EP3368757A1 - Method for restricting work produced by a combustion engine - Google Patents
Method for restricting work produced by a combustion engineInfo
- Publication number
- EP3368757A1 EP3368757A1 EP16860387.6A EP16860387A EP3368757A1 EP 3368757 A1 EP3368757 A1 EP 3368757A1 EP 16860387 A EP16860387 A EP 16860387A EP 3368757 A1 EP3368757 A1 EP 3368757A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- evaluation
- reduction
- additive
- substance
- combustion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 57
- 238000002485 combustion reaction Methods 0.000 title claims abstract description 53
- 230000009467 reduction Effects 0.000 claims abstract description 67
- 239000000126 substance Substances 0.000 claims abstract description 64
- 238000011156 evaluation Methods 0.000 claims abstract description 63
- 230000007257 malfunction Effects 0.000 claims abstract description 32
- 239000000654 additive Substances 0.000 claims description 98
- 230000000996 additive effect Effects 0.000 claims description 98
- 238000006722 reduction reaction Methods 0.000 claims description 62
- 230000003197 catalytic effect Effects 0.000 claims description 20
- 239000000203 mixture Substances 0.000 claims description 20
- 238000004590 computer program Methods 0.000 claims description 14
- 238000011144 upstream manufacturing Methods 0.000 claims description 8
- 238000010531 catalytic reduction reaction Methods 0.000 claims description 3
- 239000007789 gas Substances 0.000 description 21
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 14
- 239000004202 carbamide Substances 0.000 description 13
- 238000012545 processing Methods 0.000 description 9
- 239000007788 liquid Substances 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 7
- 230000006870 function Effects 0.000 description 6
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 4
- 239000000446 fuel Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 2
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 2
- 229910002091 carbon monoxide Inorganic materials 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000383 hazardous chemical Substances 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 238000007435 diagnostic evaluation Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/18—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
- F01N3/20—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N11/00—Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
- F01N11/007—Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring oxygen or air concentration downstream of the exhaust apparatus
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N11/00—Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/18—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
- F01N3/20—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
- F01N3/2066—Selective catalytic reduction [SCR]
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N9/00—Electrical control of exhaust gas treating apparatus
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2550/00—Monitoring or diagnosing the deterioration of exhaust systems
- F01N2550/02—Catalytic activity of catalytic converters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2550/00—Monitoring or diagnosing the deterioration of exhaust systems
- F01N2550/03—Monitoring or diagnosing the deterioration of exhaust systems of sorbing activity of adsorbents or absorbents
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2550/00—Monitoring or diagnosing the deterioration of exhaust systems
- F01N2550/05—Systems for adding substances into exhaust
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2560/00—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
- F01N2560/02—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
- F01N2560/026—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting NOx
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2560/00—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
- F01N2560/14—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics having more than one sensor of one kind
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2570/00—Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
- F01N2570/14—Nitrogen oxides
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2590/00—Exhaust or silencing apparatus adapted to particular use, e.g. for military applications, airplanes, submarines
- F01N2590/08—Exhaust or silencing apparatus adapted to particular use, e.g. for military applications, airplanes, submarines for heavy duty applications, e.g. trucks, buses, tractors, locomotives
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2590/00—Exhaust or silencing apparatus adapted to particular use, e.g. for military applications, airplanes, submarines
- F01N2590/10—Exhaust or silencing apparatus adapted to particular use, e.g. for military applications, airplanes, submarines for stationary applications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2610/00—Adding substances to exhaust gases
- F01N2610/02—Adding substances to exhaust gases the substance being ammonia or urea
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2610/00—Adding substances to exhaust gases
- F01N2610/14—Arrangements for the supply of substances, e.g. conduits
- F01N2610/148—Arrangement of sensors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2900/00—Details of electrical control or of the monitoring of the exhaust gas treating apparatus
- F01N2900/04—Methods of control or diagnosing
- F01N2900/0416—Methods of control or diagnosing using the state of a sensor, e.g. of an exhaust gas sensor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2900/00—Details of electrical control or of the monitoring of the exhaust gas treating apparatus
- F01N2900/06—Parameters used for exhaust control or diagnosing
- F01N2900/18—Parameters used for exhaust control or diagnosing said parameters being related to the system for adding a substance into the exhaust
- F01N2900/1806—Properties of reducing agent or dosing system
- F01N2900/1818—Concentration of the reducing agent
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/021—Introducing corrections for particular conditions exterior to the engine
- F02D41/0235—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/20—Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Definitions
- the present invention relates to combustion processes, and in particular to a method and system for diagnosing an
- the present invention also relates to a vehicle, as well as a computer program and a computer program product that implement the method according to the invention.
