EP3379196A1 - A portable carbon dioxide adapter system - Google Patents

A portable carbon dioxide adapter system Download PDF

Info

Publication number
EP3379196A1
EP3379196A1 EP18163010.4A EP18163010A EP3379196A1 EP 3379196 A1 EP3379196 A1 EP 3379196A1 EP 18163010 A EP18163010 A EP 18163010A EP 3379196 A1 EP3379196 A1 EP 3379196A1
Authority
EP
European Patent Office
Prior art keywords
carbon dioxide
assembly
gas
flow adjusting
gasifying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP18163010.4A
Other languages
German (de)
French (fr)
Other versions
EP3379196B1 (en
Inventor
Anthony Joseph DOS PASSOS
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hybrid Research Co Ltd
Original Assignee
Hybrid Research Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hybrid Research Co Ltd filed Critical Hybrid Research Co Ltd
Publication of EP3379196A1 publication Critical patent/EP3379196A1/en
Application granted granted Critical
Publication of EP3379196B1 publication Critical patent/EP3379196B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C5/00Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures
    • F17C5/02Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures for filling with liquefied gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41BWEAPONS FOR PROJECTING MISSILES WITHOUT USE OF EXPLOSIVE OR COMBUSTIBLE PROPELLANT CHARGE; WEAPONS NOT OTHERWISE PROVIDED FOR
    • F41B11/00Compressed-gas guns, e.g. air guns; Steam guns
    • F41B11/70Details not provided for in F41B11/50 or F41B11/60
    • F41B11/72Valves; Arrangement of valves
    • F41B11/724Valves; Arrangement of valves for gas pressure reduction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/04Arrangement or mounting of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41BWEAPONS FOR PROJECTING MISSILES WITHOUT USE OF EXPLOSIVE OR COMBUSTIBLE PROPELLANT CHARGE; WEAPONS NOT OTHERWISE PROVIDED FOR
    • F41B11/00Compressed-gas guns, e.g. air guns; Steam guns
    • F41B11/60Compressed-gas guns, e.g. air guns; Steam guns characterised by the supply of compressed gas
    • F41B11/62Compressed-gas guns, e.g. air guns; Steam guns characterised by the supply of compressed gas with pressure supplied by a gas cartridge

