EP3371820B1 - Electron emission electrode and process for production thereof - Google Patents

Electron emission electrode and process for production thereof Download PDF

Info

Publication number
EP3371820B1
EP3371820B1 EP16794547.6A EP16794547A EP3371820B1 EP 3371820 B1 EP3371820 B1 EP 3371820B1 EP 16794547 A EP16794547 A EP 16794547A EP 3371820 B1 EP3371820 B1 EP 3371820B1
Authority
EP
European Patent Office
Prior art keywords
emission
electron emission
main body
electron
tips
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16794547.6A
Other languages
German (de)
French (fr)
Other versions
EP3371820A1 (en
Inventor
Lutz Rissing
Alexander Kusch
Manuel Stompe
Stefan Zimmermann
Erik Bunert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leibniz Universitaet Hannover
Original Assignee
Leibniz Universitaet Hannover
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leibniz Universitaet Hannover filed Critical Leibniz Universitaet Hannover
Publication of EP3371820A1 publication Critical patent/EP3371820A1/en
Application granted granted Critical
Publication of EP3371820B1 publication Critical patent/EP3371820B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/022Manufacture of electrodes or electrode systems of cold cathodes
    • H01J9/025Manufacture of electrodes or electrode systems of cold cathodes of field emission cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/30Cold cathodes, e.g. field-emissive cathode
    • H01J1/304Field-emissive cathodes
    • H01J1/3042Field-emissive cathodes microengineered, e.g. Spindt-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J3/00Details of electron-optical or ion-optical arrangements or of ion traps common to two or more basic types of discharge tubes or lamps
    • H01J3/02Electron guns
    • H01J3/021Electron guns using a field emission, photo emission, or secondary emission electron source
    • H01J3/022Electron guns using a field emission, photo emission, or secondary emission electron source with microengineered cathode, e.g. Spindt-type

Definitions

  • the invention relates to a method for producing an electron emission electrode of an electron source, wherein the electron emission electrode has at least one emission peak which is set up for emitting electrons into the environment.
  • the invention also relates to such an electron emission electrode and to a device having one or more electron emission electrodes.
  • Such electron sources with at least one electron emission electrode can be used in different applications, for example in electron microscopes, field emission screens or other devices.
  • There are already various proposals for the production of electron sources eg in DE 11 2012 003 268 T5 .
  • EP 1 892 741 A1 or DE 605 15 245 T2 The known production methods are relatively complicated and, in particular in applications in field emission screens (FED technology), do not lead to the required durability of the electron emission electrode.
  • From the US 2003/0155859 A1 the production of electron emission electrodes by means of high-precision NC production emerges in order to produce reproducible fine emission peaks.
  • the invention is therefore based on the object of specifying a contrast improved method for producing an electron emission electrode and an improved electron emission electrode.
  • the invention thus makes use of the special properties of a brittle-breaking material in an advantageous manner.
  • a refractile material also referred to as a brittle fracture material, is inadequate in many applications because of this property.
  • the inventors have recognized that such a material, together with a surface treatment in which the brittle refractive properties of the material are used selectively, leads to a considerable improvement in the production of an electron emission electrode and in the resulting functional properties of the electron emission electrode.
  • field emission screens with a practical operational stability (durability) can be realized for the first time with the invention.
  • the FED technology can be widely used in practice for the first time with the invention, with the advantage that flat panel displays with significantly lower power consumption can be realized in comparison with current display technologies.
  • the invention allows the mass production of such electron emission electrodes in a particularly economical manner.
  • the manufacturing process can be scaled particularly efficiently to large quantities.
  • silicon wafers used in semiconductor technology for example with a diameter of 300 mm, can be used for the production of electron emission electrodes according to the invention.
  • electron emitter arrays having a size of, for example, 5 ⁇ 5 mm 2 , approximately 2800 such electron emitter arrays can be produced per wafer.
  • the invention Compared with thermal emitters, the invention has the further advantage that the electron source can be realized in a much more compact manner and, in particular, significantly flatter structures can thus be realized. Thus, the invention is particularly suitable for use in the manufacture of flat screens.
  • refractory material As refractory material, all materials with brittle fracture properties are suitable, i. such materials where edge chipping occurs during machining. Particularly suitable is e.g. Silicon, both in monocrystalline and in polycrystalline form. Silicon has the advantage that it has ideal brittle-breaking material properties and is also inexpensive in the appropriate form, e.g. in the form of silicon wafers, is available.
  • silicon material Another advantage of the silicon material is its high heat capacity and good heat conduction. This is also conducive to the durability of the emission peak, as this minimizes burnup at the emission peak.
  • Ceramic materials for example AITiC or LaB 6 , or amorphous materials such as glass materials, in particular conductive glass materials such as ITO, or silicon carbide.
  • the surface treatment can be done by mechanical processing, in particular by machining such as grinding, milling, turning and / or drilling. A combination of such machining methods can be used advantageously.
  • the thermal processing can be carried out in particular indirectly thermally, for example by laser machining.
  • a rough surface of the refractive material is produced at least in the region of the emission peak by brittle fracture.
  • the rough surface additionally favors the aforementioned advantageous properties of the emission peak produced according to the invention, namely the durability and the relatively high emission current.
  • the mechanical surface treatment comprises generating intersecting and non-intersecting grooves on the surface of the base body, e.g. by means of a cutting process.
  • a matrix-like pattern can be generated on the surface of the base body, by which a plurality of emission peaks are generated on the base body in one step.
  • the non-intersecting grooves may be formed in particular as parallel grooves.
  • the intersecting grooves may in particular be formed as grooves arranged at right angles to each other.
  • non-intersecting grooves are produced by overlapping guidance of a cutting tool along cutting lines at which the grooves are to be produced.
  • an "overlapping process" can be realized in which the distances between the individual grooves are smaller than the width of the cutting tool used, for example the thickness of a cut-off wheel. Accordingly, the working width of the cutting tool is greater than the distance of adjacent non-crossing grooves.
  • the desired surface roughness can be generated as a result of the brittle fracture. No subsequent roughening of the surface is required.
  • such a overlapping guide of the tool initially produces a sharp edge.
  • the tool does not necessarily have to be guided over the base body in accordance with the above-explained, overlapping guide for producing the grooves.
  • the process can also be carried out in the form of a "chipping process".
  • a superposition of the cutting lines is not sought.
  • the desired properties of the emission peak are nevertheless generated as a result of the brittle-refracting material properties.
  • the "chipping" causes outbreaks in the region of the emission peak to be produced due to the fracture behavior of the brittle-breaking material used. These eruptions lead to sharp-edged e.g. flocculent or scale-like forms of the emission peak.
  • the resulting shape of the emission peak can be influenced in the desired manner and brittle fracturing of the material by individual or combined factors is influenced in the desired manner.
  • the "overlapping process” and the “chipping process” can be changed and / or combined during the manufacturing process.
  • the brittle-refracting material can be controlled by deliberately set voltage conditions and environmental conditions, e.g. Cooling, be brought to increased brittle fracture.
  • electrical, thermal, geometric (shape, cracks etc.) and chemical influences as well as environmental changes can be used.
  • a multiplicity of emission peaks are produced on the base body by the mechanical and / or thermal surface treatment of the base body.
  • the plurality of emission peaks in one operation of the mechanical and / or thermal surface processing of the body getting produced.
  • the invention can be optimized in particular for the mass production of such emission peaks.
  • a tool change is not necessarily required in the operation or the number of tool changes can be minimized at least.
  • the base areas forming the base body are left unprocessed or other than the emission peaks surrounding areas are processed and, the emission peaks are processed to a lower height than the height of the base areas.
  • the base areas can advantageously be used as a mounting space and spacers for an acceleration grid, in order to realize in this way with one or more emission peaks a complete electron source.
  • one, several or all emission peaks of the electron emission electrode are connected via an electrical contact with an electrical contacting terminal of the electron emission electrode.
  • the contacting terminal is for external contacting, i. for making an electrical connection with an electrical energy source or a control device of the electron emission electrode.
  • the electrical contacting may be e.g. from the emission peak through the remaining material of the body to the Kunststoffssensan gleich done. It is possible to realize a single contacting of each individual emission peak, so that these can be controlled separately.
  • Several emission peaks can also be connected to one another via common electrical contacts, so that these can only be controlled together in groups.
  • one or more electron emission electrodes are segmented on the processed base body and / or one or more electron emission electrodes are made of the processed base body isolated with one or more emission peaks.
  • segmentation is understood as the further shaping of one or more emission peaks on the same base body.
  • Separation means the separation of one or more emission electrodes, for example in the form of a group of several emission electrodes, from the base body.
  • the mentioned steps of segmentation and / or singulation are carried out in particular after step b) of the method according to the invention. Before the segmentation and / or singling, further production steps can be carried out, for example for the encapsulation of the electron emission electrode and the mechanical and electrical contacting.
  • the object mentioned above is further achieved by an electron emission electrode of an electron source according to claim 10.
  • the electron emission electrode has at least one emission peak arranged to emit electrons into the environment, wherein at least the emission peak consists of a brittle refractive material having a rough surface.
  • the electron emission electrode has a plurality of emission peaks, which are arranged in a matrix-like manner in a regular or irregular pattern.
  • the emission tips may be electrically contacted in groups together or individually contacted electrically, so that they can be controlled separately.
  • the electron emission electrode has a plurality of base regions which surround the emission tip or the emission tips and which are suitable as spacers for an acceleration grid and have a greater overall height than the height of the emission peak or the emission peaks. In this way, cheap mounting options for the accelerating grid of the electron source.
  • the positive properties of the emission peak according to the invention are further improved, in particular the durability and the high current intensity.
  • the invention further relates to a device having one or more electron emission electrodes and / or electron sources of the type described above.
  • a flat screen in particular in the form of a field emission screen, or an electron microscope, an X-ray machine, an emission mass spectrometer, e.g. an ion mobility spectrometer, a radar, a magnetron or a microwave oven.
  • the FIG. 1 shows a main body of a brittle-refractory material, such as a silicon wafer.
  • the base body 1 is processed according to the invention, which is explained in more detail below with reference to a cutout region of the base body 1, which forms an electron emission electrode 2.
  • FIG. 2 shows the cutout area in an enlarged view, wherein already a surface treatment of the base body has taken place, through which the cutout area is formed into an electron emission electrode 2 with a plurality of emission peaks.
  • the edge regions there are several line-like elevations 4, which surround the matrix-like arrangement of tip-like elevations 3.
  • cuboidal elevations 5 are present, which can be used as base regions of the electron emission electrode.
  • the aforementioned elevations 3, 4, 5 are located on a remaining floor area 8 of the base body 1. Die in FIG.
  • elevations 3, 4, 5 can be generated in a simple manner by guiding a tool in two intersecting directions A and B over the surface of the base body 1.
  • a plurality of non-intersecting grooves 6 are generated.
  • a plurality of non-intersecting ones become Grooves 7 generated.
  • the grooves 6 intersect the grooves 7, for example at a right angle. This then inevitably results in the illustrated structures of the elevations 3, 4, 5.
  • a V-shaped cutting blade which defines the acute angle of the emission peaks, can be used.
  • the tips are first generated.
  • the height h of the tip-shaped elevations is determined.
  • another tool e.g. U-shaped grooves generated determines the length of the tip-shaped elevations above the bottom portion 8.
  • the tool is also guided in the directions A and B crosswise over the base body 1, which is also referred to as segmentation. This results in elevations 3, 4 with a certain height h above the floor area 8. Since certain surface areas of the base areas 5 are not processed, these can ultimately have a greater height h than the height of the elevations 3, 4th
  • FIG. 3 shows one of the surveys 3 by way of example in an enlarged scale. It can be seen that in each case one emission tip 9 of the electron emission electrode is formed on a cuboid base section 10.
  • FIG. 4 shows the arrangement according to FIG. 2 in a side view, wherein in addition to further processing steps electrical contacts and an acceleration grid are shown.
  • a flat acceleration grid 14 can be arranged and fixed on the base areas 5, without causing any contact with the emission peaks. 9 comes.
  • the emission peaks 9 can be connected individually or in groups via electrical contacts guided through the material of the main body as well as lines 11 to a contacting terminal 12.
  • About themaschineticiansan gleich 12 can be made via electrical leads 13, the electrical contact and signal feed into the emission peaks 9.
  • the production of the emission tip 9 and the base sections 10 can be done by an "overlapping process", which in the FIGS. 5 and 6 is shown.
  • a tool is passed through the material 20 along a cutting line 21, then in a parallel manner along a cutting line 22. This results in an overlapping area 25 in which the emission peak 9 is generated after the same process in the two different cutting directions A, B was carried out.
  • a segmentation as in FIG. 6 represented by guiding a further tool along the cutting line 23, 24.
  • the base portion 10 is generated.
  • the base portion 10 is generated.
  • at a greater depth of cut also a separation of the emission peak 9 done with its base portion 10.