- emission standards often consist of requirements that define acceptable limits for exhaust emissions of vehicles being provided with combustion engines.
- the exhaust levels of e.g. nitric oxides (N0 X ) , hydrocarbons (HC) , carbon monoxide (CO) and particles are regulated for most kinds of vehicles in these standards.
- the undesired emission of substances can be reduced by
- Exhaust gases from the combustion engine can, for example be treated through the use of a so-called catalytic process.
- catalytic converters where different types can be used for different kinds of fuel and/or for treatment of different kinds of substances occurring in the exhaust gas stream.
- nitric oxides NOx such as, for example, nitric oxide NO and nitric dioxide NO2, respectively
- heavy vehicles often comprises a method where an additive is supplied to the exhaust gas stream.
- the additive is supplied in order to, usually through the use of a catalytic converter, reduce the presence of nitric oxides N0 X to less pollutive substances (mainly nitrogen and water vapour) .
- SCR Selective Catalytic Reduction
- the additive consists of an additive of an expected kind.
- the chemical composition of an additive can be evaluated, for example, through the use of a quality sensor.
- a quality sensor indicates a deviating quality of the additive, and/or broken sensor, regulations may require that vehicle
- a method for restricting work produced by combustion in a combustion chamber wherein an aftertreatment system is arranged for reduction of at least one substance resulting from said combustion, wherein the work produced by said combustion is restricted when there is a malfunction regarding reduction of said at least one substance.
- the method includes:
- an exhaust gas stream resulting from combustion can be reduced through the supply of an additive to the exhaust gas stream.
- the additive then reacts with one or more of the substances occurring in the exhaust gas stream to thereby form less hazardous substances.
- the supply of additive can be used to reduce the concentration of nitric oxides N0 X or other substances in the exhaust gases from combustion. It is, however, important that the additive is supplied to the exhaust gas stream in a proportion that corresponds to the presence of the one or more substances/compositions that is to be reduced in order to achieve the desired effect. It is also important that the additive is of a kind that is capable of performing the desired reduction.
- ammonium is classified as a hazardous substance, and emissions of ammonium are also often regulated.
- OBD onboard diagnostics
- a property of the additive directly such as e.g. chemical composition.
- suitable sensor means such as e.g. a quality sensor, which can be arranged in the tank containing the additive, in the following referred to as dosing tank.
- the quality sensor By means of the quality sensor the chemical composition of the additive can be evaluated.
- the vehicle control system will be required to take restrictive measures regarding e.g. vehicle performance, oftentimes in terms of limiting the work produced by combustion. Restrictive measures of this kind are often arranged to be effected only after some time has lapsed.
- the vehicle control system may be
- the time limit given e.g. to allow the vehicle to return home for service.
- Restrictive measures of this kind consequently, provide the driver/owner with an inducement to use additive of an appropriate kind.
- a malfunction with regard to the reduction may be considered to be present if the chemical composition of the additive deviates from accepted compositions, and/or if it is determined that the quality sensor is not working properly.
- the present invention provides a method for reducing the occurrence of restricted vehicle performance due to a negative diagnostic evaluation in situations when the reduction is in fact working properly.
