EP3371440A1 - Brennkraftmaschine mit einspritzmengensteuerung - Google Patents

Brennkraftmaschine mit einspritzmengensteuerung

Info

Publication number
EP3371440A1
EP3371440A1 EP16798618.1A EP16798618A EP3371440A1 EP 3371440 A1 EP3371440 A1 EP 3371440A1 EP 16798618 A EP16798618 A EP 16798618A EP 3371440 A1 EP3371440 A1 EP 3371440A1
Authority
EP
European Patent Office
Prior art keywords
needle
injector
internal combustion
combustion engine
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP16798618.1A
Other languages
English (en)
French (fr)
Inventor
Medy Satria
Dino Imhof
Raphael Burgmair
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Innio Jenbacher GmbH and Co OG
Original Assignee
GE Jenbacher GmbH and Co OHG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GE Jenbacher GmbH and Co OHG filed Critical GE Jenbacher GmbH and Co OHG
Publication of EP3371440A1 publication Critical patent/EP3371440A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D41/1402Adaptive control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0602Control of components of the fuel supply system
    • F02D19/0607Control of components of the fuel supply system to adjust the fuel mass or volume flow
    • F02D19/061Control of components of the fuel supply system to adjust the fuel mass or volume flow by controlling fuel injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0626Measuring or estimating parameters related to the fuel supply system
    • F02D19/0628Determining the fuel pressure, temperature or flow, the fuel tank fill level or a valve position
    • F02D19/0631Determining the fuel pressure, temperature or flow, the fuel tank fill level or a valve position by estimation, i.e. without using direct measurements of a corresponding sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0639Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels
    • F02D19/0642Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels at least one fuel being gaseous, the other fuels being gaseous or liquid at standard conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/08Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed simultaneously using pluralities of fuels
    • F02D19/10Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed simultaneously using pluralities of fuels peculiar to compression-ignition engines in which the main fuel is gaseous
    • F02D19/105Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed simultaneously using pluralities of fuels peculiar to compression-ignition engines in which the main fuel is gaseous operating in a special mode, e.g. in a liquid fuel only mode for starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0027Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures the fuel being gaseous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2464Characteristics of actuators
    • F02D41/2467Characteristics of actuators for injectors
    • F02D41/247Behaviour for small quantities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3827Common rail control systems for diesel engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M43/00Fuel-injection apparatus operating simultaneously on two or more fuels, or on a liquid fuel and another liquid, e.g. the other liquid being an anti-knock additive
    • F02M43/04Injectors peculiar thereto
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • F02M61/10Other injectors with elongated valve bodies, i.e. of needle-valve type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1415Controller structures or design using a state feedback or a state space representation
    • F02D2041/1416Observer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/143Controller structures or design the control loop including a non-linear model or compensator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1433Introducing closed-loop corrections characterised by the control or regulation method using a model or simulation of the system
    • F02D2041/1434Inverse model
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0602Fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0611Fuel type, fuel composition or fuel quality
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0614Actual fuel mass or fuel injection amount
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0614Actual fuel mass or fuel injection amount
    • F02D2200/0616Actual fuel mass or fuel injection amount determined by estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/063Lift of the valve needle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3035Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode
    • F02D41/3041Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode with means for triggering compression ignition, e.g. spark plug
    • F02D41/3047Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode with means for triggering compression ignition, e.g. spark plug said means being a secondary injection of fuel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

Dual-Fuel-Brennkraftmaschine, mit: - einer Regeleinrichtung, - wenigstens einem Brennraum, - wenigstens einer Gaszuführvorrichtung zur Zufuhr eines gasförmigen Kraftstoffes zu dem wenigstens einen Brennraum, und - wenigstens einem durch die Regeleinrichtung über ein Aktuatoransteuersignal regelbaren Injektor zur Einspritzung von flüssigem Kraftstoff in den wenigstens einen Brennraum, wobei die Regeleinrichtung in einem Pilotbetriebsmodus der Brennkraftmaschine über das Aktuatoransteuersignal ein Öffnen der Nadel des Injektors im ballistischen Bereich der Nadel regelt, und wobei in der Regeleinrichtung ein Algorithmus abgelegt ist, welcher als Eingangsgrößen zumindest das Aktuatoransteuersignal (Δt) erhält und über ein Injektormodell eine Position der Nadel (6) berechnet und diese mit einem Nadelpositionssollwert (zref) vergleicht, und in Abhängigkeit des Ergebnisses des Vergleiches das Aktuatoransteuersignal (Δt) korrigiert, sowie ein Verfahren zum Betreiben einer solchen Brennkraftmaschine und eines Injektors einer solchen Brennkraftmschine.

