EP3371506B1 - Device for fuelling motor vehicles with liquefied gas - Google Patents

Device for fuelling motor vehicles with liquefied gas Download PDF

Info

Publication number
EP3371506B1
EP3371506B1 EP16788660.5A EP16788660A EP3371506B1 EP 3371506 B1 EP3371506 B1 EP 3371506B1 EP 16788660 A EP16788660 A EP 16788660A EP 3371506 B1 EP3371506 B1 EP 3371506B1
Authority
EP
European Patent Office
Prior art keywords
facility
pipeline
annular space
line
storage container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16788660.5A
Other languages
German (de)
French (fr)
Other versions
EP3371506A1 (en
EP3371506B8 (en
Inventor
Jörn Homann
Thomas Albrecht
Marc Oliver HERBST
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BRUGG ROHRSYSTEM AG
Original Assignee
Brugg Rohr AG Holding
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brugg Rohr AG Holding filed Critical Brugg Rohr AG Holding
Priority to PL16788660T priority Critical patent/PL3371506T3/en
Publication of EP3371506A1 publication Critical patent/EP3371506A1/en
Publication of EP3371506B1 publication Critical patent/EP3371506B1/en
Application granted granted Critical
Publication of EP3371506B8 publication Critical patent/EP3371506B8/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67DDISPENSING, DELIVERING OR TRANSFERRING LIQUIDS, NOT OTHERWISE PROVIDED FOR
    • B67D7/00Apparatus or devices for transferring liquids from bulk storage containers or reservoirs into vehicles or into portable containers, e.g. for retail sale purposes
    • B67D7/04Apparatus or devices for transferring liquids from bulk storage containers or reservoirs into vehicles or into portable containers, e.g. for retail sale purposes for transferring fuels, lubricants or mixed fuels and lubricants
    • B67D7/0476Vapour recovery systems
    • B67D7/0478Vapour recovery systems constructional features or components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C5/00Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures
    • F17C5/02Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures for filling with liquefied gases
    • F17C5/04Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures for filling with liquefied gases requiring the use of refrigeration, e.g. filling with helium or hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67DDISPENSING, DELIVERING OR TRANSFERRING LIQUIDS, NOT OTHERWISE PROVIDED FOR
    • B67D7/00Apparatus or devices for transferring liquids from bulk storage containers or reservoirs into vehicles or into portable containers, e.g. for retail sale purposes
    • B67D7/06Details or accessories
    • B67D7/42Filling nozzles
    • B67D7/54Filling nozzles with means for preventing escape of liquid or vapour or for recovering escaped liquid or vapour
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67DDISPENSING, DELIVERING OR TRANSFERRING LIQUIDS, NOT OTHERWISE PROVIDED FOR
    • B67D7/00Apparatus or devices for transferring liquids from bulk storage containers or reservoirs into vehicles or into portable containers, e.g. for retail sale purposes
    • B67D7/06Details or accessories
    • B67D7/78Arrangements of storage tanks, reservoirs or pipe-lines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0352Pipes
    • F17C2205/0355Insulation thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0352Pipes
    • F17C2205/0358Pipes coaxial
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0352Pipes
    • F17C2205/0361Pipes corrugated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0352Pipes
    • F17C2205/0364Pipes flexible or articulated, e.g. a hose
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0107Single phase
    • F17C2223/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/03Dealing with losses
    • F17C2260/035Dealing with losses of fluid
    • F17C2260/036Avoiding leaks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/03Dealing with losses
    • F17C2260/035Dealing with losses of fluid
    • F17C2260/038Detecting leaked fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/03Treating the boil-off
    • F17C2265/032Treating the boil-off by recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/06Fluid distribution
    • F17C2265/065Fluid distribution for refuelling vehicle fuel tanks