Definitions

  • the present disclosure relates to a portable carbon dioxide adapter system, and more particularly to a portable carbon dioxide adapter system for pressurizing and injecting gas to a gas-injection object such as an airgun or an airsoft apparatus by a disposable carbon dioxide high pressure gas cylinder.
  • Using power from a compressed gas is one of most common approaches to shoot a projectile for an airsoft that shoots a BB bullet (i.e., a 6mm or 8mm spherical plastic projectile) or an airgun (such as an air rifle) that shoots a metal projectile.
  • Common compressed gases include propane, green gas (mixture of propane and a very small amount of silicone oil), HFC-134a, carbon dioxide, and the like.
  • liquid carbon dioxide stores amazing energy and has an ideal greenhouse effect index (the ability of a gas to absorb thermal energy under the same temperature and the same pressure). This is why carbon dioxide high pressure gas cylinders are widely applied to airguns (e.g., air rifles).
  • Some airsoft guns for example, air pistols
  • Some airsoft guns which are specially designed to withstand high pressure gas, may also use carbon dioxide to shoot a BB bullet.
  • gas pressure potential energy is usually stored in a 12g compressed carbon dioxide gas cylinder for direct use, or gas is injected into a gas storage cavity inside a gun body or a fixed gas tank connected to the gun body by a hand pump, an air compressor or a scuba tank.
  • large volume (e.g., 88g) disposable compressed carbon dioxide gas cylinders are commercially available, they can only be directly used by very few airguns. Therefore, a carbon dioxide adapter designed for the large volume (e.g., 88g) disposable compressed carbon dioxide gas cylinders is desired, which may safely inject gas to and pressurize the gas storage cavity or fixed gas tank while avoiding leakage of carbon dioxide. In this way, it is convenient for users to use the large volume disposable compressed carbon dioxide gas cylinders for various gas-injection objects including those in the airgun industry.
  • an objective of the present disclosure is to provide a large volume disposable compressed carbon dioxide gas cylinder that is convenient for users to use, and a portable carbon dioxide adapter system that pressurizes and injects gas to various kinds of gas-injection objects.
  • a technical solution of the present disclosure discloses a portable carbon dioxide adapter system, comprising: a first collar assembly for connecting to a liquid carbon dioxide source; a gasifying/ flow adjusting assembly that converts liquid carbon dioxide into gaseous carbon dioxide and may adjust gas flow; an injection nozzle valve assembly that abuts against a gas inflow valve of a gas-injection-by-adapter object so as to inject the gaseous carbon dioxide; and a second collar assembly with one end slidably receiving the injection nozzle valve assembly and the other end being securely connected to the gasifying/ flow adjusting assembly, wherein the liquid carbon dioxide source is a disposable carbon dioxide gas cylinder, and an opening unit for piecing the disposable carbon dioxide gas cylinder is mounted within the first collar assembly; and the gasifying/ flow adjusting assembly has a volume-adjustable hollow inner cavity configuration.
  • the injection nozzle valve assembly comprises a nozzle valve rod, an embedded sealing ring, an end sealing collar, an end locking cap, and a tension spring, wherein the nozzle valve rod slidably passes through a central through-hole of the second collar assembly, one end of the nozzle valve rod being a hollow nozzle hole, the other end thereof being a solid screw; in a peripheral direction of the nozzle valve rod is provided an annular groove receiving the embedded sealing ring, and meanwhile in a diameter direction of the nozzle valve rod is provided a gas inflow hole in communication with the hollow nozzle hole; compared with the gas inflow hole, the annular groove is disposed closer to the hollow nozzle hole side; the end sealing collar is mounted on the solid screw of the nozzle valve stem and is secured through the end locking cap.
  • the end sealing collar maintains sealing between the injection nozzle valve assembly and the gasifying/ flow adjusting assembly in a non-gas-injecting state, while releases the sealing between the injection nozzle valve assembly and the gasifying/ flow adjusting assembly in a gas-injecting state.
  • the gasifying/ flow adjusting assembly comprises a gasification cavity body, a flow adjusting screw, a sealing piston, a pressure adjusting spring, and a locking bolt, wherein inside the gasification cavity body is provided the hollow inner cavity configuration; in two end faces of the gasification cavity body are provided a liquid carbon dioxide inflow hole and a gaseous carbon dioxide outflow hole, respectively; a through-hole having threads at both ends is provided in a direction perpendicular to the two end faces of the gasification cavity body; the flow adjusting screw is mounted to one end of the through-hole in a threaded manner, and the locking bolt tightly locks the pressure adjusting spring at the other end of the through-hole.
  • an end of the flow adjusting screw is provided with a sealing gasket, the sealing piston being mounted between the pressure adjusting spring and the flow adjusting screw.
  • the portable carbon dioxide adapter system further comprises: a sealing ring and guard ring assembly disposed between the opening unit and the gasifying/ flow adjusting assembly, the sealing ring and the guard ring assembly being comprised of an O-shaped sealing ring and a silicon gel guard ring, a center of the silicon gel guard ring being provided with a through-hole.
  • the opening unit is a drill tip-type opening unit.
  • the first collar assembly and the second collar assembly are connected to the gasifying/ flow adjusting assembly in a threaded manner and are locked by a locking pin.
  • the second collar is a stepped cylinder, a fixed end of which connected to the gasifying/ flow adjusting assembly is provided with an internal thread, while a free end on the opposite side is provided with an external thread.
  • a carbon dioxide adapter designed for a large volume, e.g., 88g, disposable compressed carbon dioxide gas cylinder is provided, which may securely inject gas to and pressurize the gas storage cavity or fixed gas storage tank so as to avoid leakage of the carbon dioxide, thereby facilitating users to use a large volume disposable compressed carbon dioxide gas cylinder in various gas-injection objects including those in the airgun industry.
  • orientations or positional relationships indicated by the terms “front/back,” “up/down,” “left/right,” “vertical/horizontal,” and “in/out” and the like, which are based on the orientations or position relationships illustrated in the drawings, are merely for the purposes of describing the present disclosure and simplifying the description, rather than indicating or implying that the devices or elements as referred to must have particular orientations or must be constructed and operated with specific orientations; therefore, they should not be understood as limiting the present disclosure.
  • the terms “first,” “second,” and “third” are used for descriptive purposes only, and should not be construed to indicate or imply relative importance.
  • the term "mount,” “connect,” and “connected” should be understood broadly. For example, they may be a fixed connection, or a detachable connection, or an integral connection; they may be a mechanical connection, or may be an electrical connection; they may be a direct connection, or may be an indirect connection through an intermediate medium, or may be a communication inside two elements.
  • the specific meanings of the terms above in the present disclosure may be understood according to specific conditions.
  • Fig. 1 is an assembly structure diagram of a portable carbon dioxide adapter system 100 according to a preferred embodiment of the present disclosure.
  • the portable carbon dioxide adapter system 100 in an assembled state comprises: a connection port 101 for connecting to a liquid carbon dioxide source; an injection nozzle 102 for injecting gaseous carbon dioxide to a gas-injection object; a gasifying section 103 that converts liquid carbon dioxide into gaseous carbon dioxide; and an adjuster 104 for adjusting carbon dioxide flow, wherein the connection port 101 is preferably connected to a large volume disposable compressed carbon dioxide gas cylinder (not shown) in a threaded manner.
  • the disposable compressed carbon dioxide gas cylinder (e.g., CO2-88G) stores inside liquid carbon dioxide and is provided with an external thread at a gas cylinder outlet; a corresponding internal thread is provided inside the connection port 101, thereby achieving a reliable engagement between the two threads.
  • valve rods of gas inflow valves of various gas-injection objects are substantially of the same type and size. Therefore, the injection nozzle 102 may inject gas to almost all airguns or airsoft products.
  • all products, which use high pressure carbon oxide and may be injected with gas using the injection nozzle 102 are collectively referred to as gas-injection-by-adapter objects.
  • an external thread is provided on an outer periphery of an adapter collar which receives the injection nozzle 102, for further attaching hoses and other input nozzles according to user needs, thereby implementing direct gas-injection to the gas-injection-by-adapter object.
  • Inside the gasifying section 103 is a volume-adjustable cavity structure.
  • the adjuster 104 adjusts the volume of an internal cavity of the gasifying section 103 through a conventional screw configuration and a pressure adjusting spring, thereby controlling carbon dioxide flow.
  • Fig. 2A is a plane sectional view of the portable carbon dioxide adapter system 100 of Fig. 1 .
  • Fig. 2B is an exploded structure diagram of the portable carbon dioxide adapter system 100 of Fig. 1 .
  • respective components of the portable carbon dioxide adapter system 100 of Fig. 1 and working manners thereof will be elaborated with reference to the plane section view of Fig. 2A and the structural exploded diagram of Fig. 2B .
  • various components making up the portable carbon dioxide adapter system 100 may be partitioned into the following assemblies by functions: an adapter collar assembly 11, an injection nozzle valve assembly 12, a gasifying/ flow adjusting assembly 13, a sealing ring and guard ring assembly 14, a composite drill bit assembly 15, and a gas cylinder collar assembly 16.
  • an adapter collar assembly 11 an injection nozzle valve assembly 12
  • a gasifying/ flow adjusting assembly 13 a sealing ring and guard ring assembly 14
  • a composite drill bit assembly 15 a gas cylinder collar assembly 16.
  • the carbon dioxide enters from the composite drill bit assembly 15 into the portable carbon dioxide adapter system 100 along an assembly axial direction from right to left, and is finally injected into the gas-injection-by-adapter object from the injection nozzle valve assembly 12.
