un nouveau remplissage d'eau. Ainsi il est possible de retourner vers un mode de fonctionnement dans lequel la surface active est complètement immergée.
  • Cet indicateur, qui est relié à la chute du courant constaté, peut être corrélé avec une mesure temporelle afin d'estimer le débit de nébulisation de notre système et de déclencher éventuellement des alarmes en cas de problème dû au remplissage ou au bon fonctionnement de l'élément piézoélectrique.
  • Nous décrivons ici à titre d'illustration un tel procédé de régulation. Les trois premières étapes sont typiquement mises en oeuvre lors de la première utilisation du dispositif. En effet, les caractéristiques intrinsèques aux différents éléments piézoélectriques peuvent varier d'un dispositif à l'autre. Ces étapes permettent d'accéder à la connaissance de ces caractéristiques.
  • 1 er étape : Calibration des paramètres en présence optimale du liquide.
  • On fait varier la tension A d'une valeur de service minimale à une valeur de service maximale (par exemple de 6 V à 12 V), on mesure et on enregistre la valeur du courant B pour chaque tension. Ces valeurs seront utilisées comme référence pour détecter la variation du courant en cours de la nébulisation et indiquer aux utilisateurs la présence ou l'absence de l'eau.
  • 2 ième étape : Calibration des paramètres en présence intermédiaire du liquide.
  • On fait varier la tension A entre les valeurs de service minimale et maximale ci-dessus, on mesure et on enregistre la valeur du courant B pour chaque tension. Ces valeurs seront utilisées comme référence pour détecter la variation du courant en cours de la nébulisation et indiquer aux utilisateurs la présence ou l'absence de l'eau.
  • 3 ième étape : Calibration des paramètres en absence du liquide.
  • On fait varier la tension A entre les valeurs de service minimale et maximale ci-dessus, on mesure et on enregistre la valeur du courant B pour chaque tension. Ces valeurs seront utilisées comme référence pour détecter la variation du courant en cours de la nébulisation et indiquer aux utilisateurs la présence ou l'absence de l'eau.
  • 4 ième étape : Configuration du système
  • Les différentes valeurs de courant consommé pour chaque tension observée sont enregistrées dans la commande de pilotage du piézoélectrique C. Ainsi, pour chaque valeur de tension à laquelle peut être mis en service le dispositif, on enregistre notamment les valeurs Iopt., Iint et Icrit telles que définies ci-dessus.
  • Dans l'exemple indiqué ci-dessus (circuit auto-oscillant), lorsqu'il est alimenté à 12 Volts, la consommation Iopt.de l'élément piézoélectrique est de 400 mA pour un fonctionnement normal. Cette consommation monte à une valeur Iint voisine de 440 mA en fonctionnement avec niveau de liquide bas, puis cette consommation de courant tombe à une valeur Icrit voisine de 110 mA en l'absence de liquide comme montré sur la figure 3
  • 5 ième étape : Fonctionnement normal.
  • On mesure la valeur du courant consommé par l'élément piézoélectrique. Cette mesure peut être continue ou, en variante, on peut réaliser des mesures régulières à une fréquence appropriée. Tant que la valeur instantanée de ce courant I n'atteint pas la valeur seuil telle que montrée à la figure 8, il n'y a pas de rétroaction. En d'autres termes, il n'est pas nécessaire de rajouter du liquide dans la cuve.
  • 6 ième étape : Alimentation en eau
  • Le système de régulation C permet de commander l'électrovanne E assurant le remplissage du bac R lorsque la consommation de courant du piézoélectrique 20 devient excessive. De façon plus précise, lorsque la valeur instantanée mesurée de courant consommé atteint la valeur seuil Iint définie ci-dessus, le système de régulation déclenche une alerte qui est dirigée vers l'électrovanne E. Cette dernière commande alors l'arrivée de liquide supplémentaire dans la cuve, ce qui a pour effet d'abaisser la valeur de courant consommé. Le dispositif retrouve une configuration optimale, telle que définie ci-dessus, de sorte que l'arrivée d'eau est alors stoppée.