- this is accomplished by diagnosing reduction in the aftertreatment system using at least two evaluations.
- one of these two evaluations indicates an occurrence of a malfunction it is required that also the other of said two evaluations indicates a malfunction in order to take restrictive measures according to the above.
- the first evaluation involves an evaluation of the supply of additive using a quality sensor, where the quality sensor is arranged to diagnose at least one property with regard to said additive, such as e.g. the chemical composition. If it is determined that the evaluation using the quality sensor indicates a malfunction, restrictive measures are not initiated as in the prior art. That is, it is not sufficient that the quality sensor is not working
- the reduction can be estimated using a sensor such as e.g. a NO x sensor measuring the presence of the substance to be reduced. Consequently, contrary to the prior art, the present invention does not automatically initiate restrictions only because the quality sensor indicates a malfunction, but it is also required that a second evaluation of the reduction indicates a malfunction regarding the reduction.
- a sensor such as e.g. a NO x sensor measuring the presence of the substance to be reduced.
- Fig. 1A illustrates a power train of an exemplary vehicle in which the present invention advantageously can be utilized
- Fig. IB illustrates an example of a control unit in a vehicle control system
- Fig. 2 illustrates an example of an aftertreatment system where a supply of additive is utilized and with which the present invention advantageously can be utilized.
- Fig. 3 illustrates an exemplary method according to one embodiment of the present invention. Detailed description of exemplary embodiments
- the concept of the present invention is not limited to the supply of additive, but is applicable for any kind of reduction in an aftertreatment system, e.g. using any kind of catalytic converter. Consequently, the invention is applicable also for reductions that do not involve the supply of an additive.
- the present invention is exemplified below for a urea based additive for reduction of nitric oxides. The present invention is, however, applicable for any kind of suitable additive, where the additive can be arranged for reduction of any substance/compound, and hence not
- Fig. 1A schematically depicts a power train of an exemplary vehicle 100.
- the power train comprises a power source, in the present example a combustion engine 101, which, in a
- Fig. 1A consequently, discloses a powertrain of a specific kind, but the invention is applicable in any kind of power trained and also e.g. in hybrid vehicles.
- the disclosed vehicle further comprises an aftertreatment system 130 for aftertreatment (purifying) of exhaust gases that results from combustion in the combustion engine 101.
- the functions of aftertreatment system 130 are controlled by means of a control unit 131.
- the aftertreatment system 130 can be of various kinds and designs, and according to the disclosed embodiment an additive is supplied to the exhaust gas stream.
- An example of an aftertreatment system 130 in which the present invention can be utilized is shown more in detail in figure 2, and in the disclosed exemplary embodiment the aftertreatment system 130 comprises a selective catalytic reduction (SCR) catalytic converter 201.
- the aftertreatment system can also comprise further non—disclosed components, such as, for example, further catalytic converters and/or particle filters which can be arranged upstream or downstream the SCR catalytic converter 201.
- the supply of additive can, according to the above, for example be used in the reduction of the concentration of nitric oxides NO x in the exhausts from the combustion engine through the use of an SCR catalytic converter.
- This additive can, as according to the disclosed embodiment, for example be a urea based additive and e.g. consist of
- AdBlue which constitutes a frequently used additive and which consists of a mixture of approximately 32.5% urea dissolved in water. Urea forms ammonium when heated, which then reacts with nitric oxides NO x in the exhaust gas stream.
- the present invention is applicable when using AdBlue, as well as when using any other urea based additive. As was mentioned above, the invention is also applicable when using any kind of additive and irrespective of the substance in the exhaust gas stream that the additive is arranged to reduce.
- Fig. 2 further discloses a urea dosing system (UDS), which comprises a urea, or dosing, tank 202, which is connected to an injection nozzle 205 through the use of which additive is injected into the exhaust gas stream 119.