Description

Die Erfindung betrifft ein Verfahren zur Herstellung einer Elektronenemissionselektrode einer Elektronenquelle, wobei die Elektronenemissionselektrode wenigstens eine Emissionsspitze aufweist, die zur Abgabe von Elektronen in die Umgebung eingerichtet ist. Die Erfindung betrifft außerdem eine derartige Elektronenemissionselektrode sowie ein Gerät mit einer oder mehreren Elektronenemissionselektroden.The invention relates to a method for producing an electron emission electrode of an electron source, wherein the electron emission electrode has at least one emission peak which is set up for emitting electrons into the environment. The invention also relates to such an electron emission electrode and to a device having one or more electron emission electrodes.

Solche Elektronenquellen mit wenigstens einer Elektronenemissionselektrode können in unterschiedlichen Anwendungen zum Einsatz kommen, z.B. in Elektronenmikroskopen, Feldemissionsbildschirmen oder anderen Geräten. Es gibt bereits diverse Vorschläge für die Herstellung von Elektronenquellen, z.B. in DE 11 2012 003 268 T5 , EP 1 892 741 A1 oder DE 605 15 245 T2 . Die bekannten Herstellverfahren sind relativ aufwendig und führen insbesondere bei Anwendungen in Feldemissionsbildschirmen (FED-Technologie) nicht zur erforderlichen Dauerhaltbarkeit der Elektronenemissionselektrode. Aus der US 2003/0155859 A1 geht die Herstellung von Elektronenemissionselektroden mittels hochpräziser NC-Fertigung hervor, um möglichst reproduzierbare feine Emissionsspitzen zu erzeugen.Such electron sources with at least one electron emission electrode can be used in different applications, for example in electron microscopes, field emission screens or other devices. There are already various proposals for the production of electron sources, eg in DE 11 2012 003 268 T5 . EP 1 892 741 A1 or DE 605 15 245 T2 , The known production methods are relatively complicated and, in particular in applications in field emission screens (FED technology), do not lead to the required durability of the electron emission electrode. From the US 2003/0155859 A1 the production of electron emission electrodes by means of high-precision NC production emerges in order to produce reproducible fine emission peaks.

Der Erfindung liegt daher die Aufgabe zugrunde, ein demgegenüber verbessertes Verfahren zur Herstellung einer Elektronenemissionselektrode sowie eine verbesserte Elektronenemissionselektrode anzugeben.The invention is therefore based on the object of specifying a contrast improved method for producing an electron emission electrode and an improved electron emission electrode.

