EP3377567A1 - Verfahren zur herstellung eines schall- und/oder wärmedämmelementes sowie schall - und/oder wärmedämmelement - Google Patents

Verfahren zur herstellung eines schall- und/oder wärmedämmelementes sowie schall - und/oder wärmedämmelement

Info

Publication number
EP3377567A1
EP3377567A1 EP16797902.0A EP16797902A EP3377567A1 EP 3377567 A1 EP3377567 A1 EP 3377567A1 EP 16797902 A EP16797902 A EP 16797902A EP 3377567 A1 EP3377567 A1 EP 3377567A1
Authority
EP
European Patent Office
Prior art keywords
binder
sound
thermal insulation
polymer particles
insulation element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP16797902.0A
Other languages
English (en)
French (fr)
Inventor
Martin Hitzler
Andreas Weier
Gerald Burgeth
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sto SE and Co KGaA
Original Assignee
Sto SE and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sto SE and Co KGaA filed Critical Sto SE and Co KGaA
Publication of EP3377567A1 publication Critical patent/EP3377567A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/22After-treatment of expandable particles; Forming foamed products
    • C08J9/228Forming foamed products
    • C08J9/232Forming foamed products by sintering expandable particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/22After-treatment of expandable particles; Forming foamed products
    • C08J9/224Surface treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/22After-treatment of expandable particles; Forming foamed products
    • C08J9/228Forming foamed products
    • C08J9/236Forming foamed products using binding agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/24Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by surface fusion and bonding of particles to form voids, e.g. sintering
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K21/00Fireproofing materials
    • C09K21/14Macromolecular materials
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/88Insulating elements for both heat and sound
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/36Feeding the material to be shaped
    • B29C44/38Feeding the material to be shaped into a closed space, i.e. to make articles of definite length
    • B29C44/44Feeding the material to be shaped into a closed space, i.e. to make articles of definite length in solid form
    • B29C44/445Feeding the material to be shaped into a closed space, i.e. to make articles of definite length in solid form in the form of expandable granules, particles or beads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • B29C67/20Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00 for porous or cellular articles, e.g. of foam plastics, coarse-pored
    • B29C67/205Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00 for porous or cellular articles, e.g. of foam plastics, coarse-pored comprising surface fusion, and bonding of particles to form voids, e.g. sintering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/06PE, i.e. polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/10Polymers of propylene
    • B29K2023/12PP, i.e. polypropylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • B29K2067/003PET, i.e. poylethylene terephthalate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • B29K2067/04Polyesters derived from hydroxycarboxylic acids
    • B29K2067/046PLA, i.e. polylactic acid or polylactide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2075/00Use of PU, i.e. polyureas or polyurethanes or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0005Condition, form or state of moulded material or of the material to be shaped containing compounding ingredients
    • B29K2105/0026Flame proofing or flame retarding agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/04Condition, form or state of moulded material or of the material to be shaped cellular or porous
    • B29K2105/048Expandable particles, beads or granules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0001Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular acoustical properties
    • B29K2995/0002Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular acoustical properties insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0012Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular thermal properties
    • B29K2995/0015Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0056Biocompatible, e.g. biopolymers or bioelastomers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0063Density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0092Other properties hydrophilic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0093Other properties hydrophobic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/038Use of an inorganic compound to impregnate, bind or coat a foam, e.g. waterglass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/16Biodegradable polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/08Cellulose derivatives
    • C08J2301/10Esters of organic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/08Cellulose derivatives
    • C08J2301/10Esters of organic acids
    • C08J2301/12Cellulose acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/06Unsaturated polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2427/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2427/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2427/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • C08J2427/06Homopolymers or copolymers of vinyl chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2431/00Characterised by the use of copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, or carbonic acid, or of a haloformic acid
    • C08J2431/02Characterised by the use of omopolymers or copolymers of esters of monocarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2431/00Characterised by the use of copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, or carbonic acid, or of a haloformic acid
    • C08J2431/02Characterised by the use of omopolymers or copolymers of esters of monocarboxylic acids
    • C08J2431/04Homopolymers or copolymers of vinyl acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2433/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2475/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2475/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2483/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2483/04Polysiloxanes