Description

BRENNKRAFTMASCHINE MIT EINSPRITZMENGENSTEUERUNG
Die vorliegende Erfindung betrifft eine Dual-Fuel-Brennkraftmaschine mit den Merkmalen des Oberbegriffs des Anspruchs 1 und ein Verfahren mit den Merkmalen des Oberbegriffs des Anspruchs 10 bzw. 1 1 .
Dual-Fuel-Brennkraftmaschinen werden typischerweise in zwei Betriebsmodi betrieben. Dabei unterscheidet man einen Betriebsmodus mit primär flüssiger Kraftstoffzufuhr (kurz „Flüssigbetrieb"; im Falle der Verwendung von Diesel als flüssigem Kraftstoff „Dieselbetrieb" genannt) und einen Betriebsmodus mit primär gasförmiger Kraftstoffzufuhr, bei welchem der flüssige Kraftstoff als Pilotkraftstoff zum Initiieren der Verbrennung dient („Gasbetrieb", oder auch als„Pilotbetrieb" oder„Zündstrahlbetrieb" bezeichnet). Als Beispiel für den flüssigen Kraftstoff sei Diesel genannt. Es könnte auch Schweröl oder ein anderer selbstzündfähiger Kraftstoff sein. Als Beispiel für den gasförmigen Kraftstoff sei Erdgas genannt. In Frage kommen noch andere gasförmige Kraftstoffe wie Biogas etc.
Im Pilotbetrieb wird eine geringe Menge an flüssigem Kraftstoff als sogenannte Piloteinspritzung in einen Brennraum einer Kolben-Zylindereinheit eingebracht. Durch die zum Einspritzzeitpunkt herrschenden Bedingungen entzündet sich der eingebrachte flüssige Kraftstoff und zündet ein im Brennraum der Kolben-Zylindereinheit vorliegendes Gemisch aus gasförmigem Kraftstoff und Luft. Die Menge an flüssigem Kraftstoff einer Piloteinspritzung beträgt typischerweise 0,5 - 5 % der gesamten, dem Brennraum der Kolben-Zylindereinheit in einem Arbeitszyklus der Brennkraftmaschine zugeführten Energiemenge.
Zur Begriffsklärung wird definiert, dass die Brennkraftmaschine entweder im Pilotbetrieb oder im Flüssigbetrieb betrieben wird. Bezüglich der Regeleinrichtung der Pilotbetrieb der Brennkraftmaschine als Pilotmodus bezeichnet, ein Flüssigbetrieb der Brennkraftmaschine wird bezüglich der Regeleinrichtung als Flüssigmodus bezeichnet.
Unter einem ballistischen Bereich versteht man einen Betrieb des Injektors für flüssigen Kraftstoff, bei welchem sich die Nadel ausgehend von einer„Voll-geschlossen"-Position in Richtung einer„Voll-offen"-Position bewegt, ohne diese jedoch zu erreichen. In Folge bewegt sich die Nadel wieder in Richtung der„Voll-geschlossen"-Position, ohne die „Voll-offen"-Position erreicht zu haben. Die Substitutionsrate gibt an, welcher Anteil der der Brennkraftmaschine zugeführten Energie in Form des gasförmigen Kraftstoffes zugeführt wird. Angestrebt werden Substitutionsraten zwischen 98 und 99,5 %. Derart hohe Substitutionsraten erfordern eine Auslegung der Brennkraftmaschine beispielsweise hinsichtlich des Verdichtungsverhältnisses wie sie der eines Gasmotors entspricht. Die teilweise gegensätzlichen Anforderungen an die Brennkraftmaschine für einen Pilotbetrieb und einen Flüssigbetrieb führen zu Kompromissen in der Auslegung, beispielsweise hinsichtlich des Kompressionsverhältnisses.
Problematisch beim Stand der Technik ist, dass über die Lebensdauer eines Injektors für flüssigen Kraftstoff eine exakte Regelung der Nadelposition im ballistischen Bereich unter Verwendung eines einzelnen Injektors mit nur einer Nadel nicht möglich ist. In diesem Bereich bildet sich aufgrund statistischer Schwankungen, Herstellungsvariabilitäten, Abnutzung, usw. die Aktuierung des die Nadel öffnenden Aktuators nicht eindeutig auf die Masse an eingespritztem flüssigem Kraftstoff ab.
Anstelle der Verwendung nur eines Injektors mit nur einer Nadel, die sowohl in einem Pilotbetrieb als auch in einem Betriebsmodus mit vergrößertem Anteil an flüssigen Kraftstoff betreibbar ist, werden daher entweder zwei getrennte Injektoren oder ein Injektor mit zwei getrennten Nadeln eingesetzt. Es ist auch bekannt, die Substitutionsrate nach oben zu beschränken.
Die WO 2014/202202 A1 beschreibt einen Injektor für eine gattungsgemäße Brennkraftmaschine, bei welchem mittels eines im Injektor angeordneten Drucksensors der Druckabfall in einer Speicherkammer gemessen und daraus die tatsächliche Einspritzdauer bestimmt wird. Bei Kleinstmengen ist der Druckabfall aber zu gering, um eine ausreichend genaue Korrelation mit der Einspritzdauer herzustellen Aufgabe der Erfindung ist die Bereitstellung einer Dual-Fuel-Brennkraftmaschine und eines Verfahrens, bei welchen eine exakte Regelung der Nadelposition im ballistischen Bereich möglich ist. Diese Aufgabe wird durch eine Brennkraftmaschine mit den Merkmalen des Anspruchs 1 und ein Verfahren mit den Merkmalen des Anspruchs 10 bzw. 1 1 gelöst. Vorteilhafte Ausführungsformen der Erfindung sind in den abhängigen Ansprüchen definiert.
Dadurch, dass in der Regeleinrichtung ein Algorithmus abgelegt ist, welcher als Eingangsgrößen zumindest das Aktuatoransteuersignal erhält und über ein Injektormodell die Nadelposition berechnet und die mittels des Injektormodells berechnete Nadelposition mit einem gewünschten Nadelpositionssollwert vergleicht und in Abhängigkeit des Ergebnisses des Vergleiches das Aktuatoransteuersignal gleich lässt oder korrigiert, ist es möglich die Nadel im ballistischen Bereich exakt zu regeln. Hierdurch ist die exakte Einspritzung von Kleinstmengen an flüssigem Kraftstoff unter Verwendung nur eines Injektors mit nur einer Nadel möglich, wobei die Substitutionsrate nicht nach oben beschränkt werden muss. Ein und derselbe Injektor kann in einem Bereich von 0 % Substitutionsrate bis zu einer gewählten Obergrenze (z. B. 99,5 %) der Substitutionsrate betrieben werden. Es ist also mit demselben Injektor mit nur einer Nadel ein Betrieb im Flüssigmodus, im Pilotmodus oder ein Mischbetrieb möglich.