  • Fig. 2B further shows structural details of respective components that make up the portable carbon dioxide adapter system 100 along a horizontal assembly axis from left to right.
  • the adapter collar assembly 11 comprises a collar body 111 and a locking pin 112.
  • a left end of the collar body 111 is provided with a stepped through-hole within which the injection nozzle valve assembly 12 is received in a slidable manner; a right end of the collar body 111 is connected to the gasifying/ flow adjusting assembly 13 in a threaded manner.
  • a right end of the collar body 111 is provided with an internal thread
  • a left end of the gasifying/ flow adjusting assembly 13 is correspondingly provided with an external thread, such that the collar body 111 and the gasifying/ flow adjusting assembly 13 are engaged in a threaded manner, and an airtight structure is implemented in a connected state via an O-shaped sealing ring (not shown).
  • the locking pin 112 is for the purpose of preventing thread loosening, such that the adapter collar assembly 11 is securely locked to the gasifying/ flow adjusting assembly 13 during the gas-injection process.
  • the injection nozzle valve assembly 12 comprises a nozzle valve rod 121, an embedded sealing ring 122, an end sealing collar 123, an end locking cap 124, and a tension spring 125.
  • the nozzle valve rod 121 is a stepped cylinder with outer diameters of two ends being smaller than an outer diameter of a central part; a left end of the nozzle rod is a hollow nozzle hole for injecting carbon dioxide gas, and a right end of the gas cylinder is a solid screw for engaging the end locking cap 124; on the larger-diameter central part of the cylinder is provided with an annular groove for receiving the embedded sealing ring 122; the embedded sealing ring 122 is for slidably sealing between the nozzle valve rod 121 and the adapter collar assembly 11 so as to avoid leakage of the carbon dioxide gas to an outer atmosphere during the gas-injection process.
  • a gas inflow hole that is completely or partially through in the diameter direction and communicates with the nozzle hole.
  • the end sealing collar 123 abuts against a right end face of the larger-diameter cylinder of the nozzle valve rod 121 and is secured through the end locking cap 124; the outer diameter of the end sealing collar 123 is larger than a left end through hole of the adapter collar assembly 11, such that the end sealing collar 123, when being tensioned by the tension spring 125, ensures sealing between the injection nozzle valve assembly 12 and the gasifying/ flow adjusting assembly 13 in a non-gas-injection state.
  • a left end of the tension spring 125 is snapped to a right end bulge of the end locking cap 124, while a right end of the tension spring 125 abuts against a left end face of the gasifying/ flow adjusting assembly 13.
  • the tension spring 125 is compressed, the sealing between the injection nozzle valve assembly 12 and the gasifying/ flow adjusting assembly 13 is released, and the gas inflow hole of the nozzle valve rod 121 is exposed, such that high-pressure carbon dioxide gas enters into the gas inflow hole and reaches the hollow nozzle hole at the left end of the nozzle valve rod 121.
  • the gasifying/ flow adjusting assembly 13 comprises a gasification cavity body 131, a flow adjusting worm 132, a pressure adjusting spring 133, and a locking bolt 134.
  • the gasification cavity body 131 is a hollow inner cavity configuration of a locally threaded hole that is top-down through; meanwhile, a gaseous carbon dioxide outflow hole is provided on a left end face of the gasification cavity body 131, and a liquid carbon dioxide inflow hole is provided on a right end face of the gasification cavity body 131; preferably, the liquid carbon dioxide inflow hole is greater than the gaseous carbon dioxide outflow hole, so as to prevent blockage or unsmooth flowing of the liquid carbon dioxide due to surface tension.
  • Left and right ends of the gasification cavity body 131 are of an external thread structure, for being correspondingly engaged with inner threads of the adapter collar assembly 11 and the gas cylinder collar assembly 16, respectively.
  • a left end face of the gasifying cavity body 131 is of an inwardly recessed structure so as to securely receive the tension spring 125 of the injection nozzle valve assembly 12.
  • the flow adjusting screw 132, the pressure adjusting spring 133, and a locking bolt 134 are connected or mounted in the top-down through locally threaded hole of the gasifying cavity body 131 so as to adjust the volume of the hollow inner cavity of the gasifying cavity body 131.
  • a sealing gasket is provided at an end of the flow adjusting screw 132, and a sealing piston (not shown) is mounted on the pressure adjusting spring 133; both of the sealing gasket and the sealing piston are for sealing the gasifying cavity body 131, avoiding leakage of the gasified carbon dioxide to the outside.
  • a sealing piston (not shown) is mounted on the pressure adjusting spring 133; both of the sealing gasket and the sealing piston are for sealing the gasifying cavity body 131, avoiding leakage of the gasified carbon dioxide to the outside.
  • the sealing ring and guard ring assembly 14 comprises an O-shaped sealing ring 141 and a silicone guard ring 142.
  • the O-shaped sealing ring 141 is for sealing between the gasification/flow adjusting assembly 13 and the gas cylinder collar assembly 16, which prevents the silicon gel guard ring 142 from blocking the liquid carbon dioxide inflow hole on the right end face of the gasifying cavity body 131.
  • the silicon gel guard ring 142 can buffer an impact from the composite drill bit assembly 15, and a central opening of the silicon gel guard ring 142 allows the liquid carbon diode to smoothly enter the gasifying/ flow adjusting assembly 13 from the disposable carbon dioxide gas cylinder 13.
  • the composite drill bit assembly 15 comprises a drill bit-type opener 151 and a hollow drill bit holder 152.
  • the hollow drill bit holder 152 is used to fixedly support the drill bit-type opener 151; a spiral groove shape of the drill-bit type opener 151 can ensure that the liquid carbon dioxide flows smoothly to the gasification cavity when the disposable carbon dioxide gas cylinder is opened.
  • the hollow drill-bit holder 152 is a hollow cylinder, a left end face of which abuts against the sealing ring and the silica gel guard ring 142 of the collar assembly 14, and a right end face of which abuts against an inner annular flange of the gas cylinder collar assembly 16.
  • the drill-bit type opener 151 held by the hollow drill bit holder 152 extends out of the hollow drill bit holder 152 and beyond the inner annular flange of the gas cylinder collar assembly 16 so as to open the disposable carbon dioxide gas cylinder.
  • the hollow drill bit holder 152 and the drill-bit type opener 151 may also adopt an integrated structure instead of the split structure shown in the figure.
  • the gas cylinder collar assembly 16 comprises a gas cylinder collar body 161 and a locking pin 162.
  • a left end of the gas cylinder collar body 161 is connected to a right end of the gasification/flow adjusting assembly 13 in a threaded manner.
  • the locking pin 162 is used for preventing thread loosening, such that the gas cylinder collar assembly 16 is securely locked to the gasification/flow adjusting assembly 13 during the gas-injection process.
  • the right end of the gas cylinder collar body 161 is used for being connected to a carbon dioxide source, that is, connected to a large volume disposable compressed carbon dioxide gas cylinder (e.g., CO2 -88 G) in a threaded manner.
  • Fig. 3 is a diagram showing structural details of a gasification/flow adjusting section in the portable carbon dioxide adapter system according to a preferred embodiment of the present disclosure.
  • gas is injected to a gas-injection-by-adapter object by the large volume disposable carbon dioxide gas cylinder, it is important to ensure safe release of gas pressure potential energy and adjustability of the gas flow.
  • the gasification/ flow adjustment section according to a preferred embodiment of the present disclosure may achieve this point through a simple structure. As indicated by the arrow of Fig.
  • the liquid carbon dioxide flows in from a small hole in the left end face of the gasification cavity body 131 and is ejected out of a small hole in the right end face of the gasification cavity body 131 in a gaseous form after gasification and expansion in an inner cavity of the gasification cavity body 131;
  • the gasification cavity body 131 made of a special metal can withstand high-pressure carbon dioxide in strength so as to ensure safe release of the gas pressure potential energy.
  • a through hole (with internal threads being provided at both ends) is opened in the gasification cavity body 131 along a direction perpendicular to a flowing direction of the carbon dioxide indicated by the arrow, and a dimension of gasification space inside the gasification cavity body 131 is adjusted by screwing the flow adjusting screw 132 within the through hole, thereby achieving the purpose of adjusting the flow of carbon dioxide.
  • a sealing gasket is arranged at an end of the flow adjusting screw 132, and meanwhile the sealing piston is assembled above the pressure adjusting spring 133 in the through hole, so that the sealing piston abuts against the flow adjusting screw 132;
  • the sealing piston comprises a piston rod 135 with a sealing collar and a piston cap 136 for securing the sealing collar.
  • the locking bolt 134 is used for locking the pressure adjusting spring 133 in the through hole.
  • the sealing piston and the sealing gasket are used for sealing the gasification cavity body 131 so as to prevent leakage of the gasified carbon dioxide to the outside.
  • Figs. 4A-4C are schematic diagrams showing use states of the portable carbon dioxide adapter system according to a preferred embodiment of the present disclosure.
  • an operator connects one end of the portable carbon dioxide adapter system 100 to a disposable carbon dioxide gas cylinder 200 in a threaded manner; meanwhile, the operator presses tightly the other end till the valve rod of the gas inflow valve of the gas-injection object 300 to pressurize and inject gas; besides, the flow of gas injection may be adjusted through the gasification/ flow adjusting section. Therefore, it is very convenient to use.
  • the gas-injection object 300 can be a gas storage cavity within the gun body or a fixed gas storage tank which is connected with the gun body, and can also be various products including gas-injectable 12g gas cylinders. Therefore, the portable carbon dioxide adapter system 100 according to the present disclosure has a wide industrial application and is not limited to the airsoft or airgun industry.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