Diese Aufgabe wird durch ein Verfahren gemäß Anspruch 1 gelöst. Das Verfahren beinhaltet die Herstellung einer Elektronenemissionselektrode einer Elektronenquelle, wobei die Elektronenemissionselektrode wenigstens eine Emissionsspitze aufweist, die zur Abgabe von Elektronen in die Umgebung eingerichtet ist, mit den Schritten:

  1. a) Bereitstellen eines Grundkörpers aus einem sprödbrechenden Material,
  2. b) mechanische und/oder thermische Oberflächenbearbeitung des Grundkörpers zum Formen der Emissionsspitze, wobei Material vom Grundkörper zumindest um die Emissionsspitze herum sprödbrechend abgetragen wird.
This object is achieved by a method according to claim 1. The method includes producing an electron emission electrode of an electron source, the electron emission electrode having at least one emission peak configured to emit electrons into the environment, comprising the steps of:
  1. a) providing a basic body made of a refractile material,
  2. b) mechanical and / or thermal surface processing of the body for shaping the emission peak, wherein material from the body At least around the emission peak around brittle-breaking is removed.

Die Erfindung macht sich somit die besonderen Eigenschaften eines sprödbrechenden Materials in vorteilhafter Weise zu nutze. Ein sprödbrechendes Material, auch bezeichnet als zum Sprödbruch neigendes Material, ist wegen dieser Eigenschaft in vielen Anwendungen eher ungeeignet. Die Erfinder haben erkannt, dass ein solches Material zusammen mit einer Oberflächenbearbeitung, bei der die sprödbrechenden Eigenschaften des Materials gezielt genutzt werden, zu einer erheblichen Verbesserung bei der Herstellung einer Elektronenemissionselektrode sowie bei den sich dann ergebenden Funktionseigenschaften der Elektronenemissionselektrode führt. So können mit der Erfindung erheblich höhere Standzeiten im Betrieb der Elektronenemissionselektrode realisiert werden, sodass mit der Erfindung erstmalig Feldemissionsbildschirme mit einer praxisgerechten Betriebsfestigkeit (Dauerhaltbarkeit) realisiert werden können. Demzufolge kann durch die Erfindung erstmalig die FED-Technologie umfangreich in der Praxis genutzt werden, mit dem Vorteil, dass Flachbildschirme mit erheblich geringerem Energieverbrauch im Vergleich mit derzeitigen Bildschirmtechnologien realisiert werden können.The invention thus makes use of the special properties of a brittle-breaking material in an advantageous manner. A refractile material, also referred to as a brittle fracture material, is inadequate in many applications because of this property. The inventors have recognized that such a material, together with a surface treatment in which the brittle refractive properties of the material are used selectively, leads to a considerable improvement in the production of an electron emission electrode and in the resulting functional properties of the electron emission electrode. Thus, with the invention considerably longer service life can be realized in the operation of the electron emission electrode, so that field emission screens with a practical operational stability (durability) can be realized for the first time with the invention. As a result, the FED technology can be widely used in practice for the first time with the invention, with the advantage that flat panel displays with significantly lower power consumption can be realized in comparison with current display technologies.

Zudem erlaubt die Erfindung die Massenproduktion von solchen Elektronenemissionselektroden in besonders wirtschaftlicher Weise. Der Fertigungsprozess kann besonders effizient auf große Stückzahlen skaliert werden. So können z.B. in der Halbleitertechnik verwendete Siliziumwafer, z.B. mit einem Durchmesser von 300 mm, für die Produktion von Elektronenemissionselektroden gemäß der Erfindung genutzt werden. Bei Herstellung von Elektronenemitter-Arrays mit einer Größe von z.B. 5x5 mm2 können ca. 2800 solcher Elektronenemitter-Arrays pro Wafer erzeugt werden.In addition, the invention allows the mass production of such electron emission electrodes in a particularly economical manner. The manufacturing process can be scaled particularly efficiently to large quantities. For example, silicon wafers used in semiconductor technology, for example with a diameter of 300 mm, can be used for the production of electron emission electrodes according to the invention. When producing electron emitter arrays having a size of, for example, 5 × 5 mm 2 , approximately 2800 such electron emitter arrays can be produced per wafer.

Im Vergleich zu bisherigen Ansätzen für die Realisierung von Elektronenemissionselektroden in Feldemissionsbildschirmen kann zudem pro Emissionsspitze ein wesentlich höherer Emissionsstrom realisiert werden, mit dem Effekt, dass mit einer einzigen Emissionsspitze bereits ein Pixel eines Feldemissionsbildschirms betrieben werden kann. Bei bisherigen FED-Kathodenspitzen mussten allein für ein einziges Pixel 2000 bis 3000 Spitzen genutzt werden, um die nötigen Stromstärken zu erzielen. Daher kann auch in dieser Hinsicht die Fertigung und die Wirtschaftlichkeit solcher Elektronenquellen, insbesondere für die Anwendung in FEDs, optimiert werden.In addition, compared to previous approaches for the realization of electron emission electrodes in field emission screens, a significantly higher emission current per emission peak can be realized, with the effect that one pixel of a field emission screen can already be operated with a single emission peak. In previous FED cathode tips, 2000 to 3000 tips had to be used for a single pixel alone, to achieve the necessary amperages. Therefore, in this regard, the production and the economics of such electron sources, especially for use in FEDs, can be optimized.

Gegenüber Thermoemittern hat die Erfindung den weiteren Vorteil, dass die Elektronenquelle wesentlich kompakter realisiert werden kann und insbesondere wesentlich flachere Strukturen damit realisiert werden können. Damit eignet sich die Erfindung besonders für die Anwendung in der Herstellung von Flachbildschirmen.Compared with thermal emitters, the invention has the further advantage that the electron source can be realized in a much more compact manner and, in particular, significantly flatter structures can thus be realized. Thus, the invention is particularly suitable for use in the manufacture of flat screens.

Als sprödbrechendes Material kommen alle Materialien mit zum Sprödbruch neigenden Eigenschaften in Frage, d.h. solche Materialien, bei denen Kantenausbrüche bei der Bearbeitung auftreten. Besonders geeignet ist z.B. Silizium, sowohl in einkristalliner als auch in polykristalliner Form. Silizium hat den Vorteil, dass es ideale sprödbrechende Materialeigenschaften hat und zudem kostengünstig in der geeigneten Form, z.B. in Form von Silizium-Wafern, verfügbar ist.As refractory material, all materials with brittle fracture properties are suitable, i. such materials where edge chipping occurs during machining. Particularly suitable is e.g. Silicon, both in monocrystalline and in polycrystalline form. Silicon has the advantage that it has ideal brittle-breaking material properties and is also inexpensive in the appropriate form, e.g. in the form of silicon wafers, is available.

Ein weiterer Vorteil des Siliziummaterials ist seine hohe Wärmekapazität und die gute Wärmeleitung. Dies ist ebenfalls förderlich für die Dauerhaltbarkeit der Emissionsspitze, da hierdurch der Abbrand an der Emissionsspitze minimiert wird.Another advantage of the silicon material is its high heat capacity and good heat conduction. This is also conducive to the durability of the emission peak, as this minimizes burnup at the emission peak.

Weitere geeignete Materialien sind keramische Materialien, z.B. AITiC oder LaB6, oder amorphe Materialien wie Glasmaterialien, insbesondere leitende Glasmaterialien wie ITO, oder Siliziumcarbid.Further suitable materials are ceramic materials, for example AITiC or LaB 6 , or amorphous materials such as glass materials, in particular conductive glass materials such as ITO, or silicon carbide.

Die Oberflächenbearbeitung kann durch mechanische Bearbeitung erfolgen, insbesondere durch spanende Bearbeitung wie z.B. Schleifen, Fräsen, Drehen und/oder Bohren. Auch eine Kombination solcher spanenden Verfahren kann vorteilhaft angewendet werden. Die thermische Bearbeitung kann insbesondere indirekt thermisch erfolgen, z.B. durch Laser-Bearbeitung.The surface treatment can be done by mechanical processing, in particular by machining such as grinding, milling, turning and / or drilling. A combination of such machining methods can be used advantageously. The thermal processing can be carried out in particular indirectly thermally, for example by laser machining.

