EP3371392B1 - Insulated trellis mat - Google Patents

Insulated trellis mat Download PDF

Info

Publication number
EP3371392B1
EP3371392B1 EP16794003.0A EP16794003A EP3371392B1 EP 3371392 B1 EP3371392 B1 EP 3371392B1 EP 16794003 A EP16794003 A EP 16794003A EP 3371392 B1 EP3371392 B1 EP 3371392B1
Authority
EP
European Patent Office
Prior art keywords
array
tubular members
trellis
parallel
fibres
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16794003.0A
Other languages
German (de)
French (fr)
Other versions
EP3371392A1 (en
Inventor
John Alexander Black
Robert David Black
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oxford Safety Components Ltd
Original Assignee
Oxford Safety Components Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oxford Safety Components Ltd filed Critical Oxford Safety Components Ltd
Publication of EP3371392A1 publication Critical patent/EP3371392A1/en
Application granted granted Critical
Publication of EP3371392B1 publication Critical patent/EP3371392B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/32Safety or protective measures for persons during the construction of buildings
    • E04G21/3204Safety or protective measures for persons during the construction of buildings against falling down
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G3/00Scaffolds essentially supported by building constructions, e.g. adjustable in height
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a general shape other than plane
    • B32B1/08Tubular products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/12Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer characterised by the relative arrangement of fibres or filaments of different layers, e.g. the fibres or filaments being parallel or perpendicular to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/30Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure
    • E04C2/42Gratings; Grid-like panels
    • E04C2/421Gratings; Grid-like panels made of bar-like elements, e.g. bars discontinuous in one direction
    • E04C2/422Gratings; Grid-like panels made of bar-like elements, e.g. bars discontinuous in one direction with continuous bars connecting at crossing points of the grid pattern
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G1/00Scaffolds primarily resting on the ground
    • E04G1/15Scaffolds primarily resting on the ground essentially comprising special means for supporting or forming platforms; Platforms
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/32Safety or protective measures for persons during the construction of buildings
    • E04G21/3204Safety or protective measures for persons during the construction of buildings against falling down
    • E04G21/3223Means supported by building floors or flat roofs, e.g. safety railings
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/32Safety or protective measures for persons during the construction of buildings
    • E04G21/3261Safety-nets; Safety mattresses; Arrangements on buildings for connecting safety-lines
    • E04G21/3266Safety nets
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G3/00Scaffolds essentially supported by building constructions, e.g. adjustable in height
    • E04G3/22Scaffolds essentially supported by building constructions, e.g. adjustable in height supported by roofs or ceilings
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G5/00Component parts or accessories for scaffolds
    • E04G5/08Scaffold boards or planks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2419/00Buildings or parts thereof