Definitions

  • the invention relates to a method for producing a sound and / or
  • Prior art insulating elements for sound and / or thermal insulation of buildings can be made of a variety of insulation materials. However, especially frequently, especially in the area of facades, insulating elements made of polystyrene particle foam are used. Because these not only have good insulation values, but are also relatively inexpensive to produce. The good insulation values are primarily attributable to the air-filled pores or cells that occur during the
  • Foaming of the polystyrene particles are formed.
  • other polymers are suitable for the formation of insulating materials, provided that their particles are foamable.
  • the total pore volume or total cell volume also includes a gob volume remaining between the particles, which may vary in size depending on the degree of welding and / or the degree of compaction of the starting materials.
  • a gob volume remaining between the particles which may vary in size depending on the degree of welding and / or the degree of compaction of the starting materials.
  • From EP 2 527 124 AI go by way of example a shaped body for sound and / or thermal insulation of buildings and a method for producing such a shaped body. In the method, prefoamed polystyrene particles are welded and / or compacted under the action of pressure and / or heat, so that an existing from the interstices between the particles,
  • Contiguous cavity volume is retained in the molding. Due to the coherent cavity volume of the molded body is able to absorb water vapor and water and immediately return.
  • the proposed for sound and / or thermal insulation of buildings moldings is therefore used in particular as a drainage plate.
  • Shaped body is lowered.
  • EP 2 527 124 AI is also proposed to coat the polystyrene particles before welding and / or compacting with a binder.
  • the composite of the polystyrene particles with one another is then primarily effected by the binder applied externally to the particles, which is preferably an organic binder.
  • the bond caused by the binder should in particular increase the mechanical stability of the molding.
  • Polystyrene particles less water repellent or even attracts water.
  • a three-dimensional reticular structure forms, which pervades the entire shaped body, penetrating moisture is held by the binder in the interior of the molding. As a result, the thermal insulation performance is reduced.
  • polymer particles are known which, unlike
  • Polystyrene particles do not behave water repellent. These include in particular particles of biopolymers.
  • Biopolymers may be composed of natural polymers such as polylactic acid or cellulose derivatives. Furthermore, they can be prepared from artificially prepared monomers, in their preparation, in turn, natural raw materials are used. As an example, polyethylene may be cited as long as the ethylene used is made from natural organic waste material. Biopolymers can therefore also be polymers of biogenic origin. Furthermore, one can speak of biopolymers, when the polymers are naturally biodegradable.
  • biopolymers are used in the present case, these are understood in particular to be polar, hydrophilic polymers which are composed of polar, hydrophilic monomers.
  • Polymer particle foams produced from biopolymers are prone to increased water absorption, so that they are used to form a sound and / or sound
  • Measures are taken that protect the sound and / or thermal insulation element from increased water absorption.
  • EP 2 366 847 A1 discloses an insulating and drainage plate made of foamed polymer particles which have been bonded together with the aid of a binder. In this way, between the particles gussets remain, which form a coherent reticulated void volume, is drained by gravity driven water. To remove the To support moisture inside the plate, the proposed in this document plate has a tapered free end, which comes to rest on attachment of the plate to a building exterior wall and the moisture leads funnel-like to the center of the plate. Furthermore, a subsequent
  • the present invention has the object to provide a sound and / or thermal insulation element made of a polymer particle foam, which has good insulation values and also a low water absorbency. Furthermore, the sound and / or
  • Heat insulation element to be simple and inexpensive to manufacture.
  • Heat-insulating elements are used foamable and / or prefoamed polymer particles.
  • the foamable and / or prefoamed polymer particles are coated with a binder and then a
  • Shaping process in which the polymer particles are glued together and / or sintered.
  • the bonding is effected by means of the binder.
  • a non-hydrophilic binder is used to coat the foamable and / or prefoamed polymer particles.
  • the non-hydrophilic binder leads to the formation of a coating enveloping the polymer particles, which not only serves to bond the polymer particles, but also reduces the hydrophilicity of the sound and / or thermal insulation element produced by the method. This means that a sound and / or thermal insulation element produced by the process according to the invention has a lower water absorption capacity.
  • non-hydrophilic binder therefore makes subsequent impregnation of the sound and / or thermal insulation element to reduce the hydrophilicity dispensable. This means that the production of a sound and / or thermal insulation element with reduced water absorption capacity is simplified by the method according to the invention. This also has a cost-reducing, since not only eliminates a further step, but replaced the non-hydrophilic binder at the same time the impregnating agent.
  • a produced by the process according to the invention sound and / or
  • Thermal insulation element is thus particularly suitable for use in outdoor areas and / or in particularly moisture-contaminated areas. Furthermore, it is suitable for use as a drainage element or plate.
  • the non-hydrophilic binder is an organic polymer binder.
  • Such has a high binding force, so that a stable composite of the polymer particles is achieved with each other.
  • the hydrophilicity of an organic polymer binder is largely determined by: - the polarity of the monomers
  • additives are added to the binder to form the coating, for example, to improve the processability of the binder, the type and amount of the additives also play a role.
  • hydrophilicity of the binder must be determined experimentally and / or determined by other factors or parameters.
  • the contact angle (KW) of water and diiodomethane on the binder surface can be tentatively determined. From the
  • OFE Oberfikieenenergy
  • PA additive additive
  • DA non-polar disperse fraction
  • the pure binder in a wet layer thickness of 250 ⁇ m is knife-coated onto a Lenetta film.
  • the contact angle of a water droplet after a minute Aquilibr michszeit on the surface of the binder layer with a Krüss Mobile Drop GH11 is measured.
  • Binder layer determined. Subsequently, the surface energy in accordance with DIN 55660-2 (December 2011), the method according to Owens, Wendt, Rabel and Kaeble (OWRK) and the polar component and the disperse component are determined. If the binder is a dispersion powder, this is previously redispersed with water, so that the polymer solids content is 50 wt .-%.
  • a binder is used which has a static initial contact angle of water after equilibrating for 1 min> 35 °, preferably> 40 °, more preferably> 50 °.
  • Method may alternatively or additionally based on the surface energy of the
  • Bindeffen be determined.
  • a binder which has a surface energy ⁇ 70 mN / m, preferably ⁇ 65 ° mN / m, more preferably ⁇ 60 mN / m.
  • the surface energy should be above 30 mN / m.
  • ⁇ 25 mN / m It should preferably not fall below a value of 1 mN / m.
  • a binder which has a disperse fraction of the surface energy> 10 mN / m, preferably> 20 mN / m, more preferably> 30 mN / m.
  • the disperse fraction of the surface energy should not exceed 60 mN / m.
  • the ratio DA / PA is preferably> 1.0, preferably> 1.4, more preferably> 1.6.
  • the ratio PA / OFE is preferably ⁇ 0.50, preferably ⁇ 0.45, more preferably ⁇ 0.40.
  • a "non-hydrophilic" binder in the context of the present application is preferably understood as meaning an organic polymer binder on the surface of which contact angles> 35 ° are formed with water whose surface has an OFE ⁇ 70 mN / m, the polar portion of the OFE ⁇ 35 mN / m and the disperse portion of the OFE> 30 mN / m.
  • an aqueous polymer dispersion based on acrylate, (meth) acrylate, styrene acrylate, vinyl acetate, vinyl acetate-ethylene, vinyl esters, vinyl chloride, polyurethane, polysiloxanes and / or silicone resins is used as binder.
  • This has the advantage that it covers the polymer particles when coating so that an approximately uniform distribution of the binder is ensured.
  • the adhesion of the binder to the polymer particles can be improved by the use of an aqueous polymer dispersion.
  • a dry can also be used
  • Dispersion powder based on acrylate, styrene acrylate, vinyl acetate, vinyl acetate-ethylene and / or vinyl chloride can be used as a binder.
  • the adhesion of the dry dispersion powder to the polymer particles can be improved by pre-moistening the particles and / or by using prefoamed polymer particles which still have a residual moisture content.
  • Polyethylene terephthalate can be used. These polymers have monomers which are non-polar and therefore absorb very little water or are water-repellent. This applies correspondingly to polymer particle foams produced therefrom.
  • a non-hydrophilic binder By the coating proposed according to the invention with a non-hydrophilic binder, the low water absorption capacity of such a polymer particle foam can be obtained or even further reduced.
  • foamable and / or prefoamed polymer particles of a biopolymer may also be used. It is preferably in the
  • biopolymers unlike the polymers mentioned above, consist of polar monomers. Accordingly, polymer particle foams produced therefrom have increased water wettability and water absorption capacity.
  • Water absorption capacity can be reduced.
  • the dual function of the non-hydrophilic binder as an adhesive and as an impregnating agent is particularly useful when using biopolymers. Because biopolymers usually combined worse than the other polymers mentioned above. Thus, an additional bonding of the particles is essential if a stable composite of the particles is to be achieved.
  • the insulation elements thus achieve sufficiently good thermal insulation values.
  • the amount of binder content contributes to the fact that the sound and / or thermal insulation element produced by the method according to the invention has a high mechanical stability.
  • the starting materials for producing a sound and / or thermal insulation element conventional additives may be added.
  • the proportion of the additives is preferably 0 to 40 wt .-%, preferably 0 to 30 wt .-%, further preferably 0 to 20 wt .-% based on the total solids weight of the starting materials.
  • the flame retardant used is preferably an intumescent flame retardant, preferably expandable graphite.
  • Expanded graphite is usually present in the form of coarse and / or angular particles, which ensure a good toothing with the polystyrene particles.
  • the addition of expandable graphite as a flame retardant therefore has no negative impact on the stability of the composite of the polymer particles with one another.
  • expandable graphite - in contrast to most conventional flame retardants - toxicologically harmless.
  • the addition of the flame retardant can be carried out in such a way that the polymer particles are additionally coated with the flame retardant before they are subjected to the shaping process.
  • Flame retardant can, before, during or after coating with the
  • Binder done.
  • the flame retardant can be added to the binder, so that the polymer particles can be coated in only one coating operation with the flame retardant and the binder.
  • the coated polymer particles are preferably introduced into a mold and adhesively bonded and / or sintered with the addition of pressure and / or heat.
  • the pressure and / or temperature conditions during mixing the size of the interstices remaining between the polymer particles can be controlled. Depending on the respective degree of compression and / or on the expansion of the polymer particles can therefore a sound and / or
  • Heat insulation element are produced, which also has a drainage function.
  • An expansion-limiting effect is furthermore achieved via the binder, which deposits on the polymer particles during sintering as a binder film and thus counteracts expansion of the particles. The extent of expansion is therefore controllable via the binder content.
  • a sound and / or thermal insulation element made of a polymer particle foam is further proposed, which comprises bonded together and / or sintered polymer particles, wherein the bonding - if provided - is effected by means of a binder with which the Polymer particles, preferably before the United, have been coated.
  • the binder is non-hydrophilic and forms a coating which at least partially envelops the polymer particles.
  • the polymer particles substantially completely enveloping coating is achieved.
  • hydrophilic binder thus has a dual function, namely that of an adhesive and that of an impregnating agent.
  • the coating with the non-hydrophilic binder causes the following
  • the specified sound and / or thermal insulation element is therefore suitable
  • Drainage element or plate can be used.
  • Non-hydrophilic in the sense of the present application in particular, a binder is considered that meets at least one of the following parameters, based on the contact angle of water and / or on the
  • the binder which forms the coating preferably has a static initial contact angle of water after equilibrating for 1 min> 35 °, preferably> 40 °, more preferably> 50 °.
  • a binder may be non-hydrophilic in the sense of the present invention
  • the binder forming the coating preferably has a polar fraction of the surface energy ⁇ 35 mN / m, preferably ⁇ 30 mN / m, more preferably ⁇ 25 mN / m.
  • the binder forming the coating has a disperse fraction of the surface energy> 10 mN / m, preferably> 20 mN / m, more preferably> 30 mN / m.
  • the coating is preferably formed by a binder based on acrylate, (meth) acrylate, styrene acrylate, vinyl acetate, vinyl acetate-ethylene, vinyl esters, vinyl chloride, polyurethane, polysiloxanes and / or silicone resins. Whether this is actually a non-hydrophilic binder must, if necessary, be determined experimentally beforehand if the abovementioned parameters are not known. This can be done as described previously in connection with the method according to the invention.
  • the polymer particle foam preferably contains polymer particles of polystyrene, polyurethane, polypropylene, polyethylene and / or polyethylene terephthalate. These polymers have monomers that are nonpolar and therefore inherently water repellent.
  • Binder this property can be obtained or even increased. Furthermore, an active water absorption by capillary effects can be counteracted, for example, the drainage effect of the sound and / or
  • polymer particle foam polymer particles from a
  • Biopolymer in particular from polylactide and / or from a biopolymer based on starch or cellulose, for example cellulose acetate, cellulose propionate and / or cellulose butyrate. Monomers of these biopolymers are naturally polar and polymers themselves are then relatively polar. A sound and / or thermal insulation element produced therefrom accordingly has a comparatively good water wettability or high water absorption capacity.
  • a flame retardant preferably an intumescent flame retardant, in particular expandable graphite
  • the flame retardant reduces the flammability or flammability of the sound and / or thermal insulation element.
  • Thermal insulation element has been prepared by the process according to the invention.
  • the method according to the invention and the sound and / or thermal insulation element according to the invention are explained in more detail below with reference to concrete examples.
  • the following binders were used:
  • Binder 1 an aqueous copolymer dispersion of vinyl acetate, ethylene and methacrylic acid esters, stabilized with polyvinyl alcohol, solids content approx.
  • Binder 2 an aqueous polymer dispersion of acrylic and
  • Methacrylic acid esters solids content about 48 wt .-%.
  • Binder 3 a vinyl acetate- and ethylene-based dispersion powder stabilized with polyvinyl alcohol.
  • lifts of the aqueous polymer dispersions or the dispersion powder previously redispersed with the same amount of water were respectively knife-coated onto Lenetta film in a wet film thickness of 250 ⁇ m and held for three days Dried at 23 ° C and 50% relative humidity.
  • the contact angles of the water or Diiodmethan drops were measured after 1 min Aquilibr michszeit on the respective surface, the surface energies and the polar and disperse fractions of the respective surface energy determined.
  • the contact angles were measured using a Kruss Mobile Drop GH11 (Advance Software Version 1.3.1) at the three-phase contact line between solid, liquid and gas. In each case, five measurements were made at different locations of the respective surfaces. For this purpose, five drops of water or diiodomethane were added to the surfaces. The measurement results were then averaged. The measurement results are listed in the table below:
  • binders 2 and 3 are to be regarded as such.
  • the binder 1 does not fall under this.
  • the molding produced in this way had a thermal conductivity ⁇ according to DIN EN 12667 ⁇ 35 W / (mK) and a density p according to DIN EN 1602 of 37.3 kg / m 3 .
  • Water absorption according to DIN EN 1609 was 170 g / m 2 .
  • EPS beads foamable polystyrene particles
  • the dispersion powder softened and formed a polymer film on the prefoamed polystyrene particles, which fixed the expandable graphite to the surface of the particles, and then dried the coated and prefoamed polymer particles in a fluidized bed dryer 9 L of the coated and expanded graphite-loaded, Pre-expanded polystyrene particles were placed in a mold with the dimensions 30 cm ⁇ 30 cm ⁇ 10 cm and finally foamed under pressure and heat, with water vapor again serving as the heating medium Pressure reduction, the molding was removed from the mold and dried over a period of one week at room temperature.
  • EPS beads foamable polystyrene particles
  • the molding produced in this way had a thermal conductivity ⁇ according to DIN EN 12667 ⁇ 33 W / (mK) and a density p according to DIN EN 1602 of 25.0 kg / m 3 .
  • Water absorption according to DIN EN 1609 was 132 g / m 2 .
  • Example 4 9 L uncoated prefoamed polylactide particles were coated with a
  • the molding produced in this way had a thermal conductivity ⁇ according to DIN EN 12667 ⁇ 37 W / (mK) and a density p according to DIN EN 1602 of 27.9 kg / m 3 .
  • the water absorption according to DIN EN 1609 was 1089 g / m 2 .
  • the molding produced in this way had a thermal conductivity ⁇ according to DIN EN 12667 ⁇ 38 W / (mK) and a density p according to DIN EN 1602 of 37.1 kg / m 3 .
  • the water absorption according to DIN EN 1609 was 277 g / m 2 .
  • the molding according to Example 3 was further in terms of his