Definitions

  • the invention relates to a device for refueling motor vehicles with a fluid made of liquefied gas, in particular liquefied natural gas, which is used as fuel, comprising at least one storage container, a cooling device, at least one conveying device through which the fluid can be fed from the storage container to at least one refueling device, by means of the Motor vehicles can be refueled with the fluid, and at least one line serving to supply the fluid to the refueling device.
  • a device for refueling motor vehicles with a fluid made of liquefied gas, in particular liquefied natural gas, which is used as fuel comprising at least one storage container, a cooling device, at least one conveying device through which the fluid can be fed from the storage container to at least one refueling device, by means of the Motor vehicles can be refueled with the fluid, and at least one line serving to supply the fluid to the refueling device.
  • cryofuels Such fuels, also known as cryofuels, whose boiling point or critical temperature at the pressure prevailing in the storage container is far below normal ambient temperatures, are becoming increasingly important due to the increased energy demand and the increasing environmental pollution from conventional energy sources. They tend to evaporate easily as a result of pressure and temperature changes.
  • natural gas has a very low storage density and a lower volumetric calorific value than diesel at normal atmospheric pressure compared to, for example, diesel fuel
  • part of the natural gas is constantly evaporating due to the heat supplied from the environment.
  • the gaseous part of the natural gas mainly contains the more volatile constituents of the gas, which have a higher vapor pressure or a lower boiling temperature.
  • the removal of part of the natural gas present in gaseous form in the storage container leads in the long term to an accumulation of higher hydrocarbons, in particular propane, in the cryogenic liquefied part of the natural gas.
  • the high proportion of propane gas can be harmful to internal combustion engines.
  • the mixture composition changes over time, which is undesirable.
  • motor vehicles In addition to land vehicles, such as, for example, buses, trucks and passenger cars, motor vehicles also include watercraft and aircraft.
  • the EP 2 229 551 A1 relates to a coupling for supplying a cryogenic fluid, in particular LNG, to a motor vehicle tank.
  • the coupling is connected to a control line which is pressurized with a control fluid, for example compressed air at 10 bar.
  • a control fluid for example compressed air at 10 bar.
  • a pressure delivery tank is connected via a supply line and a storage container via a return line with a coupling in order to refuel the motor vehicle with cryofuel flowing from the pressure delivery tank via the coupling.
  • the outlet of the supply line and the inlet of the return line are arranged in the liquid cryofuel of the pressure delivery tank and the storage container, so that the liquid cryofuel of the pressure delivery tank can be conducted via this connection to the coupling or to the motor vehicle tank and back into the liquid cryofuel of the storage container .
  • the DE 195 01 332 A1 relates to a method for cooling a coaxial pipe system consisting of at least two coaxial pipes of a superconducting cable arranged at a distance from one another, which is arranged in a thermally well insulating sheath, a liquid gas being passed through the inner pipe.
  • the annular gap sealed off at the end between the inner tube and the tube surrounding it is filled with a gas or gas mixture whose condensation temperature corresponds to the boiling point of the liquid gas flowing in the inner tube, preferably is higher, so that the gas or a gas of the gas mixture condenses on the inner tube and the dripping condensate cools the outer tube.
  • a device for filling a container with liquid gas from a storage container in which liquefied gas is removed from the storage container and fed to the container by means of a conveying device via a liquid supply line. Furthermore, gaseous gas is withdrawn from the container to be filled, at least partially liquefied by cooling in a heat exchanger and the liquefied gas is fed to the container to be filled.
  • the refueling of motor vehicles with gaseous fuels is also from the DE 721 995 A as well as the DE 10 2008 060 127 A1 known.
  • US5353849A discloses a device for refueling vehicles.
  • the invention is based on the object of significantly improving the device for refueling motor vehicles. In particular, occurring thermal losses should be minimized.
  • a device in which the line has a media-carrying central pipeline as a medium pipe and at least one further media-carrying pipeline which is arranged concentrically or coaxially with the central pipeline and delimits an annular space with the enclosed pipeline, the central pipeline and the at least one Annular space is used to supply or return the fluid from the liquefied gas or a gas stream and the outer pipeline is surrounded by a, for example, concentric casing pipe as an outer pipe, the casing pipe being thermally insulated from the outer pipe, the central pipe being designed as a corrugated metal pipe and wherein the central pipeline and at least one media-carrying annular space are not thermally insulated from one another.
  • the central pipeline and the at least one annular space serve to supply and return the Fuel.
  • the outer pipeline is surrounded by a likewise concentric jacket tube which encloses a thermal insulating material.
  • the pipelines and the jacket pipe are each designed as thermally self-compensating metallic corrugated pipes, the central pipeline and the media-carrying annular space not being thermally insulated from one another.
  • the concentric construction of the lines implemented in this way means that heat is extracted from the recirculated gas from the supplied fuel in order to cool or liquefy the gas.
  • the coaxial partition between the pipelines forms an optimal exchanger surface due to the design as a corrugated pipe and the resulting increased surface area.
  • the pipelines and the jacket pipe are each designed as thermally self-compensating metallic corrugated pipes in order to create a particularly flexible pipe that can also be laid in comparatively small radii.
  • another pipeline dividing the annular space into an inner annular space and an outer annular space is arranged in the annular space between the central pipeline as a medium pipe and the pipeline.
  • the outer annular space is designed to divert the gas volumes displaced from the motor vehicle tank during refueling.
  • the displaced gaseous volumes also referred to as "boil-off gases”
  • the outer annular space is equipped with a separate inlet opening and a separate outlet opening, so that the return of the boil-off gas can be implemented separately from the fuel, but through the same line.
  • the device has a storage container for LNG and the line connects the storage container to a refueling device.
  • the line connects the storage container to a refueling device.
  • the storage container can also be connected in this way to a plurality of refueling devices at different locations if necessary.
  • a leakage monitoring device is arranged in the outer annular space between the casing tube and the outer pipeline.
  • a leakage monitoring device is arranged in the outer annular space between the casing tube and the outer pipeline.
  • the annular space between the jacket pipe and the outer pipeline could be thermally insulated by a vacuum. It is also particularly practical if a thermal insulating material is provided in the annular space between the jacket pipe and the outer pipeline, which has a foam, in particular a polyurethane foam (PUR) as an essential component.
  • PUR polyurethane foam
  • the insulating material gives the line a high level of mechanical stability and resilience, so that the risk of damage is significantly reduced.
  • the multiple walls prevent liquid or gaseous components from escaping into the environment.
  • the line is preferably designed as a corrugated pipe so that it is self-compensating with regard to its thermal expansion.
  • the line is provided at least in sections with a peripheral reinforcement made of a braid.
  • a reinforcement includes, for example, a woven mesh and / or a non-woven mesh, wherein the material of the reinforcement can be selected as desired. In this way the mechanical properties are further improved.
  • the device 1 enables various motor vehicles 2 to be refueled with a liquefied gas serving as fuel, in particular liquefied natural gas (LNG).
  • the device has a storage container 3 designed as an above-ground tank for storing the liquefied gas, to which a cooling device (not shown) is assigned to liquefy the gas by cooling it to a suitable temperature range below -160 ° C.
  • a line 5 designed as a corrugated pipe is arranged between a respective refueling device 4 designed as a tapping point, which is appropriately equipped in a manner known per se for the various types of motor vehicle.
  • the structural design of the line 5 is based on Figure 2 explained in more detail.
  • the line 5 has a media-carrying central pipe 6 as a medium pipe, through which the fuel can be conveyed from the storage container 3 to the respective refueling device 4.
  • This is enclosed concentrically by two further media-carrying pipes 7, 8, so that two media-carrying annular spaces 9, 10 are created, the function of which is described below with reference to the Figures 3 and 4th is explained.
  • an outer jacket tube 11 is also provided as an outer tube, which encloses an annular insulating material 12 between the pipeline 8 and the jacket tube 11 in order to thermally insulate the line 5.
  • the pipes 6, 7, 8 and the jacket pipe 11 are designed as thermally self-compensating metallic corrugated pipes.
  • the central pipeline 6 and the media-carrying annular spaces 9, 10 are not thermally insulated from one another. Since the central pipeline 6 and the two media-carrying annular spaces 9, 10 are only separated by the wall surface of the respective pipelines 6, 7, but not thermally insulated, the medium carried in the annular spaces 9, 10 is replaced by the fuel carried in the central pipeline 6 Removed heat and cooled it accordingly.
  • the coaxial partition between the pipes 6, 7, 8 forms an optimal exchanger surface due to the design as a corrugated pipe.
  • the concentric design also improves the thermal insulation from the environment, as only a single external insulation is required.
  • a leakage monitoring device 13 is assigned to the outer annular space 10 between the jacket tube 11 and the pipeline 8 and thus enables the line to be continuously monitored for possible leaks.
  • FIG. 3 shows Figure 3 a "standby mode" in which fuel is continuously taken from the storage container 3 and conveyed through the central pipeline 6 to a flow reversal area 14 in front of a closed line end (not shown) in a line section facing away from the storage container 3. The fuel is then conveyed back into the storage container 3 in the direction of the arrow 16 through the inner annular space 9 and two line connections 15. This results in a continuous flow in the line 5, by means of which undesired heating can be avoided.
  • the outer annular space 10 is used to divert the gas displaced from a motor vehicle tank, also called "boil-off gases". designated gaseous volumes are used. These are fed from the motor vehicle tank through a separate inlet opening 18, the outer annular space 10 and an outlet opening 19 without a connection to the central pipeline 6 in the direction of arrow 17 into the storage container 3 in order to liquefy it there again. This can prevent the gaseous constituents from escaping from the motor vehicle tank into the environment and prevent undesirable environmental pollution and hazards.
  • the fuel is supplied through the central pipe 6 as well as through the line connections 15 and the first, inner annular space 9. In this way, the volume flow is increased and the refueling process is correspondingly shortened.
  • FIGS. 5 and 6th another variant of the device 1 is shown.
  • the pipeline 6 is concentrically enclosed by only one media-carrying pipeline 7, through which a media-carrying annular space 9 is created.
  • An outer jacket tube 11 forms the outer tube, which encloses an annular insulating material 12 between the annular space 9 and the jacket tube 11 in order to thermally insulate the pipes 6, 7.
  • the central pipeline 6 and the media-carrying annular space 9 are not thermally insulated from one another, so that they are only separated by the wall surface of the pipeline 6, but not thermally insulated.
  • Operating mode shown for the suction of boil-off gases BOG each set a circulation of the liquefied natural gas present in the storage container through the pipeline 7. In this way, heat is withdrawn from the liquefied natural gas or boil-off gas routed alternatively in the pipeline 6 through the pipeline 7 and cooled accordingly, the boil-off gases being able to be liquefied by the heat withdrawal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Description

Die Erfindung betrifft eine Einrichtung zum Betanken von Kraftfahrzeugen mit einem als Treibstoff dienenden Fluid aus verflüssigtem Gas, insbesondere verflüssigtem Erdgas, umfassend zumindest einen Speicherbehälter, eine Kühleinrichtung, zumindest eine Fördereinrichtung, durch die das Fluid aus dem Speicherbehälter zumindest einer Betankungseinrichtung zuführbar ist, mittels der Kraftfahrzeuge mit dem Fluid betankt werden können, und zumindest eine der Zuführung des Fluids zu der Betankungseinrichtung dienende Leitung.The invention relates to a device for refueling motor vehicles with a fluid made of liquefied gas, in particular liquefied natural gas, which is used as fuel, comprising at least one storage container, a cooling device, at least one conveying device through which the fluid can be fed from the storage container to at least one refueling device, by means of the Motor vehicles can be refueled with the fluid, and at least one line serving to supply the fluid to the refueling device.