The present disclosure discloses a portable carbon dioxide adapter system, comprising: a first collar assembly for connecting to a liquid carbon dioxide source; a gasifying/ flow adjusting assembly that converts liquid carbon dioxide into gaseous carbon dioxide and may adjust gas flow; an injection nozzle valve assembly that abuts against a gas inflow valve of a gas-injection-by-adapter object so as to inject the gaseous carbon dioxide; and a second collar assembly with one end slidably receiving the injection nozzle valve assembly and the other end being securely connected to the gasifying/ flow adjusting assembly, wherein the liquid carbon dioxide source is a disposable carbon dioxide gas cylinder, and an opening unit for piecing the disposable carbon dioxide gas cylinder is mounted within the first collar assembly; and the gasifying/ flow adjusting assembly has a volume-adjustable hollow inner cavity configuration.

Description

    FIELD OF THE INVENTION
  • The present disclosure relates to a portable carbon dioxide adapter system, and more particularly to a portable carbon dioxide adapter system for pressurizing and injecting gas to a gas-injection object such as an airgun or an airsoft apparatus by a disposable carbon dioxide high pressure gas cylinder.
  • BACKGROUND OF THE INVENTION
  • Using power from a compressed gas is one of most common approaches to shoot a projectile for an airsoft that shoots a BB bullet (i.e., a 6mm or 8mm spherical plastic projectile) or an airgun (such as an air rifle) that shoots a metal projectile. Common compressed gases include propane, green gas (mixture of propane and a very small amount of silicone oil), HFC-134a, carbon dioxide, and the like. Compared with other gases, liquid carbon dioxide stores amazing energy and has an ideal greenhouse effect index (the ability of a gas to absorb thermal energy under the same temperature and the same pressure). This is why carbon dioxide high pressure gas cylinders are widely applied to airguns (e.g., air rifles). Some airsoft guns (for example, air pistols), which are specially designed to withstand high pressure gas, may also use carbon dioxide to shoot a BB bullet.
  • In the airgun and airsoft industries, gas pressure potential energy is usually stored in a 12g compressed carbon dioxide gas cylinder for direct use, or gas is injected into a gas storage cavity inside a gun body or a fixed gas tank connected to the gun body by a hand pump, an air compressor or a scuba tank. Although large volume (e.g., 88g) disposable compressed carbon dioxide gas cylinders are commercially available, they can only be directly used by very few airguns. Therefore, a carbon dioxide adapter designed for the large volume (e.g., 88g) disposable compressed carbon dioxide gas cylinders is desired, which may safely inject gas to and pressurize the gas storage cavity or fixed gas tank while avoiding leakage of carbon dioxide. In this way, it is convenient for users to use the large volume disposable compressed carbon dioxide gas cylinders for various gas-injection objects including those in the airgun industry.
  • SUMMARY OF THE INVENTION
  • To solve the above problems existing in the prior art, an objective of the present disclosure is to provide a large volume disposable compressed carbon dioxide gas cylinder that is convenient for users to use, and a portable carbon dioxide adapter system that pressurizes and injects gas to various kinds of gas-injection objects.
  • A technical solution of the present disclosure discloses a portable carbon dioxide adapter system, comprising: a first collar assembly for connecting to a liquid carbon dioxide source; a gasifying/ flow adjusting assembly that converts liquid carbon dioxide into gaseous carbon dioxide and may adjust gas flow; an injection nozzle valve assembly that abuts against a gas inflow valve of a gas-injection-by-adapter object so as to inject the gaseous carbon dioxide; and a second collar assembly with one end slidably receiving the injection nozzle valve assembly and the other end being securely connected to the gasifying/ flow adjusting assembly, wherein the liquid carbon dioxide source is a disposable carbon dioxide gas cylinder, and an opening unit for piecing the disposable carbon dioxide gas cylinder is mounted within the first collar assembly; and the gasifying/ flow adjusting assembly has a volume-adjustable hollow inner cavity configuration.
  • Preferably, in a portable carbon dioxide adapter system according to the technical solution above, the injection nozzle valve assembly comprises a nozzle valve rod, an embedded sealing ring, an end sealing collar, an end locking cap, and a tension spring, wherein the nozzle valve rod slidably passes through a central through-hole of the second collar assembly, one end of the nozzle valve rod being a hollow nozzle hole, the other end thereof being a solid screw; in a peripheral direction of the nozzle valve rod is provided an annular groove receiving the embedded sealing ring, and meanwhile in a diameter direction of the nozzle valve rod is provided a gas inflow hole in communication with the hollow nozzle hole; compared with the gas inflow hole, the annular groove is disposed closer to the hollow nozzle hole side; the end sealing collar is mounted on the solid screw of the nozzle valve stem and is secured through the end locking cap.
  • Preferably, in the portable carbon dioxide adapter system according to the technical solution above, the end sealing collar maintains sealing between the injection nozzle valve assembly and the gasifying/ flow adjusting assembly in a non-gas-injecting state, while releases the sealing between the injection nozzle valve assembly and the gasifying/ flow adjusting assembly in a gas-injecting state.
  • Preferably, in the portable carbon dioxide adapter system according to the technical solution above, the gasifying/ flow adjusting assembly comprises a gasification cavity body, a flow adjusting screw, a sealing piston, a pressure adjusting spring, and a locking bolt, wherein inside the gasification cavity body is provided the hollow inner cavity configuration; in two end faces of the gasification cavity body are provided a liquid carbon dioxide inflow hole and a gaseous carbon dioxide outflow hole, respectively; a through-hole having threads at both ends is provided in a direction perpendicular to the two end faces of the gasification cavity body; the flow adjusting screw is mounted to one end of the through-hole in a threaded manner, and the locking bolt tightly locks the pressure adjusting spring at the other end of the through-hole.
  • Preferably, in the portable carbon dioxide adapter system according to the technical solution above, an end of the flow adjusting screw is provided with a sealing gasket, the sealing piston being mounted between the pressure adjusting spring and the flow adjusting screw.
  • Preferably, the portable carbon dioxide adapter system according to the technical solution above further comprises: a sealing ring and guard ring assembly disposed between the opening unit and the gasifying/ flow adjusting assembly, the sealing ring and the guard ring assembly being comprised of an O-shaped sealing ring and a silicon gel guard ring, a center of the silicon gel guard ring being provided with a through-hole.
  • Preferably, in the portable carbon dioxide adapter system according to the technical solution above, the opening unit is a drill tip-type opening unit.
  • Preferably, in the portable carbon dioxide adapter system according to the technical solution above, the first collar assembly and the second collar assembly are connected to the gasifying/ flow adjusting assembly in a threaded manner and are locked by a locking pin.
  • Preferably, in the portable carbon dioxide adapter system according to the technical solution above, the second collar is a stepped cylinder, a fixed end of which connected to the gasifying/ flow adjusting assembly is provided with an internal thread, while a free end on the opposite side is provided with an external thread.
  • According to a preferred technical solution of the present invention, a carbon dioxide adapter designed for a large volume, e.g., 88g, disposable compressed carbon dioxide gas cylinder is provided, which may securely inject gas to and pressurize the gas storage cavity or fixed gas storage tank so as to avoid leakage of the carbon dioxide, thereby facilitating users to use a large volume disposable compressed carbon dioxide gas cylinder in various gas-injection objects including those in the airgun industry.
    The features, technical effects and other advantages of the present disclosure will become obvious through further illustrations below in conjunction with the accompanying drawings.
  • BRIEF DESCRIPTION OF THE ACCOMPANYING DRAWINGS
  • Now, the present disclosure will be described through examples with reference to the accompanying drawings, in which:
    • Fig. 1 is a stereoscopic assembly diagram of a portable carbon dioxide adapter system according to a preferred embodiment of the present disclosure;
    • Fig. 2A is a plane sectional view of the portable carbon dioxide adapter system of Fig. 1.