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Electromagnetism (AREA)
  • Acoustics & Sound (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Laminated Bodies (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Herstellung eines Schall- und/ oder Wärmedämmelements unter Verwendung schäumbarer und/ oder vorgeschäumter Polymer-Partikel, die mit einem Bindemittel, vorzugsweise mit einem organischen Bindemittel, beschichtet und anschließend einem Formgebungsprozess unterzogen werden, bei dem die Polymer-Partikel miteinander verklebt und/oder versintert werden, wobei die Verklebung mittels des Bindemittels bewirkt wird. Erfindungsgemäß wird zum Beschichten der schäumbaren und/oder vorgeschäumten Polymer-Partikel ein nicht-hydrophiles Bindemittel verwendet. Ferner betrifft die Erfindung ein Schall- und/ oder Wärmedämmelement.

Description

Verfahren zur Herstellung eines Schall- und/oder Wärmedämmelementes sowie Schall- und/oder Wärmedämmelenient
Die Erfindung betrifft ein Verfahren zur Herstellung eines Schall- und/oder
Wärmedämmelements mit den Merkmalen des Oberbegriffs des Anspruchs 1. Femer betrifft die Erfindung ein Schall- und/oder Wärmedämmelement mit den Merkmalen des Oberbegriffs des Anspruchs 12.
Stand der Technik Dämmelemente zur Schall- und/oder Wärmedämmung von Gebäuden können aus den unterschiedlichsten Dämmstoffen hergestellt sein. Besonders häufig jedoch, insbesondere im Fassadenbereich, finden Dämmelemente aus Polystyrol- Partikelschaum Einsatz. Denn diese weisen nicht nur gute Dämmwerte auf, sondern sind zudem vergleichsweise kostengünstig herzustellen. Die guten Dämmwerte sind vorrangig auf die luftgefüllten Poren bzw. Zellen zurückzuführen, die beim
Schäumen der Polystyrol-Partikel ausgebildet werden. Analog eignen sich auch andere Polymere zur Ausbildung von Dämmstoffen, sofern deren Partikel schäumbar sind. Je größer das luftgefüllte Gesamtporenvolumen bzw. Gesamtzellvolumen ist, desto besser sind in der Regel die Dämmeigenschaften, insbesondere die
Wärmedämmeigenschaften, des jeweiligen Dämmstoffs.
Das Gesamtporenvolumen bzw. Gesamtzellvolumen umfasst auch ein zwischen den Partikeln verbleibendes Zwickelvolumen, das je nach Verschweißungs- und/oder Verdichtungsgrad der Ausgangsstoffe unterschiedlich groß ausfallen kann. Aus der EP 2 527 124 AI gehen beispielhaft ein Formkörper zur Schall- und/oder Wärmedämmung von Gebäuden sowie ein Verfahren zur Herstellung eines solchen Formkörpers hervor. Bei dem Verfahren werden vorgeschäumte Polystyrol-Partikel unter Einwirkung von Druck und/oder Wärme verschweißt und/oder verdichtet, so dass ein aus den Zwickelräumen zwischen den Partikeln bestehendes,
zusammenhängendes Hohlraumvolumen im Formkörper erhalten bleibt. Aufgrund des zusammenhängenden Hohlraumvolumens ist der Formkörper in der Lage, Wasserdampf und Wasser aufzunehmen und sofort wieder abzugeben. Der zur Schall- und/oder Wärmedämmung von Gebäuden vorgeschlagene Formkörper ist demnach insbesondere als Drainageplatte einsetzbar. Eine aktive Wasseraufnahme und temporäre Speicherung, beispielsweise aufgrund der Ausbildung von Kapillaren, soll jedoch verhindert werden, da hierdurch die Wärmedämmleistung des
Formkörpers herabgesetzt wird.
In der EP 2 527 124 AI wird ferner vorgeschlagen, die Polystyrol-Partikel vor dem Verschweißen und/oder Verdichten mit einem Bindemittel zu beschichten. Der Verbund der Polystyrol-Partikel untereinander wird dann vorrangig durch das außen auf die Partikel aufgebrachte Bindemittel bewirkt, wobei es sich vorzugsweise um ein organisches Bindemittel handelt. Der über das Bindemittel bewirkte Verbund soll insbesondere die mechanische Stabilität des Formkörpers erhöhen.
Es hat sich jedoch gezeigt, dass ein Formkörper aus Polystyrol-Partikelschaum, dessen Polystyrol-Partikel vor dem Verschweißen und/oder Verdichten mit einem organischen Bindemittel beschichtet worden sind, gegenüber einem Formkörper aus unbeschichteten Polystyrol-Partikeln zu einer erhöhten Wasseraufnahme neigt. Dies kann darauf zurückgeführt werden, dass die an sich wasserabweisenden Polystyrol- Partikel von einer Bindemittelschicht überdeckt werden, die gegenüber den
Polystyrol-Partikeln weniger wasserabweisend oder sogar wasseranziehend wirkt. Da die Bindemittelbeschichtung zugleich eine dreidimensionale netzartige Struktur ausbildet, die den gesamten Formkörper durchzieht, wird eindringende Feuchtigkeit durch das Bindemittel im Inneren des Formkörpers festgehalten. In der Folge verringert sich die Wärmedämmleistung. Darüber hinaus sind Polymer-Partikel bekannt, die sich im Unterschied zu
Polystyrol-Partikeln nicht wasserabweisend verhalten. Hierzu zählen insbesondere Partikel aus Biopolymeren. Biopolymere können aus natürlichen Polymeren, wie beispielsweise Polymilchsäure oder Cellulose-Derivate, aufgebaut sein. Ferner können sie aus künstlich hergestellten Monomeren hergestellt werden, zu deren Herstellung wiederum natürliche Rohstoffe verwendet werden. Als Beispiel kann Polyethylen angeführt werden, sofern das verwendete Ethylen aus natürlichem organischem Abfallmaterial hergestellt ist. Biopolymere können demnach auch Polymere biogener Herkunft sein. Ferner kann man von Biopolymeren sprechen, wenn die Polymere natürlich biologisch abbaubar sind.
Soweit vorliegend Biopolymere Einsatz finden, werden hierunter insbesondere polare, hydrophile Polymere verstanden, die aus polaren, hydrophilen Monomeren aufgebaut sind. Aus Biopolymeren hergestellte Polymer-Partikelschäume neigen zu einer erhöhten Wasseraufnahme, so dass sie zur Ausbildung eines Schall- und/oder
Wärmedämmelements weniger geeignet sind. Es sei denn, dass zusätzliche
Maßnahmen ergriffen werden, die das Schall- und/oder Wärmedämmelement vor einer erhöhten Wasseraufnahme schützen.
Aus der EP 2 366 847 AI ist beispielsweise eine Dämm- und Drainageplatte aus geschäumten Polymer-Partikeln bekannt, die unter Zuhilfenahme eines Bindemittels miteinander verklebt worden sind. Auf diese Weise bleiben zwischen den Partikeln Zwickelräume erhalten, die ein zusammenhängendes netzartiges Hohlraumvolumen ausbilden, über das Wasser schwerkraftgetrieben abführbar ist. Um ein Abführen der Feuchtigkeit im Inneren der Platte zu unterstützen, weist die in dieser Druckschrift vorgeschlagene Platte ein sich verjüngendes freies Ende auf, das bei Anbringung der Platte an einer Gebäudeaußenwand unten zu liegen kommt und die Feuchtigkeit trichterartig zur Mitte der Platte hinleitet. Ferner wird eine nachträgliche
Imprägnierung der Platte mit einem Imprägniermittel vorgeschlagen, das die
Hydrophilie herabsetzen und die Drainageeigenschaften weiter verbessern soll.
Ausgehend von dem vorstehend genannten Stand der Technik liegt der vorliegenden Erfindung die Aufgabe zugrunde, ein Schall- und/oder Wärmedämmelement aus einem Polymer-Partikelschaum bereitzustellen, das gute Dämmwerte und zudem eine geringe Wasseraufnahmefähigkeit besitzt. Ferner soll das Schall- und/oder
Wärmedämmelement einfach und kostengünstig herzustellen sein.
Zur Lösung der Aufgabe werden das Verfahren mit den Merkmalen des Anspruchs 1 und das Schall- und/oder Wärmedämmelement mit den Merkmalen des
Anspruchs 12 angegeben.
Offenbarung der Erfindung Bei dem vorgeschlagenen Verfahren zur Herstellung eines Schall- und/oder
Wärmedämmelements werden schäumbare und/oder vorgeschäumte Polymer- Partikel verwendet. Die schäumbaren und/oder vorgeschäumten Polymer-Partikel werden mit einem Bindemittel beschichtet und anschließend einem
Formgebungsprozess unterzogen, bei dem die Polymer-Partikel miteinander verklebt und/oder versintert werden. Die Verklebung wird dabei mittels des Bindemittels bewirkt. Erfindungsgemäß wird zum Beschichten der schäumbaren und/oder vorgeschäumten Polymer-Partikel ein nicht-hydrophiles Bindemittel verwendet.
Das nicht-hydrophile Bindemittel führt zur Ausbildung einer die Polymer-Partikel umhüllenden Beschichtung, die nicht nur der Verklebung der Polymer-Partikel dient, sondern darüber hinaus die Hydrophilie des nach dem Verfahren hergestellten Schall- und/oder Wärmedämmelements herabsetzt. Das heißt, dass ein nach dem erfindungsgemäßen Verfahren hergestelltes Schall- und/oder Wärmedämmelement eine geringere Wasseraufnahmefähigkeit besitzt.