- the dosing of urea is controlled by a UDS control unit 204, which generates control signals for controlling the supply of additive so that a desired amount is injected into the exhaust gas stream 119 from the tank 202 using the injection nozzle 205.
- An armature 210 is arranged in the tank 202 and comprises a quality sensor 211 for diagnosing the supply of additive.
- the present invention relates to a method for reducing the occurrence of restrictions regarding work produced by combustion, and this is accomplished
- OBD onboard diagnostics
- legislated exhaust emission standards Such requirements include the capability of diagnosing supply of additive during vehicle operation. This can, for example, be accomplished by estimating the conversion rate, i.e. reduction rate, of the substance to be reduced, such as e.g. N0 X .
- the conversion rate can, for example be estimated by comparing a presence of N0 X upstream the supply of additive with the presence of N0 X downstream the SCR catalytic converter 201. In this way, it can be determined whether a desired conversion, i.e.
- the presence of NO x upstream the supply of additive and downstream the catalytic converter 201, respectively, can, for example, be determined through the use of NO x sensors 207, 208 (see fig. 2) .
- the presence of NOx upstream the supply of additive can also be determined e.g. by means of a model representation, e.g. taking combustion engine operation parameters into account as is known per se.
- the supply of additive can also be more directly evaluated e.g. by means of an analysis of the additive. This can be accomplished, for example, through the use of the quality sensor 211 being arranged in the dosing tank, where e.g. the chemical composition of the additive can be analysed.
- the present invention provides a method that reduces the risk of situations arising where restrictions are imposed because a fault is indicated, but where in reality no fault exist.
- An exemplary method 300 of the present invention is shown in fig. 3, which method can be implemented at least partly e.g. in the control unit 204 for controlling of the urea dosing system.
- the functions of a vehicle are, in general, controlled by a number of control units, and control systems in vehicles of the disclosed kind generally comprise a
- Such a control system may comprise a large number of control units, and the control of a specific
- Figs. 1A, 2 depicts only control units 115-116, 130, 204, but vehicles 100 of the illustrated kind are often provided with significantly more control units, as one skilled in the art will appreciate.
- Control units 115- 116, 130, 204 are arranged to communicate with one another and various components via said communication bus system and other wiring, partly indicated by interconnecting lines in fig. 1A.
- the present invention can be implemented in any suitable control unit in the vehicle 100, and hence not necessarily in the control unit 204.
- the diagnostics of the urea dosing according to the present invention will usually depend on signals being received from other control units and/or vehicle components, and it is generally the case that control units of the disclosed type are normally adapted to receive sensor signals from various parts of the vehicle 100.
- the control unit 204 will, for example, receive signals from e.g. quality sensor 211 and/or NO x sensors 207, 208.
- Control units of the illustrated type are also usually adapted to deliver control signals to various parts and components of the vehicle, e.g. to the engine control unit or other suitable control unit when tests indicate that performance of the vehicle should be restricted.
- Control of this kind is often accomplished by programmed instructions.
- the programmed instructions typically consist of a computer program which, when executed in a computer or control unit, causes the computer/control unit to exercise the desired control, such as method steps according to the present invention.
- the computer program usually constitutes a part of a computer program product, wherein said computer program product comprises a suitable storage medium 121 (see Fig. IB) with the computer program 126 stored on said storage medium 121.
- the computer program can be stored in a non-volatile manner on said storage medium.
- the digital storage medium 121 can, for example, consist of any of the group comprising: ROM (Read-Only Memory) , PROM (Programmable Read-Only Memory) , EPROM (Erasable PROM) , Flash memory, EEPROM (Electrically Erasable PROM), a hard disk unit etc, and be arranged in or in connection with the control unit, whereupon the computer program is executed by the control unit.