Gemäß einer vorteilhaften Weiterbildung der Erfindung wird zumindest im Bereich der Emissionsspitze durch Sprödbruch eine raue Oberfläche des sprödbrechenden Materials erzeugt. Die raue Oberfläche begünstigt dabei zusätzlich die zuvor erwähnten, vorteilhaften Eigenschaften der erfindungsgemäß hergestellten Emissionsspitze, nämlich die Dauerhaltbarkeit sowie den relativ hohen Emissionsstrom.According to an advantageous development of the invention, a rough surface of the refractive material is produced at least in the region of the emission peak by brittle fracture. The rough surface additionally favors the aforementioned advantageous properties of the emission peak produced according to the invention, namely the durability and the relatively high emission current.

Gemäß einer vorteilhaften Weiterbildung der Erfindung umfasst die mechanische Oberflächenbearbeitung ein Erzeugen von sich kreuzenden und sich nicht kreuzenden Nuten auf der Oberfläche des Grundkörpers, z.B. mittels eines spanenden Verfahrens. Auf diese Weise kann ein matrixartiges Muster auf der Oberfläche des Grundkörpers erzeugt werden, durch das in einem Arbeitsschritt eine Vielzahl von Emissionsspitzen auf dem Grundkörper erzeugt werden. Die sich nicht kreuzenden Nuten können insbesondere als parallel verlaufende Nuten ausgebildet sein. Die sich kreuzenden Nuten können insbesondere als rechtwinklig zueinander angeordnete Nuten ausgebildet sein.According to an advantageous embodiment of the invention, the mechanical surface treatment comprises generating intersecting and non-intersecting grooves on the surface of the base body, e.g. by means of a cutting process. In this way, a matrix-like pattern can be generated on the surface of the base body, by which a plurality of emission peaks are generated on the base body in one step. The non-intersecting grooves may be formed in particular as parallel grooves. The intersecting grooves may in particular be formed as grooves arranged at right angles to each other.

Gemäß einer vorteilhaften Weiterbildung der Erfindung werden sich nicht kreuzende Nuten durch überlappende Führung eines spanenden Werkzeugs entlang von Schnittlinien, an denen die Nuten zu erzeugen sind, hergestellt. Hierdurch kann ein "overlapping process" realisiert werden, bei dem die Abstände zwischen den einzelnen Nuten geringer sind als die Breite des verwendeten spanenden Werkzeugs, z.B. die Dicke einer Trennschleifscheibe. Dementsprechend ist die Arbeitsbreite des spanenden Werkzeugs größer als der Abstand benachbarter sich nicht kreuzender Nuten. Durch die Überlagerung der Schnittlinien kann die gewünschte Oberflächenrauheit in Folge des Sprödbruchs erzeugt werden. Es ist kein nachträgliches Anrauen der Oberfläche erforderlich. Zudem wird durch eine solche überlappende Führung des Werkzeugs zunächst eine scharfe Kante erzeugt. Durch nachfolgendes Erzeugen der dazu kreuzweise verlaufenden Nuten, die für sich genommen wiederum durch überlappende Führung eines spanenden Werkzeugs hergestellt werden können, können in großer Stückzahl die gewünschten Emissionsspitzen in der ausreichend spitzen Form erzeugt werden. Ein zusätzlicher formgebender Arbeitsschritt ist dabei nicht erforderlich.According to an advantageous embodiment of the invention, non-intersecting grooves are produced by overlapping guidance of a cutting tool along cutting lines at which the grooves are to be produced. In this way, an "overlapping process" can be realized in which the distances between the individual grooves are smaller than the width of the cutting tool used, for example the thickness of a cut-off wheel. Accordingly, the working width of the cutting tool is greater than the distance of adjacent non-crossing grooves. By superimposing the cutting lines, the desired surface roughness can be generated as a result of the brittle fracture. No subsequent roughening of the surface is required. In addition, such a overlapping guide of the tool initially produces a sharp edge. By subsequently producing the grooves extending in a crosswise manner, which in turn can be produced by overlapping guidance of a cutting tool, the desired emission peaks can be produced in a sufficiently sharp shape in large numbers. An additional shaping step is not required.

Das Werkzeug muss nicht notwendigerweise gemäß der zuvor erläuterten, überlappenden Führung zur Erzeugung der Nuten über den Grundkörper geführt werden. Das Verfahren kann auch in Form eines "chipping process" durchgeführt werden. Hierbei wird eine Überlagerung der Schnittlinien nicht angestrebt. Die gewünschten Eigenschaften der Emissionsspitze werden dabei dennoch in Folge der sprödbrechenden Materialeigenschaften erzeugt. Durch das "chipping" entstehen Ausbrüche im Bereich der herzustellenden Emissionsspitze aufgrund des Bruchverhaltens des verwendeten sprödbrechenden Werkstoffs. Diese Ausbrüche führen zu scharfkantigen z.B. schollen- oder schuppenartigen Formen der Emissionsspitze.The tool does not necessarily have to be guided over the base body in accordance with the above-explained, overlapping guide for producing the grooves. The process can also be carried out in the form of a "chipping process". Here, a superposition of the cutting lines is not sought. The desired properties of the emission peak are nevertheless generated as a result of the brittle-refracting material properties. The "chipping" causes outbreaks in the region of the emission peak to be produced due to the fracture behavior of the brittle-breaking material used. These eruptions lead to sharp-edged e.g. flocculent or scale-like forms of the emission peak.

Hierbei kann durch geeignete Wahl des Werkzeugs, z.B. Werkzeugparameter wie Abrasivmedium, Beschichtungen, Form, Steifigkeit, Oberflächenstrukturierung, Abricht- und Konditionierverhalten, Schneidenradius, Werkzeuggeometrie, Verschleißzustand, und des spanenden Trennprozesses, z.B. Schnittlinien, Schnitttiefe, Vorschub, Schnittgeschwindigkeit, Werkzeugwinkel, Kühlmedium die entstehende Form der Emissionsspitze in der gewünschten Weise beeinflusst werden und ein sprödes Brechen des Materials durch einzelne oder kombinierte Faktoren in der gewünschten Weise beeinflusst wird. Hierbei können während des Herstellverfahrens der "overlapping process" und der "chipping process" gewechselt und/oder kombiniert werden.In this case, by suitable choice of the tool, e.g. Tool parameters such as abrasive media, coatings, shape, stiffness, surface texturing, dressing and conditioning behavior, cutting radius, tool geometry, wear condition, and the cutting separation process, e.g. Cutting lines, depth of cut, feed, cutting speed, tool angle, cooling medium, the resulting shape of the emission peak can be influenced in the desired manner and brittle fracturing of the material by individual or combined factors is influenced in the desired manner. In this case, the "overlapping process" and the "chipping process" can be changed and / or combined during the manufacturing process.

Ergänzend kann das sprödbrechende Material durch gezielt eingestellte Spannungszustände und Umgebungsbedingungen, wie z.B. Abkühlung, zum erhöhten Sprödbruch gebracht werden. Dazu können mechanische, thermische, geometrische (Form, Risse etc.) und chemische Einflüsse sowie Umgebungsveränderungen genutzt werden.In addition, the brittle-refracting material can be controlled by deliberately set voltage conditions and environmental conditions, e.g. Cooling, be brought to increased brittle fracture. For this purpose, mechanical, thermal, geometric (shape, cracks etc.) and chemical influences as well as environmental changes can be used.