Die Verwendung eines nicht-hydrophilen Bindemittels macht demnach eine nachträgliche Imprägnierung des Schall- und/oder Wärmedämmelements zur Herabsetzung der Hydrophilie entbehrlich. Das heißt, dass die Herstellung eines Schall- und/oder Wärmedämmelements mit verringerter Wasseraufnahmefähigkeit durch das erfindungsgemäße Verfahren vereinfacht wird. Dies wirkt sich ferner kostensenkend aus, da nicht nur ein weiterer Arbeitsschritt entfällt, sondern das nicht-hydrophile Bindemittel zugleich das Imprägniermittel ersetzt.
Aufgrund der herabgesetzten Hydrophilie des nach dem erfindungsgemäßen
Verfahren hergestellten Schall- und/oder Wärmedämmelements wird aktiv weniger Feuchtigkeit aufgenommen. Denn je geringer die Hydrophilie ist, desto schlechter ist das Benetzungsverhalten. Das heißt, dass Wassertropfen weniger zum Spreiten neigen und idealerweise kugelförmig abperlen. Somit wird deutlich weniger Wasser an den Polymer-Partikeln bzw. deren Beschichtung angelagert oder absorbiert. Auf diese Weise wirkt die Beschichtung mit dem nicht-hydrophilen Bindemittel einer aktiven Wasseraufnahme entgegen.
Ein nach dem erfindungsgemäßen Verfahren hergestelltes Schall- und/oder
Wärmedämmelement ist somit insbesondere für den Einsatz im Außenbereich und/oder in besonders feuchtigkeitsbelasteten Bereichen geeignet. Ferner eignet es sich zur Verwendung als Drainageelement bzw. -platte.
Vorzugsweise handelt es sich bei dem nicht-hydrophilen Bindemittel um ein organisches Polymer-Bindemittel. Ein solches besitzt eine hohe Bindekraft, so dass ein stabiler Verbund der Polymer-Partikel untereinander erreicht wird. Die Hydrophilie eines organischen Polymer-Bindemittels wird maßgeblich durch folgende Faktoren bestimmt: - die Polarität der Monomere
die Anordnung der Monomerer untereinander sowie
- die Länge und den Vernetzungsgrad der Polymerketten.
Sofern dem Bindemittel zur Ausbildung der Beschichtung Additive zugegeben werden, beispielsweise, um die Verarbeitungsfähigkeit des Bindemittels zu verbessern, spielen ferner die Art und die Menge der Additive eine Rolle.
Da Hersteller von Bindemitteln hinsichtlich der vorstehend genannten Faktoren in der Regel keine Angaben machen, muss die Hydrophilie des Bindemittels versuchsweise ermittelt und/oder anhand anderer Faktoren bzw. Parametern bestimmt werden.
Beispielsweise kann versuchsweise der Kontaktwinkel (KW) von Wasser und von Diiodmethan auf der Bindemitteloberfiäche bestimmt werden. Aus den
Kontaktwinkeln wird dann die Oberfiächenenergie (OFE) berechnet, die sich additiv aus einem polaren Anteil (PA) und einem (unpolaren) dispersen Anteil (DA) zusammensetzt. Der polare Anteil (PA) ist ein Maß für die Wechselwirkung zwischen der Oberfläche und einem polaren Stoff, wie beispielsweise Wasser. Der disperse Anteil (DA) ist ein Maß für die Wechselwirkung zwischen der Oberfläche und einem unpolaren Stoff, wie beispielsweise Öl.
Dabei geben nicht nur die absoluten Größen der OFE, des PA und des DA
Aufschluss über die hydrophilen Eigenschaften einer Oberfläche, sondern auch die Verhältnisse der Größen zueinander: DA/PA, PA/OFE sowie DA/OFE. Sämtliche vorstehend genannten Parameter können versuchsweise ermittelt werden, so dass derartige Versuche vorzugsweise der Durchführung des erfindungsgemäßen Verfahrens vorausgehen. Auf diese Weise kann vorab festgestellt werden, ob ein Bindemittel„nicht-hydrophil" und damit zur Durchführung des erfindungsgemäßen Verfahrens geeignet ist.
Zur versuchsweisen Ermittlung bzw. Bestimmung der relevanten Parameter wird weiterhin vorzugsweise das reine Bindemittel in einer Nassschichtstärke von 250 μιη auf eine Lenetta-Folie aufgerakelt. Nach drei Tagen Trocknung bei 23°C und 50% relativer Luftfeuchte wird der Kontaktwinkel eines Wassertropfens nach einer Minute Aquilibrierungszeit auf der Oberfläche der Bindemittelschicht mit einem Krüss Mobile Drop GH11 (Advance Software Version 1.2.1) gemessen. In gleicher Weise wird der Kontaktwinkel von Diiodmethan auf der Oberfläche der
Bindemittelschicht bestimmt. Anschließend werden die Oberflächenenergie gemäß DIN 55660-2 (Dezember 2011), Verfahren nach Owens, Wendt, Rabel und Kaeble (OWRK) sowie der polare Anteil und der disperse Anteil ermittelt. Sofern das Bindemittel ein Dispersionspulver ist, wird dieses vorab mit Wasser redispergiert, so dass der Polymer-Feststoffanteil 50 Gew.-% beträgt. Bevorzugt wird bei dem erfindungsgemäßen Verfahren ein Bindemittel verwendet, das einen statischen Anfangskontaktwinkel von Wasser nach 1 min Äquilibrieren > 35°, vorzugsweise > 40°, weiterhin vorzugsweise > 50°, aufweist.
Die Eignung eines Bindemittels zur Durchführung des erfindungsgemäßen
Verfahrens kann alternativ oder ergänzend anhand der Oberflächenenergie des
Bindemittels festgestellt werden. Bevorzugt wird ein Bindemittel verwendet, das eine Oberflächenenergie < 70 mN/m, vorzugsweise < 65°mN/m, weiterhin vorzugsweise < 60 mN/m, aufweist. Die Oberflächenenergie sollte jedoch oberhalb 30 mN/m liegen. Des Weiteren bevorzugt wird ein Bindemittel verwendet, das einen polaren Anteil der Oberflächenenergie < 35 mN/m, vorzugsweise < 30 mN/m, weiterhin
vorzugsweise < 25 mN/m, aufweist. Dabei sollte vorzugsweise ein Wert von 1 mN/m nicht unterschritten werden.
Weiterhin bevorzugt wird ein Bindemittel verwendet, das einen dispersen Anteil der Oberflächenenergie > 10 mN/m, vorzugsweise > 20 mN/m, weiterhin vorzugsweise > 30 mN/m, aufweist. Der disperse Anteil der Oberflächenenergie sollte jedoch nicht über 60 mN/m liegen.
Von besonderer Bedeutung ist das Verhältnis der Größen Oberflächenenergie (OFE), polarer Anteil (PA) und disperser Anteil (DA) zueinander.
Das Verhältnis DA/PA beträgt bevorzugt > 1,0, vorzugsweise > 1 ,4, weiterhin vorzugsweise > 1,6. Die Kontaktwinkelmessung mit Wasser lässt bereits
Rückschlüsse auf das Verhältnis PA/DA zu. Denn ein kleiner Kontaktwinkel (Wasser) bedeutet, dass der polare Anteil groß ist, woraus sich ein Verhältnis PA/DA ergibt, das vergleichsweise klein ist. Das Verhältnis PA/OFE beträgt bevorzugt < 0,50, vorzugsweise < 0,45, weiterhin vorzugsweise < 0,40.
Hieraus ergeben sich für das Verhältnis DA/OFE Werte > 0,50, vorzugsweise > 0,55, weiterhin vorzugsweise > 0,60.
Als„nicht-hydrophiles" Bindemittel im Sinne der vorliegenden Anmeldung wird demnach bevorzugt ein organisches Polymer-Bindemittel verstanden, auf dessen Oberfläche Kontaktwinkel > 35° mit Wasser ausgebildet werden, dessen Oberfläche eine OFE < 70 mN/m aufweist, der polare Anteil der OFE < 35 mN/m und der disperse Anteil der OFE > 30 mN/m ist. Gemäß einer bevorzugten Ausführungsform der Erfindung wird eine wässrige Polymerdispersion auf Basis von Acrylat, (Meth)acrylat, Styrolacrylat, Vinylacetat, Vinylacetat-Ethylen, Vinylestern, Vinylchlorid, Polyurethan, Polysiloxane und/oder Silikonharze als Bindemittel verwendet. Diese weist den Vorteil auf, dass sie sich beim Beschichten fümartig um die Polymer-Partikel legt, so dass eine annähernd gleichmäßige Verteilung des Bindemittels sichergestellt ist. Zudem kann durch die Verwendung einer wässrigen Polymerdispersion die Haftung des Bindemittels an den Polymer-Partikeln verbessert werden. Alternativ kann auch ein trockenes
Dispersionspulver auf Basis von Acrylat, Styrolacrylat, Vinylacetat, Vinylacetat- Ethylen und/oder Vinylchlorid als Bindemittel verwendet werden. Die Haftung des trockenen Dispersionspulvers auf den Polymer-Partikeln kann dadurch verbessert werden, dass die Partikel zuvor angefeuchtet werden und/oder vorgeschäumte Polymer-Partikel verwendet werden, die noch eine Restfeuchte aufweisen.
Ferner wird vorgeschlagen, dass schäumbare und/oder vorgeschäumte Polymer- Partikel aus Polystyrol, Polyurethan, Polypropylen, Polyethylen und/oder
Polyethylenterephthalat verwendet werden. Diese Polymere weisen Monomere auf, die unpolar sind und daher sehr wenig Wasser aufnehmen bzw. wasserabweisend sind. Das gilt entsprechend für hieraus hergestellte Polymer-Partikelschäume. Durch die erfindungsgemäß vorgeschlagene Beschichtung mit einem nicht-hydrophilen Bindemittel kann die geringe Wasseraufnahmefähigkeit eines solchen Polymer- Partikelschaums erhalten werden oder sogar weiter herabgesetzt werden. Darüber hinaus können auch schäumbare und/oder vorgeschäumte Polymer-Partikel eines Biopolymers verwendet werden. Bevorzugt handelt es sich bei dem