Description

  • This invention relates to an electrically insulated trellis mat.
  • BACKGROUND
  • A trellis mat comprises a first array of parallel tubular members and a second array of parallel tubular members, each of the second array of parallel tubular members being pivotably connected to a plurality of the first array of parallel tubular members whereby to form a trellis. The trellis mat can be used to provide a safe working platform and prevent falls through cavities from roof spaces. In particular, the trellis mat can be transported in a compact configuration, and expanded on site to provide a working platform bridging sparsely spaced support members. In some examples, a trellis mat is used to provide a safe working platform supported by floor joists or rafters, but where floor boards are not present. The trellis mat provides a safe working platform for performing a variety of tasks such as inspection work, maintenance, plumbing or aerial rigging.
  • In some examples, it may be advantageous to have a trellis mat which is electrically insulated to minimise the possibility of accidental electrical shock if the trellis mat is, for example, placed on top of faulty electrical wiring.
  • It is known to provide a trellis mat where each of the tubular members of the trellis mat is formed from aluminium tube surrounded entirely by plastics insulation. In this way, the trellis mat can be considered an electrically insulated trellis mat because electrical current cannot pass through the material of the trellis mat due to the plastics insulation.
  • EP1105191 describes a trellis comprising a first and a second arrey of plastic rigid member. EP0361795 describes a process for forming reinforced plastics articles using glass fibre with different orientations.
  • Unfortunately, during repeated use and transport, the plastics insulation can be damaged. This requires that an inspection of the trellis mat be carried out prior to every use. In the event that damage to the insulation is found, the trellis mat may no longer be insulating and a new mat may be required. The present disclosure seeks to provide an electrically insulated trellis mat which overcomes at least some of the disadvantages of the prior art.
  • BRIEF SUMMARY OF THE DISCLOSURE
  • In accordance with an aspect of the present disclosure, there is provided an electrically insulated trellis comprising a first array of parallel tubular members and a second array of parallel tubular members. Each of the second array of parallel tubular members is pivotably connected to a plurality of the first array of parallel tubular members whereby to form a trellis. Each of the tubular members is formed from glass-reinforced polymer. A first set of fibres in the glass-reinforced polymer are substantially parallel and aligned in a first direction and a second set of fibres in the glass-reinforced polymer, distinct from the first set, are substantially parallel and aligned in a second direction different to the first direction.
  • Thus, the sets of parallel fibres running in different directions forming the tubular members ensure that the tubular members will be strong enough for use as a support trellis, even when holes are formed in the tubular members for accommodating pivotable fasteners to connect the first array of parallel tubular members to the second array of parallel tubular members. Fibres aligned in the first direction will act, at least partly, to hold together the fibres aligned in the second direction, increasing the resistance of the trellis to splitting as a result of holes defined in the tubular members to accommodate pivotable fasteners. The glass-reinforced polymer is an electrically insulating material, making the trellis inherently electrically insulated, regardless of any damage to the trellis.
  • The first array and second array may be pivotably connected by pivotable fasteners. The pivotable fasteners may be rivets. In some embodiments, the pivotable fasteners may be electrically insulated.
  • The second direction may be angularly spaced from the first direction by 60 degrees. In this case, the insulated trellis may comprise a third set of fibres being substantially parallel and aligned in a third direction different from the first and second directions and angularly spaced 60 degrees from each of the first direction and the second direction.
  • The second direction may be substantially orthogonal to the first direction. Thus, in this configuration, substantially the entire tensile strength of the second set of fibres can act to resist splitting of the first set of fibres. The first direction may be an axial direction. The first direction may be approximately 45 degrees to the axial direction.
  • Each tubular member may have a substantially rectangular cross-section. In one embodiment, the rectangular cross-section is a square cross-section. In some embodiments, each tubular member may have a cross-section having rounded corners.
  • At least one of the first array and the second array may be provided with at least one respective gripping surface.
  • The gripping surface may be provided on an external surface of the trellis. The gripping surface may be provided on one external surface of the trellis to allow the trellis to grip against an object or plurality of objects on which it is supported, or to provide grip for persons or objects supported by the trellis. The trellis may be reversible, or may be single-sided, such that where the at least one gripping surface is provided on only one side, it is always the top surface of the trellis when deployed, or always the bottom surface of the trellis when deployed. In some embodiments, the trellis may be provided with a gripping surface on two external surfaces of the trellis.
  • The respective gripping surface may be provided on a respective gripping member affixed to at least one tubular member of the first array or the second array. The gripping member may be adhesively affixed. Thus, the tubular members need not be manufactured to have a gripping surface integrally formed with the tubular member, reducing manufacturing complexity and cost.
  • The present disclosure extends to a kit of parts for forming the insulated trellis. The kit of parts comprises a plurality of tubular members configured to form a first array of parallel tubular members and a second array of parallel tubular members and a plurality of pivotable fasteners for pivotably connecting the first array of parallel tubular members with the second array of parallel tubular members.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Embodiments of the invention are further described hereinafter with reference to the accompanying drawings, in which:
    • Figure 1 is a plan view of a trellis mat;
    • Figure 2 is a cross-sectional view of a tubular member of an electrically insulated trellis mat according to the present disclosure; and
    • Figure 3 is an illustration of a fibre structure of a tubular member according to the present disclosure.
    DETAILED DESCRIPTION