- ROM Read-Only Memory
- PROM Programmable Read-Only Memory
- EPROM Erasable PROM
- Flash memory Flash memory
- EEPROM Electrical Erasable PROM
- control unit 204 An exemplary control unit (the control unit 204) is shown schematically in Fig. IB, wherein the control unit can
- processing unit 120 can consist of, for example, any suitable type of processor or microcomputer, such as a circuit for digital signal processing (Digital Signal Processor, DSP) or a circuit with a predetermined specific function (Application Specific Integrated Circuit, ASIC) .
- the processing unit 120 is connected to a memory unit 121, which provides the processing unit 120, with e.g. the stored program code 126 and/or the stored data that the processing unit 120 requires to be able to perform calculations.
- the processing unit 120 is also arranged so as to store partial or final results of calculations in the memory unit 121.
- control unit 204 is equipped with devices 122, 123, 124, 125 for receiving and transmitting input and output signals, respectively.
- These input and output signals can comprise waveforms, pulses or other attributes that the devices 122, 125 for receiving input signals can detect as information for processing by the processing unit 120.
- the devices 123, 124 for transmitting output signals are arranged so as to convert calculation results from the processing unit 120 into output signals for transfer to other parts of the vehicle control system and/or the component (s) for which the signals are intended.
- Each and every one of the connections to the devices for receiving and transmitting respective input and output signals can consist of one or more of a cable; a data bus, such as a CAN bus (Controller Area Network bus), a MOST bus (Media Oriented Systems Transport) or any other bus configuration, or of a wireless connection.
- a data bus such as a CAN bus (Controller Area Network bus), a MOST bus (Media Oriented Systems Transport) or any other bus configuration, or of a wireless connection.
- step 301 the method starts in step 301, where it is determined whether the reduction of a substance, such as e.g. NO x , is to be diagnosed.
- the method remains in step 301 for as long as this is not the case.
- the method continues to step 302 when it is determined that the reduction of a substance is to be
- the transition from step 301 to step 302 can, for example, be initiated according to various criteria.
- the diagnostics can be arranged to be performed at regular intervals.
- the diagnostics can be arranged to be performed e.g. each time the combustion engine 101 is started and/or each time there is an indication that a refill of additive has taken place.
- the transition can also be arranged to be performed if there is an indication of malfunctioning reduction of N0 X .
- a first evaluation regarding the reduction of a substance is initiated. This evaluation can, for example, consist of any of the above described tests and according to the exemplary embodiment a diagnostic of the supply of additive using the quality sensor 211 is performed.
- step 302 it is first determined whether it can be assumed that the quality sensor 211 is working properly, or whether the sensor 211 is assumed to be malfunctioning. This can, for example, be determined by the magnitude of received sensor signals, and/or presence or lack of sensor signals. When the quality sensor is determined to be working properly, the method continues to step 303. When it is concluded that the quality sensor 211 is not working properly, the method
- step 305 a diagnostic trouble code (DTC) with regard to the malfunctioning sensor is set.
- DTC diagnostic trouble code
- step 302 When it is concluded in step 302 that the quality sensor 211 is assumed to be working properly the method continues to step 303 where the quality of the additive is evaluated based on the sensor signals received from quality sensor 211. The method then continues to step 304, where it is determined whether this evaluation indicates that the supply of an additive deviates from an expected supply in some aspect. For example, the chemical composition of the additive can be diagnosed in step 303. When it is determined in step 304 that there is a deviation with regard to chemical composition, the method continues to step 305. Otherwise the method is ended in step 311, since the reduction is considered to function properly .
- the quality sensor 211 can, for example, be arranged such that the speed of sound in the additive is measured. This can be accomplished by transmitting a signal towards a surface at a known distance and measure the time it takes for the signal to travel there and back. Quality sensors of this kind are known in the art, and it is generally the case that the speed of sound in a liquid changes with the composition of the liquid. This means that a determination of the speed of sound in the liquid in the dosing tank can be used to evaluate the chemical composition of the additive by comparing the obtained speed of sound with an expected speed of sound, where a malfunction can be assumed e.g. when the deviation from an expected value exceeds some suitable limit.
