EP3375928A1 - Washing machine without water between barrels, and control method - Google Patents
Washing machine without water between barrels, and control method Download PDFInfo
- Publication number
- EP3375928A1 EP3375928A1 EP16863542.3A EP16863542A EP3375928A1 EP 3375928 A1 EP3375928 A1 EP 3375928A1 EP 16863542 A EP16863542 A EP 16863542A EP 3375928 A1 EP3375928 A1 EP 3375928A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- inner barrel
- water
- air chamber
- drain outlet
- barrel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06F—LAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
- D06F23/00—Washing machines with receptacles, e.g. perforated, having a rotary movement, e.g. oscillatory movement, the receptacle serving both for washing and for centrifugally separating water from the laundry
- D06F23/04—Washing machines with receptacles, e.g. perforated, having a rotary movement, e.g. oscillatory movement, the receptacle serving both for washing and for centrifugally separating water from the laundry and rotating or oscillating about a vertical axis
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06F—LAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
- D06F39/00—Details of washing machines not specific to a single type of machines covered by groups D06F9/00 - D06F27/00
- D06F39/08—Liquid supply or discharge arrangements
- D06F39/083—Liquid discharge or recirculation arrangements
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06F—LAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
- D06F39/00—Details of washing machines not specific to a single type of machines covered by groups D06F9/00 - D06F27/00
- D06F39/08—Liquid supply or discharge arrangements
- D06F39/087—Water level measuring or regulating devices
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06F—LAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
- D06F17/00—Washing machines having receptacles, stationary for washing purposes, wherein the washing action is effected solely by circulation or agitation of the washing liquid
- D06F17/06—Washing machines having receptacles, stationary for washing purposes, wherein the washing action is effected solely by circulation or agitation of the washing liquid by rotary impellers
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06F—LAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
- D06F37/00—Details specific to washing machines covered by groups D06F21/00 - D06F25/00
- D06F37/02—Rotary receptacles, e.g. drums
- D06F37/12—Rotary receptacles, e.g. drums adapted for rotation or oscillation about a vertical axis
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06F—LAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
- D06F37/00—Details specific to washing machines covered by groups D06F21/00 - D06F25/00
- D06F37/26—Casings; Tubs
- D06F37/267—Tubs specially adapted for mounting thereto components or devices not provided for in preceding subgroups
Definitions
- the present disclosure relates to a field of the washing machine, especially, to a washing machine without water between barrels and a control method.
- the inner barrel is provided with the water holes.
- the inner barrel and the outer barrel are communicated with each other.
- the inner barrel is a washing tub
- the outer barrel is a water-carrying tub.
- the part of water between the sidewalls of the inner barrel and the outer barrel does not participate in the washing stage, while the water that really participates in the washing stage is only the part inside the inner barrel, which results in a greater waster of water resources.
- the excessive water between the inner barrel and the outer barrel will also reduce the concentration of the detergent/detergent power in the washing liquor.
- the area between the sidewalls of the inner barrel and the outer barrel becomes a space for hiding dirt and dust due to continuous usage.
- the incrustation of the tap water, the free substance of the washing power, the cellulose of the clothes, the organic matter of the human body and the dust and bacteria brought by the clothes can be easily trapped between the sidewalls of the inner barrel and the outer barrel.
- These molds are bred due to a large amount of dirt accumulated in the washing machine used for a long time that cannot be removed effectively. If the dirt that the users cannot see is not removed, the bacteria would adhere to the clothes and be brought to the human body after the next washing to cause cross-infection problems.
- Patent No. 200420107890.8 relates to a full-automatic washing machine, which mainly comprises a cabinet, a washing and dewatering tub, a water-carrying tub and a driving device.
- the water-carrying tub is arranged outside the washing and dewatering tub and is fixedly connected with the cabinet.
- a sealing device is arranged between the bottom surface of the inner wall of the water-carrying tub and the bottom surface of the outer wall of the washing and dewatering tub, and a sealing cavity is formed inside the sealing device.
- the outer side wall of the washing and dewatering tub has no holes, and the bottom of the washing and dewatering tub is provided with the drainage holes communicated with the sealing cavity.
- the water-carrying tub is provided with a first draining water hole communicated with a drainage pipe, and the drainage pipe is provided with a drain valve.
- the water-carrying tub is fixedly connected with the cabinet through a suspender.
- One end of the suspender is connected with the inner wall of the upper of the cabinet, while other end of the suspender is connected with the outer wall of the water-carrying tub.
- the long-term operation of the sealing structure will cause abrasion, it will result in abrasion and leakage of water after a long-term operation. If the water quality is poor and the sediment content is high, the service life of the sealing structure would be greatly shortened and it will not function properly. It is also unsuitable for using under a state where the washing capacity is large, and the reliability is poor.
- An object of the present disclosure is to overcome the shortcomings of the prior art, and to provide a washing machine without water between barrels and a control method.
- a washing machine without water between barrels comprises an outer barrel, an inner barrel, an air chamber and a pressure sensor connected to the air chamber.
- a plurality of drainage holes are arranged on the upper part near the edge of the inner barrel.
- At least one inner barrel drain outlet is arranged at a bottom of the inner barrel.
- a telescopic drain valve capable of plugging the inner barrel drain outlet is arranged at a bottom of the outer barrel.
- An outer barrel drain outlet is arranged at the bottom of the outer barrel.
- a washing machine drainage pipeline is arranged on the outer barrel drain outlet, the outer barrel is provided with the air chamber communicated with the inner barrel.
- An air chamber drain outlet capable of discharging water in the air chamber is arranged on the air chamber.
- the outer barrel and the inner barrel are concentrically arranged. A distance from a center of the inner barrel drain outlet to a center of the inner barrel is less than or equal to a distance from a center of the outer barrel drain outlet to a center of the outer barrel.
- the distance from the center of the inner barrel drain outlet to the center of the inner barrel is equal to the distance from the center of the outer barrel drain outlet to the center of the outer barrel.
- a diameter of the outer barrel drain outlet is larger than that of the inner barrel drain outlet.
- the air chamber drain outlet is communicated with the washing machine drainage pipeline through a first pipeline.