Gemäß einer vorteilhaften Weiterbildung der Erfindung wird durch die mechanische und/oder thermische Oberflächenbearbeitung des Grundkörpers eine Vielzahl von Emissionsspitzen an dem Grundkörper hergestellt. Vorteilhafterweise kann die Vielzahl von Emissionsspitzen in einem Arbeitsgang der mechanischen und/oder thermischen Oberflächenbearbeitung des Grundkörpers hergestellt werden. Hierdurch kann die Erfindung insbesondere für die Massenproduktion solcher Emissionsspitzen optimiert werden. Ein Werkzeugwechsel ist in dem Arbeitsgang damit nicht unbedingt erforderlich oder die Anzahl der Werkzeugwechsel kann zumindest minimiert werden.According to an advantageous development of the invention, a multiplicity of emission peaks are produced on the base body by the mechanical and / or thermal surface treatment of the base body. Advantageously, the plurality of emission peaks in one operation of the mechanical and / or thermal surface processing of the body getting produced. As a result, the invention can be optimized in particular for the mass production of such emission peaks. A tool change is not necessarily required in the operation or the number of tool changes can be minimized at least.

Gemäß einer vorteilhaften Weiterbildung der Erfindung ist vorgesehen, dass bei der mechanischen und/oder thermischen Oberflächenbearbeitung des Grundkörpers Sockelbereiche bildende Oberflächenbereiche des Grundkörpers unbearbeitet belassen werden oder andere als die die Emissionsspitzen umgebenden Bereiche bearbeitet werden und, wobei die Emissionsspitzen auf eine geringere Bauhöhe bearbeitet werden als die Bauhöhe der Sockelbereiche. Die Sockelbereiche können vorteilhaft als Montageplatz und Abstandshalter für ein Beschleunigungsgitter genutzt werden, um auf diese Weise mit einer oder mehreren Emissionsspitzen eine vollständige Elektronenquelle zu realisieren.According to an advantageous development of the invention, it is provided that in the mechanical and / or thermal surface treatment of the base body base areas forming the base body are left unprocessed or other than the emission peaks surrounding areas are processed and, the emission peaks are processed to a lower height than the height of the base areas. The base areas can advantageously be used as a mounting space and spacers for an acceleration grid, in order to realize in this way with one or more emission peaks a complete electron source.

Gemäß einer vorteilhaften Weiterbildung der Erfindung werden eine, mehrere oder alle Emissionsspitzen der Elektronenemissionselektrode über eine elektrische Kontaktierung mit einem elektrischen Kontaktierungsanschluss der Elektronenemissionselektrode verbunden werden. Der Kontaktierungsanschluss dient zur Außenkontaktierung, d.h. zur Herstellung einer elektrischen Verbindung mit einer elektrischen Energiequelle oder einer Steuereinrichtung der Elektronenemissionselektrode. Die elektrische Kontaktierung kann dabei z.B. von der Emissionsspitze durch das verbliebene Material des Grundkörpers zu dem Kontaktierungsanschluss erfolgen. Es kann eine Einzel-Kontaktierung jeder einzelnen Emissionsspitze realisiert werden, sodass diese separat ansteuerbar sind. Mehrere Emissionsspitzen können auch über gemeinsame elektrische Kontaktierungen miteinander verbunden sein, sodass diese in Gruppen nur gemeinsam angesteuert werden können.According to an advantageous development of the invention, one, several or all emission peaks of the electron emission electrode are connected via an electrical contact with an electrical contacting terminal of the electron emission electrode. The contacting terminal is for external contacting, i. for making an electrical connection with an electrical energy source or a control device of the electron emission electrode. The electrical contacting may be e.g. from the emission peak through the remaining material of the body to the Kontaktierungsanschluss done. It is possible to realize a single contacting of each individual emission peak, so that these can be controlled separately. Several emission peaks can also be connected to one another via common electrical contacts, so that these can only be controlled together in groups.

Gemäß einer vorteilhaften Weiterbildung der Erfindung werden an dem bearbeiteten Grundkörper eine oder mehrere Elektronenemissionselektroden mit jeweils einer oder mehreren Emissionsspitzen segmentiert und/oder aus dem bearbeiteten Grundkörper eine oder mehrere Elektronenemissionselektroden mit jeweils einer oder mehreren Emissionsspitzen vereinzelt. Auf diese Weise kann in produktionstechnisch effizienter Weise die gewünschte Struktur der Elektronenemissionselektrode und damit der Elektronenquelle geschaffen werden. Als Segmentieren wird in diesem Zusammenhang die weitere Formgebung einer oder mehrerer Emissionsspitzen auf demselben Grundkörper verstanden. Unter Vereinzeln wird das Abtrennen einer oder mehrerer Emissionselektroden, z.B. in Form einer Gruppe mehrerer Emissionselektroden, von dem Grundkörper verstanden. Die genannten Schritte des Segmentierens und/oder Vereinzelns werden insbesondere nach dem Schritt b) des erfindungsgemäßen Verfahrens durchgeführt. Vor dem Segmentieren und/oder Vereinzeln können weitere Fertigungsschritte durchgeführt werden, z.B. zur Verkapselung der Elektronenemissionselektrode und der mechanischen und elektrischen Kontaktierung.According to an advantageous development of the invention, one or more electron emission electrodes, each having one or more emission peaks, are segmented on the processed base body and / or one or more electron emission electrodes are made of the processed base body isolated with one or more emission peaks. In this way, the desired structure of the electron emission electrode and thus of the electron source can be created in an efficient manner in terms of production technology. In this context, segmentation is understood as the further shaping of one or more emission peaks on the same base body. Separation means the separation of one or more emission electrodes, for example in the form of a group of several emission electrodes, from the base body. The mentioned steps of segmentation and / or singulation are carried out in particular after step b) of the method according to the invention. Before the segmentation and / or singling, further production steps can be carried out, for example for the encapsulation of the electron emission electrode and the mechanical and electrical contacting.

Die eingangs genannte Aufgabe wird ferner durch eine Elektronenemissionselektrode einer Elektronenquelle gemäß Anspruch 10 gelöst. Auch hierdurch können die zuvor erläuterten Vorteile der Erfindung realisiert werden. Die Elektronenemissionselektrode wenigstens eine Emissionsspitze aufweist, die zur Abgabe von Elektronen in die Umgebung eingerichtet ist, wobei zumindest die Emissionsspitze aus einem sprödbrechenden Material mit einer rauen Oberfläche besteht.The object mentioned above is further achieved by an electron emission electrode of an electron source according to claim 10. This also makes it possible to realize the previously explained advantages of the invention. The electron emission electrode has at least one emission peak arranged to emit electrons into the environment, wherein at least the emission peak consists of a brittle refractive material having a rough surface.

Gemäß einer vorteilhaften Weiterbildung der Erfindung weist die Elektronenemissionselektrode mehrere Emissionsspitzen auf, die in einem regelmäßigen oder unregelmäßigen Muster matrixartig angeordnet sind. Die Emissionsspitzen können in Gruppen gemeinsam elektrisch kontaktiert sein oder einzeln elektrisch kontaktiert sein, sodass sie separat angesteuert werden können.According to an advantageous development of the invention, the electron emission electrode has a plurality of emission peaks, which are arranged in a matrix-like manner in a regular or irregular pattern. The emission tips may be electrically contacted in groups together or individually contacted electrically, so that they can be controlled separately.

Gemäß einer vorteilhaften Weiterbildung der Erfindung weist die Elektronenemissionselektrode mehrere die Emissionsspitze oder die Emissionsspitzen umgebende als Abstandshalter für ein Beschleunigungsgitter geeignete Sockelbereiche mit einer größeren Bauhöhe als die Bauhöhe der Emissionsspitze oder der Emissionsspitzen auf. Auf diese Weise sind günstige Montagemöglichkeiten für das Beschleunigungsgitter der Elektronenquelle vorhanden.According to an advantageous development of the invention, the electron emission electrode has a plurality of base regions which surround the emission tip or the emission tips and which are suitable as spacers for an acceleration grid and have a greater overall height than the height of the emission peak or the emission peaks. In this way, cheap mounting options for the accelerating grid of the electron source.