  • Figure 1 is a plan view of a trellis mat 1. The trellis mat 1 comprises a first array of parallel tubular members 2 and a second array of parallel tubular members 4. Each of the first array of tubular members 2 is pivotably connected to any of the second array of parallel tubular members 4 crossed by the first array of tubular members 2 by rivets 6 functioning as pivot points. The trellis mat 1 is shown in an expanded configuration where the first array of parallel tubular members 2 is arranged substantially perpendicular to the second array of parallel tubular members 4. It will be appreciated that, from this view, the first array of parallel tubular members 2 is provided on top of the second array of parallel tubular members 4. As in trellis mats of the prior art, the mat can be collapsed into a transportable configuration by compressing the trellis mat 1 either horizontally or vertically. In both cases the directions of each of the members in the first array of parallel tubular members 2 and the second array of parallel tubular members 4 will more closely align. In most trellis mats, each of the second array of parallel tubular members will be pivotably connected to a plurality of the first array of parallel tubular members, whereby to form a trellis.
  • The trellis mat 1 is substantially sized as in trellis mats of the prior art. In the presently described embodiment, the trellis mat, in a deployed configuration, has a length of approximately 2 metres and a width of approximately 0.95 metres. An alternative trellis mat can be produced having a length of approximately 2 metres and a width of approximately 0.8 metres. It will be appreciated that other sizes of mat may easily be formed using different numbers of tubular members 2, 4 and different profile sizes for the tubular members.
  • Figure 2 is a cross-sectional view of a tubular member of an electrically insulated trellis mat according to the present disclosure. The tubular member 10 has a substantially square cross-section, and the length of the side A is identical to the length of the side B. The length A (and therefore also B) is 15 millimetres. The wall thickness T of side B is identical to the wall thickness T2 of side A and is 2 millimetres. The substantially square cross-section has rounded corners. The internal radius of curvature R1 of the tubular member 10 is 2 millimetres. The external radius of curvature R2 of the tubular member 10 is also 2 millimetres. As can be seen, unlike electrically insulated trellis mats of the prior art, the tubular member 10 is formed as a single piece. All parts of the tubular member 10 are insulating because the tubular member 10 is formed from glass fibre-reinforced polymer, which is substantially insulating for the voltages used in the environments in which the electrically insulated trellis mat disclosed herein is to be used. The tubular member 10 is hollow in this particular embodiment.
  • Although the previously described tubular member 10 has a square cross-section, it will be appreciated that any cross-section providing the required strength and structural rigidity can be used.
  • Figure 3 is an illustration of a fibre structure within a glass fibre-reinforced polymer tubular member according to the present disclosure. The tubular member 20 is formed from a plurality of layers, each layer overlaid on the layer beneath. Each layer comprises a plurality of parallel glass fibres. Adjacent layers have their glass fibres orientated in different directions, in this case orthogonally to each other. All the layers sit within a polymer matrix which holds the glass fibres in position. An innermost layer 22 comprises a plurality of glass fibres, each glass fibre running in an axial direction aligned with the axial direction of the tubular member 20. The axial direction may also be referred to as an along-tube direction. Fibres running in the axial direction bring the composite structure the tensile strength and stiffness needed in the lengthwise direction. Another layer 24 comprises a second plurality of glass fibres, each glass fibre running in a circumferential direction, also referred to as an around-tube direction, perpendicular to the axial direction. Crosswise fibres act to hold the lengthwise fibres together and prevent the lengthwise fibres from splitting because the crosswise fibres are orthogonal to the lengthwise fibres. The use of layers of crosswise fibres increases the maximum bending strength of the tubular member 20. In the electrically insulated trellis mat shown in Figure 1, the tubular members are pivotably connected together using pivotable fasteners in the form of rivets. The crosswise fibres ensure that the tubular members do not split when holes are provided in the tubular members for receiving the pivotable fasteners in the form of rivets. The whole structure of the tubular member 20 is protected by a nonwoven or fabric surface. By varying the amount of polymer matrix used on one or more sides of the tubular member 20, the surface finish texture can be modified. For example, using less polymer matrix (or more glass fibres) will expose more glass fibres at the surface and create a rougher surface texture. The rough surface texture is useful where it is desirable to create an electrically insulated trellis which can be provided with one or more gripping surfaces.
  • An alternative approach is to provide a gripping surface to the tubular members with a gripping member affixed to the tubular member. The gripping member can be adhesively affixed to the tubular member. It will be appreciated that other methods can be used to provide a gripping surface on the trellis suitable for providing grip against an object or plurality of objects on which the trellis is supported, or to provide grip for persons or objects supported by the trellis.
  • Although the diagram of Figure 3 shows the layers being orientated in mutually orthogonal directions, it will be appreciated that layers of fibres orientated at an angular spacing different from 90 degrees may also provide the benefit of increasing the resistance of the tubular member to splitting when holes are formed in the tubular member. Fibres orientated in a first direction typically have a bracing effect on fibres orientated in a second direction which is different from the first direction due to the relatively high tensile strength of the glass fibres.
  • Although the diagram of Figure 3 shows at least one layer being orientated in an axial direction and at least one other layer being orientated in a circumferential direction, it will be appreciated that in some configurations, the layers may be orientated in different directions, even where the layers are orientated in a mutually transverse arrangement. For example, in one embodiment, the fibres in a first layer are aligned at an angle of approximately 45 degrees to the axial direction of the tubular member, whereby to extend both axially and circumferentially around the tubular member. The fibres in a second layer are also orientated at an angle of approximately 45 degrees to the axial direction of the tubular member, but in the opposite sense, whereby to extend orthogonally to the fibres in the first layer and also extend both axially and circumferentially around the tubular member.
  • Although each layer has been described as overlaid on the layer beneath, it will be appreciated that the layers may instead be woven together whereby to form a fabric having mutually orthogonal fibres.
  • The tubular member 20 is illustrated as having a cylindrical shape with a circular cross-section, but it will be appreciated that the same principles apply to other cross-section shapes, in particular square or rectangular.
  • Throughout the description and claims of this specification, the words "comprise" and "contain" and variations of them mean "including but not limited to", and they are not intended to (and do not) exclude other components or integers. Throughout the description and claims of this specification, the singular encompasses the plural unless the context otherwise requires. In particular, where the indefinite article is used, the specification is to be understood as contemplating plurality as well as singularity, unless the context requires otherwise.