  • A titre de variante, l'alerte déclenchée par le système de régulation peut ne pas être transmise à une électrovanne, mais à un organe de signalisation. Ce dernier émet alors un signal perceptible par l'utilisateur, notamment de type visuel et/ou sonore. L'ajout de liquide dans la cuve est, dans ce cas, assuré directement par l'utilisateur et non pas par un élément mécanique du dispositif.
  • 7 ième étape: Notification de manque d'eau et arrêt
  • Le système de régulation C est apte à arrêter le piézoélectrique pour limiter la casse de ce dernier lorsqu'il détecte une consommation basse du courant par l'élément piézoélectrique 20.
  • De façon plus précise, lorsque la valeur instantanée mesurée de courant consommé atteint la valeur seuil I Icrit définie ci-dessus, le système de régulation déclenche une alerte qui est dirigée vers des moyens de coupure automatique de l'élément piézoélectrique. Ceci permet de garantir l'intégrité mécanique de cet élément, qui serait mise en péril si cette situation d'absence d'eau venait à se prolonger.
  • A titre de variante, l'alerte déclenchée par le système de régulation peut ne pas être transmise à des moyens de coupure, mais à un organe de signalisation. Ce dernier émet alors un signal perceptible par l'utilisateur, notamment de type visuel et/ou sonore. L'arrêt de l'élément piézoélectrique est, dans ce cas, assuré directement par l'utilisateur et non pas par un élément mécanique du dispositif.
  • Comme décrit ci-dessus, aux sixième et septième étapes, à la fois le besoin d'alimentation en eau et la nécessité de couper l'élément piézoélectrique peuvent être signifiés directement à l'utilisateur. Dans le cas, on prévoit avantageusement deux signaux différents, respectivement pour le besoin en eau et l'arrêt de l'élément piézoélectrique. On peut utiliser deux organes de signalisation différents ou bien, à titre de variante, un unique organe apte à émettre deux signaux différents.
  • La figure 6 met en oeuvre un ensemble électronique. Le pilotage de l'ensemble est réalisé par une carte 190 dont l'alimentation se fait de manière déportée par un module 180 d'alimentation. La tension continue fournie peut être comprise entre 6 et 40 Volts.
  • Cette carte est construite autour du microcontrôleur 200 permettant la gestion applicative des étapes énoncées ci-dessus. Ce microcontrôleur 200 gère aussi la connectivité des modules d'entrée/sortie.
  • Cette carte comprend un module 210 d'entrée analogique tout ou rien (TOR) et un module sortie 220. Ces ensembles permettent de commander l'alimentation en eau du réceptacle en cas de niveau intermédiaire ou vide ou de commander le signal d'information permettant de prévenir l'usager de la nécessiter de remplir le réservoir alimentant le réceptacle.
  • Un sous ensemble 230 est présent pour constituer la commande piézoélectrique 25, celle-ci permet de définir la fréquence d'excitation, le voltage, le rapport cyclique. Ce module permet aussi d'obtenir les informations sur le courant consommé 260 ainsi que la température 270 du piézoélectrique 20.
  • Le dernier module 240 de cette carte 190 est l'élément de contrôle et de commande du piézoélectrique. Ce module est l'interface permettant l'envoi du signal de tension permettant d'exciter le piézoélectrique 20 et en retour d'obtenir la température dudit élément 20.
  • Exemple