Die Regeleinrichtung ist besonders bevorzugt dazu ausgebildet, den Algorithmus während jedes Verbrennungszyklus oder ausgewählter Verbrennungszyklen der Brennkraftmaschine auszuführen und bei Abweichungen das Aktuatoransteuersignal während dieses Verbrennungszyklus zu korrigieren.
Der Algorithmus schätzt auf Basis des Aktuatoransteuersignals eine Nadelposition ab. Die Erfindung geht dann von der durch den Algorithmus berechneten Nadelposition aus und vergleicht diesen Wert mit dem gewünschten Nadelpositionssollwert. Bei Abweichungen kann sofort (z. B. innerhalb von 10 Millisekunden) korrigiert werden.
Bevorzugt ist wenigstens ein Sensor vorgesehen, durch welchen wenigstens ei Messgröße des wenigstens einen Injektors messbar ist, wobei der Sensor Signalverbindung mit der Regeleinrichtung steht oder bringbar ist. In diesem Fall kann der Algorithmus unter Berücksichtigung der wenigstens einen Messgröße über das Injektormodell die Nadelposition berechnen. Es ist natürlich auch möglich, mehrere Messgrößen zur Abschätzung der ausgebrachten Masse an flüssigem Kraftstoff zu verwenden.
Bevorzugt ist vorgesehen, dass der Algorithmus eine Vorsteuerung aufweist, welche aus dem gewünschten Nadelpositionssollwert einen Vorsteuerbefehl (auch als „Vorsteuersignal" bezeichnet) für das Aktuatoransteuersignal berechnet. Die Vorsteuerung stellt eine schnelle Systemantwort sicher, da sie den Injektor so ansteuert, als ob keine Injektorvariabilität existieren würde.
Bei einer Ausbildung der Regeleinrichtung mit Vorsteuerung kann besonders bevorzugt vorgesehen sein, dass der Algorithmus eine Rückkopplungsschleife aufweist, welche unter Berücksichtigung des von der Vorsteuerung berechneten Vorsteuerbefehls für die Nadelposition und der wenigstens einen Messgröße mittels des Injektormodells die Nadelposition berechnet und ggf. (bei Vorliegen einer Abweichung) den von der Vorsteuerung berechneten Nadelpositionssollwert korrigiert. Die Rückkopplungsschleife wird verwendet, um die Ungenauigkeiten der Vorsteuerung (aufgrund von Herstellungsvariabilitäten, Abnutzung, usw.), welche eine Injektordrift verursachen, zu korrigieren.
Bevorzugt weist der Algorithmus einen Beobachter auf, welcher unter Verwendung des Injektormodells die Nadelposition in Abhängigkeit der wenigstens einen Messgröße und des zumindest einen Aktuatoransteuersignals abschätzt. Eine tatsächliche Messung der Nadelposition ist daher für die Rückkopplungsschleife nicht erforderlich. Unabhängig davon, ob eine Rückkopplungsschleife vorgesehen ist, kann die vom Beobachter abgeschätzte Nadelposition in der Vorsteuerung verwendet werden um das Aktuatoransteuersignal zu verbessern.
Verschiedene mögliche Ausbildungen des Beobachters sind dem Fachmann aus der Literatur bekannt (z. B. Luenberger-Beobachter, Kaiman-Filter, „Sliding Mode" Beobachter, usw.). Der Beobachter kann auch dazu dienen, mit Hilfe des Injektormodells den sich über die Lebensdauer des Injektors verändernden Zustand des Injektors (z. B. durch Alterung oder Verschleiß) für eine Verbesserung des Vorsteuersignals und/oder des Aktuatoransteuersignals zu berücksichtigen.
Grundsätzlich ist es möglich, das Aktuatoransteuersignal auf Basis des Nadelpositionssollwertes und auf Basis der vom Beobachter abgeschätzten Nadelposition zu berechnen. Man erhält so ein adaptives, vom Beobachter modifiziertes Vorsteuersignal. In diesem Fall ist die Regelung also nicht zweiteilig aufgebaut, mit einer Vorsteuerung und einer das Vorsteuersignal korrigierenden Rückkopplungsschleife.
Es kann vorgesehen sein, dass das Injektormodell wenigstens beinhaltet:
- die Druckverläufe in mit dem flüssigen Kraftstoff gefüllten Volumina des Injektors - Massenflussraten zwischen den mit dem flüssigen Kraftstoff gefüllten Volumina des Injektors
- Dynamik des Aktuators der Nadel, vorzugsweise Dynamik eines Solenoidventils
Der Injektor kann wenigstens aufweisen:
- eine mit einer Common-Rail der Brennkraftmaschine verbundene Eingangsspeicherkammer
- eine mit der Eingangsspeicherkammer verbundene Speicherkammer für flüssigen Kraftstoff
- einem mit der Speicherkammer verbundenen Volumen über Nadelsitz
- einem einerseits mit der Speicherkammer und andererseits mit einer Ablaufleitung verbundenen Verbindungsvolumen
- eine durch eine Nadel verschließbare und mit dem Volumen über Nadelsitz verbundene Ausbringöffnung für flüssigen Kraftstoff
- einen mittels des Aktuatoransteuersignals ansteuerbaren Aktuator, vorzugsweise Solenoidventil, zum Öffnen der Nadel
- vorzugsweise einer einerseits mit der Speicherkammer und andererseits mit dem Verbindungsvolumen verbundenen Steuerkammer Die Nadel ist üblicherweise entgegen der Öffnungsrichtung durch eine Feder vorgespannt.