    • Fig. 2B is an exploded structure diagram of the portable carbon dioxide adapter system of Fig. 1.
    • Fig. 3 is a structural diagram of a gasification/flow adjusting section in the portable carbon dioxide adapter system according to a preferred embodiment of the present disclosure.
    • Figs. 4A-4C are schematic diagrams showing use states of the portable carbon dioxide adapter system according to a preferred embodiment of the present disclosure.
    DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Hereinafter, the technical solution of the present disclosure will be described in a clear and comprehensive manner in conjunction with the drawings. It is apparent that the embodiments as described here are only part of the embodiments of the present disclosure, rather than all of them. All other embodiments obtained by a person of normal skill in the art on the basis of the embodiments in the present disclosure fall within the protection scope of the present disclosure.
  • it should be noted that, in the description of the present disclosure, orientations or positional relationships indicated by the terms "front/back," "up/down," "left/right," "vertical/horizontal," and "in/out" and the like, which are based on the orientations or position relationships illustrated in the drawings, are merely for the purposes of describing the present disclosure and simplifying the description, rather than indicating or implying that the devices or elements as referred to must have particular orientations or must be constructed and operated with specific orientations; therefore, they should not be understood as limiting the present disclosure. In addition, the terms "first," "second," and "third" are used for descriptive purposes only, and should not be construed to indicate or imply relative importance.
  • In the description of the present disclosure, it should be noted that, unless explicitly specified or limited, the term "mount," "connect," and "connected" should be understood broadly. For example, they may be a fixed connection, or a detachable connection, or an integral connection; they may be a mechanical connection, or may be an electrical connection; they may be a direct connection, or may be an indirect connection through an intermediate medium, or may be a communication inside two elements. For a person of normal skill in the art., the specific meanings of the terms above in the present disclosure may be understood according to specific conditions.
  • Fig. 1 is an assembly structure diagram of a portable carbon dioxide adapter system 100 according to a preferred embodiment of the present disclosure. As shown in Fig. 1, the portable carbon dioxide adapter system 100 in an assembled state comprises: a connection port 101 for connecting to a liquid carbon dioxide source; an injection nozzle 102 for injecting gaseous carbon dioxide to a gas-injection object; a gasifying section 103 that converts liquid carbon dioxide into gaseous carbon dioxide; and an adjuster 104 for adjusting carbon dioxide flow, wherein the connection port 101 is preferably connected to a large volume disposable compressed carbon dioxide gas cylinder (not shown) in a threaded manner. The disposable compressed carbon dioxide gas cylinder (e.g., CO2-88G) stores inside liquid carbon dioxide and is provided with an external thread at a gas cylinder outlet; a corresponding internal thread is provided inside the connection port 101, thereby achieving a reliable engagement between the two threads. In the airgun or airsoft industry, valve rods of gas inflow valves of various gas-injection objects (including gas-injectable 12g gas cylinders) are substantially of the same type and size. Therefore, the injection nozzle 102 may inject gas to almost all airguns or airsoft products. Hereinafter, all products, which use high pressure carbon oxide and may be injected with gas using the injection nozzle 102, are collectively referred to as gas-injection-by-adapter objects.
  • To facilitate user operation, as shown in Fig. 1, optionally an external thread is provided on an outer periphery of an adapter collar which receives the injection nozzle 102, for further attaching hoses and other input nozzles according to user needs, thereby implementing direct gas-injection to the gas-injection-by-adapter object. Inside the gasifying section 103 is a volume-adjustable cavity structure. The adjuster 104 adjusts the volume of an internal cavity of the gasifying section 103 through a conventional screw configuration and a pressure adjusting spring, thereby controlling carbon dioxide flow. The specific structures of the gasifying section 103 and the adjuster 104 will be further described with reference to the accompanying drawings.
  • Fig. 2A is a plane sectional view of the portable carbon dioxide adapter system 100 of Fig. 1. Fig. 2B is an exploded structure diagram of the portable carbon dioxide adapter system 100 of Fig. 1. Hereinafter, respective components of the portable carbon dioxide adapter system 100 of Fig. 1 and working manners thereof will be elaborated with reference to the plane section view of Fig. 2A and the structural exploded diagram of Fig. 2B.
  • As shown in Fig. 2A, various components making up the portable carbon dioxide adapter system 100 may be partitioned into the following assemblies by functions: an adapter collar assembly 11, an injection nozzle valve assembly 12, a gasifying/ flow adjusting assembly 13, a sealing ring and guard ring assembly 14, a composite drill bit assembly 15, and a gas cylinder collar assembly 16. When injecting gas to a gas-injection-by-adapter object, the carbon dioxide enters from the composite drill bit assembly 15 into the portable carbon dioxide adapter system 100 along an assembly axial direction from right to left, and is finally injected into the gas-injection-by-adapter object from the injection nozzle valve assembly 12.
  • Fig. 2B further shows structural details of respective components that make up the portable carbon dioxide adapter system 100 along a horizontal assembly axis from left to right. As shown in Fig. 2B, the adapter collar assembly 11 comprises a collar body 111 and a locking pin 112. A left end of the collar body 111 is provided with a stepped through-hole within which the injection nozzle valve assembly 12 is received in a slidable manner; a right end of the collar body 111 is connected to the gasifying/ flow adjusting assembly 13 in a threaded manner. Specifically, a right end of the collar body 111 is provided with an internal thread, while a left end of the gasifying/ flow adjusting assembly 13 is correspondingly provided with an external thread, such that the collar body 111 and the gasifying/ flow adjusting assembly 13 are engaged in a threaded manner, and an airtight structure is implemented in a connected state via an O-shaped sealing ring (not shown). The locking pin 112 is for the purpose of preventing thread loosening, such that the adapter collar assembly 11 is securely locked to the gasifying/ flow adjusting assembly 13 during the gas-injection process.
  • The injection nozzle valve assembly 12 comprises a nozzle valve rod 121, an embedded sealing ring 122, an end sealing collar 123, an end locking cap 124, and a tension spring 125. The nozzle valve rod 121 is a stepped cylinder with outer diameters of two ends being smaller than an outer diameter of a central part; a left end of the nozzle rod is a hollow nozzle hole for injecting carbon dioxide gas, and a right end of the gas cylinder is a solid screw for engaging the end locking cap 124; on the larger-diameter central part of the cylinder is provided with an annular groove for receiving the embedded sealing ring 122; the embedded sealing ring 122 is for slidably sealing between the nozzle valve rod 121 and the adapter collar assembly 11 so as to avoid leakage of the carbon dioxide gas to an outer atmosphere during the gas-injection process. In addition, between the annular groove of the nozzle valve rod 121 and a right end face of the larger-diameter cylinder is further provided a gas inflow hole that is completely or partially through in the diameter direction and communicates with the nozzle hole. The end sealing collar 123 abuts against a right end face of the larger-diameter cylinder of the nozzle valve rod 121 and is secured through the end locking cap 124; the outer diameter of the end sealing collar 123 is larger than a left end through hole of the adapter collar assembly 11, such that the end sealing collar 123, when being tensioned by the tension spring 125, ensures sealing between the injection nozzle valve assembly 12 and the gasifying/ flow adjusting assembly 13 in a non-gas-injection state. A left end of the tension spring 125 is snapped to a right end bulge of the end locking cap 124, while a right end of the tension spring 125 abuts against a left end face of the gasifying/ flow adjusting assembly 13. When injecting gas to the gas-injection-by-adapter object, as the tension spring 125 is compressed, the sealing between the injection nozzle valve assembly 12 and the gasifying/ flow adjusting assembly 13 is released, and the gas inflow hole of the nozzle valve rod 121 is exposed, such that high-pressure carbon dioxide gas enters into the gas inflow hole and reaches the hollow nozzle hole at the left end of the nozzle valve rod 121. Those skilled in the art will easily appreciate that by appropriately disposing the annular groove of the nozzle valve rod 121 and setting a maximum compressed amount of the tension spring 125, it is guaranteed that during the gas-injection process, the carbon dioxide only enters into the gas inflow hole, without compromising the slidable sealing of the embedded sealing ring 122.