Die Elektronenemissionselektrode weist im Bereich der Emissionsspitze eine raue Oberfläche auf, und zwar mit einer Oberflächenrauheit von Ra = 0,3 - 2,5 µm, Rz = 1,2 - 12 µm. Die Oberflächenrauheit dieser rauen Oberfläche kann insbesondere in einem der folgenden Bereichen a), b) liegen:

  1. a) Ra = 0,3 - 1,5 µm, Rz = 1,5 - 7,5 µm,
  2. b) Ra = 0,3 - 0,8 µm, Rz = 1,8 - 5 µm,
Ra steht dabei für die mittlere Rauheit, Rz für die gemittelte Rautiefe (auch Zehnpunkthöhe) gemäß ISO 25178.The electron emission electrode has a rough surface in the region of the emission peak, with a surface roughness of R a = 0.3-2.5 μm, R z = 1.2-12 μm. The surface roughness of this rough surface may in particular be in one of the following ranges a), b):
  1. a) R a = 0.3-1.5 μm, R z = 1.5-7.5 μm,
  2. b) R a = 0.3 to 0.8 μm, R z = 1.8 to 5 μm,
R a stands for the mean roughness, R z for the average roughness depth (also ten point height) according to ISO 25178.

Hierdurch werden die positiven Eigenschaften der erfindungsgemäßen Emissionsspitze weiter verbessert, insbesondere die Dauerhaltbarkeit und die hohe Stromstärke.As a result, the positive properties of the emission peak according to the invention are further improved, in particular the durability and the high current intensity.

Die Erfindung betrifft ferner ein Gerät mit einer oder mehreren Elektronenemissionselektroden und/oder Elektronenquellen der zuvor erläuterten Art. Das Gerät kann z.B. ein Flachbildschirm sein, insbesondere in Form eines Feldemissionsbildschirms, oder ein Elektronenmikroskop, ein Röntgengerät, ein Emissionsmassenspektrometer, z.B. ein lonenmobilitätsspektrometer, eine Radaranlage, ein Magnetron oder ein Mikrowellenherd.The invention further relates to a device having one or more electron emission electrodes and / or electron sources of the type described above. a flat screen, in particular in the form of a field emission screen, or an electron microscope, an X-ray machine, an emission mass spectrometer, e.g. an ion mobility spectrometer, a radar, a magnetron or a microwave oven.

Die Erfindung wird nachfolgend anhand von Ausführungsbeispielen unter Verwendung von Zeichnungen näher erläutert.The invention will be explained in more detail by means of embodiments using drawings.

Es zeigen

Figur 1
einen Grundkörper in perspektivischer Darstellung und
Figur 2
einen Ausschnittsbereich des Grundkörpers gemäß Figur 1 in perspektivischer Darstellung und
Figur 3
eine Emissionsspitze in perspektivischer Darstellung und
Figur 4
den Ausschnitt gemäß Figur 2 in einer Seitenansicht und
Figuren 5, 6
einen "overlapping process" und
Figuren 7, 8
einen "chipping process".
Show it
FIG. 1
a main body in perspective and
FIG. 2
a cutout area of the body according to FIG. 1 in perspective and
FIG. 3
an emission peak in perspective and
FIG. 4
the clipping according to FIG. 2 in a side view and
FIGS. 5, 6
an "overlapping process" and
FIGS. 7, 8
a "chipping process".

In den Figuren werden gleiche Bezugszeichen für einander entsprechende Elemente verwendet.In the figures, like reference numerals are used for corresponding elements.

Die Figur 1 zeigt einen Grundkörper aus einem sprödbrechenden Material, z.B. einen Silizium-Wafer. Der Grundkörper 1 wird erfindungsgemäß bearbeitet, was nachfolgend anhand eines Ausschnittsbereichs des Grundkörpers 1, der eine Elektronenemissionselektrode 2 bildet, näher erläutert wird.The FIG. 1 shows a main body of a brittle-refractory material, such as a silicon wafer. The base body 1 is processed according to the invention, which is explained in more detail below with reference to a cutout region of the base body 1, which forms an electron emission electrode 2.

Die Figur 2 zeigt den Ausschnittsbereich in vergrößerter Darstellung, wobei bereits eine Oberflächenbearbeitung des Grundkörpers erfolgt ist, durch die der Ausschnittsbereich zu einer Elektronenemissionselektrode 2 mit einer Vielzahl von Emissionsspitzen geformt ist. Erkennbar ist in der Figur 2 eine Anordnung einer Vielzahl von spitzenartigen Erhebungen 3, die die Emissionsspitzen der Elektronenemissionselektrode 2 beinhalten. In den Randbereichen befinden sich mehrere linienartige Erhebungen 4, die die matrixartige Anordnung von spitzenartigen Erhebungen 3 umgeben. In jeweiligen Eckbereichen der Elektronenemissionselektrode 2 sind quaderförmige Erhebungen 5 vorhanden, die als Sockelbereiche der Elektronenemissionselektrode genutzt werden können. Die genannten Erhebungen 3, 4, 5 befinden sich auf einem verbliebenen Bodenbereich 8 des Grundkörpers 1. Die in Figur 2 dargestellte Anordnung von Erhebungen 3, 4, 5 kann auf einfache Weise durch Führen eines Werkzeugs in zwei sich kreuzenden Richtungen A und B über die Oberfläche des Grundkörpers 1 erzeugt werden. Durch Führen des Werkzeugs in Richtung A werden mehrere sich nicht kreuzende Nuten 6 erzeugt. Durch Führen des Werkzeugs in Richtung B werden mehrere sich nicht kreuzende Nuten 7 erzeugt. Die Nuten 6 kreuzen die Nuten 7, z.B. in einem rechten Winkel. Hieraus ergeben sich dann zwangsläufig die dargestellten Strukturen der Erhebungen 3, 4, 5.The FIG. 2 shows the cutout area in an enlarged view, wherein already a surface treatment of the base body has taken place, through which the cutout area is formed into an electron emission electrode 2 with a plurality of emission peaks. Is recognizable in the FIG. 2 an arrangement of a plurality of tip-like projections 3, which include the emission peaks of the electron emission electrode 2. In the edge regions there are several line-like elevations 4, which surround the matrix-like arrangement of tip-like elevations 3. In respective corner regions of the electron emission electrode 2 cuboidal elevations 5 are present, which can be used as base regions of the electron emission electrode. The aforementioned elevations 3, 4, 5 are located on a remaining floor area 8 of the base body 1. Die in FIG. 2 illustrated arrangement of elevations 3, 4, 5 can be generated in a simple manner by guiding a tool in two intersecting directions A and B over the surface of the base body 1. By guiding the tool in the direction A, a plurality of non-intersecting grooves 6 are generated. By guiding the tool in the direction B, several non-intersecting ones become Grooves 7 generated. The grooves 6 intersect the grooves 7, for example at a right angle. This then inevitably results in the illustrated structures of the elevations 3, 4, 5.