- the speed of sound can be stored in the vehicle control system for a number of different concentrations/liquids, so that an obtained speed of sound can be compared with stored values and translated into a
- the comparison indicates use of a liquid that does not fulfil set requirements, this can be used as an indication of a malfunction.
- the deviation may be caused e.g. by frozen additive in the tank, and hence the additive may be of proper quality also in situations where the sensor indicates otherwise .
- a quality sensor such as a urea quality sensor, can be used to determine the quality of additive and thereby diagnose of the supply of additive. If it is concluded in step 304 that the supply of additive is not working as required the method continues to step 305.
- a diagnostic trouble code can be set in step 305, in this case indicating e.g. bad quality of the additive.
- the causes resulting in activated trouble codes in step 305 can then be looked into e.g. the next time the vehicle is taken in for service. At this stage, however, no restrictive measures are being taken, and hence service must not necessarily be
- step 306 for further evaluation. That is, no restrictive measures with regard to vehicle performance are taken solely based on the evaluation performed in steps 302-304. Instead, a second evaluation of the reduction is performed.
- the second evaluation can, for example, be a determination of the current conversion rate, or reduction rate, of the
- a determination of the NO x reduction rate is performed. This can be performed, for example, according to the above by
- step 306 it is first determined whether it can be assumed that the NO x sensors 207, 208 are working properly, or whether either or both of the sensors 207, 208 is/are assumed to be malfunctioning. This can, for example, be determined by the magnitude of received sensor signals, and/or presence or lack of sensor signals. When both NO x sensors 207, 208 are working properly, or whether either or both of the sensors 207, 208 is/are assumed to be malfunctioning. This can, for example, be determined by the magnitude of received sensor signals, and/or presence or lack of sensor signals. When both NO x sensors 207, 208 are working properly, or whether either or both of the sensors 207, 208 is/are assumed to be malfunctioning. This can, for example, be determined by the magnitude of received sensor signals, and/or presence or lack of sensor signals. When both NO x sensors 207, 208 are working properly, or whether either or both of the sensors 207, 208 is/are assumed to be malfunctioning. This can, for example, be determined by the magnitude of received sensor signals,
- step 310 an appropriate trouble code is activated, and the method then continues to step 309 for activating restrictive measures, since the second evaluation of the reduction has not been capable of indicating otherwise than the first evaluation.
- the presence of NO x upstream the supply of additive can be estimated through the use of any suitable model of the combustion engine and e.g. the amount of fuel that is provided to the combustion engine instead. In this case, only the operation of NO x sensor 208 needs to be
- step 307 If the NOx sensors (or sensor) are determined to operate properly, the NO x reduction is calculated/estimated in step 307. If it is determined that e.g. an estimated reduction rate corresponds to an expected reduction rate to some suitable extent e.g. based on an assumed supply of additive, step 308, this constitutes an indication that the system is working properly after all. That is, sensor signals being delivered by the quality sensor 211 do not reflect an actual status of the system operation. Therefore, in this case, no restrictive measures are being taken, and the method is ended in step 311. Diagnostic trouble codes according to the above may remain set for later diagnostics.
- step 308 If, on the other hand, it is determined in step 308 that the estimated conversion rate does not correspond to an expected conversion rate the method continues to step 309, where further diagnostic error codes can be activated, e.g. with regard to the NO x reduction.
- Restrictive measures are then taken in step 309. These measures can, for example, be
- the measures may constitute a restriction where the work produced by the combustion engine is limited, e.g. by restricting the maximum available power and/or maximum vehicle speed.
- the limitations may be arranged to be applied some suitable number of hours after the error is detected to allow the vehicle to be driven to a suitable service shop/return home.
- the restrictive measures are such that actual limitation of combustion engine work is started 20 hours after the restrictive measure is taken.