Claims (8)

  1. An electrically insulated trellis (1) for forming a working platform and comprising:
    a first array of parallel tubular members (2, 20); and
    a second array of parallel tubular members (4, 20), each of the second array of parallel tubular members being pivotably connected to a plurality of the first array of parallel tubular members whereby to form a trellis,
    characterized in that
    each of the tubular members (2, 4, 20) is formed from glass-reinforced polymer, and
    in that a first set of fibres (22) in the glass-reinforced polymer are substantially parallel and aligned in a first direction and a second set of fibres (24) in the glass-reinforced polymer, distinct from the first set, are substantially parallel and aligned in a second direction different to the first direction.
  2. An electrically insulated trellis as claimed in claim 1, wherein the first array and second array are pivotably connected by rivets (6).
  3. An electrically insulated trellis as claimed in claim 1 or claim 2, wherein the second direction is substantially orthogonal to the first direction.
  4. An electrically insulated trellis as claimed in claim 3, wherein the first direction is one of an axial direction of each of the tubular members or a direction of approximately 45 degrees to the axial direction.
  5. An electrically insulated trellis as claimed in any preceding claim, wherein each tubular member has a substantially rectangular cross-section.
  6. An electrically insulated trellis as claimed in any proceeding claim, wherein at least one of the first array and the second array is provided with at least one respective gripping surface.
  7. An electrically insulated trellis as claimed in claim 6, wherein the respective gripping surface is provided on a respective gripping member affixed to at least one member of the first array or the second array.
  8. A kit of parts for forming the electrically insulated trellis (1) as claimed in any preceding claim, the kit of parts comprising:
    a plurality of tubular members (2, 4, 20) configured to form a first array of parallel tubular members (2, 20) and a second array of parallel tubular members (4, 20); and
    a plurality of pivotable fasteners (6) for pivotably connecting the first array of parallel tubular members with the second array of parallel tubular members, wherein each of the tubular members (2, 4, 20) is formed from glass-reinforced polymer, and wherein a first set of fibres (22) in the glass-reinforced polymer are substantially parallel and aligned in a first direction and a second set of fibres (24) in the glass reinforced polymer, distinct from the first set, are substantially parallel and aligned in a second direction different to the first direction.
EP16794003.0A 2015-11-04 2016-11-04 Insulated trellis mat Active EP3371392B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB1519470.7A GB2544065B (en) 2015-11-04 2015-11-04 Insulated trellis mat
PCT/GB2016/053439 WO2017077323A1 (en) 2015-11-04 2016-11-04 Insulated trellis mat