- a control valve capable of controlling the opening and closing of the first pipeline is arranged at the air chamber drain outlet or in the first pipeline.
- the first pipeline is connected with the washing machine drainage pipeline through a three-way joint.
- the air chamber drain outlet is located at the bottom of the air chamber.
- the control valve is provided with a traction motor, and the traction motor is arranged at the bottom of the outer barrel.
- control valve is connected with a traction motor of the telescopic drain valve.
- the air chamber is communicated with the inner barrel through the telescopic drain valve.
- the telescopic drain valve is a hollow structure, and an upper part of the telescopic drain valve is provided with a water inlet, and a lower part of the telescopic drain valve is provided with a water outlet.
- the water outlet is connected with the air chamber through a elastic pipe.
- the elastic pipe is a hose or a bellows.
- the telescopic drain valve at least comprises a telescopic valve plug, and the telescopic valve plug comprises a telescopic valve rod and a elastic sealing cover sleeved on the valve rod and expanding and retracting with the valve rod.
- An inner of the valve rod is a hollow structure, and an upper part of the valve rod is provided with a water inlet, and a lower part of the valve rod is provided with a water outlet.
- the water inlet is provided with a gland.
- the upper part of the sealing sleeve extends into the water inlet.
- the gland and the valve rod is connected and the sealing sleeve is pressed between the gland and the valve rod.
- a top part of the gland is a hollow-out structure.
- the top part of the gland is a grid structure, and a gap between the grids forms a water holes.
- the top part of the gland protrudes upwards and has a hemispherical arc surface, a middle portion of the hemispherical arc surface is higher and a surrounding portion of the hemispherical arc surface is lower.
- the sealing sleeve is provided with a ring of elastic convex rib around the gland, and a diameter of the elastic convex rib is larger than that of the inner barrel drain outlet.
- a control method of the washing machine without water between barrels comprising:
- a washing machine without water between barrels of the present disclosure comprises an inner barrel 1, an outer barrel 4.
- a plurality of drainage holes 2 are arranged on the upper part near the upper edge of the inner barrel 1.
- At least one inner barrel drain outlet 3 is arranged at the bottom of the inner barrel 1.
- a telescopic drain valve 10 capable of plugging the inner barrel water outlet is arranged at the bottom of the outer barrel 4.
- An outer barrel drain outlet 5 is arranged at the bottom of the outer barrel 4.
- a washing machine drainage pipeline 6 is arranged on the outer barrel drain outlet 5.
- the inner barrel is locked, and the inner barrel drain outlet 3 is plugged by the telescopic drain valve 10. There is water in the inner barrel 1, and there is no water between barrels.
- the inner barrel drain outlet is opened by the telescopic drain valve 10. Most water in the inner barrel 1 is drained out from the inner barrel 1 through the inner barrel drain outlet 3, and then the water is drained out through the outer barrel drain outlet 5 and the washing machine drainage pipeline 6.
- the inner barrel 1 is unlocked and carries out dehydrating.
- the water thrown out during dehydration stage is moved upward under the centrifugal force, and is drained out from the inner barrel through the drainage holes 2, and is drained to the space between the inner barrel and the outer barrel, and then is drained out through the outer barrel drain outlet 5 and the washing machine drainage pipeline 6.
- the outer barrel 4 and the inner barrel 1 are concentrically arranged, and the distance from the center of the inner barrel drain outlet 3 to the center of the inner barrel 1 is the same as the center of the outer barrel drain outlet 5 to the center of the center of the outer barrel 4.
- the inner barrel drain outlet 3 is facing to the outer barrel drain outlet 5, and the water flows out from the inner barrel 1 directly through the outer barrel drain outlet 5 into the washing machine drainage pipeline 6 for discharge.
- the drainage is smooth, and the time for water staying between the inner barrel and outer barrel is short, and there is no required for water to being firstly drained into the space between the inner barrel and the outer barrel and then drained into the outer barrel drain outlet 5.
- the diameter of the outer barrel drain outlet 5 is larger than that of the inner barrel drain outlet 3 to prevent the water flow from staying between the inner barrel and the outer barrel, and prevent the dirt from staining on the inner wall of the outer barrel.
- the outer barrel 4 is provided with an air chamber 7, and the air chamber 7 can be arranged on at the interior or the exterior of the outer barrel 4.
- the air chamber 7 is disposed outside the outer barrel 4 so as not to affect the installation of the inner barrel 1 so as to increase the capacity of the inner barrel 1 as much as possible.
- the air chamber 7 is communicated with the inner barrel through the second pipeline. When there is water inside the inner barrel 1, the water is able to enter the air chamber 7.
- a pressure sensor 19 is connected to the air chamber 7, and the water level of the inner barrel is detected by the pressure sensor 19 detecting the air pressure inside the air chamber 7. This detection method detects the water level, and the structure is simple, and the detection result is accurate.
- the air chamber 7 is communicated with the inner barrel 7 through the telescopic drain valve 10.
- the telescopic drain valve 10 is of a hollow structure, and the upper part of the telescopic drain valve is provided with a water inlet 12, and the lower part of the telescopic drain valve is provided with a water outlet 13.
- the water outlet 13 is communicated with the air chamber 7 through an elastic pipe 14.
- the pressure sensor 19 detects the air pressure inside the air chamber 7 to obtain the water level of the inner barrel to realize the detection and control of the water level.
- the elastic pipe 14 is arranged between the water outlet and the air chamber to achieve the connection between the fixed air chamber 7 and the movable lower water outlet.
- the elastic pipe 14 is a hose or a bellows.
- the second pipeline comprises a hollow portion of the telescopic drain valve and the elastic pipe.
- the telescopic drain valve 10 at least comprises a telescopic valve plug.
- the valve plug comprises a telescopic valve rod 15 and an elastic sealing cover 16 sleeved on the valve rod 15 and can expand and retract with the expansion of the valve rod 15.
- the inner of the valve rod 15 is of a hollow structure, and the upper part of the valve rod is provided with the water inlet 12, and the lower part the valve rod is provided with the water outlet 13.
- the water inlet 12 is provided with a gland.
- the upper part of the sealing sleeve 16 extends into the water inlet 12.