Dies kann z.B. durch eine Erzeugung von Nuten in zwei Arbeitsschritten erfolgen. So kann zunächst ein V-förmiges Schneidblatt, das den spitzen Winkel der Emissionsspitzen definiert, eingesetzt werden. Mittels des V-förmigen Schneidblattes, das in mehreren Schritten parallel in Richtung B geführt wird, und danach jeweils parallel in mehreren Schritten in Richtung A nebeneinander, werden zunächst die Spitzen erzeugt. Hiermit wird zudem die Bauhöhe h der spitzenförmigen Erhebungen festgelegt. Anschließend wird durch ein weiteres Werkzeug, das z.B. U-förmige Nuten erzeugt, die Länge der spitzenförmigen Erhebungen oberhalb des Bodenbereichs 8 bestimmt. Das Werkzeug wird ebenfalls in den Richtungen A und B kreuzweise über den Grundkörper 1 geführt, was auch als Segmentieren bezeichnet wird. Es entstehen somit Erhebungen 3, 4 mit einer gewissen Bauhöhe h oberhalb des Bodenbereichs 8. Da hierbei bestimmte Oberflächenbereiche der Sockelbereiche 5 nicht bearbeitet werden, können diese letztendlich eine größere Bauhöhe h aufweisen als die Bauhöhe der Erhebungen 3, 4.This can e.g. done by generating grooves in two steps. Thus, first a V-shaped cutting blade, which defines the acute angle of the emission peaks, can be used. By means of the V-shaped cutting blade, which is guided parallel in several steps in the direction B, and then in parallel in several steps in the direction A next to each other, the tips are first generated. Hereby also the height h of the tip-shaped elevations is determined. Subsequently, by another tool, e.g. U-shaped grooves generated determines the length of the tip-shaped elevations above the bottom portion 8. The tool is also guided in the directions A and B crosswise over the base body 1, which is also referred to as segmentation. This results in elevations 3, 4 with a certain height h above the floor area 8. Since certain surface areas of the base areas 5 are not processed, these can ultimately have a greater height h than the height of the elevations 3, 4th

Die Figur 3 zeigt eine der Erhebungen 3 beispielhaft in vergrößerter Darstellung. Erkennbar ist, dass auf einem quaderförmigen Sockelabschnitt 10 jeweils eine Emissionsspitze 9 der Elektronenemissionselektrode gebildet ist.The FIG. 3 shows one of the surveys 3 by way of example in an enlarged scale. It can be seen that in each case one emission tip 9 of the electron emission electrode is formed on a cuboid base section 10.

Die Figur 4 zeigt die Anordnung gemäß Figur 2 in einer Seitenansicht, wobei zusätzlich nach weiteren Bearbeitungsschritten elektrische Kontaktierungen sowie ein Beschleunigungsgitter dargestellt sind.The FIG. 4 shows the arrangement according to FIG. 2 in a side view, wherein in addition to further processing steps electrical contacts and an acceleration grid are shown.

Erkennbar ist zunächst, dass die Bauhöhe h der Erhebungen 3 und damit der Emissionsspitzen 9 geringer ist als die Bauhöhe h der Sockelbereiche 5. Dementsprechend kann ein ebenes Beschleunigungsgitter 14 auf den Sockelbereichen 5 angeordnet und fixiert werden, ohne dass es zu Berührungen mit den Emissionsspitzen 9 kommt.Visible is first that the height h of the elevations 3 and thus the emission peaks 9 is less than the height h of the base areas 5. Accordingly, a flat acceleration grid 14 can be arranged and fixed on the base areas 5, without causing any contact with the emission peaks. 9 comes.

Die Emissionsspitzen 9 können einzeln oder gruppenweise über durch das Material des Grundkörpers geführte elektrische Kontaktierungen sowie Leitungen 11 mit einem Kontaktierungsanschluss 12 verbunden werden. Über den Kontaktierungsanschluss 12 kann über weitere elektrische Leitungen 13 die elektrische Kontaktierung und Signaleinspeisung in die Emissionsspitzen 9 erfolgen.The emission peaks 9 can be connected individually or in groups via electrical contacts guided through the material of the main body as well as lines 11 to a contacting terminal 12. About the Kontaktierungsanschluss 12 can be made via electrical leads 13, the electrical contact and signal feed into the emission peaks 9.

Die Herstellung der Emissionsspitze 9 sowie der Sockelabschnitte 10 kann durch einen "overlapping process" erfolgen, der in den Figuren 5 und 6 dargestellt ist. Zunächst wird ein Werkzeug durch das Material 20 entlang einer Schnittlinie 21 geführt, danach in paralleler Weise entlang einer Schnittlinie 22. Hierbei kommt es zu einem Überlappungsbereich 25, in dem die Emissionsspitze 9 erzeugt wird, nachdem derselbe Vorgang in den zwei verschiedenen Schnittrichtungen A, B durchgeführt wurde. Anschließend erfolgt eine Segmentierung, wie in Figur 6 dargestellt, durch Führen eines weiteren Werkzeugs entlang der Schnittlinie 23, 24. Hierdurch wird aus dem Material 20 der Sockelabschnitt 10 erzeugt. Statt eines Segmentierens, wie in Figur 2 dargestellt, kann bei größerer Schnitttiefe auch eine Vereinzelung der Emissionsspitze 9 mit ihrem Sockelabschnitt 10 erfolgen.The production of the emission tip 9 and the base sections 10 can be done by an "overlapping process", which in the FIGS. 5 and 6 is shown. First, a tool is passed through the material 20 along a cutting line 21, then in a parallel manner along a cutting line 22. This results in an overlapping area 25 in which the emission peak 9 is generated after the same process in the two different cutting directions A, B was carried out. Subsequently, a segmentation, as in FIG. 6 represented by guiding a further tool along the cutting line 23, 24. As a result of the material 20, the base portion 10 is generated. Instead of segmenting, as in FIG. 2 shown, at a greater depth of cut also a separation of the emission peak 9 done with its base portion 10.

Anhand der Figuren 7 und 8 wird ein "chipping process" beschrieben. Hierbei können grundsätzlich die gleichen Werkzeuge eingesetzt werden. Im ersten Arbeitsschritt, zuvor anhand der Figur 5 beschrieben, wird das Werkzeug aber entlang von Schnittlinien 21, 22 geführt, bei denen es nicht zu dem Überlappungsbereich 25 kommt. Dementsprechend verbleibt in der Mitte ein Materialabschnitt, der zu der Emissionsspitze 9 wird. Hierbei kommt es zu Materialausbrüchen 26, die auch als "chipping" bezeichnet werden. Diese wirken sich aufgrund der sprödbrechenden Eigenschaften des verwendeten Materials vorteilhaft auf die Funktion und Haltbarkeit der Emissionsspitze 9 aus. Anschließend erfolgt eine Segmentierung, wie in Figur 8 dargestellt, durch Führen eines weiteren Werkzeugs entlang der Schnittlinie 23, 24. Hierdurch wird aus dem Material 20 der Sockelabschnitt 10 erzeugt. Statt eines Segmentierens, wie in Figur 2 dargestellt, kann bei größerer Schnitttiefe auch eine Vereinzelung der Emissionsspitze 9 mit ihrem Sockelabschnitt 10 erfolgen.Based on FIGS. 7 and 8 a "chipping process" is described. In principle, the same tools can be used. In the first step, previously based on the FIG. 5 described, but the tool is guided along cutting lines 21, 22, in which it does not come to the overlap region 25. Accordingly, in the middle, a material portion which becomes the emission peak 9 remains. This leads to material outbreaks 26, which are also referred to as "chipping". These have an advantageous effect on the function and durability of the emission peak 9 due to the brittle-refracting properties of the material used. Subsequently, a segmentation, as in FIG. 8 represented by guiding a further tool along the cutting line 23, 24. As a result of the material 20, the base portion 10 is generated. Instead of segmenting, as in FIG. 2 shown, at a greater depth of cut also a separation of the emission peak 9 done with its base portion 10.