Publications (2)

Publication Number Publication Date
EP3371392A1 EP3371392A1 (en) 2018-09-12
EP3371392B1 true EP3371392B1 (en) 2022-02-23

Family

ID=55130656

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16794003.0A Active EP3371392B1 (en) 2015-11-04 2016-11-04 Insulated trellis mat

Country Status (14)

Country Link
US (2) US20190119933A1 (en)
EP (1) EP3371392B1 (en)
JP (1) JP7053475B2 (en)
CN (1) CN108431347A (en)
AU (1) AU2016347850B2 (en)
CA (1) CA3002620C (en)
DK (1) DK3371392T3 (en)
EA (1) EA201891088A1 (en)
ES (1) ES2913115T3 (en)
GB (1) GB2544065B (en)
HU (1) HUE058947T2 (en)
PL (1) PL3371392T3 (en)
PT (1) PT3371392T (en)
WO (1) WO2017077323A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113482236B (en) * 2021-06-10 2022-06-10 深圳文业装饰设计工程有限公司 Light-transmitting type three-dimensional partition wall

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3533668A (en) * 1968-02-19 1970-10-13 Plas Steel Products Inc Reinforced plastic bearing and method for fabricating same
GB1296529A (en) * 1968-12-31 1972-11-15
US5005280A (en) * 1987-01-15 1991-04-09 Emerson Electric Co. Method of manfacturing a foldable ladder structure
US4821481A (en) * 1988-03-30 1989-04-18 Woodman Richard C Lattice and method of making same
GB8822520D0 (en) * 1988-09-26 1988-11-02 Tech Textiles Ltd Process for continuously forming reinforced plastics articles
CA2169919C (en) * 1993-08-20 2005-04-05 Kenneth James Sidney Metal lattice
JPH1118909A (en) * 1997-07-07 1999-01-26 San Five Kk Antislipping sheet and grip tape
JPH1190733A (en) * 1997-09-12 1999-04-06 Keiso:Kk Insulated rolling tower
GB2339824B (en) * 1998-07-24 2002-05-15 Black Carpenters Ltd S Safety unit
US6652398B2 (en) * 2001-08-27 2003-11-25 Innercore Grip Company Vibration dampening grip cover for the handle of an implement
US20030213646A1 (en) * 2002-04-22 2003-11-20 Gallion Gerald L. Support bracket for ladder
EP1699962B1 (en) * 2003-12-30 2012-02-15 Samyang Corporation Method for producing a geogrid
GB0402221D0 (en) * 2004-02-02 2004-03-03 L & L Products Inc Improvements in or relating to composite materials
GB2412403A (en) * 2004-03-25 2005-09-28 John Alexander Black Staging element and an assembly thereof
GB2446215A (en) * 2007-01-31 2008-08-06 Trevor Nurse Fall prevention system comprising pivoting grid
TWM331441U (en) * 2007-11-23 2008-05-01 Chun-Ying Huang Structure combining composite material and plastic material
CN101666137A (en) * 2009-07-30 2010-03-10 华东交通大学 Hybrid fabric grid made from carbon fiber and basalt fiber
CN201627128U (en) * 2009-12-11 2010-11-10 张洪柱 Plastic composite geogrid
CN102373769A (en) * 2010-08-16 2012-03-14 范雯丽 Plastic stretched double-rib net-structured material and manufacturing method thereof
CN201981527U (en) * 2010-12-28 2011-09-21 泰安路德工程材料有限公司 Coating consolidation type glass-plastic composite geogrid
CN201981526U (en) * 2010-12-28 2011-09-21 泰安路德工程材料有限公司 Salient-point consolidation-type glass-plastic composite geogrid
US10358285B2 (en) * 2015-04-10 2019-07-23 Channell Commercial Corporation Thermoset polymer utility vault lid