Es kann auch ein Injektor vorgesehen sein, der ohne Steuerkammer auskommt, beispielsweise ein Injektor, bei welchem die Nadel durch ein Piezoelement angesteuert wird.
Die wenigstens eine Messgröße kann z.B. ausgewählt sein aus den folgenden Größen oder einer Kombination daraus:
- Druck in einer Common-Rail der Brennkraftmaschine
- Druck in einer Eingangsspeicherkammer des Injektors
- Druck in einer Steuerkammer des Injektors
- Beginn des Abhebens der Nadel vom Nadelsitz Die Erfindung kann bevorzugt bei einer stationären Brennkraftmaschine, für Marineanwendungen oder mobile Anwendungen wie sogenannte„Non-Road-Mobile- Machinery" (NRMM) - vorzugsweise jeweils als Hubkolbenmaschine - eingesetzt werden. Die Brennkraftmaschine kann als mechanischer Antrieb dienen, z. B. zum Betreiben von Verdichteranlagen oder mit einem Generator zu einem Gensets zur Erzeugung elektrischer Energie gekoppelt sein. Die Brennkraftmaschine weist bevorzugt eine Vielzahl von Brennräumen mit entsprechender Gaszuführvorrichtungen und Injektoren auf. Die Regelung kann individuell für jeden Brennraum erfolgen.
Ausführungsbeispiele der Erfindung werden anhand der Figuren erläutert. Es zeigen:
Fig. 1 ein erstes Ausführungsbeispiel des erfindungsgemäßen Regelschemas
Fig. 2 ein zweites Ausführungsbeispiel des erfindungsgemäßen Regelschemas
Fig. 3 ein erstes Beispiel eines schematisch dargestellten Injektors
Fig. 4 ein zweites Beispiel eines schematisch dargestellten Injektors
Fig. 1 : Ziel der Injektorregelung ist in diesem Ausführungsbeispiel die Regelung der Position z der Nadel 6 des Injektors auch für den ballistischen Bereich auf einen Nadelpositionssollwert hin, indem die Dauer At der Betätigung eines Aktuators der
Nadel während eines Einspritzvorganges für den flüssigen Kraftstoff sozusagen in Echtzeit geregelt wird. Die Regelstrategie erfolgt durch
- eine Vorsteuerung (FF), welche aus einem gewünschten Nadelpositionssollwert ein Vorsteuersignal (im Folgenden auch als „Steuerbefehl" bezeichnet) für die
Dauer At der Betätigung des Aktuators der Nadel berechnet und
- eine Rückkopplungsschleife (FB), welche unter Verwendung eines Beobachters 7 („State Estimator") unter Berücksichtigung des von der Vorsteuerung berechneten
Steuerbefehls für die Dauer At der Betätigung des Aktuators der Nadel und wenigstens einer Messgröße y (z. B. einer der im Injektor auftretenden Druckverläufe PIA , PCC , PJC , PAC , PSA oder der Beginn des Abhebens der Nadel vom Nadelsitz) mittels eines Injektormodells die Position z der Nadel schätzt und ggf. den von der Vorsteuerung berechneten Sollwert Δtff für die Einspritzdauer mittels eines Korrekturwerts Δtfb auf die tatsächliche Dauer des Aktuatoransteuersignals At für die Nadel korrigiert.
Die Vorsteuerung stellt eine schnelle Systemantwort sicher, da sie den Aktuator der Nadel 6 mit einer Dauer Δtff ansteuert, als ob keine Injektorvariabilität existieren würde. Die Vorsteuerung verwendet ein kalibriertes Injektorkennfeld (welches Bestromungsdauer über Einspritzmasse oder -volumen angibt) oder das invertierte Injektormodell um den Nadelpositionssollwert zref in den Vorsteuerbefehl für die Dauer At der Betätigung des Aktuators der Nadel umzuwandeln.
Die Rückkopplungsschleife (FB) wird verwendet, um die Ungenauigkeiten der Vorsteuerung (aufgrund von Herstellungsvariabilitäten, Abnutzung, usw.) zu korrigieren, welche eine Injektordrift verursachen. Die Rückkopplungsschleife vergleicht den Nadelpositionssollwert zref mit der abgeschätzten Position der Nadel und gibt als Rückkopplung einen Korrektursteuerbefehl Δtff (welcher negativ sein kann) für die Dauer der Betätigung des Aktuators der Nadel ab, falls es eine Diskrepanz zwischen zref und z gibt. Die Addition von Δtff und Δtfb ergibt die schlussendliche Dauer At der Betätigung des Aktuators der Nadel. Der Beobachter schätzt die Position der Nadel z in Abhängigkeit der wenigsten einen Messgröße y und der schlussendlichen Dauer At der Betätigung des Aktuators der Nadel 6 ab. Die wenigstens eine Messgröße kann sich z.B. beziehen auf: common rail Druck pCR, Druck in der Eingangsspeicherkammer pIA, Druck in der Steuerkammer pcc und Beginn des Abhebens der Nadel vom Nadelsitz . Der Beobachter verwendet ein reduziertes Injektormodell um die Position z der Nadel 6 abzuschätzen.
Fig. 2:
Diese Figur zeigt eine einteilige aufgebaute Regelung, bei welcher das Aktuatoransteuersignal At auf Basis des Nadelpositionsollwertes zref und auf Basis der vom Beobachter abgeschätzten, im Vorsteuermodell benutzten Parameter Δparmod berechnet wird.. Man erhält so ein adaptives, vom Beobachter modifiziertes Vorsteuersignal. In diesem Fall ist die Regelung also nicht zweiteilig aufgebaut, mit einer Vorsteuerung und einer das Vorsteuersignal korrigierenden Rückkopplungsschleife.
Die Fig. 3 zeigt ein Blockdiagramm eines reduzierten Injektormodells. Das Injektormodell besteht aus einem Strukturmodell des Injektors und einem Gleichungssystem zur Beschreibung des dynamischen Verhaltens des Strukturmodells. Das Strukturmodell besteht aus fünf modellierten Volumina: Eingangsspeicherkammer 1 , Speicherkammer 3, Steuerkammer 2, Volumen über Nadelsitz 4 und Verbindungsvolumen 5.