Biopolymer um Polylactid bzw. Polymilchsäure und/oder um ein Biopolymer auf Basis von Stärke oder Cellulose, beispielsweise Celluloseacetat, Cellulosepropionat oder Cellulosebutyrat. Wie eingangs bereits erwähnt, bestehen Biopolymere im Unterschied zu den vorstehend genannten Polymeren aus polaren Monomeren. Hieraus hergestellte Polymer-Partikelschäume weisen dementsprechend eine erhöhte Wasserbenetzbarkeit und Wasseraufnahmefähigkeit auf. Durch die Beschichtung der Polymer-Partikel mit einem nicht-hydrophilen Bindemittel kann die
Wasseraufnahmefähigkeit herabgesetzt werden.
Die Doppelfunktion des nicht-hydrophilen Bindemittels als Klebemittel und als Imprägniermittel kommt bei der Verwendung von Biopolymeren besonders gut zum Tragen. Denn Biopolymere vereintem in der Regel schlechter als die vorstehend genannten anderen Polymere. Somit ist eine zusätzliche Verklebung der Partikel unerlässlich, wenn ein stabiler Verbund der Partikel erzielt werden soll.
Bevorzugt werden Polymer-Partikel verwendet, die im vorgeschäumten Zustand eine Partikelgröße von 2 bis 10 mm, vorzugsweise von 2 bis 8 mm, weiterhin
vorzugsweise von 3 bis 7 mm, aufweisen. Damit erreichen die Dämmelemente ausreichend gute Wärmedämmwerte.
Des Weiteren bevorzugt werden 30 bis 99 Gew.-%, vorzugsweise 40 bis 98 Gew.-%, weiterhin vorzugsweise 60 bis 97 Gew.-% schäumbare und/oder vorgeschäumte Polymer-Partikel sowie 1 bis 70 Gew.-%, vorzugsweise 2 bis 60 Gew.-%, weiterhin vorzugsweise 3 bis 40 Gew.-% Bindemittel jeweils bezogen auf das Feststoff- Gesamtgewicht der Ausgangsstoffe verwendet. Die Höhe des Bindemittelanteils trägt dazu bei, dass das nach dem erfindungsgemäßen Verfahren hergestellte Schall- und/oder Wärmedämmelement eine hohe mechanische Stabilität aufweist. Darüber hinaus können den Ausgangsstoffen zur Herstellung eines Schall- und/oder Wärmedämmelements übliche Additive zugegeben werden. Der Anteil der Additive beträgt vorzugsweise 0 bis 40 Gew.-%, vorzugsweise 0 bis 30 Gew.-%, weiterhin vorzugsweise 0 bis 20 Gew.-% bezogen auf das Feststoff-Gesamtgewicht der Ausgangsstoffe. Bevorzugt wird mindestens ein Additiv, insbesondere in Form eines
Flammschutzmittels, zugegeben, um die Brennbarkeit bzw. Entflammbarkeit des Polymer-Partikelschaums herabzusetzen. Als Flammschutzmittel wird bevorzugt ein intumeszierendes Flammschutzmittel, vorzugsweise Blähgraphit, verwendet.
Blähgraphit liegt in der Regel in Form grober und/oder kantiger Teilchen vor, die eine gute Verzahnung mit den Polystyrol-Partikeln gewährleisten. Die Zugabe von Blähgraphit als Flammschutzmittel hat demnach keinen negativen Einfluss auf die Stabilität des Verbunds der Polymer-Partikel untereinander. Des Weiteren ist Blähgraphit - im Unterschied zu den meisten herkömmlichen Flammschutzmitteln - toxikologisch unbedenklich.
Die Zugabe des Flammschutzmittels kann in der Weise erfolgen, dass die Polymer- Partikeln, bevor sie dem Formgebungsprozess unterzogen werden, zusätzlich mit dem Flammschutzmittel beschichtet werden. Die Beschichtung mit dem
Flammschutzmittel kann vor, während oder nach der Beschichtung mit dem
Bindemittel erfolgen. Beispielsweise kann das Flammschutzmittel dem Bindemittel zugegeben werden, so dass die Polymer-Partikel in nur einem Beschichtungs Vorgang mit dem Flammschutzmittel und dem Bindemittel beschichtet werden können. Zur Formgebung werden vorzugsweise die beschichteten Polymer-Partikel in eine Form eingebracht und unter Zugabe von Druck und/oder Wärme verklebt und/oder versintert. Über die Druck- und/oder Temperaturverhältnissen beim Vereintem kann die Größe der zwischen den Polymer-Partikeln verbleibenden Zwickelräume gesteuert werden. In Abhängigkeit vom jeweiligen Komprimierungsgrad und/oder von der Expansion der Polymer-Partikel kann demnach ein Schall- und/oder
Wärmedämmelement hergestellt werden, das zudem eine Drainagefunktion besitzt. Eine die Expansion begrenzende Wirkung wird femer über das Bindemittel erreicht, das sich beim Versintem als Bindemittelfilm um die Polymer-Partikel legt und somit einer Expansion der Partikel entgegen wirkt. Das Maß der Expansion ist demnach über den Bindemittelanteil steuerbar. Zur Lösung der eingangs genannten Aufgabe wird ferner ein Schall- und/oder Wärmedämmelement aus einem Polymer-Partikelschaum vorgeschlagen, der miteinander verklebte und/oder versinterte Polymer-Partikel umfasst, wobei die Verklebung - sofern vorgesehen - mittels eines Bindemittels bewirkt wird, mit dem die Polymer-Partikel, vorzugsweise vor dem Vereintem, beschichtet worden sind. Erfindungsgemäß ist das Bindemittel nicht-hydrophil und bildet eine die Polymer- Partikel zumindest teilweise umhüllende Beschichtung aus. Vorzugsweise wird eine die Polymer-Partikel im Wesentlichen vollständig umhüllende Beschichtung erreicht.
Da die Bindemittelbeschichtung die einzelnen Polymer-Partikel weitgehend umhüllt, sind auch die„inneren" Oberflächen, das heißt, die die Zwickelräume zwischen den Partikeln begrenzenden Oberflächen, mit dem Bindemittel beschichtet. Eine nachträgliche Imprägnierung zur Herabsetzung der Hydrophilie kann demnach entfallen. Das nicht-hydrophile Bindemittel besitzt demnach eine Doppelfunktion, nämlich die eines Klebemittels und die eines Imprägniermittels.
Die Beschichtung mit dem nicht-hydrophilen Bindemittel bewirkt, dass die
Wasserbenetzbarkeit und demzufolge die Wasseraufnahmefähigkeit des Schall- und/oder Wärmedämmelements entsprechend gering sind. Auf diese Weise ist sichergestellt, dass eindringende Feuchtigkeit, insbesondere in Form von Wasser und/oder Wasserdampf, nicht zu einer Verschlechterung der Dämmeigenschaften, insbesondere der Wärmedämmeigenschaften, des Schall- und/oder
Wärmedämmelements führt. Denn die eindringende Feuchtigkeit wird sicher abgeführt und nicht in signifikantem Maße temporär gespeichert.
Das angegebene Schall- und/oder Wärmedämmelement eignet sich daher
insbesondere zur Anwendung im Außenbereich und/oder in feuchtigkeitsbelasteten Bereichen. Ferner kann das Schall- und/oder Wärmedämmelement als
Drainageelement bzw. -platte eingesetzt werden. Als nicht-hydrophil im Sinne der vorliegenden Anmeldung wird insbesondere ein Bindemittel angesehen, dass zumindest einen der nachfolgend genannten Parameter erfüllt, die sich auf den Kontaktwinkel von Wasser und/oder auf die
Oberflächenenergie beziehen.
Bevorzugt weist das die Beschichtung ausbildende Bindemittel einen statischen Anfangskontaktwinkel von Wasser nach 1 min Äquilibrieren > 35°, vorzugsweise > 40°, weiterhin vorzugsweise > 50°, auf.
Ferner kann ein Bindemittel als nicht-hydrophil im Sinne der vorliegenden
Anmeldung angesehen werden, das eine Gesamt-Oberflächenenergie < 70 mN/m, vorzugsweise < 65°mN/m, weiterhin vorzugsweise < 60 mN/m, aufweist. Des Weiteren bevorzugt weist das die Beschichtung ausbildende Bindemittel einen polaren Anteil der Oberflächenenergie < 35 mN/m, vorzugsweise < 30 mN/m, weiterhin vorzugsweise < 25 mN/m, auf.
Weiterhin bevorzugt weist das die Beschichtung ausbildende Bindemittel einen dispersen Anteil der Oberflächenenergie > 10 mN/m, vorzugsweise > 20 mN/m, weiterhin vorzugsweise > 30 mN/m, auf.
Vorzugsweise wird die Beschichtung durch ein Bindemittel auf Basis von Acrylat, (Meth)acrylat, Styrolacrylat, Vinylacetat, Vinylacetat-Ethylen, Vinylestern, Vinylchlorid, Polyurethan, Polysiloxane und/oder Silikonharze ausgebildet. Ob es sich hierbei tatsächlich um ein nicht-hydrophiles Bindemittel handelt muss ggf. zuvor versuchsweise ermittelt werden, wenn die vorstehend genannten Parameter nicht bekannt sind. Hierbei kann wie bereits zuvor in Verbindung mit dem erfindungsgemäßen Verfahren beschrieben vorgegangen werden. Der Polymer-Partikelschaum enthält vorzugsweise Polymer-Partikel aus Polystyrol, Polyurethan, Polypropylen, Polyethylen und/oder Polyethylenterephtalat. Diese Polymere weisen Monomere auf, die unpolar und damit bereits von sich aus wasserabweisend sind. Durch die Beschichtung mit dem nicht-hydrophilen
Bindemittel kann diese Eigenschaft erhalten werden oder sogar gesteigert werden. Ferner kann einer aktiven Wasseraufnahme durch Kapillareffekte entgegengewirkt werden, um beispielsweise die Drainagewirkung der Schall- und/oder