  • The gasifying/ flow adjusting assembly 13 comprises a gasification cavity body 131, a flow adjusting worm 132, a pressure adjusting spring 133, and a locking bolt 134. The gasification cavity body 131 is a hollow inner cavity configuration of a locally threaded hole that is top-down through; meanwhile, a gaseous carbon dioxide outflow hole is provided on a left end face of the gasification cavity body 131, and a liquid carbon dioxide inflow hole is provided on a right end face of the gasification cavity body 131; preferably, the liquid carbon dioxide inflow hole is greater than the gaseous carbon dioxide outflow hole, so as to prevent blockage or unsmooth flowing of the liquid carbon dioxide due to surface tension. Left and right ends of the gasification cavity body 131 are of an external thread structure, for being correspondingly engaged with inner threads of the adapter collar assembly 11 and the gas cylinder collar assembly 16, respectively. Preferably, a left end face of the gasifying cavity body 131 is of an inwardly recessed structure so as to securely receive the tension spring 125 of the injection nozzle valve assembly 12. The flow adjusting screw 132, the pressure adjusting spring 133, and a locking bolt 134 are connected or mounted in the top-down through locally threaded hole of the gasifying cavity body 131 so as to adjust the volume of the hollow inner cavity of the gasifying cavity body 131. Preferably, a sealing gasket is provided at an end of the flow adjusting screw 132, and a sealing piston (not shown) is mounted on the pressure adjusting spring 133; both of the sealing gasket and the sealing piston are for sealing the gasifying cavity body 131, avoiding leakage of the gasified carbon dioxide to the outside. The specific structures of respective components of the gasifying/ flow adjusting assembly 13 as well as assembly manners thereof will be further illustrated with reference to the drawings.
  • The sealing ring and guard ring assembly 14 comprises an O-shaped sealing ring 141 and a silicone guard ring 142. The O-shaped sealing ring 141 is for sealing between the gasification/flow adjusting assembly 13 and the gas cylinder collar assembly 16, which prevents the silicon gel guard ring 142 from blocking the liquid carbon dioxide inflow hole on the right end face of the gasifying cavity body 131. The silicon gel guard ring 142 can buffer an impact from the composite drill bit assembly 15, and a central opening of the silicon gel guard ring 142 allows the liquid carbon diode to smoothly enter the gasifying/ flow adjusting assembly 13 from the disposable carbon dioxide gas cylinder 13.
    The composite drill bit assembly 15 comprises a drill bit-type opener 151 and a hollow drill bit holder 152. The hollow drill bit holder 152 is used to fixedly support the drill bit-type opener 151; a spiral groove shape of the drill-bit type opener 151 can ensure that the liquid carbon dioxide flows smoothly to the gasification cavity when the disposable carbon dioxide gas cylinder is opened. The hollow drill-bit holder 152 is a hollow cylinder, a left end face of which abuts against the sealing ring and the silica gel guard ring 142 of the collar assembly 14, and a right end face of which abuts against an inner annular flange of the gas cylinder collar assembly 16. In a state of use, the drill-bit type opener 151 held by the hollow drill bit holder 152 extends out of the hollow drill bit holder 152 and beyond the inner annular flange of the gas cylinder collar assembly 16 so as to open the disposable carbon dioxide gas cylinder. Additionally and alternatively, the hollow drill bit holder 152 and the drill-bit type opener 151 may also adopt an integrated structure instead of the split structure shown in the figure.
  • The gas cylinder collar assembly 16 comprises a gas cylinder collar body 161 and a locking pin 162. A left end of the gas cylinder collar body 161 is connected to a right end of the gasification/flow adjusting assembly 13 in a threaded manner. Likewise, the locking pin 162 is used for preventing thread loosening, such that the gas cylinder collar assembly 16 is securely locked to the gasification/flow adjusting assembly 13 during the gas-injection process. As mentioned above, the right end of the gas cylinder collar body 161 is used for being connected to a carbon dioxide source, that is, connected to a large volume disposable compressed carbon dioxide gas cylinder (e.g., CO2 -88 G) in a threaded manner.
  • Fig. 3 is a diagram showing structural details of a gasification/flow adjusting section in the portable carbon dioxide adapter system according to a preferred embodiment of the present disclosure. When gas is injected to a gas-injection-by-adapter object by the large volume disposable carbon dioxide gas cylinder, it is important to ensure safe release of gas pressure potential energy and adjustability of the gas flow. The gasification/ flow adjustment section according to a preferred embodiment of the present disclosure may achieve this point through a simple structure. As indicated by the arrow of Fig. 3, the liquid carbon dioxide flows in from a small hole in the left end face of the gasification cavity body 131 and is ejected out of a small hole in the right end face of the gasification cavity body 131 in a gaseous form after gasification and expansion in an inner cavity of the gasification cavity body 131; the gasification cavity body 131 made of a special metal can withstand high-pressure carbon dioxide in strength so as to ensure safe release of the gas pressure potential energy. In order to adjust flow of the gasified carbon dioxide, a through hole (with internal threads being provided at both ends) is opened in the gasification cavity body 131 along a direction perpendicular to a flowing direction of the carbon dioxide indicated by the arrow, and a dimension of gasification space inside the gasification cavity body 131 is adjusted by screwing the flow adjusting screw 132 within the through hole, thereby achieving the purpose of adjusting the flow of carbon dioxide. In order to ensure the sealing effect while adjusting the flow, a sealing gasket is arranged at an end of the flow adjusting screw 132, and meanwhile the sealing piston is assembled above the pressure adjusting spring 133 in the through hole, so that the sealing piston abuts against the flow adjusting screw 132; the sealing piston comprises a piston rod 135 with a sealing collar and a piston cap 136 for securing the sealing collar. The locking bolt 134 is used for locking the pressure adjusting spring 133 in the through hole. As described above, the sealing piston and the sealing gasket are used for sealing the gasification cavity body 131 so as to prevent leakage of the gasified carbon dioxide to the outside.
  • Figs. 4A-4C are schematic diagrams showing use states of the portable carbon dioxide adapter system according to a preferred embodiment of the present disclosure. As shown in Figs. 4A-4C, in the use states, an operator connects one end of the portable carbon dioxide adapter system 100 to a disposable carbon dioxide gas cylinder 200 in a threaded manner; meanwhile, the operator presses tightly the other end till the valve rod of the gas inflow valve of the gas-injection object 300 to pressurize and inject gas; besides, the flow of gas injection may be adjusted through the gasification/ flow adjusting section. Therefore, it is very convenient to use. Those skilled in the art will readily appreciate that the gas-injection object 300 can be a gas storage cavity within the gun body or a fixed gas storage tank which is connected with the gun body, and can also be various products including gas-injectable 12g gas cylinders. Therefore, the portable carbon dioxide adapter system 100 according to the present disclosure has a wide industrial application and is not limited to the airsoft or airgun industry.
  • The above disclosed are only preferred embodiments of the present disclosure, and the scope of the invention are not defined thereby, of course. Therefore, any equivalent changes within the patent application scope of the present disclosure fall within the scope of the invention. It is to be understood that the above description is intended to be illustrative and not restrictive. For example, the embodiments described above (and/or aspects thereof) may be used in combination with one another. In addition, many modifications may be made to adapt a particular situation or material according to the teachings of the invention without departing from the scope of the invention. By reading the description above, many other embodiments and modifications within the scope and spirit of the claims will be apparent to those skilled in the art.