Also Published As

Publication number Publication date
AU2016347850B2 (en) 2022-02-24
EA201891088A1 (en) 2018-10-31
CA3002620C (en) 2022-07-12
GB201519470D0 (en) 2015-12-16
HUE058947T2 (en) 2022-09-28
US20230167647A1 (en) 2023-06-01
JP7053475B2 (en) 2022-04-12
US20190119933A1 (en) 2019-04-25
PL3371392T3 (en) 2022-09-12
CN108431347A (en) 2018-08-21
WO2017077323A1 (en) 2017-05-11
ES2913115T3 (en) 2022-05-31
AU2016347850A1 (en) 2018-05-10
GB2544065A (en) 2017-05-10
DK3371392T3 (en) 2022-05-16
PT3371392T (en) 2022-06-02
JP2018535530A (en) 2018-11-29
EP3371392A1 (en) 2018-09-12
CA3002620A1 (en) 2017-05-11
GB2544065B (en) 2019-02-06

Similar Documents

Publication Publication Date Title
EP2155978B1 (en) Modular construction elements
US20230167647A1 (en) Insulated trellis mat
CN102892572B (en) Strengthen the composite beam chord between plate and relevant manufacture method
US20230279624A1 (en) Composite structural panel and method of fabrication
US10557267B2 (en) Truss structure
US10167583B2 (en) Honeycomb structure made of a non-woven made of recycled carbon fibers
KR20150003781A (en) Method of making a 3d object from composite material
US8769907B2 (en) Construction elements and method of using and making same
EP3443170B1 (en) Support-frameworks
SE536197C2 (en) Reinforcing elements for casting comprising annular portions and reinforcement including such reinforcing elements
US20230226778A1 (en) Foldable frp plate and manufacturing method thereof
EP3124808A1 (en) Tie rod and method for manufacturing a tie rod
EP2889123B1 (en) Method for manufacturing a shell element reinforced with support elements
CN212176051U (en) Connecting piece and truss platform
WO2022147383A1 (en) Iso-truss structure and coupling mechanism for iso-truss structure
TWM444398U (en) Multiple-nest frame
WO2011071445A1 (en) Beam construction

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180604

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: OXFORD SAFETY COMPONENTS LIMITED

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BLACK, JOHN ALEXANDER

Inventor name: BLACK, ROBERT DAVID

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BLACK, ROBERT DAVID

Inventor name: BLACK, JOHN ALEXANDER

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210923

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602016069377

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1470586

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: FI

Ref legal event code: FGE

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20220509

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2913115

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20220531

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Ref document number: 3371392

Country of ref document: PT

Date of ref document: 20220602

Kind code of ref document: T

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20220523

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20220223

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1470586

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220223

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220223

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220223

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220223

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220524

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220223

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E058947

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220223

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220223

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220223

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220223

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220223

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602016069377

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220223

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20221124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220223

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221104

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20231120

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231120

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231213

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20231121

Year of fee payment: 8

Ref country code: PT

Payment date: 20231009

Year of fee payment: 8

Ref country code: NO

Payment date: 20231121

Year of fee payment: 8

Ref country code: IT

Payment date: 20231120

Year of fee payment: 8

Ref country code: IE

Payment date: 20231121

Year of fee payment: 8

Ref country code: HU

Payment date: 20231010

Year of fee payment: 8

Ref country code: FR

Payment date: 20231115

Year of fee payment: 8

Ref country code: FI

Payment date: 20231120

Year of fee payment: 8

Ref country code: DK

Payment date: 20231117

Year of fee payment: 8

Ref country code: DE

Payment date: 20231121

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20231010

Year of fee payment: 8

Ref country code: BE

Payment date: 20231120

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220223