- the gland 17 is connected with the valve rod 15 and the sealing sleeve 16 is pressed between the gland 17 and the valve rod 15.
- the lower water outlet is provided with the hose or the bellows connected to the air chamber.
- the second pipeline comprises the hollow portion of the telescopic valve rod and the hose or the bellows.
- the top part of the gland 17 is of a hollow-out structure. The water in the inner barrel can enter the interior of the valve rod 15 through the hollow structure and then flow into the air chamber 17.
- the top of the gland 17 is provided with a plurality of water holes, or the top of the gland is of a grid structure, and the gap between the grids forms the water holes.
- the water holes can block the thread scraps and other debris from entering the air chamber.
- the top of the gland 17 protrudes is convex upwards, and has a hemispherical arc surface.
- a middle portion of the hemispherical arc surface is higher and a surrounding portion of the hemispherical arc surface is lower, which is high in the middle and low on all sides.
- the convex structure and the hemispherical arc surface can prevent the thread scraps and other debris from staying and accumulating on the top of the gland to block the water holes of the gland.
- the gland can connect the valve rod 15 and the sealing sleeve 16, and can also play a role in preventing the accumulation of the lint.
- the top of the gland 17 is higher than the bottom of the inner barrel.
- the top of gland 17 is higher than the bottom of the outer barrel to further prevent the thread scraps and other debris from staying and accumulating on the top of the gland to block the water holes of the gland.
- the sealing sleeve 16 is provided with a ring of elastic convex rib 18 located around the gland 17.
- the diameter of the elastic convex rib 18 is larger than that of the inner barrel drain outlet 3.
- the elastic convex rib 18 is located at the bottom of the inner barrel of at the outer periphery of the inner barrel drain outlet, and is pressed to realize sealing.
- the gland 17 extends into the inner barrel drain outlet 3, and the top of the gland 17 is higher than the bottom of the inner barrel.
- the elastic convex rib 18 can prevent the lint and other debris from being flushed to the top of the gland 17.
- the top of the gland is higher than the bottom of the outer barrel to prevent the thread scraps and other debris from staying and accumulating on the top of the gland to block the water holes of the gland.
- the telescopic drain valve 10 is fixed at the bottom of the outside of the outer barrel 4, and extends upwards to the bottom of the inner barrel to plug the inner barrel drain outlet 3.
- the elastic pipe 14 is arranged at the bottom of the outside of the outer barrel 4, and is respectively connected with the lower water outlet of the telescopic drain valve 10 and the air chamber.
- the water inside the washing machine is drained through the outer barrel drain outlet 5, therefore when the washing machine is draining water, the water inside the air chamber 7 cannot be thoroughly drained away resulting in some residual water in the air chamber 7, which will cause bacteria to grow in the air chamber for a long time.
- the air chamber of the present disclosure is provided with an air chamber drain outlet 8 capable of discharging water in the air chamber 7.
- the air chamber drain outlet 8 is opened periodically or every time after the drainage of the washing machine is finished to prevent the water from remaining in the air chamber.
- the air chamber drain outlet 8 is located at the very bottom of the air chamber, to ensure that all water inside the air chamber is drained from the air chamber.
- a control valve 11 is arranged at the air chamber drain outlet 8. The control valve 11 is closed when the washing machine is in the water-inlet state and in the washing process. The control valve 11 is opened periodically or after the washing machine finishes the drainage to discharge the water inside the air chamber.
- the air chamber drain outlet 8 is communicated with the washing machine drainage pipeline to discharge the water inside the air chamber through the washing machine drainage pipeline 6.
- the air chamber drain outlet 8 is communicated with the washing machine drainage pipeline 6 through a first pipeline 9.
- the first pipeline 9 is provided with the control valve 11 capable of controlling the opening and closing of the first pipeline.
- the first pipeline 9 is connected with the washing machine drainage pipeline 8 through a three-way joint.
- the control valve 11 is provided with a traction motor, and the opening and closing of the control valve is controlled by the traction motor.
- the traction motor is arranged at the bottom of the outer barrel.
- the control valve is connected with a traction motor of the telescopic drain valve 10, namely, the telescopic drain valve and the control valve share the same traction motor to save the number of parts and save cost.
- the inner barrel is controlled to rotate until the inner barrel drain outlet is directly facing to the outer barrel drain outlet, and most of the water inside of the inner barrel 1 is drained out through the lower inner barrel drain outlet 3.
- a minority of water is drained through the upper drainage holes 2.
- the minority of water is drained through the outer barrel drain outlet 5 and the washing machine drainage pipeline 6.
- the air chamber 7 is provided with the air chamber drain outlet 8.
- the air chamber drain outlet 8 is provided with the first pipeline 9 connected with the washing machine drainage pipeline 6. Residual water inside the air chamber 7 is drained through the air chamber drain outlet 8, the first pipeline 9 and the washing machine drainage pipeline 6.
- the air chamber 7 is communicated with the inner barrel through the second pipeline, and the water of the inner barrel 1 enters the air chamber 7.
- the air chamber 7 is connected with the pressure sensor 19, and the water level of the inner barrel is detected by the pressure sensor 19 detecting the air pressure of the air chamber.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Detail Structures Of Washing Machines And Dryers (AREA)
- Main Body Construction Of Washing Machines And Laundry Dryers (AREA)
- Control Of Washing Machine And Dryer (AREA)
Abstract
Description
- The present disclosure relates to a field of the washing machine, especially, to a washing machine without water between barrels and a control method.
- In the existing pulsator washing machine, the inner barrel is provided with the water holes. The inner barrel and the outer barrel are communicated with each other. The inner barrel is a washing tub, and the outer barrel is a water-carrying tub. The part of water between the sidewalls of the inner barrel and the outer barrel does not participate in the washing stage, while the water that really participates in the washing stage is only the part inside the inner barrel, which results in a greater waster of water resources. In addition, the excessive water between the inner barrel and the outer barrel will also reduce the concentration of the detergent/detergent power in the washing liquor. At the same time, due to the frequent inflow and outflow of water between the inner and outer barrels, , the area between the sidewalls of the inner barrel and the outer barrel becomes a space for hiding dirt and dust due to continuous usage. The incrustation of the tap water, the free substance of the washing power, the cellulose of the clothes, the organic matter of the human body and the dust and bacteria brought by the clothes can be easily trapped between the sidewalls of the inner barrel and the outer barrel. These molds are bred due to a large amount of dirt accumulated in the washing machine used for a long time that cannot be removed effectively. If the dirt that the users cannot see is not removed, the bacteria would adhere to the clothes and be brought to the human body after the next washing to cause cross-infection problems.