Claims (9)

  1. A portable carbon dioxide adapter system, comprising:
    a first collar assembly for connecting to a liquid carbon dioxide source;
    a gasifying/ flow adjusting assembly that converts liquid carbon dioxide into gaseous carbon dioxide and may adjust gas flow;
    an injection nozzle valve assembly that abuts against a gas inflow valve of a gas-injection-by-adapter object so as to inject the gaseous carbon dioxide; and
    a second collar assembly with one end slidably receiving the injection nozzle valve assembly and the other end being securely connected to the gasifying/ flow adjusting assembly, wherein
    the liquid carbon dioxide source is a disposable carbon dioxide gas cylinder, and an opening unit for piecing the disposable carbon dioxide gas cylinder is mounted within the first collar assembly; and
    the gasifying/ flow adjusting assembly has a volume-adjustable hollow inner cavity configuration.
  2. The portable carbon dioxide adapter system according to claim 1, characterized in that: the injection nozzle valve assembly comprises a nozzle valve rod, an embedded sealing ring, an end sealing collar, an end locking cap, and a tension spring, wherein the nozzle valve rod slidably passes through a central through-hole of the second collar assembly, one end of the nozzle valve rod being a hollow nozzle hole, the other end thereof being a solid screw; in a peripheral direction of the nozzle valve rod is provided an annular groove receiving the embedded sealing ring, and meanwhile in a diameter direction of the nozzle valve rod is provided a gas inflow hole in communication with the hollow nozzle hole; compared with the gas inflow hole, the annular groove is disposed closer to the hollow nozzle hole side; the end sealing collar is mounted on the solid screw of the nozzle valve stem and is secured through the end locking cap.
  3. The portable carbon dioxide adapter system according to claim 2, characterized in that: the end sealing collar maintains sealing between the injection nozzle valve assembly and the gasifying/ flow adjusting assembly in a non-gas-injecting state, while releases the sealing between the injection nozzle valve assembly and the gasifying/ flow adjusting assembly in a gas-injecting state.
  4. The portable carbon dioxide adapter system according to any one of claims 1-3, characterized in that: the gasifying/ flow adjusting assembly comprises a gasification cavity body, a flow adjusting screw, a sealing piston, a pressure adjusting spring, and a locking bolt, wherein inside the gasification cavity body is provided the hollow inner cavity configuration; in two end faces of the gasification cavity body are provided a liquid carbon dioxide inflow hole and a gaseous carbon dioxide outflow hole, respectively; a through-hole having threads at both ends is provided in a direction perpendicular to the two end faces of the gasification cavity body; the flow adjusting screw is mounted to one end of the through-hole in a threaded manner, and the locking bolt tightly locks the pressure adjusting spring at the other end of the through-hole.
  5. The portable carbon dioxide adapter system according to claim 4, characterized in that: an end of the flow adjusting screw is provided with a sealing gasket, the sealing piston being mounted between the pressure adjusting spring and the flow adjusting screw.
  6. The portable carbon dioxide adapter system according to claim 1, further comprising: a sealing ring and guard ring assembly disposed between the opening unit and the gasifying/ flow adjusting assembly, the sealing ring and the guard ring assembly being comprised of an O-shaped sealing ring and a silicon gel guard ring, a center of the silicon gel guard ring being provided with a through-hole.
  7. The portable carbon dioxide adapter system according to claim 6, characterized in that: the opening unit is a drill tip-type opening unit.
  8. The portable carbon dioxide adapter system according to claim 7, characterized in that: the first collar assembly and the second collar assembly are connected to the gasifying/ flow adjusting assembly in a threaded manner and are locked by a locking pin.
  9. The portable carbon dioxide adapter system according to claim 8, characterized in that: the second collar is a stepped cylinder, a fixed end of which connected to the gasifying/ flow adjusting assembly is provided with an internal thread, while a free end on the opposite side is provided with an external thread.
EP18163010.4A 2017-03-22 2018-03-21 A portable carbon dioxide adapter system Active EP3379196B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710173338.0A CN108626567B (en) 2017-03-22 2017-03-22 Portable carbon dioxide adapter system