Solche auch als Kryokraftstoffe bezeichnete Treibstoffe, deren Siedepunkt oder kritische Temperatur bei dem im Speicherbehälter herrschenden Druck weit unterhalb üblicher Umgebungstemperaturen liegt, gewinnen aufgrund des gestiegenen Energiebedarfs und der steigenden Umweltbelastung durch konventionelle Energieträger zunehmend an Bedeutung. Sie neigen infolge von Druck- und Temperaturänderungen leicht zum Verdampfen.Such fuels, also known as cryofuels, whose boiling point or critical temperature at the pressure prevailing in the storage container is far below normal ambient temperatures, are becoming increasingly important due to the increased energy demand and the increasing environmental pollution from conventional energy sources. They tend to evaporate easily as a result of pressure and temperature changes.

Es ist bekannt, Verbrennungskraftmaschinen von Kraftfahrzeugen mit Erdgas zu betreiben. Da Erdgas bei atmosphärischem Normaldruck im Vergleich zu beispielsweise Dieselkraftstoff eine sehr geringe Speicherdichte und einen niedrigeren volumetrischen Heizwert als Diesel besitzt, wird das Erdgas auf etwa 200 bar verdichtet (CNG = Compressed Natural Gas) oder durch Temperatursenkung auf -162 °C verflüssigt (LNG = Liquefied Natural Gas), damit eine ausreichende Energiemenge im Kraftfahrzeug mitgeführt werden kann.It is known to operate internal combustion engines of motor vehicles with natural gas. Since natural gas has a very low storage density and a lower volumetric calorific value than diesel at normal atmospheric pressure compared to, for example, diesel fuel, the natural gas is compressed to around 200 bar (CNG = Compressed Natural Gas) or liquefied by lowering the temperature to -162 ° C (LNG = Liquefied Natural Gas) so that a sufficient amount of energy can be carried in the vehicle.

Im Fall des LNG verdampft aufgrund der von der Umgebung zugeführten Wärme ständig ein Teil des Erdgases. In dem gasförmigen Teil des Erdgases befinden sich hauptsächlich die flüchtigeren Bestandteile des Gases, die einen höheren Dampfdruck bzw. eine niedrigere Siedetemperatur aufweisen. Die Entnahme eines Teiles des im Vorratsbehälter gasförmig vorliegenden Erdgases führt auf lange Sicht zu einer Anreicherung höherer Kohlenwasserstoffe, insbesondere Propan, in dem tiefkalt verflüssigten Teil des Erdgases. Der hohe Propangasanteil kann schädlich für die Verbrennungskraftmaschinen sein. Außerdem ändert sich die Gemischzusammensetzung mit der Zeit, was unerwünscht ist.In the case of LNG, part of the natural gas is constantly evaporating due to the heat supplied from the environment. The gaseous part of the natural gas mainly contains the more volatile constituents of the gas, which have a higher vapor pressure or a lower boiling temperature. The removal of part of the natural gas present in gaseous form in the storage container leads in the long term to an accumulation of higher hydrocarbons, in particular propane, in the cryogenic liquefied part of the natural gas. The high proportion of propane gas can be harmful to internal combustion engines. In addition, the mixture composition changes over time, which is undesirable.

Unter Kraftfahrzeugen werden neben Landfahrzeugen, wie beispielsweise Busse, Lastkraftwagen und Personenkraftwagen, auch Wasser- und Luftfahrzeuge verstanden.In addition to land vehicles, such as, for example, buses, trucks and passenger cars, motor vehicles also include watercraft and aircraft.

Die EP 2 229 551 A1 betrifft eine Kupplung zum Zuführen eines kryogenen Fluids, insbesondere LNG, zu einem Kraftfahrzeugtank. Hierzu ist die Kupplung mit einer Steuerleitung verbunden, die mit einem Steuerfluid, beispielsweise Pressluft mit 10 bar, druckbeaufschlagt ist. Die Freigabe des Steuerdruckes an der Steuerleitung führt zur Freigabe der Fluidströmung in der Hauptleitung zum Zuführen des Fluids, sodass sichergestellt ist, dass die Bedienperson der Kupplung nicht mit dem kryogenen Medium in Verbindung kommt.The EP 2 229 551 A1 relates to a coupling for supplying a cryogenic fluid, in particular LNG, to a motor vehicle tank. For this purpose, the coupling is connected to a control line which is pressurized with a control fluid, for example compressed air at 10 bar. The release of the control pressure on the control line leads to the release of the fluid flow in the main line for supplying the fluid, so that it is ensured that the operator of the coupling does not come into contact with the cryogenic medium.

Gemäß der EP 0 779 470 A1 ist ein Druckfördertank über eine Zuführleitung und ein Speicherbehälter über eine Rückführleitung mit einer Kupplung verbunden, um über die Kupplung das Kraftfahrzeug mit aus dem Druckfördertank strömenden Kryokraftstoff zu betanken. Dabei sind der Ausgang der Zuführleitung und der Eingang der Rückführleitung in dem flüssigen Kryokraftstoff des Druckfördertanks und des Speicherbehälters angeordnet, sodass über diese Verbindung der flüssige Kryokraftstoff des Druckfördertanks bis zur Kupplung oder zu dem Kraftfahrzeugtank und zurück bis in den flüssigen Kryokraftstoff des Speicherbehälters geleitet werden kann. Dies ermöglicht ein Kaltfahren des Schlauches und des warmen Kraftfahrzeugtanks, wobei der erwärmte flüssige oder gasförmige Kryokraftstoff der Flüssigphase des Speicherbehälters zugeführt wird.According to the EP 0 779 470 A1 a pressure delivery tank is connected via a supply line and a storage container via a return line with a coupling in order to refuel the motor vehicle with cryofuel flowing from the pressure delivery tank via the coupling. The outlet of the supply line and the inlet of the return line are arranged in the liquid cryofuel of the pressure delivery tank and the storage container, so that the liquid cryofuel of the pressure delivery tank can be conducted via this connection to the coupling or to the motor vehicle tank and back into the liquid cryofuel of the storage container . This enables the hose and the warm motor vehicle tank to be run cold, the heated liquid or gaseous cryofuel being fed to the liquid phase of the storage container.

Die DE 195 01 332 A1 betrifft ein Verfahren zum Kühlen eines koaxialen Rohrsystems aus mindestens zwei koaxialen, im Abstand zueinander angeordneten Rohren eines supraleitenden Kabels, welches in einer thermisch gut isolierenden Hülle angeordnet ist, wobei durch das Innenrohr ein Flüssiggas hindurchgeleitet wird. Um sowohl das Innenrohr als auch das das Innenrohr umgebende Rohr auf einer Temperatur zu halten, ist der endseitig abgeschottete Ringspalt zwischen dem Innenrohr und dem ihn umgebenden Rohr mit einem Gas oder Gasgemisch gefüllt, dessen Kondensationstemperatur dem Siedepunkt des in dem Innenrohr strömenden Flüssiggases entspricht, vorzugsweise höher liegt, sodass das Gas bzw. ein Gas des Gasgemisches an dem Innenrohr kondensiert, und das herabtropfende Kondensat das Außenrohr abkühlt.The DE 195 01 332 A1 relates to a method for cooling a coaxial pipe system consisting of at least two coaxial pipes of a superconducting cable arranged at a distance from one another, which is arranged in a thermally well insulating sheath, a liquid gas being passed through the inner pipe. In order to keep both the inner tube and the tube surrounding the inner tube at one temperature, the annular gap sealed off at the end between the inner tube and the tube surrounding it is filled with a gas or gas mixture whose condensation temperature corresponds to the boiling point of the liquid gas flowing in the inner tube, preferably is higher, so that the gas or a gas of the gas mixture condenses on the inner tube and the dripping condensate cools the outer tube.

Aus der DE 10 2004 038 460 A1 ist eine Einrichtung zum Befüllen eines Behälters mit Flüssiggas aus einem Vorratsbehälter bekannt, bei dem verflüssigtes Gas dem Vorratsbehälter entnommen und mittels einer Fördereinrichtung über eine Flüssigzuleitung dem Behälter zugeführt wird. Weiterhin wird dem zu befüllenden Behälter gasförmiges Gas entnommen, durch Abkühlung in einem Wärmetauscher wenigstens teilweise verflüssigt und das verflüssigte Gas dem zu befüllenden Behälter zugeführt.From the DE 10 2004 038 460 A1 a device for filling a container with liquid gas from a storage container is known, in which liquefied gas is removed from the storage container and fed to the container by means of a conveying device via a liquid supply line. Furthermore, gaseous gas is withdrawn from the container to be filled, at least partially liquefied by cooling in a heat exchanger and the liquefied gas is fed to the container to be filled.