- the method is then ended in step 311.
- the present invention consequently, provides a solution where restrictive measures are not taken solely based on a single evaluation but, instead, at least two evaluations indicating a malfunction are required in order to actually take restrictive measures. For as long as only one evaluation indicates a malfunction this is duly noted by setting a suitable
- diagnostic trouble code and possibly store related data, but no restrictions are applied. Consequently, e.g. a
- At least one second indication of a fault is required to initiate restrictions of vehicle
- the invention has been exemplified using particular kinds of evaluations.
- the order in which such evaluations are performed is not relevant to the present invention, and the evaluations can performed in any order.
- an evaluation using e.g. a NO x sensor can first be made, and if this evaluation indicates a malfunction in the reduction the quality sensor can be used to verify this, or as an indication of a possibly malfunctioning NOx sensor and not a malfunctioning reduction.
- the above evaluations only constitute examples, and any kind of suitable evaluations can be used instead.
- the general aspect of the present invention is a method where any suitable function of an aftertreatment system is evaluated through the use of at least two evaluations, and where restrictions regarding vehicle performance are imposed only when two independent evaluations relating to the same functionality indicates a malfunctioning system. Consequently, according to the present invention, a diagnostic trouble code representing e.g. a malfunctioning quality sensor, or a diagnostic trouble code representing e.g. a malfunctioning N0 X sensor, will not result in restrictions of vehicle performance based on this trouble code alone, but further indications are required to trigger a restriction.
- the present invention has been exemplified for a vehicle. The invention is, however, applicable in any kind of craft, such as, e.g., aircrafts, watercrafts and spacecrafts. The invention is also applicable for use in combustion plants.
- the aftertreatment system may comprise further
- the aftertreatment system may comprise more than one SCR catalytic converter.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Exhaust Gas After Treatment (AREA)
- Combustion Methods Of Internal-Combustion Engines (AREA)
Abstract
Description
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE1551385A SE541255C2 (en) | 2015-10-28 | 2015-10-28 | Method and system for diagnosing an aftertreatment system |
PCT/SE2016/051046 WO2017074251A1 (en) | 2015-10-28 | 2016-10-27 | Method for restricting work produced by a combustion engine |
Publications (3)
Publication Number | Publication Date |
---|---|
EP3368757A1 true EP3368757A1 (en) | 2018-09-05 |
EP3368757A4 EP3368757A4 (en) | 2019-05-15 |
EP3368757B1 EP3368757B1 (en) | 2020-12-30 |
Family
ID=57190817
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP16860387.6A Active EP3368757B1 (en) | 2015-10-28 | 2016-10-27 | Method for restricting work produced by a combustion engine |
Country Status (7)
Country | Link |
---|---|
US (1) | US10711679B2 (en) |
EP (1) | EP3368757B1 (en) |
KR (1) | KR102146513B1 (en) |
CN (1) | CN108138639B (en) |
BR (1) | BR112018006325B1 (en) |
SE (1) | SE541255C2 (en) |
WO (1) | WO2017074251A1 (en) |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003529011A (en) * | 1999-06-09 | 2003-09-30 | クリーン ディーゼル テクノロジーズ インコーポレーテッド | Method and composition for ensuring reduction of NOx emissions from an engine by selective catalytic reduction |
US6363771B1 (en) | 1999-11-24 | 2002-04-02 | Caterpillar Inc. | Emissions diagnostic system |
JP4326976B2 (en) * | 2003-10-22 | 2009-09-09 | 日産ディーゼル工業株式会社 | Engine exhaust purification system |
JP4308094B2 (en) * | 2004-06-23 | 2009-08-05 | 日野自動車株式会社 | Reducing agent supply device |
US8141346B2 (en) * | 2007-01-31 | 2012-03-27 | Ford Global Technologies, Llc | System and method for monitoring reductant quality |
US8116961B2 (en) | 2009-06-03 | 2012-02-14 | Ford Global Technologies, Llc | Controlling of a vehicle responsive to reductant conditions |
CN102278222A (en) | 2011-08-30 | 2011-12-14 | 潍柴动力股份有限公司 | Tail gas aftertreatment system and method for diesel engine |