Wärmedämmplatte zu verbessern. Alternativ kann der Polymer-Partikelschaum Polymer-Partikel aus einem
Biopolymer, insbesondere aus Polylactid und/oder aus einem Biopolymer auf Basis von Stärke oder Cellulose, beispielsweise Celluloseacetat, Cellulosepropionat und/oder Cellulosebutyrat, enthalten. Monomere dieser Biopolymere sind naturgemäß polar und Polymere dann selbst relativ polar. Ein hieraus hergestelltes Schall- und/oder Wärmedämmelement weist demnach eine vergleichsweise gute Wasserbenetzbarkeit bzw. hohe Wasseraufnahmefähigkeit auf. Die Umhüllung der Polymer-Partikel mit der das nicht-hydrophile Bindemittel enthaltenden
Beschichtung bewirkt jedoch, dass die Wasseraufnahmefähigkeit herabgesetzt wird. Insofern kommen hier die Vorteile der Erfindung besonders gut zum Tragen.
Ferner wird vorgeschlagen, dass ein Flammschutzmittel, vorzugsweise ein intumeszierendes Flammschutzmittel, insbesondere Blähgraphit, enthalten ist. Das Flammschutzmittel setzt die Brennbarkeit bzw. Entflammbarkeit des Schall- und/oder Wärmedämmelements herab. Die Vorzüge von Blähgraphit wurden bereits vorstehend erwähnt, so dass hierauf verwiesen wird.
Des Weiteren bevorzugt ist das erfindungsgemäße Schall- und/oder
Wärmedämmelement nach dem erfindungsgemäßen Verfahren hergestellt worden. Das erfindungsgemäße Verfahren und das erfindungsgemäße Schall- und/oder Wärmedämmelement werden nachfolgend anhand konkreter Beispiele näher erläutert. Folgende Bindemittel wurden verwendet:
Bindemittel 1 : eine wässrige Copolymerdispersion aus Vinylacetat, Ethylen und Methacrylsäureestern, stabilisiert mit Polyvinylalkohol, Festkörpergehalt ca.
50 Gew.-%.
Bindemittel 2: eine wässrige Polymerdispersion aus Acryl- und
Methacrylsäureestern, Festkörpergehalt ca. 48 Gew.-%.
Bindemittel 3: ein Dispersionspulver auf Vinylacetat- und Ethylen-Basis, stabilisiert mit Polyvinylalkohol.
Um die jeweiligen Kontaktwinkel, vorliegend von Wasser und von Diiodmethan, sowie die Oberflächenenergien zu ermitteln, wurden Aufzüge der wässrigen Polymerdispersionen bzw. der mit der gleichen Menge Wasser zuvor redispergierten Dispersionspulver jeweils in einer Nassschichtstärke von 250 μιη auf Lenetta-Folie aufgerakelt und drei Tage bei 23°C und 50% relativer Luftfeuchte getrocknet.
Anschließend wurden die Kontaktwinkel der Wasser- bzw. Diiodmethan-Tropfen nach 1 min Aquilibrierungszeit auf der jeweiligen Oberfläche gemessen, die Oberflächenenergien sowie die polaren und dispersen Anteile der jeweiligen Oberflächenenergie ermittelt. Die Messung der Kontaktwinkel erfolgte mit einem Krüss Mobile Drop GH11 (Advance Software Version 1.3.1), und zwar an der Dreiphasen-Berührungslinie zwischen Festkörper, Flüssigkeit und Gas. Es wurden jeweils fünf Messungen an unterschiedlichen Stellen der jeweiligen Oberflächen vorgenommen. Hierzu wurden jeweils fünf Tropfen Wasser bzw. Diiodmethan auf die Oberflächen gegeben. Die Messergebnisse wurden anschließend gemittelt. Die Messergebnisse sind in der nachstehenden Tabelle aufgeführt:
Entsprechend der in dieser Anmeldung angegebenen Definition eines nichthydrophilen Bindemittels, sind lediglich die Bindemittel 2 und 3 als solche anzusehen. Das Bindemittel 1 fällt nicht hierunter.
Beispiel 1
Es wurden 700 g vorgeschäumte Polystyrol-Partikel mit einer Partikelgröße von 4 bis 7 mm und einer Schüttdichte von etwa 15 kg/m3 mit 200 g des Bindemittels 1 beschichtet, indem die Polystyrol-Partikel und die Polymerdispersion innig gemischt wurden. Der Mischung wurden vor dem Trocknen der Polymerdispersion 150 g Blähgraphit zugegeben. Von dieser Mischung wurden 9 L in eine Form mit einer Grundfläche der Abmessungen 30 cm x 30 cm gefüllt und unter Druck und Wärme (100°C), wobei Wasserdampf als Heizmedium diente, der die Form vollflächig durchströmte, zu einer Platte mit den Abmessungen 30 cm x 30 cm x 7 cm verpresst. Nach dem Druckabbau wurde das Formteil aus der Form genommen und über einen Zeitraum von einer Woche bei Raumtemperatur getrocknet.
Das derart hergestellte Formteil wies eine Wärmeleitfähigkeit λ nach DIN EN 12667 < 35 W/(mK) und eine Dichte p nach DIN EN 1602 von 37,3 kg/m3. Die
Wasseraufnahme nach DIN EN 1609 betrug 496 g/m2. Beispiel 2
Es wurden 700 g vorgeschäumte Polystyrol-Partikel mit einer Partikelgröße von 4 bis 7 mm und einer Schüttdichte von etwa 15 kg/m3 mit 200 g des Bindemittels 2 beschichtet, indem die Polystyrol-Partikel und die Polymerdispersion innig gemischt wurden. Der Mischung wurden vor dem Trocknen der Polymerdispersion 150 g Blähgraphit zugegeben. Von dieser Mischung wurden 9 L in eine Form mit einer Grundfläche der Abmessungen 30 cm x 30 cm gefüllt und unter Druck und Wärme (100°C), wobei Wasserdampf als Heizmedium diente, der die Form vollflächig durchströmte, zu einer Platte mit den Abmessungen 30 cm x 30 cm x 7 cm verpresst. Nach dem Druckabbau wurde das Formteil aus der Form genommen und über einen Zeitraum von einer Woche bei Raumtemperatur getrocknet. Das derart hergestellte Formteil wies eine Wärmeleitfähigkeit λ nach DIN EN 12667 < 35 W/(mK) und eine Dichte p nach DIN EN 1602 von 35,9 kg/m3. Die
Wasseraufnahme nach DIN EN 1609 betrug 170 g/m2.
Beispiel 3
Es wurden 350 g schäumbare Polystyrol-Partikel („EPS-Beads") mit 70 g des Bindemittels 3 und 100 g Blähgraphit gemischt und unter Zugabe von Druck (1 bar) und Wärme (100°C), wobei Wasserdampf als Heizmedium diente, vorgeschäumt. Dabei erweichte das Dispersionspulver und bildete einen Polymerfilm auf den vorgeschäumten Polystyrol-Partikeln aus, der das Blähgraphit an der Oberfläche der Partikel fixierte. Anschließend wurden die beschichteten und vorgeschäumten Polymer-Partikel in einem Fließbetttrockner getrocknet. 9 L der beschichteten und mit Blähgraphit beladenen, vorgeschäumten Polystyrol-Partikel wurden in eine Form mit den Abmessungen 30 cm x 30 cm x 10 cm gegeben und unter Druck und Wärme endgeschäumt, wobei wiederum Wasserdampf als Heizmedium diente. Nach dem Druckabbau wurde das Formteil aus der Form genommen und über einen Zeitraum von einer Woche bei Raumtemperatur getrocknet.
Das derart hergestellte Formteil wies eine Wärmeleitfähigkeit λ nach DIN EN 12667 < 33 W/(mK) und eine Dichte p nach DIN EN 1602 von 25,0 kg/m3. Die
Wasseraufnahme nach DIN EN 1609 betrug 132 g/m2.
Beispiel 4 Es wurden 9 L unbeschichtete vorgeschäumte Polylactid-Partikel mit einer
Partikelgröße von 2 bis 3 mm und einer Schüttdichte von etwa 22 kg/m3 in eine Form mit einer Grundfläche der Abmessungen 30 cm x 30 cm gefüllt und unter Druck und Wärme (100°C), wobei Wasserdampf als Heizmedium diente, der die Form vollflächig durchströmte, zu einer Platte mit den Abmessungen 30 cm x 30 cm x 7 cm verpresst. Nach dem Druckabbau wurde das Formteil aus der Form genommen und über einen Zeitraum von einer Woche bei Raumtemperatur getrocknet.
Das derart hergestellte Formteil wies eine Wärmeleitfähigkeit λ nach DIN EN 12667 < 37 W/(mK) und eine Dichte p nach DIN EN 1602 von 27,9 kg/m3 auf. Die Wasseraufnahme nach DIN EN 1609 betrug 1089 g/m2.
Beispiel 5
Es wurden 1000 g vorgeschäumte Polylactid-Partikel mit einer Partikelgröße von 2 bis 3 mm und einer Schüttdichte von etwa 22 kg/m3 mit 400 g des Bindemittels 2 beschichtet, indem die Polylactid-Partikel und die Polymerdispersion innig gemischt wurden. Von dieser Mischung wurden 9 L in eine Form mit einer Grundfläche der Abmessungen 30 cm x 30 cm gefüllt und unter Druck und Wärme (100°C), wobei Wasserdampf als Heizmedium diente, der die Form vollflächig durchströmte, zu einer Platte mit den Abmessungen 30 cm x 30 cm x 7 cm verpresst. Nach dem Druckabbau wurde das Formteil aus der Form genommen und über einen Zeitraum von einer Woche bei Raumtemperatur getrocknet.
Das derart hergestellte Formteil wies eine Wärmeleitfähigkeit λ nach DIN EN 12667 < 38 W/(mK) und eine Dichte p nach DIN EN 1602 von 37,1 kg/m3 auf. Die Wasseraufnahme nach DIN EN 1609 betrug 277 g/m2.
Die Beispiele zeigen, dass die Verwendung eines nicht-hydrophilen Bindemittels (vorliegend Bindemittel 2 und 3) entsprechend der Beispiele 2, 3 und 5 zu einem Formkörper führt, bei dem die Wasseraufnahme deutlich geringer ist.
Der Formkörper nach Beispiel 3 wurde ferner hinsichtlich seiner
Wasserdurchlässigkeit getestet. Auf der Oberfläche des Formteils aufgebrachtes Wasser durchdrang dieses schnell und vollständig.