Darüber hinaus sind aus der US 5,315,831 A sowie der US 5,537,824 A Tankstellen bekannt, durch die erdgasbetriebene Kraftfahrzeuge mit LNG und/oder CNG betankt werden können.In addition, from the U.S. 5,315,831 A as well as the U.S. 5,537,824 A Gas stations known, through which natural gas powered vehicles can be refueled with LNG and / or CNG.

Die Betankung von Kraftfahrzeugen mit gasförmigen Kraftstoffen ist auch aus der DE 721 995 A sowie der DE 10 2008 060 127 A1 bekannt.The refueling of motor vehicles with gaseous fuels is also from the DE 721 995 A as well as the DE 10 2008 060 127 A1 known.

Auch US5353849A offenbart eine Einrichtung zum Betanken von Fahrzeugen.Also US5353849A discloses a device for refueling vehicles.

Ferner bezieht sich die DE 16 50 060 A auf ein flexibles Leitungsrohr aus konzentrischen Wellrohren für den Transport von Flüssigkeiten oder Gasen, beispielsweise für den Vor- und Rücklauf von Fernwärmeleitungen.Furthermore, the DE 16 50 060 A on a flexible pipe made of concentric corrugated pipes for the transport of liquids or gases, for example for the flow and return of district heating pipes.

Ausgehend von diesem Stand der Technik liegt der Erfindung die Aufgabe zugrunde, die Einrichtung zum Betanken von Kraftfahrzeugen wesentlich zu verbessern. Insbesondere sollen auftretende thermische Verluste minimiert werden.Starting from this prior art, the invention is based on the object of significantly improving the device for refueling motor vehicles. In particular, occurring thermal losses should be minimized.

Diese Aufgabe wird erfindungsgemäß mit einer Einrichtung gemäß den Merkmalen des Anspruches 1 gelöst. Die weitere Ausgestaltung der Erfindung ist den Unteransprüchen zu entnehmen.This object is achieved according to the invention with a device according to the features of claim 1. The further embodiment of the invention can be found in the dependent claims.

Erfindungsgemäß ist also eine Einrichtung vorgesehen, bei der die Leitung eine medienführende zentrale Rohrleitung als Mediumrohr sowie zumindest eine weitere medienführende, zu der zentralen Rohrleitung konzentrisch oder koaxial angeordnete, mit der eingeschlossenen Rohrleitung einen Ringraum begrenzende Rohrleitung hat, wobei die zentrale Rohrleitung sowie der zumindest eine Ringraum der Zu- bzw. Rückführung des Fluids aus dem verflüssigten Gas oder eines Gasstromes dient und die äußere Rohrleitung von einem beispielsweise konzentrischen Mantelrohr als Außenrohr umgeben ist, wobei das Mantelrohr gegenüber der äußeren Rohrleitung thermisch isoliert ist, die zentrale Rohrleitung als metallisches Wellrohr ausgeführt ist und wobei die zentrale Rohrleitung und zumindest ein medienführender Ringraum gegeneinander nicht thermisch isoliert sind. Dabei dienen die zentrale Rohrleitung sowie der zumindest eine Ringraum der Zu- bzw. Rückführung des Treibstoffes. Die äußere Rohrleitung ist von einem ebenfalls konzentrischen Mantelrohr umgeben, welches ein thermisches Isoliermaterial einschließt. Die Rohrleitungen und das Mantelrohr sind jeweils als thermisch selbstkompensierende metallische Wellrohre ausgeführt, wobei die zentrale Rohrleitung und der medienführende Ringraum gegeneinander nicht thermisch isoliert sind. Erfindungsgemäß wird also durch die so realisierte konzentrische Bauart der Leitungen dem rückgeführten Gas von dem zugeführten Treibstoff Wärme entzogen, um das Gas zu kühlen bzw. zu verflüssigen. Dabei bildet die koaxiale Trennwand zwischen den Rohrleitungen aufgrund der Ausführung als Wellrohr und der dadurch vergrößerten Oberfläche eine optimale Tauscherfläche.According to the invention, a device is provided in which the line has a media-carrying central pipeline as a medium pipe and at least one further media-carrying pipeline which is arranged concentrically or coaxially with the central pipeline and delimits an annular space with the enclosed pipeline, the central pipeline and the at least one Annular space is used to supply or return the fluid from the liquefied gas or a gas stream and the outer pipeline is surrounded by a, for example, concentric casing pipe as an outer pipe, the casing pipe being thermally insulated from the outer pipe, the central pipe being designed as a corrugated metal pipe and wherein the central pipeline and at least one media-carrying annular space are not thermally insulated from one another. The central pipeline and the at least one annular space serve to supply and return the Fuel. The outer pipeline is surrounded by a likewise concentric jacket tube which encloses a thermal insulating material. The pipelines and the jacket pipe are each designed as thermally self-compensating metallic corrugated pipes, the central pipeline and the media-carrying annular space not being thermally insulated from one another. According to the invention, the concentric construction of the lines implemented in this way means that heat is extracted from the recirculated gas from the supplied fuel in order to cool or liquefy the gas. The coaxial partition between the pipelines forms an optimal exchanger surface due to the design as a corrugated pipe and the resulting increased surface area.

Besonders vorteilhaft ist es darüber hinaus, wenn die Rohrleitungen und das Mantelrohr jeweils als thermisch selbstkompensierende metallische Wellrohre ausgeführt sind, um so eine besonders flexible Leitung zu schaffen, welche auch in vergleichsweise kleinen Radien verlegt werden kann.It is also particularly advantageous if the pipelines and the jacket pipe are each designed as thermally self-compensating metallic corrugated pipes in order to create a particularly flexible pipe that can also be laid in comparatively small radii.

Zudem erweist es sich als besonders praxisgerecht, wenn dabei alle Rohrleitungen und das Mantelrohr koaxial zueinander angeordnet sind.In addition, it proves to be particularly practical if all the pipelines and the jacket pipe are arranged coaxially to one another.

Bei einer weiteren, ebenfalls besonders Erfolg versprechenden Abwandlung der Erfindung ist in dem Ringraum zwischen der zentralen Rohrleitung als Mediumrohr und der Rohrleitung eine weitere, den Ringraum in einen inneren Ringraum und einen äußeren Ringraum unterteilende Rohrleitung angeordnet. Hierdurch wird es möglich, einen "Stand-by-Betrieb" einzurichten, in dem kontinuierlich aus dem Speicherbehälter Treibstoff entnommen und durch die zentrale Rohrleitung bis zu einem Strömungsumkehrbereich in einem dem Speicherbehälter abgewandten Leitungsabschnitt der Leitung gefördert wird. Der Treibstoff wird dann durch den inneren Ringraum zurück in den Speicherbehälter gefördert. Hierdurch ergibt sich eine kontinuierliche Strömung in der Leitung, durch die eine unerwünschte Erwärmung vermieden werden kann. Zudem steht zum Betanken jederzeit eine gewünschte Treibstoffzufuhr zur Verfügung, sodass mit dem Betankungsvorgang unverzüglich begonnen werden kann, sobald die Leitung mit dem Kraftfahrzeug verbunden ist.In a further, also particularly promising modification of the invention, another pipeline dividing the annular space into an inner annular space and an outer annular space is arranged in the annular space between the central pipeline as a medium pipe and the pipeline. This makes it possible to set up a "standby mode" in which fuel is continuously withdrawn from the storage container and conveyed through the central pipeline to a flow reversal area in a line section of the line facing away from the storage container. The fuel is then fed back into the storage container through the inner annulus. This results in a continuous flow in the line, by means of which undesired heating can be avoided. In addition, a desired fuel supply is always available for refueling, so that the refueling process can be started immediately as soon as the line is connected to the motor vehicle.