  • L'invention est illustrée ci-dessous par des exemples qui cependant n'en limitent pas la portée. Cet exemple porte sur une mise en oeuvre du module de commande de puissance du piézoélectrique.
  • Pour réaliser le procédé de régulation, l'homme du métier a besoin de comprendre l'aspect technique lié au module 240 de la figure 6.
  • Dans la figure 7, la carte 100 est construite autour du microcontrôleur, qui a pour rôle de gérer le générateur de signal et par la suite la commande de piézoélectrique. La carte 100 dispose également d'un régulateur à découpage 12V pour la commande du transistor via le driver (120), et d'un régulateur linéaire 5V pour l'adaptation du signal de commande en entrée.
  • Le principe du driver (120) est de pouvoir fournir pendant un court instant le courant important nécessaire à la commutation du transistor 130 en hautes fréquences. Lors des fronts du signal de commande, le courant d'appel de la commande du transistor 130 est très important, et fournir suffisamment de courant permet une commutation rapide, limitant les états transitoires provoquant un échauffement du transistor 130.
  • Pour pouvoir fournir rapidement un courant important, le driver de transistor 120 utilise plusieurs condensateurs en parallèle en amont du composant. La tension de commande du transistor est fixée à 12V, minimisant ainsi l'effet de sa caractéristique Ron et donc l'échauffement du composant.
  • La fréquence d'excitation du piézoélectrique 20 est générée par le composant 110, qui produit un signal carré de fréquence programmable (par défaut 1.7 MHz). Le circuit d'adaptation d'impédance 140 du piézoélectrique 20 est constitué d'une bobine et d'un condensateur en série avec un condensateur en parallèle sur la sortie.
  • La relation entre les valeurs de ces composants (L et C) est un facteur très important dans le comportement d'un circuit LC et sont choisies en tenant compte de l'impédance de l'élément piézoélectrique (dans l'eau) et de sa fréquence de résonance, et qui fixera par la suite sa consommation de courant moyenne.
  • Le résultant est un signal sinusoïdal stable et constant en fonction du temps aux bornes de l'élément piézoélectrique adapté à un fonctionnement optimal dans l'eau. (Les valeurs de tensions/courant crête à crête ne doivent pas dépasser la limite max de l'élément piézoélectrique). f 0 = 1 2 π LC
    Figure imgb0001
    • f0 : la fréquence de résonance.
    • L : la valeur de la bobine.
    • C : la valeur du condensateur.
  • Pour un fonctionnement sans eau, la valeur de l'impédance de l'élément piézoélectrique va changer et introduire une désadaptation d'impédance électrique à l'ensemble du circuit et changera par la suite sa consommation de courant.
  • Le piézoélectrique 20 est piloté par un transistor 130, ayant un excellent rapport charge de commande et résistance à l'état passant, et un temps de réponse très rapide lui autorisant un fonctionnement à fréquence élevée (1.7 MHz), permettant d'avoir à la fois un signal de qualité et un échauffement modéré.
  • Pour assurer une commutation la plus rapide possible et donc limiter l'échauffement du transistor, très important pendant les phases de transition, un driver de commande 120 pouvant délivrer jusque 2 x 5A est placé en amont.
  • Les mesures de courant 150 sont effectuées à l'aide d'une résistance de shunt de faible valeur, entre 0.01 et 0.1 ohm suivant le courant consommé, et d'un composant de type voltmètre mesurant la différence de potentiel aux bornes de la résistance et multipliant par 10 le résultat afin d'avoir une valeur plus lisible pour le microcontrôleur.
  • Le microcontrôleur par la suite va comparer les valeurs de courant prélevé afin de définir l'état de fonctionnement du piézoélectrique. Cet état permettra de valider l'étape du procédé.