Claims

P a t e n t a n s p r ü c h e
1. Verfahren zur Herstellung eines Schall- und/oder Wärmedämmelements unter Verwendung schäumbarer und/oder vorgeschäumter Polymer-Partikel, die mit einem Bindemittel, vorzugsweise mit einem organischen Bindemittel, beschichtet und anschließend einem Formgebungsprozess unterzogen werden, bei dem die Polymer-Partikel miteinander verklebt und/oder versintert werden, wobei die Verklebung mittels des Bindemittels bewirkt wird,
dadurch gekennzeichnet, dass zum Beschichten der schäumbaren und/oder vorgeschäumten Polymer-Partikel ein nicht-hydrophiles Bindemittel verwendet wird.
Verfahren nach Anspruch 1 ,
dadurch gekennzeichnet, dass ein Bindemittel verwendet wird, das einen statischen Anfangskontaktwinkel von Wasser nach 1 min Äquilibrieren > 35°, vorzugsweise > 40°, weiterhin vorzugsweise > 50°, aufweist.
Verfahren nach Anspruch 1 oder 2,
dadurch gekennzeichnet, dass ein Bindemittel verwendet wird, das eine Oberflächenenergie < 70 mN/m, vorzugsweise < 65°mN/m, weiterhin vorzugsweise < 60 mN/m, aufweist.
Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass ein Bindemittel verwendet wird, das polaren Anteil der Oberflächenenergie < 35 mN/m, vorzugsweise
< 30 mN/m, weiterhin vorzugsweise < 25 mN/m, aufweist. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass ein Bindemittel verwendet wird, das einen dispersen Anteil der Oberflächenenergie > 10 mN/m, vorzugsweise
> 20 mN/m, weiterhin vorzugsweise > 30 mN/m, aufweist.
Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass eine wässrige Polymerdispersion oder ein Dispersionspulver auf Basis von Acrylat, (Meth)acrylat, Styrolacrylat, Vinylacetat, Vinylacetat-Ethylen, Vinylestern, Vinylchlorid, Polyurethan, Polysiloxane und/oder Silikonharze als Bindemittel verwendet wird.
Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass schäumbare und/oder vorgeschäumte
Polymer-Partikel aus Polystyrol, Polyurethan, Polypropylen, Polyethylen und/oder Polyethylenterephthalat verwendet werden.
Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass schäumbare und/oder vorgeschäumte
Polymer-Partikel aus einem Biopolymer, insbesondere aus Polylactid und/oder aus einem Biopolymer auf Basis von Stärke oder Cellulose, beispielsweise Celluloseacetat, Cellulosepropionat und/oder Cellulosebutyrat, verwendet werden.
9. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass 30 bis 99 Gew.-%, vorzugsweise 40 bis 98 Gew.-%, weiterhin vorzugsweise 60 bis 97 Gew.-% schäumbare und/oder vorgeschäumte Polymer-Partikel und 1 bis 70 Gew.-%, vorzugsweise 2 bis 60
Gew.-%, weiterhin vorzugsweise 3 bis 40 Gew.-% Bindemittel jeweils bezogen auf das Feststoff-Gesamtgewicht der Ausgangsstoffe verwendet werden. 10. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass mindestens ein Additiv, insbesondere in Form eines Flammschutzmittels, zugegeben wird, wobei es sich
vorzugsweise um ein intumeszierendes Flammschutzmittel, vorzugsweise um Blähgraphit handelt.
11. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass die beschichteten Polymer-Partikel zur Formgebung in eine Form eingebracht und unter Zugabe von Druck und/oder Wärme verklebt und/oder versintert werden.
12. Schall- und/oder Wärmedämmelement aus einem Polymer-Partikelschaum, der miteinander verklebte und/oder versinterte Polymer-Partikel umfasst, wobei die Verklebung mittels eines Bindemittels, vorzugsweise mittels eines organischen Bindemittels, bewirkt wird, mit dem die Polymer-Partikel, vorzugsweise vor dem Vereintem, beschichtet worden sind,
dadurch gekennzeichnet, dass das Bindemittel nicht-hydrophil ist und eine die Polymer-Partikel zumindest teilweise umhüllende Beschichtung ausbildet.
13. Schall- und/oder Wärmedämmelement nach Anspruch 12,
dadurch gekennzeichnet, dass das die Beschichtung ausbildende
Bindemittel einen statischen Anfangskontaktwinkel von Wasser nach 1 min Äquilibrieren > 35°, vorzugsweise > 40°, weiterhin vorzugsweise > 50°, aufweist.
14. Schall- und/oder Wärmedämmelement nach Anspruch 12 oder 13,
dadurch gekennzeichnet, dass das die Beschichtung ausbildende
Bindemittel eine Gesamt-Oberflächenenergie < 70 mN/m, vorzugsweise < 65°mN/m, weiterhin vorzugsweise < 60 mN/m, aufweist.
15. Schall- und/oder Wärmedämmelement nach einem der Ansprüche 12 bis 14, dadurch gekennzeichnet, dass das die Beschichtung ausbildende
Bindemittel einen polaren Anteil der Oberflächenenergie < 35 mN/m, vorzugsweise < 30 mN/m, weiterhin vorzugsweise < 25 mN/m, aufweist.
16. Schall- und/oder Wärmedämmelement nach einem der Ansprüche 12 bis 15, dadurch gekennzeichnet, dass das die Beschichtung ausbildende
Bindemittel einen dispersen Anteil der Oberflächenenergie > 10 mN/m, vorzugsweise > 20 mN/m, weiterhin vorzugsweise > 30 mN/m, aufweist.
17. Schall- und/oder Wärmedämmelement nach einem der Ansprüche 12 bis 16, dadurch gekennzeichnet, dass das die Beschichtung ausbildende
Bindemittel ein Bindemittel auf Basis von Acrylat, (Meth)acrylat,
Styrolacrylat, Vinylacetat, Vinylacetat-Ethylen, Vinylestern, Vinylchlorid, Polyurethan, Polysiloxane und/oder Silikonharze ist.
18. Schall- und/oder Wärmedämmelement nach einem der Ansprüche 12 bis 17, dadurch gekennzeichnet, dass der Polymer-Partikelschaum Polymer- Partikel aus Polystyrol, Polyurethan, Polypropylen und/oder Polyethylen enthält.
19. Schall- und/oder Wärmedämmelement nach einem der Ansprüche 12 bis 18, dadurch gekennzeichnet, dass der Polymer-Partikelschaum Polymer- Partikel aus einem Biopolymer, insbesondere aus Polylactid und/oder aus einem Biopolymer auf Basis von Stärke oder Cellulose, beispielsweise Celluloseacetat, Cellulosepropionat und/oder Cellulosebutyrat, enthält.
20. Schall- und/oder Wärmedämmelement nach einem der Ansprüche 12 bis 19, dadurch gekennzeichnet, dass ein Flammschutzmittel, vorzugsweise ein intumeszierendes Flammschutzmittel, insbesondere Blähgraphit, enthalten ist.
21. Schall- und/oder Wärmedämmelement nach einem der Ansprüche 12 bis 20, dadurch gekennzeichnet, dass das Schall- und/oder Wärmedämmelement nach einem Verfahren nach einem der Ansprüche 1 bis 11 hergestellt worden ist.
EP16797902.0A 2016-02-19 2016-11-17 Verfahren zur herstellung eines schall- und/oder wärmedämmelementes sowie schall - und/oder wärmedämmelement Withdrawn EP3377567A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP16156509.8A EP3208299B1 (de) 2016-02-19 2016-02-19 Verfahren zur herstellung eines schall- und/oder wärmedämmelements sowie schall- und/oder wärmedämmelement
PCT/EP2016/077962 WO2017140388A1 (de) 2016-02-19 2016-11-17 Verfahren zur herstellung eines schall- und/oder wärmedämmelementes sowie schall - und/oder wärmedämmelement