Dabei ist es besonders vorteilhaft, wenn der äußere Ringraum zur Ableitung der beim Betanken aus dem Kraftfahrzeugtank verdrängten Gasvolumina ausgeführt ist. Die verdrängten, auch als "Boil-Off-Gase" bezeichneten gasförmigen Volumina können dadurch zuverlässig durch den äußeren Ringraum ohne einen Austausch mit dem dem Kraftfahrzeug zugeführten Treibstoff in den Speicherbehälter geleitet werden, um diese dort erneut zu verflüssigen. Ein Austreten der gasförmigen Bestandteile aus dem Kraftfahrzeugtank in die Umgebung kann dadurch vermieden und unerwünschte Umweltbelastungen verhindert werden.It is particularly advantageous if the outer annular space is designed to divert the gas volumes displaced from the motor vehicle tank during refueling. The displaced gaseous volumes, also referred to as "boil-off gases", can thus be reliably conducted through the outer annular space into the storage container without an exchange with the fuel supplied to the motor vehicle, in order to liquefy it there again. Leakage of the gaseous components from the vehicle tank into the Environment can thereby be avoided and undesirable environmental pollution can be prevented.

Zu diesem Zweck ist gemäß einer besonders sinnvollen Ausgestaltung der Leitung der äußere Ringraum mit einer separaten Einlassöffnung und einer separaten Auslassöffnung ausgestattet, sodass die Rückführung des Boil-Off-Gases getrennt von dem Treibstoff, jedoch durch dieselbe Leitung realisiert werden kann.For this purpose, according to a particularly useful configuration of the line, the outer annular space is equipped with a separate inlet opening and a separate outlet opening, so that the return of the boil-off gas can be implemented separately from the fuel, but through the same line.

Weiterhin ist es besonders Erfolg versprechend, wenn die Einrichtung einen Speicherbehälter für LNG aufweist und die Leitung den Speicherbehälter mit einer Betankungseinrichtung verbindet. Hierdurch können vergleichsweise große Entfernungen zwischen der Betankungseinrichtung und einem zentralen, beispielsweise unterirdischen Speicherbehälter mittels der Leitung problemlos überwunden werden. Der Speicherbehälter kann zudem auf diese Weise mit mehreren Betankungseinrichtungen an gegebenenfalls unterschiedlichen Orten verbunden sein.Furthermore, it is particularly promising if the device has a storage container for LNG and the line connects the storage container to a refueling device. In this way, comparatively large distances between the refueling device and a central, for example underground, storage container can be easily overcome by means of the line. The storage container can also be connected in this way to a plurality of refueling devices at different locations if necessary.

Bei einer anderen, ebenfalls besonders sinnvollen Ausführungsform der Erfindung ist in dem äußeren Ringraum zwischen dem Mantelrohr und der äußeren Rohrleitung eine Leckageüberwachungseinrichtung angeordnet. Hierdurch können auftretende Undichtigkeiten infolge von Beschädigungen oder durch Verschleiß schnell und zuverlässig erkannt und die Zuführung des Treibstoffes unterbunden werden. Hierzu eignen sich beispielsweise Verfahren zur faseroptischen Temperaturmessung, wobei beispielsweise Glasfasern als Sensoren zur Detektion auftretender Leckagen genutzt werden. Alternativ kann auch eine auftretende Druckdifferenz in dem äußeren Ringraum als Indikator für eine Leckage genutzt werden.In another, likewise particularly useful embodiment of the invention, a leakage monitoring device is arranged in the outer annular space between the casing tube and the outer pipeline. In this way, leaks that occur as a result of damage or wear can be detected quickly and reliably and the supply of fuel can be prevented. Methods for fiber-optic temperature measurement, for example, are suitable for this, with glass fibers, for example, being used as sensors for detecting leaks that occur. Alternatively, a pressure difference that occurs in the outer annular space can also be used as an indicator of a leak.

Der Ringraum zwischen dem Mantelrohr und der äußeren Rohrleitung könnte durch ein Vakuum thermisch isoliert sein. Besonders praxisgerecht ist es auch, wenn in dem Ringraum zwischen dem Mantelrohr und der äußeren Rohrleitung ein thermisches Isoliermaterial vorgesehen ist, das als einen wesentlichen Bestandteil einen Schaum, insbesondere einen Polyurethan-Schaumstoff (PUR) aufweist. Das Isoliermaterial verleiht der Leitung zugleich eine hohe mechanische Stabilität und Belastbarkeit, sodass die Gefahr einer Beschädigung deutlich vermindert ist. Zudem verhindert die Mehrwandigkeit das Entweichen flüssiger oder gasförmiger Bestandteile in die Umgebung. Vorzugsweise ist die Leitung hinsichtlich ihrer thermischen Dehnung selbstkompensierend als Wellrohr ausgeführt.The annular space between the jacket pipe and the outer pipeline could be thermally insulated by a vacuum. It is also particularly practical if a thermal insulating material is provided in the annular space between the jacket pipe and the outer pipeline, which has a foam, in particular a polyurethane foam (PUR) as an essential component. The insulating material gives the line a high level of mechanical stability and resilience, so that the risk of damage is significantly reduced. In addition, the multiple walls prevent liquid or gaseous components from escaping into the environment. The line is preferably designed as a corrugated pipe so that it is self-compensating with regard to its thermal expansion.

Ferner ist es auch von Vorteil, wenn die Leitung zumindest abschnittsweise mit einer umfangsseitigen Verstärkung aus einem Geflecht versehen ist. Eine solche Armierung umfasst beispielsweise ein gewebtes Geflecht und/oder ein nichtgewebtes Geflecht, wobei das Material der Armierung beliebig gewählt sein kann. Auf diese Weise werden die mechanischen Eigenschaften weiter verbessert.Furthermore, it is also advantageous if the line is provided at least in sections with a peripheral reinforcement made of a braid. Such a reinforcement includes, for example, a woven mesh and / or a non-woven mesh, wherein the material of the reinforcement can be selected as desired. In this way the mechanical properties are further improved.

Die Erfindung lässt verschiedene Ausführungsformen zu. Zur weiteren Verdeutlichung ihres Grundprinzips ist eine davon in der Zeichnung dargestellt und wird nachfolgend beschrieben. Diese zeigt in

Fig. 1
eine Prinzipdarstellung einer erfindungsgemäßen Einrichtung mit einer Leitung für Treibstoff;
Fig. 2
eine perspektivische, teilweise geschnittene Darstellung eines Leitungsabschnittes der in Figur 1 gezeigten Leitung;
Fig. 3
einen Stand-By-Betrieb der Einrichtung;
Fig. 4
einen Entnahme-Betrieb der Einrichtung:
Fig. 5
einen Stand-By-Betrieb einer Variante der Einrichtung;
Fig. 6
einen Entnahme -Betrieb der in Figur 5 gezeigten Einrichtung.
The invention allows various embodiments. To further clarify its basic principle, one of them is shown in the drawing and is described below. This shows in
Fig. 1
a schematic diagram of a device according to the invention with a line for fuel;
Fig. 2
a perspective, partially sectioned illustration of a line section of FIG Figure 1 shown line;
Fig. 3
a stand-by mode of the device;
Fig. 4
an extraction operation of the facility:
Fig. 5
a stand-by mode of a variant of the device;
Fig. 6
an extraction operation of the in Figure 5 facility shown.