- Patent No.
200420107890.8 - In view of this, the present disclosure is proposed.
- An object of the present disclosure is to overcome the shortcomings of the prior art, and to provide a washing machine without water between barrels and a control method.
- In order to achieve such object, the technical scheme is adopted by the present disclosure as follows:
a washing machine without water between barrels comprises an outer barrel, an inner barrel, an air chamber and a pressure sensor connected to the air chamber. A plurality of drainage holes are arranged on the upper part near the edge of the inner barrel. At least one inner barrel drain outlet is arranged at a bottom of the inner barrel. A telescopic drain valve capable of plugging the inner barrel drain outlet is arranged at a bottom of the outer barrel. An outer barrel drain outlet is arranged at the bottom of the outer barrel. A washing machine drainage pipeline is arranged on the outer barrel drain outlet, the outer barrel is provided with the air chamber communicated with the inner barrel. An air chamber drain outlet capable of discharging water in the air chamber is arranged on the air chamber. - The outer barrel and the inner barrel are concentrically arranged. A distance from a center of the inner barrel drain outlet to a center of the inner barrel is less than or equal to a distance from a center of the outer barrel drain outlet to a center of the outer barrel.
- Preferably, the distance from the center of the inner barrel drain outlet to the center of the inner barrel is equal to the distance from the center of the outer barrel drain outlet to the center of the outer barrel.
- Preferably, a diameter of the outer barrel drain outlet is larger than that of the inner barrel drain outlet.
- The air chamber drain outlet is communicated with the washing machine drainage pipeline through a first pipeline. A control valve capable of controlling the opening and closing of the first pipeline is arranged at the air chamber drain outlet or in the first pipeline.
- Preferably, the first pipeline is connected with the washing machine drainage pipeline through a three-way joint.
- Preferably, the air chamber drain outlet is located at the bottom of the air chamber.
- The control valve is provided with a traction motor, and the traction motor is arranged at the bottom of the outer barrel.
- Or the control valve is connected with a traction motor of the telescopic drain valve.
- The air chamber is communicated with the inner barrel through the telescopic drain valve. The telescopic drain valve is a hollow structure, and an upper part of the telescopic drain valve is provided with a water inlet, and a lower part of the telescopic drain valve is provided with a water outlet. The water outlet is connected with the air chamber through a elastic pipe.
- Preferably, the elastic pipe is a hose or a bellows.
- The telescopic drain valve at least comprises a telescopic valve plug, and the telescopic valve plug comprises a telescopic valve rod and a elastic sealing cover sleeved on the valve rod and expanding and retracting with the valve rod. An inner of the valve rod is a hollow structure, and an upper part of the valve rod is provided with a water inlet, and a lower part of the valve rod is provided with a water outlet. The water inlet is provided with a gland. The upper part of the sealing sleeve extends into the water inlet. The gland and the valve rod is connected and the sealing sleeve is pressed between the gland and the valve rod. A top part of the gland is a hollow-out structure.
- Preferably, the top part of the gland is a grid structure, and a gap between the grids forms a water holes.
- The top part of the gland protrudes upwards and has a hemispherical arc surface, a middle portion of the hemispherical arc surface is higher and a surrounding portion of the hemispherical arc surface is lower.
- When the telescopic drain valve plugs the inner barrel drain outlet, the top of the gland is higher than the bottom of the inner barrel. When the telescopic drain valve enables the inner barrel drain outlet to be open, the top of the gland is higher than the bottom of the outer barrel.
- The sealing sleeve is provided with a ring of elastic convex rib around the gland, and a diameter of the elastic convex rib is larger than that of the inner barrel drain outlet.
- A control method of the washing machine without water between barrels, comprising:
- 1) locking the inner barrel, controlling the telescopic drain valve to plug the inner barrel drain outlet, feeding the water into the inner barrel of the washing machine, and the water inside the inner barrel entering into the air chamber and compressing the air inside the air chamber, and detecting the air pressure of the air chamber to obtain the water level of the inner barrel;
- 2) controlling the telescopic drain valve to enables the inner barrel drain outlet to be open, and the water inside the inner barrel being drained into the outer barrel;
Preferably, after controlling the telescopic drain valve to enable the inner barrel drain outlet to be open, unlocking the inner barrel, controlling the inner barrel to rotate until the inner barrel drain outlet directly faces to the outer barrel drain outlet. The water inside the inner barrel being directly drained into the outer barrel drain outlet; - 3) controlling the air chamber drain outlet to open, and the water inside the air chamber being drained away.
- By adopting the technical solutions of the present disclosure, the following beneficial effects are as following.
- 1. The drainage structure of the washing machine of the present disclosure drains water thoroughly, and there is no residue, and the drainage speed is fast. The water flow is prevented from staying between the inner barrel and the outer barrel to prevent the dirt from staining on the inner wall of the outer barrel.
- 2. The washing machine of the present disclosure is accurate in water level detection and simple in structure. Furthermore, there is no residual water in the air chamber. This avoids the error in the reuse of the water level detection and prevents the residual water from breeding bacteria in the air chamber. The outer barrel is communicated with the inner barrel by telescopic drain valve to avoid the blockage caused by the thread scarps.
- The following is further described in details with embodiments of the present disclosure.