Die Eingangsspeicherkammer 1 stellt die Zusammenfassung aller Volumina zwischen der Eingangsdrossel und dem Rückschlagventil dar. Die Speicherkammer 3 stellt die Zusammenfassung aller Volumina vom Rückschlagventil bis zum Volumen 4 oberhalb des Nadelsitzes dar. Das Volumen 4 über Nadelsitz stellt die Zusammenfassung aller Volumina zwischen dem Nadelsitz bis zur Ausbringöffnung des Injektors dar. Das Verbindungsvolumen 5 stellt die Zusammenfassung aller Volumina dar, welches die Volumina der Speicherkammer 3 und der Steuerkammer 2 mit dem Solenoidventil verbindet. Die Fig. 4 zeigt einen alternativ ausgebildeten Injektor, der ohne Steuerkammer 2 auskommt, beispielsweise ein Injektor, bei welchem die Nadel durch ein Piezoelement angesteuert wird. Das nachfolgende Gleichungssystem bezieht sich nicht auf die in Figur 4 gezeigte Ausführung. Die Formulierung eines entsprechenden Gleichungssystems kann analog zu dem nachstehend gezeigten Gleichungssystem erfolgen.
Das dynamische Verhalten des Strukturmodells wird durch folgende Gleichungssysteme beschrieben:
Druckdynamik
Die zeitliche Entwicklung des Druckes innerhalb jedes der Volumina wird auf Basis einer Kombination des Massenerhaltungssatzes und der Druck-Dichte-Charakteristik des flüssigen Kraftstoffes berechnet. Die zeitliche Entwicklung des Druckes ergibt sich aus:
Verwendete Formelzeichen
Druck in der Eingangsspeicherkammer 1 in bar
Druck in der Steuerkammer 2 in bar
Druck im Verbindungsvolumen 5 in bar
Druck in der Speicherkammer 3 in bar
Druck in der kleinen Speicherkammer 4 in bar
Dieselmassendichte innerhalb der Eingangsspeicherkammer
1 in kg/m3
Dieselmassendichte innerhalb der Steuerkammer 2 in kg/m3 Dieselmassendichte innerhalb des Verbindungsvolumens 5
in kg/m3
Dieselmassendichte innerhalb der Speicherkammer 3 in kg/m3
Dieselmassendichte innerhalb der kleinen Speicherkammer 4
in kg/m3
Kompressionsmodul des Dieseltreibstoffs in bar
Nadeldynamik
Die Nadelposition wird anhand der folgenden Bewegungsgleichung berechnet:
Verwendete Formelzeichen:
Nadelposition in Metern (m)
Maximale Auslenkung der Nadel 6 in m
Federsteifigkeit in N/m
Federdämpfungskoeffizient in N.s/m
Federvorspannung in N
Hydraulische Wirkfläche in der Speicherkammer 3 in m2 Hydraulische Wirkfläche in der kleinen Speicherkammer 4 in m2
Hydraulische Wirkfläche in der Steuerkammer 2 in m2
Dynamik des Solenoidventils
Das Solenoidventil wird durch eine Transferfunktion erster Ordnung modelliert, welche den Ventilöffnungsbefehl in eine Ventilposition umwandelt. Diese ist gegeben durch:
Das transiente Systemverhalten wird durch die Zeitkonstante charakterisiert und die Position der Nadel 6 bei der maximalen Ventil Öffnung ist durch gegeben. Statt
einem Solenoidventil ist auch eine piezoelektrische Betätigung möglich.
Massenflussraten
Die Massenflussrate durch jedes Ventil wird aus der Standarddrosselgleichung für Flüssigkeiten berechnet, welche lautet:
Verwendete Formelzeichen:
Massenflussdichte über die Eingangsdrossel in kg/s
Massenflussrate über das Bypassventil zwischen
Speicherkammer 3 und Verbindungsvolumen 5 in kg/s
Massenflussrate über das Speiseventil beim Einlass der
Steuerkammer 2 in kg/s
Massenflussrate über das Auslassventil der Steuerkammer 2 in kg/s
Massenflussrate über das Solenoidventil in kg/s
Massenflussrate über den Einlass der Speicherkammer 3 in kg/s
Massenflussrate über den Nadelsitz in kg/s
Massenflussrate über die Injektordüse in kg/s
Auf Basis des oben formulierten Injektormodells erhält der Fachmann mittels des Beobachters in an sich bekannter Weise (siehe z. B. Isermann, Rolf, „Digitale Regelsysteme", Springer Verlag Heidelberg 1977, Kapital 22.3.2, Seite 379 ff. oder F. Castillo et al., „Simultaneous Air Fraction and Low-Pressure EGR Mass Flow Rate Estimation for Diesel Engines", IFAC Joint Conference SSSC - 5th Symposium on System Structure and Control, Grenoble, France 2013) den abgeschätzten Wert für die Position der Nadel z .
Unter Verwendung obiger Gleichungssysteme konstruiert man die sogenannten Beobachtergleichungen („observer equations"), vorzugsweise unter Verwendung eines an sich bekannten Beobachters vom„sliding mode observer" -Typ, indem man zu den Gleichungen des Injektormodells das sogenannte Beobachtergesetz („observer law") hinzufügt. Bei einem „sliding mode" Beobachter erhält man das Beobachtergesetz durch Berechnung einer Hyperfläche („hypersurface") aus dem wenigstens einen Messsignal und jenem Wert, der sich aus den Beobachtergleichungen ergibt. Durch Quadrierung der Gleichung der Hyperfläche erhält man eine verallgemeinerte Ljapunovgleichung (verallgemeinerte Energiegleichung). Dabei handelt es sich um eine Funktionalgleichung. Das Beobachtergesetz ist jene Funktion, welche die Funktionalgleichung minimiert. Diese kann durch die an sich bekannten Variationstechniken oder numerisch bestimmt werden. Dieser Vorgang wird innerhalb eines Verbrennungszyklus für jeden Zeitschritt (abhängig von der zeitlichen Auflösung der Regelung) durchgeführt.
Das Ergebnis ist je nach Anwendung die abgeschätzte eingespritzte Masse flüssigem Kraftstoff, die Position der Nadel 6 oder einer der Drücke in einem Volumina des Injektors.