Eine erfindungsgemäße, zum Betanken von verschiedenen Fahrzeugen und Wasserfahrzeugen bestimmte Einrichtung 1 wird nachstehend anhand der Figuren 1 bis 4 näher erläutert. Die Einrichtung 1 ermöglicht die Betankung verschiedener Kraftfahrzeuge 2 mit einem als Treibstoff dienenden verflüssigten Gas, insbesondere Flüssigerdgas (LNG). Hierzu hat die Einrichtung einen als oberirdischer Tank ausgeführten Speicherbehälter 3 für die Speicherung des verflüssigten Gases, dem eine nicht weiter dargestellte Kühleinrichtung zugeordnet ist, um das Gas durch Abkühlung auf einen geeigneten Temperaturbereich unterhalb von -160 °C zu verflüssigen. Zwischen einer jeweiligen als Zapfstelle ausgeführten Betankungseinrichtung 4, die in an sich bekannter Weise für die verschiedenen Kraftfahrzeugarten entsprechend ausgestattet ist, ist eine als Wellrohr ausgeführte Leitung 5 angeordnet.A device 1 according to the invention intended for refueling various vehicles and watercraft will be described below with reference to FIG Figures 1 to 4 explained in more detail. The device 1 enables various motor vehicles 2 to be refueled with a liquefied gas serving as fuel, in particular liquefied natural gas (LNG). For this purpose, the device has a storage container 3 designed as an above-ground tank for storing the liquefied gas, to which a cooling device (not shown) is assigned to liquefy the gas by cooling it to a suitable temperature range below -160 ° C. A line 5 designed as a corrugated pipe is arranged between a respective refueling device 4 designed as a tapping point, which is appropriately equipped in a manner known per se for the various types of motor vehicle.

Der konstruktive Aufbau der Leitung 5 wird anhand der Figur 2 näher erläutert. Die Leitung 5 hat eine medienführende zentrale Rohrleitung 6 als Mediumrohr, durch welche der Treibstoff von dem Speicherbehälter 3 zu der jeweiligen Betankungseinrichtung 4 gefördert werden kann. Diese ist von zwei weiteren medienführenden Rohrleitungen 7, 8 konzentrisch eingeschlossen, sodass zwei medienführende Ringräume 9, 10 entstehen, deren Funktion nachfolgend noch mit Bezug zu den Figuren 3 und 4 erläutert wird. Schließlich ist noch ein äußeres Mantelrohr 11 als Außenrohr vorgesehen, welches zwischen der Rohrleitung 8 und dem Mantelrohr 11 ein ringförmiges Isoliermaterial 12 einschließt, um so die Leitung 5 thermisch zu isolieren. Zudem sind die Rohrleitungen 6, 7, 8 und das Mantelrohr 11 als thermisch selbstkompensierende metallische Wellrohre ausgeführt. Die zentrale Rohrleitung 6 und die medienführenden Ringräume 9, 10 sind thermisch nicht gegeneinander isoliert. Indem die zentrale Rohrleitung 6 und die beiden medienführenden Ringräume 9, 10 lediglich durch die Wandfläche der jeweiligen Rohrleitungen 6, 7 getrennt, nicht jedoch thermisch isoliert sind, wird dem in den Ringräumen 9, 10 geführten Medium durch den in der zentralen Rohrleitung 6 geführten Treibstoff Wärme entzogen und dieses entsprechend gekühlt. Dabei bildet die koaxiale Trennwand zwischen den Rohrleitungen 6, 7, 8 aufgrund der Ausführung als Wellrohr eine optimale Tauscherfläche. Durch die konzentrische Bauform wird zugleich auch die thermische Isolierung gegenüber der Umgebung verbessert, indem lediglich eine einzige äußere Isolierung erforderlich ist. Zur Überprüfung ist dem äußeren Ringraum 10 zwischen dem Mantelrohr 11 und der Rohrleitung 8 eine Leckageüberwachungseinrichtung 13 zugeordnet und ermöglicht so die kontinuierliche Überwachung der Leitung auf mögliche Undichtigkeiten.The structural design of the line 5 is based on Figure 2 explained in more detail. The line 5 has a media-carrying central pipe 6 as a medium pipe, through which the fuel can be conveyed from the storage container 3 to the respective refueling device 4. This is enclosed concentrically by two further media-carrying pipes 7, 8, so that two media-carrying annular spaces 9, 10 are created, the function of which is described below with reference to the Figures 3 and 4th is explained. Finally, an outer jacket tube 11 is also provided as an outer tube, which encloses an annular insulating material 12 between the pipeline 8 and the jacket tube 11 in order to thermally insulate the line 5. In addition, the pipes 6, 7, 8 and the jacket pipe 11 are designed as thermally self-compensating metallic corrugated pipes. The central pipeline 6 and the media-carrying annular spaces 9, 10 are not thermally insulated from one another. Since the central pipeline 6 and the two media-carrying annular spaces 9, 10 are only separated by the wall surface of the respective pipelines 6, 7, but not thermally insulated, the medium carried in the annular spaces 9, 10 is replaced by the fuel carried in the central pipeline 6 Removed heat and cooled it accordingly. The coaxial partition between the pipes 6, 7, 8 forms an optimal exchanger surface due to the design as a corrugated pipe. The concentric design also improves the thermal insulation from the environment, as only a single external insulation is required. For checking purposes, a leakage monitoring device 13 is assigned to the outer annular space 10 between the jacket tube 11 and the pipeline 8 and thus enables the line to be continuously monitored for possible leaks.

Zusätzlich zu der dem Transport des Treibstoffes dienenden zentralen Rohrleitung 6 ermöglichen die beiden separaten Ringräume 9, 10 zwischen den konzentrischen Leitungen 7, 8 zwei verschiedene Betriebszustände, die nachstehend mit Bezug auf die Figuren 3 und 4 näher erläutert werden. Zum einen zeigt Figur 3 einen "Stand-by-Betrieb", in dem kontinuierlich aus dem Speicherbehälter 3 Treibstoff entnommen wird und durch die zentrale Rohrleitung 6 bis zu einem Strömungsumkehrbereich 14 vor einem nicht gezeigten, verschlossenen Leitungsende in einen dem Speicherbehälter 3 abgewandten Leitungsabschnitt gefördert wird. Der Treibstoff wird dann in Pfeilrichtung 16 durch den inneren Ringraum 9 und zwei Leitungsanschlüsse 15 zurück in den Speicherbehälter 3 gefördert. Hierdurch ergibt sich eine kontinuierliche Strömung in der Leitung 5, durch die eine unerwünschte Erwärmung vermieden werden kann.In addition to the central pipeline 6 serving to transport the fuel, the two separate annular spaces 9, 10 between the concentric lines 7, 8 enable two different operating states, which are described below with reference to FIG Figures 3 and 4th are explained in more detail. For one, shows Figure 3 a "standby mode" in which fuel is continuously taken from the storage container 3 and conveyed through the central pipeline 6 to a flow reversal area 14 in front of a closed line end (not shown) in a line section facing away from the storage container 3. The fuel is then conveyed back into the storage container 3 in the direction of the arrow 16 through the inner annular space 9 and two line connections 15. This results in a continuous flow in the line 5, by means of which undesired heating can be avoided.

Zum anderen wird der äußere Ringraum 10 beim Betanken des Kraftfahrzeuges 2 zur Ableitung der aus einem Kraftfahrzeugtank verdrängten, auch als "Boil-Off-Gase" bezeichneten gasförmigen Volumina genutzt. Diese werden aus dem Kraftfahrzeugtank durch eine separate Einlassöffnung 18, den äußeren Ringraum 10 und eine Auslassöffnung 19 ohne eine Verbindung zu der zentralen Rohrleitung 6 in Pfeilrichtung 17 in den Speicherbehälter 3 geleitet, um diese dort erneut zu verflüssigen. Ein Austreten der gasförmigen Bestandteile aus dem Kraftfahrzeugtank in die Umgebung kann dadurch vermieden und unerwünschte Umweltbelastungen und Gefahren verhindert werden. In diesem Betriebsmodus erfolgt die Zuführung des Treibstoffes zugleich durch die zentrale Rohrleitung 6 als auch durch die Leitungsanschlüsse 15 und den ersten, inneren Ringraum 9. Auf diese Weise wird der Volumenstrom erhöht und der Tankvorgang dementsprechend verkürzt.On the other hand, when the motor vehicle 2 is being refueled, the outer annular space 10 is used to divert the gas displaced from a motor vehicle tank, also called "boil-off gases". designated gaseous volumes are used. These are fed from the motor vehicle tank through a separate inlet opening 18, the outer annular space 10 and an outlet opening 19 without a connection to the central pipeline 6 in the direction of arrow 17 into the storage container 3 in order to liquefy it there again. This can prevent the gaseous constituents from escaping from the motor vehicle tank into the environment and prevent undesirable environmental pollution and hazards. In this operating mode, the fuel is supplied through the central pipe 6 as well as through the line connections 15 and the first, inner annular space 9. In this way, the volume flow is increased and the refueling process is correspondingly shortened.