DE112013002497T5 (en) * | 2012-06-07 | 2015-01-29 | Cummins, Inc. | Method of causing maintenance of an SCR aftertreatment system |
JP6105403B2 (en) * | 2013-06-17 | 2017-03-29 | 日野自動車株式会社 | Diagnosis device for urea water supply system |
US20150096285A1 (en) * | 2013-10-03 | 2015-04-09 | Cummins Emission Solutions Inc. | System, apparatus, and methods for performing a quality diagnostic of an aqueous urea solution |
-
2015
- 2015-10-28 SE SE1551385A patent/SE541255C2/en unknown
-
2016
- 2016-10-27 EP EP16860387.6A patent/EP3368757B1/en active Active
- 2016-10-27 BR BR112018006325-8A patent/BR112018006325B1/en active IP Right Grant
- 2016-10-27 WO PCT/SE2016/051046 patent/WO2017074251A1/en unknown
- 2016-10-27 KR KR1020187013867A patent/KR102146513B1/en active IP Right Grant
- 2016-10-27 CN CN201680061371.8A patent/CN108138639B/en active Active
- 2016-10-27 US US15/767,329 patent/US10711679B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
EP3368757B1 (en) | 2020-12-30 |
US20190055873A1 (en) | 2019-02-21 |
CN108138639A (en) | 2018-06-08 |
BR112018006325B1 (en) | 2023-04-04 |
KR102146513B1 (en) | 2020-08-21 |
CN108138639B (en) | 2021-05-11 |
WO2017074251A1 (en) | 2017-05-04 |
EP3368757A4 (en) | 2019-05-15 |
US10711679B2 (en) | 2020-07-14 |
SE1551385A1 (en) | 2016-10-03 |
BR112018006325A2 (en) | 2018-10-16 |
SE541255C2 (en) | 2019-05-14 |
KR20180071308A (en) | 2018-06-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10544743B2 (en) | Method and system for diagnosing an aftertreatment system | |
EP3414434B1 (en) | Method and system for diagnosing exhaust sensors | |
EP3485153B1 (en) | Method and system for diagnosing an aftertreatment system | |
EP3368757B1 (en) | Method for restricting work produced by a combustion engine | |
EP3803076B1 (en) | Method and system determining a reference value in regard of exhaust emissions | |
US20210033012A1 (en) | Method and system for diagnosing an aftertreatment component subjected to an exhaust gas stream | |
EP3368755B1 (en) | Method and system for use when correcting supply of an additive to an exhaust gas stream |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20180528 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
A4 | Supplementary search report drawn up and despatched |
Effective date: 20190411 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F01N 3/20 20060101ALI20190405BHEP Ipc: F01N 11/00 20060101AFI20190405BHEP Ipc: F01N 9/00 20060101ALI20190405BHEP |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20200406 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20200824 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1350136 Country of ref document: AT Kind code of ref document: T Effective date: 20210115 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602016050781 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 602016050781 Country of ref document: DE Representative=s name: WUESTHOFF & WUESTHOFF, PATENTANWAELTE PARTG MB, DE Ref country code: IE Ref legal event code: FG4D |
|
RAP4 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: SCANIA CV AB |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210330 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210331 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1350136 Country of ref document: AT Kind code of ref document: T Effective date: 20201230 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210330 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20201230 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210430 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210430 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602016050781 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 |
|
26N | No opposition filed |
Effective date: 20211001 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211027 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211031 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211027 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20161027 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230516 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201230 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20230830 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240906 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20240917 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240909 Year of fee payment: 9 |