Claims

Patentansprüche
1 . Dual-Fuel-Brennkraftmaschine, mit:
- einer Regeleinrichtung
- wenigstens einem Brennraum
- wenigstens einer Gaszuführvorrichtung zur Zufuhr eines gasförmigen Kraftstoffes zu dem wenigstens einen Brennraum und
- wenigstens einem durch die Regeleinrichtung über ein Aktuatoransteuersignal regelbaren Injektor zur Einspritzung von flüssigem Kraftstoff in den wenigstens einen Brennraum, wobei der wenigstens eine Injektor eine durch eine Nadel (6) verschließbare Ausbringöffnung für den flüssigen Kraftstoff verfügt, und wobei die Regeleinrichtung in einem Pilotbetriebsmodus der Brennkraftmaschine über das Aktuatoransteuersignal ein Öffnen der Nadel im ballistischen Bereich der Nadel regelt
dadurch gekennzeichnet, dass in der Regeleinrichtung ein Algorithmus abgelegt ist, welcher als Eingangsgrößen zumindest das Aktuatoransteuersignal erhält und über ein Injektormodell eine Position der Nadel (6) berechnet
und die mittels des Injektormodells berechnete Position der Nadel mit einem Nadelpositionssollwert vergleicht und in Abhängigkeit des Ergebnisses des Vergleiches das Aktuatoransteuersignal gleich lässt oder korrigiert.
2. Dual-Fuel-Brennkraftmaschine nach Anspruch 1 , wobei der Algorithmus eine Vorsteuerung (FF) aufweist, welche aus dem Nadelpositionssollwert ein
Vorsteuersignal für das Aktuatoransteuersignal berechnet.
3. Dual-Fuel-Brennkraftmaschine nach wenigstens einem der vorangehenden Ansprüche, wobei wenigstens ein Sensor vorgesehen ist, durch welchen wenigstens eine Messgröße (y) des wenigstens einen Injektors messbar ist, wobei der Sensor in Signalverbindung mit der Regeleinrichtung steht oder bringbar ist.
4. Dual-Fuel-Brennkraftmaschine nach Anspruch 3, wobei der Algorithmus eine Rückkopplungsschleife (FB), welche unter Berücksichtigung des von der Vorsteuerung berechneten Steuerbefehls (Δt) für die Position der Nadel (6) und der wenigstens einen Messgröße (y) mittels des Injektormodells die Nadelposition berechnet und ggf. das von der Vorsteuerung berechnete Aktuatoransteuersignal (Δt) korrigiert.
5. Dual-Fuel-Brennkraftmaschine nach wenigstens einem der vorangehenden Ansprüche, wobei der Algorithmus einen Beobachter aufweist, welcher unter Verwendung des Injektormodells und unter Berücksichtigung des Aktuatoransteuersignals (Δt) und der wenigstens einen Messgröße (y) die Nadelposition (z) abschätzt.
6. Dual-Fuel-Brennkraftmaschine nach wenigstens einem der vorangehenden Ansprüche, wobei das Injektormodell wenigstens beinhaltet:
- die Druckverläufe in mit dem flüssigen Kraftstoff gefüllten
Volumina des Injektors
- Massenflussraten zwischen den mit dem flüssigen Kraftstoff gefüllten Volumina des Injektors
- Dynamik des Aktuators der Nadel, vorzugsweise Dynamik eines Solenoidventils
7. Dual-Fuel-Brennkraftmaschine nach wenigstens einem der vorangehenden Ansprüche, wobei der Injektor wenigstens aufweist:
- eine mit einer Common-Rail der Brennkraftmaschine verbundene Eingangsspeicherkammer (1 )
- eine mit der Eingangsspeicherkammer (1 ) verbundene Speicherkammer (3) für flüssigen Kraftstoff
- einem mit der Speicherkammer (3) verbundenen Volumen (4) über Nadelsitz
- einem einerseits mit der Speicherkammer (3) und andererseits mit einer Ablaufleitung verbundenen Verbindungsvolumen (5)
- eine durch die Nadel (6) verschließbare und mit dem Volumen (4) über Nadelsitz verbundene Ausbringöffnung für flüssigen Kraftstoff
- einen mittels des Aktuatoransteuersignals ansteuerbaren Aktuator, vorzugsweise Solenoidventil, zum Öffnen der Nadel (6) - vorzugsweise einer einerseits mit der Speicherkammer (3) und andererseits mit dem Verbindungsvolumen (5) verbundenen Steuerkammer (2)
8. Dual-Fuel-Brennkraftmaschine nach wenigstens einem der vorangehenden Ansprüche, wobei die wenigstens eine Messgröße ausgewählt ist aus den folgenden Größen oder einer Kombination daraus:
- Druck in einer Common-Rail der Brennkraftmaschine
- Druck in einer Eingangsspeicherkammer (1 ) des Injektors
- Druck in einer Steuerkammer (2) des Injektors
- Beginn des Abhebens der Nadel (6) vom Nadelsitz
9. Dual-Fuel-Brennkraftmaschine nach wenigstens einem der vorangehenden Ansprüche, wobei die Regeleinrichtung dazu ausgebildet ist, den Algorithmus während jedes Verbrennungszyklus oder ausgewählter Verbrennungszyklen der Brennkraftmaschine auszuführen und bei Abweichungen das Aktuatoransteuersignal (Δt) während dieses Verbrennungszyklus zu korrigieren.
10. Verfahren zum Betreiben einer Dual-Fuel-Brennkraftmaschine, insbesondere einer Dual-Fuel-Brennkraftmaschine nach wenigstens einem der vorangehenden Ansprüche, wobei einem Brennraum der Brennkraftmaschine flüssiger Kraftstoff zugeführt wird, dadurch gekennzeichnet, dass eine Nadelposition einer Nadel eines Injektors für den flüssigen Kraftstoff in Abhängigkeit von einem Aktuatoransteuersignal (Δt) eines Aktuators des Injektors für den flüssigen Kraftstoff unter Verwendung eines Injektormodells berechnet wird und das Aktuatoransteuersignal (Δt) bei Abweichungen zwischen einem Nadelpositionssollwert und der berechneten Position korrigiert wird, wobei das
Verfahren während jedes Verbrennungszyklus oder ausgewählter Verbrennungszyklen der Brennkraftmaschine ausgeführt wird und eine allfällige Korrektur des Aktuatoransteuersignals (Δt) während dieses Verbrennungszyklus erfolgt.
1 1 . Verfahren zum Betreiben eines Injektors, mit welchem Injektor einem Brennraum einer Brennkraftmaschine flüssiger Kraftstoff zugeführt werden kann, dadurch gekennzeichnet, dass eine Nadelposition einer Nadel eines Injektors für den flüssigen Kraftstoff in Abhängigkeit von einem Aktuatoransteuersignal (Δt) eines Aktuators des Injektors für den flüssigen Kraftstoff unter Verwendung eines Injektormodells berechnet wird und das Aktuatoransteuersignal (Δt) bei Abweichungen zwischen einem Nadelpositionssollwert (/ef) und der berechneten Position korrigiert wird.
EP16798618.1A 2015-11-04 2016-11-03 Brennkraftmaschine mit einspritzmengensteuerung Withdrawn EP3371440A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP15192920.5A EP3165749A1 (de) 2015-11-04 2015-11-04 Brennkraftmaschine mit einspritzmengensteuerung
PCT/AT2016/060099 WO2017075642A1 (de) 2015-11-04 2016-11-03 Brennkraftmaschine mit einspritzmengensteuerung