Claims (15)

  1. Dispositif (1) de nébulisation à excitation piézoélectrique, comprenant :
    - une cuve (10) de liquide,
    - un élément piézoélectrique (20) disposé au moins en partie dans le volume intérieur de la cuve, cet élément (20) présentant une surface active (21) apte à émettre des ondes acoustiques dans le liquide, lorsque cette surface active est au moins en partie recouverte de liquide, en vue de la nébulisation de ce liquide,
    ce dispositif étant caractérisé en ce qu'il comprend en outre :
    - des moyens de mesure aptes à mesurer un paramètre représentatif du courant consommé par l'élément piézoélectrique (20) ;
    - des moyens d'alerte, propres à être activés en réponse auxdits moyens de mesure, lorsque la valeur instantanée dudit paramètre représentatif se situe en dehors d'une plage prédéterminée.
  2. Dispositif de nébulisation selon la revendication 1, caractérisé en ce qu'il comprend en outre des premiers moyens de commande, propres à activer des moyens d'arrivée de liquide dans la cuve, en réponse auxdits moyens d'alerte.
  3. Dispositif de nébulisation selon la revendication 1 ou 2, caractérisé en ce qu'il comprend en outre des seconds moyens de commande, propres à activer des moyens d'arrêt de l'élément piézoélectrique, en réponse auxdits moyens d'alerte.
  4. Dispositif de nébulisation selon l'une quelconque des revendications 1 à 3, caractérisé en ce qu'il comprend en outre au moins un organe d'alerte, propre à émettre au moins un signal perceptible par un utilisateur, en réponse auxdits moyens d'alerte.
  5. Dispositif de nébulisation selon l'une quelconque des revendications 1 à 4, caractérisé en ce que les moyens d'alimentation en liquide comprennent une électrovanne.
  6. Dispositif de nébulisation selon l'une quelconque des revendications 1 à 5, caractérisé en ce que la surface active (21) de l'élément piézoélectrique (20) est inclinée par rapport à l'horizontale selon un angle (α) compris entre 45° et 135°, notamment selon un angle de 90°.
  7. Procédé de mise en oeuvre d'un dispositif (1) de nébulisation selon l'une quelconque des revendications 1 à 6, comprenant :
    - une cuve (10) de liquide, ledit liquide étant de préférence de l'eau, éventuellement comprenant des substances en solution ou en dispersion, et notamment un ou plusieurs produits organiques, miscibles ou non ;
    - un élément piézoélectrique (20) disposé au moins en partie dans le volume intérieur de la cuve, cet élément (20) présentant une surface active (21) apte à émettre des ondes acoustiques dans le liquide en vue de la nébulisation de ce liquide ;
    - des moyens de mesure aptes à mesurer un paramètre représentatif du courant consommé par l'élément piézoélectrique (20) ;
    - des moyens d'alerte, propres à être activés en réponse auxdits moyens de mesure, lorsque la valeur instantanée dudit paramètre représentatif se situe en dehors d'une plage prédéterminée ;
    ce procédé comprenant les étapes suivantes :
    - on mesure un paramètre représentatif du courant consommé par l'élément piézoélectrique (20) ;
    - on active les moyens d'alerte lorsque la valeur instantanée dudit paramètre représentatif se situe en dehors d'une plage prédéterminée.
  8. Procédé selon la revendication 7, pour la mise en oeuvre d'un dispositif selon l'une des revendications 2 à 6, caractérisé en ce qu'on active les premiers moyens de commande, de manière à provoquer une arrivée de liquide dans la cuve, lorsque la valeur instantanée dudit paramètre représentatif atteint une première valeur prédéterminée, dite valeur seuil haute (Iint).
  9. Procédé selon la revendication 7, pour la mise en oeuvre d'un dispositif selon l'une des revendications 4 à 6, caractérisé en ce qu'on émet un premier type de signal grâce à l'organe d'alerte, lorsque la valeur instantanée dudit paramètre représentatif atteint une première valeur prédéterminée, dite valeur seuil haute (Iint).
  10. Procédé selon la revendication 8 ou 9, caractérisé en ce que la première valeur prédéterminée est déterminée en fonction d'une valeur dite optimale (Iopt) dudit paramètre, correspondant à une mise en oeuvre du dispositif où la surface active (21) est entièrement recouverte de liquide.
  11. Procédé selon la revendication 10, caractérisé en ce que ladite valeur prédéterminée est comprise entre 110% et 120% de la valeur optimale.
  12. Procédé selon l'une quelconque des revendications 7 à 11, caractérisé en ce qu'il comprend en outre une autre étape de calibration, dans laquelle on détermine la variation du courant consommé en fonction de la tension aux bornes de l'élément piézoélectrique dans un état dit critique du dispositif, pour lequel la surface active n'est pas du tout recouverte de liquide.
  13. Procédé selon l'une des revendications 7 à 12, pour la mise en oeuvre d'un dispositif selon l'une des revendications 3 à 6, caractérisé en ce qu'on active les seconds moyens de commande, de manière à provoquer l'arrêt de l'élément piézoélectrique, lorsque la valeur instantanée dudit paramètre représentatif atteint une seconde valeur prédéterminée, dite valeur seuil basse (Icrit).
  14. Procédé selon l'une des revendications 7 à 13, caractérisé en ce que ledit paramètre représentatif du courant consommé par l'élément piézoélectrique est le courant consommé par l'élément piézoélectrique.
  15. Procédé selon l'une des revendications 7 à 14, caractérisé en ce que le niveau de liquide est réglé de manière à ce que le point focal (50) des ultrasons se situe au-dessous du niveau de liquide.
EP16819135.1A 2015-11-30 2016-11-30 Dispositif de pulverisation a transducteur piezoelectrique couple a un concentrateur acoustique, avec detection du niveau de liquide interne Active EP3383551B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1502493A FR3044242B1 (fr) 2015-11-30 2015-11-30 Dispositif de pulverisation a transducteur piezoelectrique couple a un concentrateur acoustique, avec detecteur du niveau de liquide interne
PCT/FR2016/053138 WO2017093655A1 (fr) 2015-11-30 2016-11-30 Dispositif de pulverisation a transducteur piezoelectrique couple a un concentrateur acoustique, avec detection du niveau de liquide interne