Ergänzend wird in den Figuren 5 und 6 noch eine Variante der Einrichtung 1 gezeigt. Die Rohrleitung 6 ist dabei von lediglich einer medienführenden Rohrleitung 7 konzentrisch eingeschlossen, durch die ein medienführender Ringraum 9 entsteht. Ein äußeres Mantelrohr 11 bildet das Außenrohr, welches zwischen dem Ringraum 9 und dem Mantelrohr 11 ein ringförmiges Isoliermaterial 12 einschließt, um so die Rohrleitungen 6, 7 thermisch zu isolieren. Die zentrale Rohrleitung 6 und der medienführende Ringraum 9 sind thermisch nicht gegeneinander isoliert, sodass diese lediglich durch die Wandfläche der Rohrleitung 6 getrennt, nicht jedoch thermisch isoliert sind.In addition, the Figures 5 and 6th another variant of the device 1 is shown. The pipeline 6 is concentrically enclosed by only one media-carrying pipeline 7, through which a media-carrying annular space 9 is created. An outer jacket tube 11 forms the outer tube, which encloses an annular insulating material 12 between the annular space 9 and the jacket tube 11 in order to thermally insulate the pipes 6, 7. The central pipeline 6 and the media-carrying annular space 9 are not thermally insulated from one another, so that they are only separated by the wall surface of the pipeline 6, but not thermally insulated.

Wie durch Richtungspfeile verdeutlicht, ist sowohl in dem in Figur 5 gezeigten Betriebsmodus der Zuführung von Flüssigerdgas als auch in dem in Figur 6 gezeigten Betriebsmodus der Absaugung von Boil-Off-Gasen BOG jeweils eine Zirkulation des in dem Speicherbehälter vorhandenen Flüssigerdgases durch die Rohrleitung 7 eingestellt. Auf diese Weise wird dem alternativ in der Rohrleitung 6 geführten Flüssigerdgas oder Boil-Off-Gas durch die Rohrleitung 7 Wärme entzogen und dieses entsprechend gekühlt, wobei die Boil-Off-Gase durch den Wärmeentzug verflüssigt werden können. BEZUGSZEICHENLISTE 1 Einrichtung 16 Pfeilrichtung 2 Kraftfahrzeug 17 Pfeilrichtung 3 Speicherbehälter 18 Einlassöffnung 4 Betankungseinrichtung 19 Auslassöffnung 5 Leitung 6 zentrale Rohrleitung 7 Rohrleitung 8 Rohrleitung 9 Ringraum 10 Ringraum 11 Mantelrohr 12 Isoliermaterial 13 Leckageüberwachungseinrichtung 14 Strömungsumkehrbereich 15 Leitungsanschluss As indicated by the directional arrows, both the in Figure 5 operating mode shown for the supply of liquefied natural gas as well as in the in Figure 6 Operating mode shown for the suction of boil-off gases BOG each set a circulation of the liquefied natural gas present in the storage container through the pipeline 7. In this way, heat is withdrawn from the liquefied natural gas or boil-off gas routed alternatively in the pipeline 6 through the pipeline 7 and cooled accordingly, the boil-off gases being able to be liquefied by the heat withdrawal. <b> REFERENCE CHARACTERISTICS LIST </b> 1 Facility 16 Arrow direction 2 Motor vehicle 17th Arrow direction 3 Storage tank 18th Inlet opening 4th Refueling facility 19th Outlet opening 5 management 6th central pipeline 7th Pipeline 8th Pipeline 9 Annulus 10 Annulus 11 Jacket pipe 12 insulating material 13th Leak monitoring device 14th Flow reversal area 15th Line connection

Claims (10)

  1. Facility (1) for refuelling motor vehicles (2) with a fluid which serves as fuel and which is composed of liquefied gas, in particular liquefied natural gas, comprising at least one storage container (3), a cooling device, at least one conveying device by means of which the fluid can be fed from the storage container (3) to at least one refuelling facility (4) for motor vehicles (2), and at least one line (5) which serves for the feed of the fluid to the refuelling facility (4), wherein the line (5) has a media-conducting central pipeline (6) as medium pipe and has at least one further media-conducting outer pipeline (8) which is arranged concentrically with respect to the central pipeline (6) and which, together with the enclosed pipeline (6), delimits an annular space (10), wherein the central pipeline (6) and at least one annular chamber (9, 10) serve for the feed and return of the fluid or of a gas flow, and in that the outer pipeline (8) is surrounded by a jacket pipe (11), wherein the jacket pipe (11) is thermally insulated with respect to the outer pipeline (7) and the central pipeline (6) is formed as a metallic corrugated pipe such that the central pipeline (6) and at least one media-conducting annular space (9, 10) are not thermally insulated with respect to one another, characterized in that, between the central pipeline (6) and the outer pipeline (8), there is arranged a further pipeline (7) which divides the annular space into an inner annular space (9) and an outer annular space (10).
  2. Facility (1) according to Claim 1, characterized in that the pipelines (6, 7, 8) and the jacket pipe (11) are each formed as thermally self-compensating metallic corrugated pipes.
  3. Facility (1) according to Claims 1 or 2, characterized in that all pipelines (6, 7, 8) and the jacket pipe (11) are arranged coaxially with respect to one another.
  4. Facility (1) according to at least one of the preceding claims, characterized in that the outer annular space (10) is designed for discharging the gas volumes displaced out of the motor vehicle tank during the refuelling process.
  5. Facility (1) according to at least one of the preceding claims, characterized in that the outer annular space (10) is equipped with a separate inlet opening (18) and a separate outlet opening (19).
  6. Facility (1) according to at least one of the preceding claims, characterized in that the facility (1) has a storage container (3) for liquefied natural gas (LNG), and in that the line (5) connects the storage container (3) to a refuelling facility (4).
  7. Facility (1) according to at least one of the preceding claims, characterized in that a leakage monitoring device (13) is arranged in the outer annular space (10) between the jacket pipe (11) and the outer pipeline (8).
  8. Facility (1) according to at least one of the preceding claims, characterized in that a thermal insulation material (12) is arranged at least in certain portions in the annular space (10) between the jacket pipe (11) and the outer pipeline (8).
  9. Facility (1) according to at least one of the preceding claims, characterized in that the line (5) is of self-compensating design.
  10. Facility (1) according to at least one of the preceding claims, characterized in that the line (5) is equipped at least in certain portions with a peripheral reinforcement composed of an armouring.
EP16788660.5A 2015-11-03 2016-10-26 Device for fuelling motor vehicles with liquefied gas Active EP3371506B8 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL16788660T PL3371506T3 (en) 2015-11-03 2016-10-26 Device for fuelling motor vehicles with liquefied gas

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015118830.9A DE102015118830A1 (en) 2015-11-03 2015-11-03 Device for refueling motor vehicles with liquefied gas
PCT/EP2016/075730 WO2017076706A1 (en) 2015-11-03 2016-10-26 Device for fuelling motor vehicles with liquefied gas

Publications (3)

Publication Number Publication Date
EP3371506A1 EP3371506A1 (en) 2018-09-12
EP3371506B1 true EP3371506B1 (en) 2020-12-16
EP3371506B8 EP3371506B8 (en) 2021-03-17