Publications (1)

Publication Number Publication Date
EP3371440A1 true EP3371440A1 (de) 2018-09-12

Family

ID=54427614

Family Applications (2)

Application Number Title Priority Date Filing Date
EP15192920.5A Withdrawn EP3165749A1 (de) 2015-11-04 2015-11-04 Brennkraftmaschine mit einspritzmengensteuerung
EP16798618.1A Withdrawn EP3371440A1 (de) 2015-11-04 2016-11-03 Brennkraftmaschine mit einspritzmengensteuerung

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP15192920.5A Withdrawn EP3165749A1 (de) 2015-11-04 2015-11-04 Brennkraftmaschine mit einspritzmengensteuerung

Country Status (5)

Country Link
US (1) US11035309B2 (de)
EP (2) EP3165749A1 (de)
CN (1) CN108350821A (de)
CA (1) CA3002559A1 (de)
WO (1) WO2017075642A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3074997B1 (fr) * 2017-12-15 2019-11-08 Universite Jean Monnet Dispositif medical sous forme de cassette pour la conservation et/ou le controle qualite et/ou le traitement d'un prelevement corneen
DE102018115305B3 (de) * 2018-06-26 2019-10-24 Mtu Friedrichshafen Gmbh Verfahren zum Angleichen eines Einspritzverhaltens von Injektoren eines Verbrennungsmotors, Motorsteuergerät und Verbrennungsmotor
GB2585178B (en) * 2019-04-26 2022-04-06 Perkins Engines Co Ltd Engine control system
IT202100026006A1 (it) * 2021-10-11 2023-04-11 Torino Politecnico Sistema di iniezione con efficiente controllo in quantità iniettata