Claims (13)

  1. Process for producing an electron emission electrode (2) of an electron source, wherein the electron emission electrode (2) has at least one emission tip (9), which is set up for releasing electrons into the environment, comprising the steps of:
    a) providing a main body (1) of a brittly fracturing material,
    b) mechanical and/or thermal surface working of the main body (1) to form the emission tip (9), wherein material is removed from the main body (1), at least around the emission tip (9), by brittle fracture and the emission tip (9) is created with a rough surface, the surface roughness of which lies in the range Ra = 0.3 - 2.5 µm, Rz = 1.2 - 12 µm, where Ra stands for the average roughness and Rz stands for the average peak-to-valley height according to ISO 25178.
  2. Process according to the preceding claim, characterized in that a rough surface of the brittly fracturing material is created at least in the region of the emission tip (9) by brittle fracture.
  3. Process according to one of the preceding claims, characterized in that the mechanical surface working comprises creating crossing and non-crossing grooves (6, 7) on the surface of the main body (1).
  4. Process according to the preceding claim, characterized in that non-crossing grooves (6, 7) are produced by overlapping guidance of a machining tool along cut lines on which the grooves are to be created.
  5. Process according to one of the preceding claims, characterized in that a multiplicity of emission tips (9) are produced on the main body (1) by the mechanical and/or thermal surface working of the main body (1).
  6. Process according to the preceding claim, characterized in that the multiplicity of emission tips (9) are produced in one operation of the mechanical and/or thermal surface working of the main body (1).
  7. Process according to one of the preceding claims, characterized in that in the mechanical and/or thermal surface working of the main body (1) surface regions of the main body (1) that form base regions (5) are left unworked or are worked differently than the regions surrounding the emission tips (9), and wherein the emission tips (9) are worked to a lower structural height (h) than the structural height (h) of the base regions (5).
  8. Process according to one of the preceding claims, characterized in that one or more or all of the emission tips (9) of the electron emission electrode (2) are connected by way of electrical contacting (11) to an electrical contacting terminal (12) of the electron emission electrode (2).
  9. Process according to one of the preceding claims, characterized in that one or more electron emission electrodes (2), with in each case one or more emission tips (9), are segmented on the worked main body (1) and/or one or more electron emission electrodes (2), with in each case one or more emission tips (9), are individually separated from the worked main body (1) .
  10. Electron emission electrode (2) of an electron source, wherein the electron emission electrode (2) has at least one emission tip (9), which is set up for releasing electrons into the environment, characterized in that at least the emission tip (9) consists of a brittly fracturing material with a rough surface, the surface roughness of which lies in the range Ra = 0.3 - 2.5 µm, Rz = 1.2 - 12 µm, where Ra stands for the average roughness and Rz stands for the average peak-to-valley height according to ISO 25178.
  11. Electron emission electrode according to the preceding claim, characterized in that the electron emission electrode (2) has a number of emission tips (9), which are arranged in a regular or irregular pattern in the manner of a matrix.
  12. Electron emission electrode according to either of Claims 10 and 11, characterized in that the electron emission electrode (2) has a number of base regions (5), with a greater structural height (h) than the structural height (h) of the emission tip (9) or the emission tips (9), which surround the emission tip (9) or the emission tips (9) and are suitable as spacers for an acceleration grating (14).
  13. Device with one or more electron emission electrodes (2) according to one of Claims 10 to 12.
EP16794547.6A 2015-11-03 2016-11-01 Electron emission electrode and process for production thereof Active EP3371820B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015118805.8A DE102015118805A1 (en) 2015-11-03 2015-11-03 Electron emission electrode and method for its production
PCT/EP2016/076298 WO2017076831A1 (en) 2015-11-03 2016-11-01 Electron emission electrode and process for production thereof

Publications (2)

Publication Number Publication Date
EP3371820A1 EP3371820A1 (en) 2018-09-12
EP3371820B1 true EP3371820B1 (en) 2019-09-11

Family

ID=57286459

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16794547.6A Active EP3371820B1 (en) 2015-11-03 2016-11-01 Electron emission electrode and process for production thereof

Country Status (4)

Country Link
EP (1) EP3371820B1 (en)
CN (1) CN108431922B (en)
DE (1) DE102015118805A1 (en)
WO (1) WO2017076831A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111081505B (en) * 2019-12-24 2021-08-03 中山大学 Nano cold cathode electron source with coplanar double-gate focusing structure and manufacturing method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1335389A (en) * 1970-08-28 1973-10-24 Secr Defence Electron emitter materials
US5393647A (en) * 1993-07-16 1995-02-28 Armand P. Neukermans Method of making superhard tips for micro-probe microscopy and field emission
US6201342B1 (en) * 1997-06-30 2001-03-13 The United States Of America As Represented By The Secretary Of The Navy Automatically sharp field emission cathodes
KR100375848B1 (en) * 1999-03-19 2003-03-15 가부시끼가이샤 도시바 Method for manufacturing field emission device and display device
US7737614B2 (en) 2005-06-17 2010-06-15 Sumitomo Electric Industries, Ltd. Diamond electron emission cathode, electron emission source, electron microscope, and electron beam exposure device
CN101452797B (en) * 2007-12-05 2011-11-09 清华大学 Field emission type electronic source and manufacturing method thereof
JP5919049B2 (en) 2011-09-26 2016-05-18 株式会社日立ハイテクノロジーズ Field emission electron source

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CN108431922B (en) 2020-03-03
EP3371820A1 (en) 2018-09-12
WO2017076831A1 (en) 2017-05-11
DE102015118805A1 (en) 2017-05-04
CN108431922A (en) 2018-08-21

Similar Documents

Publication Publication Date Title
DE69731231T2 (en) STRUCTURES, ARRANGEMENTS AND DEVICES WITH VACUUM FIELD EMISSION MICROSPITES AND METHOD FOR THE PRODUCTION THEREOF
DE2536363C3 (en) Thin film field electron emission source and methods for making the same
DE102010027871B4 (en) Ring cathode segment with nanostructure as electron emitter
DE2539234A1 (en) FIELD EMISSION DEVICE AND PROCESS FOR ITS MANUFACTURING
DE2716992A1 (en) FIELD EMITTER ARRANGEMENT AND METHOD OF MANUFACTURING IT
EP0022483A1 (en) Field-effect transistor and process for its production
EP4014256B1 (en) Screen printing mould for use in a screen printing method, screen printing device, and screen printing method
DE102014112690A1 (en) Semiconductor device and method for manufacturing a semiconductor device
EP3371820B1 (en) Electron emission electrode and process for production thereof
DE1764860B1 (en) ELECTRON BEAM GENERATORS AND METHOD FOR ITS PRODUCTION
DE69730333T2 (en) PREPARATION OF GRID-EMITTED ELECTRONS EMITTING SOURCE BY DISTRIBUTING PARTICLES FOR DETERMINING THE GRID OPENINGS
DE69730851T2 (en) CONNECTION METHOD FOR FIELD EMISSIONS FROM FIBERS AND FIELD EMISSION CATEGORY PRODUCED THEREOF
DE3400197C2 (en)
DE2718781C2 (en) Method for manufacturing a plurality of semiconductor components
DE3104024C2 (en)
DE2528380B2 (en) MESH ELECTRODE FOR ELECTRON TUBES
DE1800952A1 (en) Field emission cathode
EP3695944A1 (en) Method and device for splitting of plate-shaped objects made of brittle materials
DE102013110666B4 (en) Radiation-emitting device and method for producing the same
DE102014110526B4 (en) Solar cell string and solar cell string manufacturing process
EP2888053B1 (en) Method and device for fragmenting and/or weakening material by means of high-voltage pulses
WO2008104394A1 (en) Method for producing a particle radiation source
EP3130017B1 (en) Organic light-emitting diode having a plurality of light-emitting segments
DE4414323C2 (en) Solid-state dielectric field emission device
DE102015110851B4 (en) Solar cell, solar cell string and solar cell manufacturing process

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180425

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190322

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1179552

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190915

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016006617

Country of ref document: DE

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190911

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191212

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200113

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016006617

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG2D Information on lapse in contracting state deleted

Ref country code: IS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191101

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200112

26N No opposition filed

Effective date: 20200615

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20191130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191101

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20201101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20161101

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1179552

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211101

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231120

Year of fee payment: 8