-
-
Fig.1 is a schematic diagram of a wahing machine without water between barrels of the present disclosure; -
Fig.2 is a structure diagram of the wahing machine without water between barrels of the present disclosure; -
Fig.3 is a sectional view of the wahing machine without water between barrels of the present disclosure; -
Fig.4 is an enlarged view of part A inFig.3 ; -
Fig.5 is a structure diagram of a telescopic drain valve of the present disclosure; -
Fig.6 is a sectional view of the telescopic drain valve of the present disclosure. - Wherein: 1. inner barrel, 2. drainage holes, 3. inner barrel drain outlet, 4. outer barrel, 5. outer barrel drain outlet, 6. washing machine drainage pipeline, 7. air chamber, 8. air chamber drain outlet, 9. first pipeline, 10. telescopic drain valve, 11. control valve, 12. water inlet, 13. water outlet, 14. elastic pipe, 15. valve rod, 16.sealing cover, 17. gland, 18. elastic convex rib, 19. pressure sensor, 20. pulsator.
- As shown in
Fig.1 andFig.2 , a washing machine without water between barrels of the present disclosure comprises aninner barrel 1, anouter barrel 4. A plurality ofdrainage holes 2 are arranged on the upper part near the upper edge of theinner barrel 1. At least one innerbarrel drain outlet 3 is arranged at the bottom of theinner barrel 1. Atelescopic drain valve 10 capable of plugging the inner barrel water outlet is arranged at the bottom of theouter barrel 4. An outerbarrel drain outlet 5 is arranged at the bottom of theouter barrel 4. A washingmachine drainage pipeline 6 is arranged on the outerbarrel drain outlet 5. - During washing process, the inner barrel is locked, and the inner
barrel drain outlet 3 is plugged by thetelescopic drain valve 10. There is water in theinner barrel 1, and there is no water between barrels. During drainage process, the inner barrel drain outlet is opened by thetelescopic drain valve 10. Most water in theinner barrel 1 is drained out from theinner barrel 1 through the innerbarrel drain outlet 3, and then the water is drained out through the outerbarrel drain outlet 5 and the washingmachine drainage pipeline 6. During dehydration process, theinner barrel 1 is unlocked and carries out dehydrating. The water thrown out during dehydration stage is moved upward under the centrifugal force, and is drained out from the inner barrel through the drainage holes 2, and is drained to the space between the inner barrel and the outer barrel, and then is drained out through the outerbarrel drain outlet 5 and the washingmachine drainage pipeline 6. - The
outer barrel 4 and theinner barrel 1 are concentrically arranged, and the distance from the center of the innerbarrel drain outlet 3 to the center of theinner barrel 1 is the same as the center of the outerbarrel drain outlet 5 to the center of the center of theouter barrel 4. When the inner barrel is draining water, the innerbarrel drain outlet 3 is facing to the outerbarrel drain outlet 5, and the water flows out from theinner barrel 1 directly through the outerbarrel drain outlet 5 into the washingmachine drainage pipeline 6 for discharge. The drainage is smooth, and the time for water staying between the inner barrel and outer barrel is short, and there is no required for water to being firstly drained into the space between the inner barrel and the outer barrel and then drained into the outerbarrel drain outlet 5. Preferably, the diameter of the outerbarrel drain outlet 5 is larger than that of the innerbarrel drain outlet 3 to prevent the water flow from staying between the inner barrel and the outer barrel, and prevent the dirt from staining on the inner wall of the outer barrel. - When the washing machine is performing washing process, there is no water between the inner barrel and the outer barrel. It can save the washing water, and about 20% of the washing water can be saved each time. During draining water, most of the water is drained away through the lower drain outlet. The thread scraps and the mud are discharged with the water, and will not accumulate in the inner barrel. At the same time, during dehydration and washing process, there is no relative movement between the inner barrel and the plugging structure (telescopic drain valve) por plugging the inner barrel drain outlet to avoid the abrasion.
- The
outer barrel 4 is provided with anair chamber 7, and theair chamber 7 can be arranged on at the interior or the exterior of theouter barrel 4. In the present invention, it is preferable that theair chamber 7 is disposed outside theouter barrel 4 so as not to affect the installation of theinner barrel 1 so as to increase the capacity of theinner barrel 1 as much as possible. Theair chamber 7 is communicated with the inner barrel through the second pipeline. When there is water inside theinner barrel 1, the water is able to enter theair chamber 7. Apressure sensor 19 is connected to theair chamber 7, and the water level of the inner barrel is detected by thepressure sensor 19 detecting the air pressure inside theair chamber 7. This detection method detects the water level, and the structure is simple, and the detection result is accurate. - As shown in
Fig.3 andFig.4 , in the present disclosure, theair chamber 7 is communicated with theinner barrel 7 through thetelescopic drain valve 10. Thetelescopic drain valve 10 is of a hollow structure, and the upper part of the telescopic drain valve is provided with awater inlet 12, and the lower part of the telescopic drain valve is provided with awater outlet 13. Thewater outlet 13 is communicated with theair chamber 7 through anelastic pipe 14. When the innerbarrel drain outlet 3 is plugged by thetelescopic drain valve 10, the water of theinner barrel 1 is unable to enter the space between theinner barrel 1 andouter barrel 4, however it can enter theair chamber 7 through the hollow structure inside thetelescopic drain valve 10 and compress the air inside the air chamber. Thepressure sensor 19 detects the air pressure inside theair chamber 7 to obtain the water level of the inner barrel to realize the detection and control of the water level. As the telescopic drain valve is reciprocated up and down telescopically and the lower water outlet is movable, theelastic pipe 14 is arranged between the water outlet and the air chamber to achieve the connection between the fixedair chamber 7 and the movable lower water outlet. Preferably, theelastic pipe 14 is a hose or a bellows. The second pipeline comprises a hollow portion of the telescopic drain valve and the elastic pipe. - As shown in
Fig.5 andFig.6 , thetelescopic drain valve 10 at least comprises a telescopic valve plug. The valve plug comprises atelescopic valve rod 15 and anelastic sealing cover 16 sleeved on thevalve rod 15 and can expand and retract with the expansion of thevalve rod 15. The inner of thevalve rod 15 is of a hollow structure, and the upper part of the valve rod is provided with thewater inlet 12, and the lower part the valve rod is provided with thewater outlet 13. Thewater inlet 12 is provided with a gland. The upper part of the sealingsleeve 16 extends into thewater inlet 12. Thegland 17 is connected with thevalve rod 15 and the sealingsleeve 16 is pressed between thegland 17 and thevalve rod 15. The lower water outlet is provided with the hose or the bellows connected to the air chamber. The second pipeline comprises the hollow portion of the telescopic valve rod and the hose or the bellows. The top part of thegland 17 is of a hollow-out structure. The water in the inner barrel can enter the interior of thevalve rod 15 through the hollow structure and then flow into theair chamber 17. - The top of the