Publications (2)

Publication Number Publication Date
EP3383551A1 EP3383551A1 (fr) 2018-10-10
EP3383551B1 true EP3383551B1 (fr) 2021-05-05

Family

ID=55236430

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16819135.1A Active EP3383551B1 (fr) 2015-11-30 2016-11-30 Dispositif de pulverisation a transducteur piezoelectrique couple a un concentrateur acoustique, avec detection du niveau de liquide interne

Country Status (4)

Country Link
US (1) US20190070626A1 (fr)
EP (1) EP3383551B1 (fr)
FR (1) FR3044242B1 (fr)
WO (1) WO2017093655A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3124893B1 (fr) 2021-07-01 2023-10-27 Areco Finances Et Tech Arfitec Element piezoelectrique pour nebulisateur, avec une duree de vie amelioree

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CS550488A3 (en) * 1987-08-17 1992-11-18 Satronic Ag Ultrasonic generator circuitry
DE19962280A1 (de) * 1999-12-23 2001-07-12 Draeger Medizintech Gmbh Ultraschallvernebler
WO2006095816A1 (fr) * 2005-03-11 2006-09-14 Akira Tomono Brumisateur et appareil de rendu d'emission de brume
NZ585075A (en) * 2007-11-06 2012-06-29 Panasonic Corp Refrigerator with control of atomization unit according to applied current or voltage signal
US20110259974A1 (en) * 2009-12-04 2011-10-27 Mt Industries, Inc. Base unit for hand held skin treatment spray system

Also Published As

Publication number Publication date
EP3383551A1 (fr) 2018-10-10
FR3044242B1 (fr) 2017-12-15
FR3044242A1 (fr) 2017-06-02
US20190070626A1 (en) 2019-03-07
WO2017093655A1 (fr) 2017-06-08

Similar Documents

Publication Publication Date Title
EP3600690B1 (fr) Dispositif de nebulisation compact, et ensemble de nebulisation comprenant un tel dispositif
FR3043576A1 (fr) Dispositif miniaturise de pulverisation a transducteur piezoelectrique
EP2166317B1 (fr) Dispositif de pilotage d'une pompe de relevage de condensats
BE898116A (fr) Dispositif de commande de chauffage à température variable pour un appareil thérapeutique à inhalation.
CA2874565C (fr) Procede et dispositif de percage d'une piece par impulsions laser
FR2553189A1 (fr) Dispositif a tiges oscillantes pour la verification et/ou pour le controle d'un niveau de remplissage dans un reservoir
EP3383551B1 (fr) Dispositif de pulverisation a transducteur piezoelectrique couple a un concentrateur acoustique, avec detection du niveau de liquide interne
EP3223961B1 (fr) Procede de detection d'une insuffisance de liquide dans un dispositif d'atomisation par ultrasons
WO2005094965A1 (fr) Systeme de filtration de liquide comprenant des moyens de chauffage de liquide
EP1839762A1 (fr) Procédé optimisé de pulvérisation de liquide et dispositif de pulvérisation de liquide pour la mise en oeuvre de ce procédé
FR2712668A1 (fr) Générateur de vapeur rechargeable.
EP1591734B1 (fr) Procédé de contrôle du taux d'humidité dans une cave à vin électrodomestique
EP3149824B1 (fr) Tableau électrique et procédé de gestion associé
FR2824600A1 (fr) Groupe motopompe dont l'arret s'effectue par analyse du courant
FR2596857A1 (fr) Detecteur de niveau pour bac a glace
FR2706228A1 (fr) Procédé et dispositif de régulation de l'alimentation d'un moteur électrique asynchrone.
FR2857448A1 (fr) Detecteur et procede de detection de debit par dissipation thermique
FR3124893A1 (fr) Element piezoelectrique pour nebulisateur, avec une duree de vie amelioree
EP1975018B1 (fr) Dispositif d'alarme pour véhicule automobile et véhicule automobile comprenant une batterie et un tel dispositif
FR2957909A1 (fr) Distributeur d'un liquide et procede de fonctionnement d'un distributeur d'un liquide
EP1808742A1 (fr) Procédé pour assurer une remise en fonction d'un circuit à microcontrôleur après un mode de repos, et circuit à microcontrôleur pour sa mise en oeuvre
FR2821894A1 (fr) Groupe motopompe a detection thermique de niveau
FR2661848A1 (fr) Dispositif de nettoyage, par ultra-sons, d'elements thermo-deformables.
FR2655143A1 (fr) Detecteur de niveau d'huile dans le carter d'un moteur de vehicule automobile.
FR2687809A3 (en) Device for optimising the operating autonomy of a microprocessor

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180702

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190709

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210223

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1389140

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602016057517

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1389140

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210505

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210805

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210806

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210905

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210906

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210805

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210505

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602016057517

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210905

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20211130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211130

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211130

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20211130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211130

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20161130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231115

Year of fee payment: 8

Ref country code: DE

Payment date: 20231130

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505