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6557530B1 (en) * 2000-05-04 2003-05-06 Cummins, Inc. Fuel control system including adaptive injected fuel quantity estimation
US6912992B2 (en) * 2000-12-26 2005-07-05 Cummins Westport Inc. Method and apparatus for pilot fuel introduction and controlling combustion in gaseous-fuelled internal combustion engine
US7100577B2 (en) * 2004-06-14 2006-09-05 Westport Research Inc. Common rail directly actuated fuel injection valve with a pressurized hydraulic transmission device and a method of operating same
JP4434097B2 (ja) * 2005-07-19 2010-03-17 株式会社デンソー 蓄圧式燃料噴射制御装置
WO2008000095A1 (en) * 2006-06-29 2008-01-03 The University Of British Columbia Concurrent injection of liquid and gaseous fuels in an engine
WO2011072293A2 (en) * 2009-12-11 2011-06-16 Purdue Research Foundation Flow rate estimation for piezo-electric fuel injection
US8967502B2 (en) * 2011-05-11 2015-03-03 Caterpillar Inc. Dual fuel injector and engine using same
US9422899B2 (en) * 2011-10-24 2016-08-23 Caterpillar Inc. Dual fuel injector with hydraulic lock seal and liquid leak purge strategy
JP5838074B2 (ja) * 2011-11-08 2015-12-24 日立オートモティブシステムズ株式会社 内燃機関の燃料噴射制御装置
DE102012109655B4 (de) * 2012-10-10 2019-12-12 Denso Corporation Verfahren zur Bestimmung einer Kraftstoff-Injektionsrate
EP2725215A1 (de) * 2012-10-23 2014-04-30 Delphi International Operations Luxembourg S.à r.l. Verfahren zum Betrieb eines Verbrennungsmotors
DE102013211731A1 (de) 2013-06-20 2014-12-24 Mtu Friedrichshafen Gmbh Verfahren zur Korrektur der Einspritzdauer von Injektoren einer Brennkraftmaschine und Steuerungseinrichtung
DK178149B1 (en) * 2013-10-30 2015-06-29 Man Diesel & Turbo Deutschland A Fuel Valve for Pilot Oil Injection and for Injecting Gaseous Fuel into the Combustion Chamber of a Self-Igniting Internal Combustion Engine
US20150198083A1 (en) * 2014-01-14 2015-07-16 Electro-Motive Diesel Inc. Dual-fuel engine having extended valve opening
US10100773B2 (en) * 2014-06-04 2018-10-16 Ford Global Technologies, Llc Method and system for dual fuel engine system
US20160169133A1 (en) * 2014-12-11 2016-06-16 Caterpillar Inc. System and method for increasing gaseous fuel substitution
CA2874627A1 (en) * 2014-12-11 2015-02-12 Westport Power Inc. Apparatus for reducing pressure pulsations in a gaseous fuelled internal combustion engine
US10001070B2 (en) * 2015-09-11 2018-06-19 Cummins Inc. Multi-fuel engine controls including multi-factor cost optimization
US10337448B2 (en) * 2015-12-22 2019-07-02 Ford Global Technologies, Llc Methods and systems for a fuel injector assembly

Also Published As

Publication number Publication date
US20180363581A1 (en) 2018-12-20
WO2017075642A1 (de) 2017-05-11
US11035309B2 (en) 2021-06-15
CN108350821A (zh) 2018-07-31
EP3165749A1 (de) 2017-05-10
CA3002559A1 (en) 2017-05-11

Similar Documents

Publication Publication Date Title
EP2422067B1 (de) Verfahren und steuergerät zum betreiben eines aktorbetätigten ventils
EP2449242B1 (de) Verfahren zur steuerung und regelung des kraftstoffsdruckes eines common-rails einer brennkraftmaschine
DE60017307T2 (de) Common-Rail-Kraftstoffeinspritzsystem
WO2017075642A1 (de) Brennkraftmaschine mit einspritzmengensteuerung
WO2011039043A1 (de) Verfahren und steuergerät zum betreiben eines ventils
EP2449240B1 (de) Verfahren zur regelung des raildrucks in einem common-rail einspritzsystem einer brennkraftmaschine
DE102006000333A1 (de) Kraftstoffeinspritzsteuersystem, das einen unerwünschten Anstieg des Kraftstoffdrucks vermeidet
DE102015116997A1 (de) Kraftstoffeinspritzvorrichtung
WO2017075643A1 (de) Brennkraftmaschine mit einspritzmengensteuerung
WO2017075644A1 (de) Brennkraftmaschine mit einspritzmengensteuerung
EP3371442A1 (de) Brennkraftmaschine mit kraftstoffinjektordiagnose
WO2010133417A1 (de) Verfahren und steuergerät zum betreiben eines einspritzventils
EP3371439A1 (de) Brennkraftmaschine mit einspritzmengensteuerung
EP3165747A1 (de) Brennkraftmaschine mit einspritzmengensteuerung
WO2010133415A1 (de) Verfahren zur ansteuerung von injektoren in einer brennkraftmaschine
DE10303573B4 (de) Verfahren, Computerprogramm, Speichermedium und Steuer- und/oder Regelgerät zum Betreiben einer Brennkraftmaschine, sowie Brennkraftmaschine insbesondere für ein Kraftfahrzeug
EP3665377B1 (de) Verfahren zum betreiben einer brennkraftmaschine mit einem einspritzsystem, einspritzsystem, eingerichtet zur durchführung eines solchen verfahrens, und brennkraftmaschine mit einem solchen einspritzsystem
DE102016209641A1 (de) Verfahren zum Regeln eines Ankerhubs eines Magnetventils in einem Injektor
EP1377736B1 (de) Verfahren zum betreiben einer brennkraftmaschine mit einem kraftstoffzumesssystem
DE102014224534A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine
EP3011159A1 (de) Verfahren und steuerungseinrichtung zur korrektur des spritzbeginns von injektoren einer brennkraftmaschine
WO2014117897A1 (de) Verfahren zum ermitteln der kraftstofftemperatur
EP3763933A1 (de) Verfahren zur volumenstrombasierten pumpensynchronen, insbesondere zylinderselektiven raildruckregelung für ein kraftstoffversorgungssystem einer brennkraftmaschine mit stromerfassung und stromregelung der stellglieder der raildruckregelung
DE102007013772B4 (de) Verfahren zur Regelung eines Einspritzsystems einer Brennkraftmaschine
WO2020165333A1 (de) Verfahren zum betreiben eines einspritzsystems einer brennkraftmaschine, einspritzsystem für eine brennkraftmaschine sowie brennkraftmaschine mit einem solchen einspritzsystem

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180604

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: INNIO JENBACHER GMBH & CO OG

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210526

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20211006