gland 17 is provided with a plurality of water holes, or the top of the gland is of a grid structure, and the gap between the grids forms the water holes. The water holes can block the thread scraps and other debris from entering the air chamber. - The top of the
gland 17 protrudes is convex upwards, and has a hemispherical arc surface. A middle portion of the hemispherical arc surface is higher and a surrounding portion of the hemispherical arc surface is lower, which is high in the middle and low on all sides. The convex structure and the hemispherical arc surface can prevent the thread scraps and other debris from staying and accumulating on the top of the gland to block the water holes of the gland. The gland can connect thevalve rod 15 and the sealingsleeve 16, and can also play a role in preventing the accumulation of the lint. - When the
telescopic drain valve 10 plugs the innerbarrel drain outlet 3, the top of thegland 17 is higher than the bottom of the inner barrel. When thetelescopic drain valve 10 enables the innerbarrel drain outlet 3 to be open, the top ofgland 17 is higher than the bottom of the outer barrel to further prevent the thread scraps and other debris from staying and accumulating on the top of the gland to block the water holes of the gland. - The sealing
sleeve 16 is provided with a ring of elasticconvex rib 18 located around thegland 17. The diameter of the elasticconvex rib 18 is larger than that of the innerbarrel drain outlet 3. When thetelescopic drain valve 10 plugs the innerbarrel drain outlet 3, the elasticconvex rib 18 is located at the bottom of the inner barrel of at the outer periphery of the inner barrel drain outlet, and is pressed to realize sealing. Thegland 17 extends into the innerbarrel drain outlet 3, and the top of thegland 17 is higher than the bottom of the inner barrel. When thetelescopic drain valve 10 enables the innerbarrel drain outlet 3 to be open, the elasticconvex rib 18 can prevent the lint and other debris from being flushed to the top of thegland 17. At the same time, the top of the gland is higher than the bottom of the outer barrel to prevent the thread scraps and other debris from staying and accumulating on the top of the gland to block the water holes of the gland. - The
telescopic drain valve 10 is fixed at the bottom of the outside of theouter barrel 4, and extends upwards to the bottom of the inner barrel to plug the innerbarrel drain outlet 3. Theelastic pipe 14 is arranged at the bottom of the outside of theouter barrel 4, and is respectively connected with the lower water outlet of thetelescopic drain valve 10 and the air chamber. The water inside the washing machine is drained through the outerbarrel drain outlet 5, therefore when the washing machine is draining water, the water inside theair chamber 7 cannot be thoroughly drained away resulting in some residual water in theair chamber 7, which will cause bacteria to grow in the air chamber for a long time. The air chamber of the present disclosure is provided with an airchamber drain outlet 8 capable of discharging water in theair chamber 7. The airchamber drain outlet 8 is opened periodically or every time after the drainage of the washing machine is finished to prevent the water from remaining in the air chamber. - Preferably, the air
chamber drain outlet 8 is located at the very bottom of the air chamber, to ensure that all water inside the air chamber is drained from the air chamber. Acontrol valve 11 is arranged at the airchamber drain outlet 8. Thecontrol valve 11 is closed when the washing machine is in the water-inlet state and in the washing process. Thecontrol valve 11 is opened periodically or after the washing machine finishes the drainage to discharge the water inside the air chamber. - The air
chamber drain outlet 8 is communicated with the washing machine drainage pipeline to discharge the water inside the air chamber through the washingmachine drainage pipeline 6. The airchamber drain outlet 8 is communicated with the washingmachine drainage pipeline 6 through afirst pipeline 9. Thefirst pipeline 9 is provided with thecontrol valve 11 capable of controlling the opening and closing of the first pipeline. Thefirst pipeline 9 is connected with the washingmachine drainage pipeline 8 through a three-way joint. - The
control valve 11 is provided with a traction motor, and the opening and closing of the control valve is controlled by the traction motor. The traction motor is arranged at the bottom of the outer barrel. Or the control valve is connected with a traction motor of thetelescopic drain valve 10, namely, the telescopic drain valve and the control valve share the same traction motor to save the number of parts and save cost. - When the washing machine is subjected to carrying out washing process, the inner barrel is locked, and the telescopic drain valve is controlled to plug the inner barrel drain outlet. The water is fed into the inner barrel of the washing machine, and the water inside the inner barrel enters the air chamber and compresses the air inside the air chamber is compressed. The water level of the inner barrel is obtained by detecting the air pressure of the air chamber. There is no water between the
inner barrel 1 and theouter barrel 4. During the drainage stage, the telescopic drain valve is controlled to enable the inner barrel drain outlet to be open, and the water inside the inner barrel is drained into the outer barrel. Preferably, after the telescopic drain valve is controlled to enable the inner barrel drain outlet to be open, the inner barrel is unlocked. The inner barrel is controlled to rotate until the inner barrel drain outlet is directly facing to the outer barrel drain outlet, and most of the water inside of theinner barrel 1 is drained out through the lower innerbarrel drain outlet 3. During dehydration stage, a minority of water is drained through the upper drainage holes 2. After being drained into the space between theinner barrel 1 and theouter barrel 4, the minority of water is drained through the outerbarrel drain outlet 5 and the washingmachine drainage pipeline 6. Theair chamber 7 is provided with the airchamber drain outlet 8. The airchamber drain outlet 8 is provided with thefirst pipeline 9 connected with the washingmachine drainage pipeline 6. Residual water inside theair chamber 7 is drained through the airchamber drain outlet 8, thefirst pipeline 9 and the washingmachine drainage pipeline 6. - The
air chamber 7 is communicated with the inner barrel through the second pipeline, and the water of theinner barrel 1 enters theair chamber 7. Theair chamber 7 is connected with thepressure sensor 19, and the water level of the inner barrel is detected by thepressure sensor 19 detecting the air pressure of the air chamber. - While there has been shown several and alternate embodiments of the present disclosure, it is to be understood that various of variants and improvement can be made as would known to one skilled in the art without departing from the underlying scope of the present invention as is discussed and set forth above and below including claims.