Publications (2)

Publication Number Publication Date
EP3379196A1 true EP3379196A1 (en) 2018-09-26
EP3379196B1 EP3379196B1 (en) 2019-12-04

Family

ID=61731653

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18163010.4A Active EP3379196B1 (en) 2017-03-22 2018-03-21 A portable carbon dioxide adapter system

Country Status (3)

Country Link
EP (1) EP3379196B1 (en)
CN (1) CN108626567B (en)
DK (1) DK3379196T3 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5265582A (en) * 1992-02-10 1993-11-30 Mohan Bhogal Controlling the velocity of projectiles from gas-powered guns
US6470872B1 (en) * 2000-04-03 2002-10-29 Benjamin T. Tiberius Semi-automatic firing compressed-gas gun
EP1573263A1 (en) * 2002-12-10 2005-09-14 Crosman Corporation Adapter assembly with floating pin for operably connecting pressurized bottle to a paintball marker
US20070251515A1 (en) * 2006-02-25 2007-11-01 Stanley Gabrel Paintball Gun System With Secure Quick-Connect Pressure Coupling
US8590521B2 (en) * 2012-04-15 2013-11-26 Shu-Mei Tseng Pressure stabilization arrangement for air pistol

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2153762Y (en) * 1993-01-09 1994-01-19 广州气枪厂 Inflatable joint for air storage bottle of air gun
CN2369066Y (en) * 1998-06-17 2000-03-15 张木树 Control valve for regulating gas flow by air pressure
CN203272981U (en) * 2013-05-28 2013-11-06 肖永初 Gas flow regulating valve
CN206754797U (en) * 2017-03-22 2017-12-15 混合研究有限公司 Portable carbon dioxide adapter system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5265582A (en) * 1992-02-10 1993-11-30 Mohan Bhogal Controlling the velocity of projectiles from gas-powered guns
US6470872B1 (en) * 2000-04-03 2002-10-29 Benjamin T. Tiberius Semi-automatic firing compressed-gas gun
EP1573263A1 (en) * 2002-12-10 2005-09-14 Crosman Corporation Adapter assembly with floating pin for operably connecting pressurized bottle to a paintball marker
US20070251515A1 (en) * 2006-02-25 2007-11-01 Stanley Gabrel Paintball Gun System With Secure Quick-Connect Pressure Coupling
US8590521B2 (en) * 2012-04-15 2013-11-26 Shu-Mei Tseng Pressure stabilization arrangement for air pistol

Also Published As

Publication number Publication date
DK3379196T3 (en) 2020-02-17
EP3379196B1 (en) 2019-12-04
CN108626567B (en) 2020-05-08
CN108626567A (en) 2018-10-09

Similar Documents

Publication Publication Date Title
US5341790A (en) Gun powered by pressurized gas and/or pressurized air
US10378697B2 (en) Portable carbon dioxide adapter system
US8720427B2 (en) Paintball gun having internal pressure regulator
US20150226517A1 (en) Pull ring for air container of airsoft gun
EP3379196A1 (en) A portable carbon dioxide adapter system
US11079037B2 (en) Rapid opening gas valve
US9631890B2 (en) Air canister for airsoft gun
CN206754797U (en) Portable carbon dioxide adapter system
US20210364091A1 (en) Rapid Opening Gas Valve
CN208390585U (en) A kind of hydraulic oil pipe cleaning sponge rifle
JP4031807B2 (en) Booster pump for cryogenic fluid
CN110206775B (en) Exhaust mechanism
CN216976495U (en) Air nozzle structure
CN220249123U (en) Grease injection valve failure emergency plugging device
CN214599859U (en) Liquid medicine spray gun in furnace
CN104457407A (en) Air gun and magazine thereof
CN217699661U (en) Pump barrel with pressure release valve
CN216201475U (en) Dry-type quick joint for hydrogen pipe bundle vehicle
CN220623675U (en) Direct-current hydrogenation gun with ball valve and check valve integrated structure
CN215408861U (en) Combustion chamber with high-pressure protection function
CN111990876B (en) A steam cooking equipment that is used for injection subassembly of steam cooking equipment and has it
CN219111942U (en) Liquid filling type spraying equipment
CN218326418U (en) Self-regulating pressure valve and drinking water equipment
CN208635137U (en) The fuel lance structure for preventing nozzle oil leak of mechanical atomization return flow control
CN213220055U (en) Drug delivery device stable in starting

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180321

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190626

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1209933

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602018001441

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20200211

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20191204

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200305

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20200331

Year of fee payment: 3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200331

Year of fee payment: 3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200404

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602018001441

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1209933

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191204

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602018001441

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

26N No opposition filed

Effective date: 20200907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200321

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201001

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200321

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20210331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20220330

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230321

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230321

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230321