Family

ID=57218872

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16788660.5A Active EP3371506B8 (en) 2015-11-03 2016-10-26 Device for fuelling motor vehicles with liquefied gas

Country Status (5)

Country Link
US (1) US10793417B2 (en)
EP (1) EP3371506B8 (en)
DE (1) DE102015118830A1 (en)
PL (1) PL3371506T3 (en)
WO (1) WO2017076706A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10773822B2 (en) 2016-05-29 2020-09-15 Neoex Systems, Inc. System and method for the transfer of cryogenic fluids
CN109899677A (en) * 2019-04-01 2019-06-18 太仓中科信息技术研究院 Flow control air charging system
CN110578839A (en) * 2019-08-30 2019-12-17 北京航天动力研究所 vacuum heat insulation metal hose for conveying liquid hydrogen and liquid oxygen
CN110848561B (en) * 2019-10-16 2024-06-28 北京航天试验技术研究所 Liquid hydrogen filling device
CN112432053A (en) * 2020-11-19 2021-03-02 深圳市凯丰实业发展有限公司 Zero discharge system device of liquid nitrogen storage tank
US12011989B1 (en) 2021-01-17 2024-06-18 Neoex Systems, Inc. Direct liquefaction for vehicle refueling
DE102021125688A1 (en) 2021-10-04 2023-04-06 Schmöle GmbH Heat exchanger and method for refueling a vehicle
CN115325287B (en) * 2022-09-13 2024-07-30 西南石油大学 Composite energy pipeline transmission characteristic analysis method

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE721995C (en) * 1940-11-05 1942-06-25 Ruhrchemie Ag Device for refueling pressurized liquefied gases
DE1650060A1 (en) * 1967-08-24 1970-08-27 Kabel Metallwerke Ghh Flexible pipe for the transport of liquids or gases
US4523548A (en) * 1983-04-13 1985-06-18 Michigan Consolidated Gas Company Gaseous hydrocarbon fuel storage system and power plant for vehicles
DE3334770C2 (en) * 1983-09-26 1994-03-31 Kabelmetal Electro Gmbh Conduit for the discharge of frozen media
US5076242A (en) * 1990-07-18 1991-12-31 Illinois Tool Works Inc. Integral fuel line
US5353849A (en) 1992-05-27 1994-10-11 Cryogenic Fuels Inc. Apparatus for metering and transfer of cryogenic liquids
US5315831A (en) 1993-01-22 1994-05-31 Hydra-Rig, Incorporated Liquid natural gas and compressed natural gas total fueling system
US5421160A (en) 1993-03-23 1995-06-06 Minnesota Valley Engineering, Inc. No loss fueling system for natural gas powered vehicles
DE9310530U1 (en) 1993-07-15 1993-09-09 Ke Rohrsysteme und Umwelttechnik GmbH, 30179 Hannover Heat insulated pipe
DE19501332A1 (en) 1995-01-18 1996-07-25 Alcatel Kabel Ag Cooling coaxial system like superconducting cable
DE19546659C2 (en) 1995-12-14 1999-01-07 Messer Griesheim Gmbh Device for refueling a vehicle
AT413589B (en) * 1998-04-09 2006-04-15 Semperit Ag Holding FLEXIBLE CRYOGEN TUBE
US6446672B1 (en) 1999-11-05 2002-09-10 Wellstream, Inc. Flexible pipe including vent passage and method of manufacturing same
US6513336B2 (en) * 2000-11-14 2003-02-04 Air Products And Chemicals, Inc. Apparatus and method for transferring a cryogenic fluid
DE10117329A1 (en) 2001-04-06 2002-10-10 Linde Ag Pipe rupture protection for a vacuum-insulated filling line
US7946309B2 (en) * 2005-04-26 2011-05-24 Veeder-Root Company Vacuum-actuated shear valve device, system, and method, particularly for use in service station environments
DE102004038460A1 (en) * 2004-08-07 2006-03-16 Messer France S.A. Method and device for filling a container with liquid gas from a storage tank
DE202007018142U1 (en) 2007-12-22 2009-03-05 Weh, Erwin Clutch, especially for LNG
DE102008060127A1 (en) * 2008-12-03 2010-06-10 Bayerische Motoren Werke Aktiengesellschaft Arrangement for refueling motor vehicles, has cold accumulator loaded by heat exchange with deep-frozen hydrogen, which removes large storage tank
EP2466186A1 (en) 2010-12-16 2012-06-20 Air Products and Chemicals, Inc. A process for filling a gas storage container

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US20180312390A1 (en) 2018-11-01
EP3371506A1 (en) 2018-09-12
WO2017076706A1 (en) 2017-05-11
PL3371506T3 (en) 2021-10-11
DE102015118830A1 (en) 2017-05-04
US10793417B2 (en) 2020-10-06
EP3371506B8 (en) 2021-03-17

Similar Documents

Publication Publication Date Title
EP3371506B1 (en) Device for fuelling motor vehicles with liquefied gas
EP0779468B1 (en) Installation for the storage of gas liquified at low temperatures
DE102014209921B4 (en) Pressure vessel for a vehicle
WO2015014517A1 (en) Tank
DE102006025656B4 (en) Device for fuel storage and transport of cryogenic fuel
EP3708896B1 (en) Gas tank system, method for operating the gas tank system and train with gas tank system
DE102010020476A1 (en) Method and device for storing, transferring and / or transporting cryogenic liquefied combustible gas
EP3676529B1 (en) Process for filling a mobile refrigerant tank with a cryogenic refrigerant
EP0574811B1 (en) Method for cooling a storage container
DE19546659C2 (en) Device for refueling a vehicle
EP3708897A1 (en) Gas tank system, method for operating the gas tank system and train with gas tank system
DE202015009958U1 (en) Device for refueling motor vehicles with liquefied gas
DE102017012125A1 (en) Heat transfer device for refrigeration provision in refrigerated vehicles, whose motor vehicle engine is driven by LNG
DE102014209916A1 (en) High pressure vessel
DE102019134474A1 (en) Fuel supply device for cryogenic fuels
DE102010010108B4 (en) Method of storing and storing natural gas
DE102014209919A1 (en) Kryodruckbehälter
DE102017008211B4 (en) Method and device for filling a mobile refrigerant tank with a cryogenic refrigerant
DE102023200257B3 (en) Cryotank comprising a removal device
DE102014209912A1 (en) Pressure tank for a vehicle
DE19546617A1 (en) Device for supplying a consumer with cryofuel from a cryotank
DE69729288T2 (en) COOLED FUEL FOR ENGINES
DE102018210002A1 (en) Device for supplying an internal combustion engine with cryogenic fuel
DE102014210902B4 (en) Pressure tank
WO2023178371A1 (en) System for rapid filling of a cryogenic container of a vehicle

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180604

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200921

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016012001

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1345917

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210115

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: BRUGG ROHRSYSTEM AG

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502016012001

Country of ref document: DE

Representative=s name: PATENTANWALTSKANZLEI SCHEFFLER, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502016012001

Country of ref document: DE

Owner name: BRUGG ROHRSYSTEM AG, CH

Free format text: FORMER OWNER: BRUGG ROHR AG HOLDING, BRUGG, CH

REG Reference to a national code

Ref country code: CH

Ref legal event code: PK

Free format text: BERICHTIGUNG B8

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210316

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210316

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210416

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016012001

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210416

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

26N No opposition filed

Effective date: 20210917

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210416

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20211031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211026

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211026

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1345917

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20161026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20231023

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231023

Year of fee payment: 8

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502016012001

Country of ref document: DE

Representative=s name: CREUTZBURG, TOM, DIPL.-ING., DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231030

Year of fee payment: 8

Ref country code: FR

Payment date: 20231024

Year of fee payment: 8

Ref country code: DE

Payment date: 20231030

Year of fee payment: 8

Ref country code: CH

Payment date: 20231102

Year of fee payment: 8

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20240116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20240920

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20240923

Year of fee payment: 9