Claims (10)
- A washing machine without water between barrels, comprising an outer barrel, an inner barrel, an air chamber and a pressure sensor connected to the air chamber, wherein:a plurality of drainage holes are arranged on the upper part near the edge of the inner barrel, at least one inner barrel drain outlet is arranged at a bottom of the inner barrel,a telescopic drain valve capable of plugging the inner barrel drain outlet is arranged at a bottom of the outer barrel, an outer barrel drain outlet is arranged at the bottom of the outer barrel,a washing machine drainage pipeline is arranged on the outer barrel drain outlet, the outer barrel is provided with the air chamber communicated with the inner barrel, an air chamber drain outlet capable of discharging water in the air chamber is arranged on the air chamber.
- The washing machine without water between barrels according to claim 1, wherein the outer barrel and the inner barrel are concentrically arranged, a distance from a center of the inner barrel drain outlet to a center of the inner barrel is less than or equal to a distance from a center of the outer barrel drain outlet to a center of the outer barrel,
preferably, the distance from the center of the inner barrel drain outlet to the center of the inner barrel is equal to the distance from the center of the outer barrel drain outlet to the center of the outer barrel,
preferably, a diameter of the outer barrel drain outlet is larger than that of the inner barrel drain outlet. - The washing machine without water between barrels according to claim 1, wherein the air chamber drain outlet is communicated with the washing machine drainage pipeline through a first pipeline, a control valve capable of controlling the opening and closing of the first pipeline is arranged at the air chamber drain outlet or in the first pipeline,
preferably, the first pipeline is connected with the washing machine drainage pipeline through a three-way joint,
preferably, the air chamber drain outlet is located at a bottom of the air chamber. - The washing machine without water between barrels according to claim 1, wherein the control valve is provided with a traction motor, and the traction motor is arranged at the bottom of the outer barrel,
or the control valve is connected with a traction motor of the telescopic drain valve. - The washing machine without water between barrels according to claim 1, wherein the air chamber is communicated with the inner barrel through the telescopic drain valve,
the telescopic drain valve is a hollow structure, an upper part of the telescopic drain valve is provided with a water inlet, a lower part of the telescopic drain valve is provided with a water outlet, the water outlet is connected with the air chamber through a elastic pipe,
preferably, the elastic pipe is a hose or a bellows. - The washing machine without water between barrels according to claim 1, wherein the telescopic drain valve at least comprises a telescopic valve plug, the telescopic valve plug comprises a telescopic valve rod and a sealing sleeve of elastic sleeved on the valve rod and expanding and retracting with the valve rod,
an inner of the valve rod is a hollow structure, an upper part of the valve rod is provided with a water inlet, a lower part of the valve rod is provided with a water outlet, the water inlet is provided with a gland,
an upper part of the sealing sleeve extends into the water inlet, the gland and the valve rod are connected and the sealing sleeve is pressed between the gland and the valve rod, a top part of the gland is a hollow-out structure,
preferably, the top part of the gland is a grid structure, a gap between the grids forms a water hole. - The washing machine without water between barrels according to claim 1, wherein the top part of the gland protrudes upwards and has a hemispherical arc surface, a middle portion of the hemispherical arc surface is higher and a surrounding portion of the hemispherical arc surface is lower.
- The washing machine without water between barrels according to claim 1, wherein when the telescopic drain valve plugs the inner barrel drain outlet, the top of the gland is higher than the bottom of the inner barrel,
when the telescopic drain valve enables the inner barrel drain outlet to be open, the top of the gland is higher than the bottom of the outer barrel. - The washing machine without water between barrels according to claim 1, wherein the sealing sleeve is provided with a ring of elastic convex rib around the gland, a diameter of the elastic convex rib is larger than that of the inner barrel drain outlet.
- A control method of the washing machine without water between barrels according to any of claims from 1 to 9, comprising:1) locking the inner barrel, controlling the telescopic drain valve to plug the inner barrel drain outlet, feeding water into the inner barrel of the washing machine, and the water inside the inner barrel entering into the air chamber and compressing the air inside the air chamber, detecting the air pressure of the air chamber to obtain the water level of the inner barrel;2) controlling the telescopic drain valve to enable the inner barrel drain outlet to be open, and the water inside the inner barrel being drained into the outer barrel;
preferably, after controlling the telescopic drain valve to enable the inner barrel drain outlet to be open, unlocking the inner barrel, controlling the inner barrel to rotate until the inner barrel drain outlet directly faces to the outer barrel drain outlet, the water inside the inner barrel being directly drained into the outer barrel drain outlet;3) controlling the air chamber drain outlet to open, the water inside the air chamber being drained away.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510775855.6A CN106702662B (en) | 2015-11-12 | 2015-11-12 | Water-free washing machine and control method between a kind of bucket |
PCT/CN2016/103559 WO2017080365A1 (en) | 2015-11-12 | 2016-10-27 | Washing machine without water between barrels, and control method |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3375928A1 true EP3375928A1 (en) | 2018-09-19 |
EP3375928A4 EP3375928A4 (en) | 2018-11-14 |