Publications (1)

Publication Number Publication Date
EP3377567A1 true EP3377567A1 (de) 2018-09-26

Family

ID=55527747

Family Applications (2)

Application Number Title Priority Date Filing Date
EP16156509.8A Active EP3208299B1 (de) 2016-02-19 2016-02-19 Verfahren zur herstellung eines schall- und/oder wärmedämmelements sowie schall- und/oder wärmedämmelement
EP16797902.0A Withdrawn EP3377567A1 (de) 2016-02-19 2016-11-17 Verfahren zur herstellung eines schall- und/oder wärmedämmelementes sowie schall - und/oder wärmedämmelement

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP16156509.8A Active EP3208299B1 (de) 2016-02-19 2016-02-19 Verfahren zur herstellung eines schall- und/oder wärmedämmelements sowie schall- und/oder wärmedämmelement

Country Status (5)

Country Link
US (1) US20190040221A1 (de)
EP (2) EP3208299B1 (de)
CA (1) CA3014267C (de)
RU (1) RU2721017C2 (de)
WO (1) WO2017140388A1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019020328A1 (de) * 2017-07-25 2019-01-31 Sto Se & Co. Kgaa Verfahren zur herstellung eines schall- und/oder wärmedämmelements sowie schall- und/oder wärmedämmelement
EP3434720A1 (de) * 2017-07-27 2019-01-30 STO SE & Co. KGaA Verfahren zur herstellung eines schall- und/oder wärmedämmelements sowie schall- und/oder wärmedämmelement
PL3530689T3 (pl) 2018-02-21 2021-10-25 Basf Se Mieszanina i sposób wytwarzania kształtki
DE102019000385A1 (de) * 2019-01-22 2020-07-23 Sto Se & Co. Kgaa Verfahren zur Herstellung eines Schall -und/oder Wärmedämmelements sowie Schall- und/oder Wärmedämmelement
US11718464B2 (en) 2020-05-05 2023-08-08 Pratt Retail Specialties, Llc Hinged wrap insulated container
RU205190U1 (ru) * 2021-03-26 2021-06-30 Виталий Петрович Плешанов Рулон слоистого теплоизоляционного материала

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE7622788U1 (de) * 1976-07-19 1978-02-02 Tschiesche, Werner, Dipl.-Ing., 4300 Essen Mehrschichtige, waermedaemmende und wasserabfuehrende bauplatte
SE457171B (sv) * 1982-02-09 1988-12-05 Grace W R Ltd Panel av isolerande material omfattande expanderade polystyrenpaerlor och bitumen samt foerfarande foer dess framstaellning
US4719723A (en) * 1985-10-03 1988-01-19 Wagoner John D Van Thermally efficient, protected membrane roofing system
DE19619397A1 (de) * 1996-05-14 1997-11-20 Basf Ag Expandierbare Polystyrolpartikel
CA2622611A1 (en) * 2005-08-23 2007-03-01 Basf Se Method for producing foamed slabs
DE102005039976A1 (de) * 2005-08-23 2007-03-08 Basf Ag Partikel aus expandierbarem Polystyrol und daraus erhältliche Formteile mit verbessertem Brandverhalten
ATE456613T1 (de) * 2006-10-11 2010-02-15 Basf Se Beschichtete schaumstoffpartikel und verfahren zur herstellung von halogenfreien, feuerbeständigen partikelschaumstoffformkörpern
ES2401882T3 (es) 2010-03-19 2013-04-25 Ignucell Ab Placa de aislamiento y drenaje
EP2527124A1 (de) 2011-05-27 2012-11-28 Sto Ag Verfahren zur Herstellung eines eine Hohlraumstruktur aufweisenden Formkörpers zur Schall- und/oder Wärmedämmung sowie Formkörper zur Schall- und/oder Wärmedämmung

Also Published As

Publication number Publication date
WO2017140388A1 (de) 2017-08-24
RU2721017C2 (ru) 2020-05-15
EP3208299B1 (de) 2018-04-11
CA3014267A1 (en) 2017-08-24
RU2018123694A (ru) 2020-03-19
RU2018123694A3 (de) 2020-03-19
EP3208299A1 (de) 2017-08-23
CA3014267C (en) 2020-07-14
US20190040221A1 (en) 2019-02-07

Similar Documents

Publication Publication Date Title
EP3208299B1 (de) Verfahren zur herstellung eines schall- und/oder wärmedämmelements sowie schall- und/oder wärmedämmelement
EP2501749B1 (de) Mikrohohlkugeln enthaltende harzschaumstoffe
EP2873695B1 (de) Verfahren zur herstellung einer dämm- und drainageplatte sowie dämm- und drainageplatte
EP2527124A1 (de) Verfahren zur Herstellung eines eine Hohlraumstruktur aufweisenden Formkörpers zur Schall- und/oder Wärmedämmung sowie Formkörper zur Schall- und/oder Wärmedämmung
EP1705232B1 (de) Dichtungselement
DE19803915C1 (de) Verfahren zur Herstellung von Baustoffplatten unter Verwendung von Gips und nach dem Verfahren hergestellte Baustoffplatte
DE102012220176A1 (de) Zusammensetzungen auf Basis unterschiedlicher Wassergläser
DE2433724C2 (de)
EP2873779B1 (de) Verfahren zur Herstellung eines mehrschichtigen Formkörpers sowie mehrschichtiger Formkörper zur Wärmedämmung von Gebäuden
EP3434720A1 (de) Verfahren zur herstellung eines schall- und/oder wärmedämmelements sowie schall- und/oder wärmedämmelement
EP3686236B1 (de) Verfahren zur herstellung eines schall- und/oder wärmedämmelements sowie schall- und/oder wärmedämmelement
WO2019020328A1 (de) Verfahren zur herstellung eines schall- und/oder wärmedämmelements sowie schall- und/oder wärmedämmelement
DE3737793C2 (de)
EP2998453B1 (de) Verfahren zur Herstellung eines Schall- und/oder Wärmedämmelements sowie Schall- und/oder Wärmedämmelement
DE10129858A1 (de) Oberflächenbeschichtung von akustisch wirksamen Schaumstoffmaterialien
EP2990556B1 (de) Wärmedämmplatte aus einem polymer-partikelschaum sowie verfahren zur herstellung einer solchen wärmedämmplatte
EP2571829B1 (de) Zusammensetzungen auf basis unterschiedlicher wassergläser
EP2708668B1 (de) Verfahren zur Herstellung eines flammgeschützen Dämmelementes, Dämmelement sowie Verwendung eines Dämmelementes
DE102011108755A1 (de) Multifunktionelle Wandelemente
CH392053A (de) Verfahren zur Herstellung von Schaumkörpern
AT366734B (de) Folienmaterial und verfahren zu seiner herstellung
DE1504888C (de) Polymerer, netzstrukturierter Körper und Verfahren zur Herstellung desselben
DE1494958B2 (de) Verfahren zur erhoehung der hitzebestaendigkeit von formkoerpern aus schaumkunststoffen
EP2864087A1 (de) Holzverbundwerkstoff mit aerogele und entsprechendes herstellungsverfahren und verwendung
DE1494958C (de) Verfahren zur Erhöhung der Hitzebeständigkeit von Formkorpern aus Schaumkunststoffen

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180620

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20190304