Family
ID=58694721
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP16863542.3A Withdrawn EP3375928A4 (en) | 2015-11-12 | 2016-10-27 | Washing machine without water between barrels, and control method |
Country Status (6)
Country | Link |
---|---|
US (1) | US20180327959A1 (en) |
EP (1) | EP3375928A4 (en) |
JP (1) | JP2018533418A (en) |
KR (1) | KR102048858B1 (en) |
CN (1) | CN106702662B (en) |
WO (1) | WO2017080365A1 (en) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107558090A (en) * | 2017-09-27 | 2018-01-09 | 海信(山东)冰箱有限公司 | A kind of rotary drum washing machine |
CN107904853B (en) * | 2017-11-13 | 2020-04-14 | 无锡小天鹅电器有限公司 | Washing machine and drainage mechanism thereof |
CN110144696A (en) * | 2018-02-12 | 2019-08-20 | 青岛海尔洗衣机有限公司 | A kind of washing machine |
CN108385336B (en) * | 2018-05-18 | 2022-12-27 | 青岛海尔洗衣机有限公司 | Drain valve and washing machine with same |
CN110607654A (en) * | 2018-06-15 | 2019-12-24 | 青岛海尔洗衣机有限公司 | Washing machine |
CN110685122B (en) * | 2018-07-04 | 2022-04-05 | 青岛海尔洗衣机有限公司 | Valve plug of drain valve, drain valve and installation method |
US10829885B2 (en) | 2018-08-06 | 2020-11-10 | Haier Us Appliance Solutions, Inc. | Drain pump assembly for a washing machine appliance and methods of operating the same |
CN110904633A (en) * | 2018-09-13 | 2020-03-24 | 青岛海尔洗衣机有限公司 | Washing machine and control method thereof |
CN110924047B (en) * | 2018-09-17 | 2023-02-21 | 青岛海尔洗衣机有限公司 | Washing machine control method and washing machine |
CN110904636B (en) * | 2018-09-17 | 2023-04-11 | 青岛海尔洗衣机有限公司 | Drainage device of washing machine, washing machine and control method of washing machine |
CN111254645B (en) * | 2018-11-15 | 2022-07-12 | 青岛海尔洗衣机有限公司 | Washing machine and control method thereof |
CN111560738B (en) * | 2019-02-12 | 2022-10-11 | 青岛海尔洗衣机有限公司 | Washing machine |
CN113512862B (en) * | 2021-03-18 | 2022-09-02 | 珠海格力电器股份有限公司 | Drainage device and washing machine |
CN114645401B (en) * | 2022-04-21 | 2023-02-17 | 珠海格力电器股份有限公司 | Washing machine without outer barrel |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03284295A (en) * | 1990-03-30 | 1991-12-13 | Toshiba Corp | Washing machine |
JP3162559B2 (en) * | 1993-11-18 | 2001-05-08 | 株式会社東芝 | Dehydration combined washing machine |
KR20000043378A (en) * | 1998-12-29 | 2000-07-15 | 구자홍 | Direct-drive washing machine without washing ball |
JP4629595B2 (en) * | 2006-02-28 | 2011-02-09 | 株式会社ハタノ製作所 | Bathtub adapter |
JP4789863B2 (en) * | 2007-05-29 | 2011-10-12 | シャープ株式会社 | Washing machine |
KR20120089098A (en) * | 2011-02-01 | 2012-08-09 | 삼성전자주식회사 | Tub and washing machine having the same |
CN105986405B (en) * | 2015-02-13 | 2023-10-24 | 宁国聚隆减速器有限公司 | Piston type water-saving washing machine |
CN204474981U (en) * | 2015-02-13 | 2015-07-15 | 合肥国荣科技洗涤设备有限公司 | A kind of piston type water-conservation washing machine |
-
2015
- 2015-11-12 CN CN201510775855.6A patent/CN106702662B/en active Active
-
2016
- 2016-10-27 KR KR1020187016193A patent/KR102048858B1/en active IP Right Grant
- 2016-10-27 EP EP16863542.3A patent/EP3375928A4/en not_active Withdrawn
- 2016-10-27 JP JP2018523763A patent/JP2018533418A/en active Pending
- 2016-10-27 US US15/775,567 patent/US20180327959A1/en not_active Abandoned
- 2016-10-27 WO PCT/CN2016/103559 patent/WO2017080365A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
WO2017080365A1 (en) | 2017-05-18 |
US20180327959A1 (en) | 2018-11-15 |
KR20180084859A (en) | 2018-07-25 |
JP2018533418A (en) | 2018-11-15 |
KR102048858B1 (en) | 2019-11-26 |
CN106702662A (en) | 2017-05-24 |
CN106702662B (en) | 2019-11-12 |
EP3375928A4 (en) | 2018-11-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3375928A1 (en) | Washing machine without water between barrels, and control method | |
CN106702686B (en) | Water level detection structure of inter-barrel waterless washing machine and washing machine | |
CN106702684B (en) | Drainage structure of inter-barrel waterless washing machine and washing machine | |
KR102071956B1 (en) | Control method of water saving washing machine and washing machine | |
KR102051446B1 (en) | Locking mechanism and washing machine in inner cylinder | |
WO2016124037A1 (en) | Water drainage control mechanism for washing machine inner drum, and washing machine | |
WO2018072625A1 (en) | Drum washing machine and control method | |
WO2016124036A1 (en) | Locking mechanism of washing machine inner tub and washing machine | |
WO2017036279A1 (en) | Water drainage control mechanism for an inner drum, and washing machine | |
CN106702660B (en) | Dewatering control method for washing machine | |
CN2316328Y (en) | Water-saving full-automatic washer | |
CN105624976A (en) | Washing machine inner barrel | |
CN208151666U (en) | A kind of washing machine | |
CN106544829A (en) | A kind of washing machine environmental protective, water saving method of work and its washing machine | |
KR102051443B1 (en) | Locking mechanism and washing machine in inner cylinder | |
CN105525490B (en) | Full-automatic washing machine | |
CN204298639U (en) | A kind of washing machine inner tub | |
CN108221280B (en) | Environment-friendly water-saving washing machine | |
WO2019170080A1 (en) | Water guiding structure of washing machine, wash tub having same and washing machine | |
CN110924047B (en) | Washing machine control method and washing machine | |
WO2019205927A1 (en) | Combination washer-dryer and drain structure thereof | |
WO2020078282A1 (en) | Washing device | |
CN206752646U (en) | One kind is run in water pipe floor drain | |
CN107675443A (en) | Washing machine drainage drainage system | |
CN219972749U (en) | Water inlet structure of double-drum washing machine and double-drum washing machine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20180608 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
A4 | Supplementary search report drawn up and despatched |
Effective date: 20181011 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: D06F 23/04 20060101ALI20181005BHEP Ipc: D06F 37/12 20060101ALI20181005BHEP Ipc: D06F 37/26 20060101ALI20181005BHEP Ipc: D06F 17/06 20060101ALI20181005BHEP Ipc: D06F 39/08 20060101AFI20181005BHEP |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20190510 |