EP3365603B1 - Firing system and method for operating same - Google Patents

Firing system and method for operating same Download PDF

Info

Publication number
EP3365603B1
EP3365603B1 EP16797719.8A EP16797719A EP3365603B1 EP 3365603 B1 EP3365603 B1 EP 3365603B1 EP 16797719 A EP16797719 A EP 16797719A EP 3365603 B1 EP3365603 B1 EP 3365603B1
Authority
EP
European Patent Office
Prior art keywords
volume flow
reaction gas
combustion
combustion stage
supply device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16797719.8A
Other languages
German (de)
French (fr)
Other versions
EP3365603A1 (en
Inventor
Hans-Joachim Gehrmann
Daniela Baris
Andreas Gerig
Helmut Seifert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Karlsruher Institut fuer Technologie KIT
Original Assignee
Karlsruher Institut fuer Technologie KIT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Karlsruher Institut fuer Technologie KIT filed Critical Karlsruher Institut fuer Technologie KIT
Publication of EP3365603A1 publication Critical patent/EP3365603A1/en
Application granted granted Critical
Publication of EP3365603B1 publication Critical patent/EP3365603B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L9/00Passages or apertures for delivering secondary air for completing combustion of fuel 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N3/00Regulating air supply or draught
    • F23N3/002Regulating air supply or draught using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2205/00Pulsating combustion
    • F23C2205/20Pulsating combustion with pulsating oxidant supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2237/00Controlling
    • F23N2237/16Controlling secondary air

Definitions

  • the invention relates to a firing system for the combustion of solid fuel supplied to a fuel bed with a primary combustion stage with a first supply device for supplying a first oxygen-containing reaction gas and carrying out an incomplete combustion process with generation of a first volume flow and a secondary combustion stage downstream of the first combustion stage with one of a second volume flow of a second oxygen-containing reaction gas supplied to a second supply device into a second supply device supplying an exhaust gas space above the fuel bed.
  • Firing systems that is to say plants which convert chemically bound energy into thermal energy, such as waste incineration plants, are sufficiently known from the prior art.
  • solid fuel is transported to a fuel bed and, if necessary, burned with the aid of an additional fuel source with liquid or gaseous fuel with the supply of reaction gas, for example air or, for example, oxygen-enriched air, by means of a first supply device, for example a fan, in a first combustion stage.
  • reaction gas for example air or, for example, oxygen-enriched air
  • the first combustion stage can be followed by a second combustion stage, which in the exhaust gas chamber downstream of the first combustion stage supplies a second reaction gas by means of a second feed device in order to oxidize afterburning incompletely oxidized pollutants, for example carbon monoxide in carbon dioxide or incompletely burned hydrocarbons.
  • a second combustion stage which in the exhaust gas chamber downstream of the first combustion stage supplies a second reaction gas by means of a second feed device in order to oxidize afterburning incompletely oxidized pollutants, for example carbon monoxide in carbon dioxide or incompletely burned hydrocarbons.
  • the WO 03/083370 A1 describes a method and a device for regulating the primary and secondary air injection of a waste incineration plant.
  • the DE 43 01 082 A1 describes a method for supplying an O2-containing combustion gas for the combustion of lumpy combustible material, in particular garbage, into a combustion chamber with an associated grate of an incinerator, in which part of the combustion gas is supplied as a primary gas through the grate and the other part of the combustion gas at least as Secondary gas is supplied in a quantity-controlled manner in at least one jet, the carbon monoxide content being recorded by means of a measuring sensor and being fed to an evaluation and control unit.
  • the object of the invention is the development of a firing system and a method for controlling it, in which the nitrogen oxide contents are reduced in a simple manner.
  • a method for operating a firing system is to be proposed which can be applied to existing firing systems without major modifications.
  • Multi-stage combustion systems as proposed are advantageously used in combustion systems for solid fuels, in which the solid fuel in the first combustion stage is converted into an exhaust gas and thus a first volume flow and the first volume flow in one while supplying a first reaction gas such as air or oxygen-enriched air a further combustion stage, for example with a second volume flow of a second reaction gas, for example air and / or at least partially recirculated exhaust gas, optionally with further gas additives, for example ammonia, and / or water vapor.
  • a first reaction gas such as air or oxygen-enriched air
  • a further combustion stage for example with a second volume flow of a second reaction gas, for example air and / or at least partially recirculated exhaust gas, optionally with further gas additives, for example ammonia, and / or water vapor.
  • multi-stage, for example two-stage processes can be provided, for example, in the area of grate furnaces, for example in waste incineration plants, biomass furnaces, special waste incineration plants or the like with rotary kiln, fluidized bed, fixed bed, deck oven technology or the like.
  • the second firing stage essentially serves the and over-stoichiometric treatment of the exhaust gases of the first volume flow of the first combustion stage with the second volume flow of the second reaction gas and thus the most complete possible burnout of gas species such as carbon monoxide and organic hydrocarbons with air or recirculated flue gas.
  • the combustion of the fuel in the first combustion stage takes place sub-stoichiometrically, so that a residual content of incompletely or not fully oxidized components, for example carbon such as soot, carbon monoxide and ammonia, can remain in the first volume flow.
  • incompletely oxidized components serve as reducing agents or catalysts for the reduction of nitrogen oxides.
  • improved comproportionation to nitrogen can be promoted between the remaining ammonia and nitrogen oxides during the pulsating supply of the second reaction gas in the second volume flow and thus under and over-stoichiometric conditions during the mixing of the volume flows.
  • Components of the two volume flows include gases or compounds that are supplied and that arise during a reaction, for example the combustion of the fuel, and solids carried in the volume flows of simple or complex composition.
  • the components carbon monoxide, carbon dioxide, water vapor, ammonia, nitrogen oxides, hydrocarbons, residual oxygen and soot can be contained as exhaust gases in the first volume flow.
  • air, oxygen with higher proportions than in the air, water vapor, ammonia and proportions of the exhaust gas can be present in the second volume flow.
  • a third volume flow supplied as the first reaction gas can contain as components air, oxygen-enriched air, oxygen and optionally further components.
  • the supply of a volume flow of the second reaction gas is controlled in a pulsating manner by means of the second supply device during a combustion process.
  • a time-pulsating metering of the volume flow can be provided in new systems of firing systems and can be easily retrofitted in existing firing systems by adapting the second supply device.
  • the second feed device can be provided with a pinch valve, cellular wheel sluices or the like, which interrupt or continuously change the volume flow of the second reaction gas at a predetermined or predeterminable frequency and thus lead to a temporal volume flow gradation.
  • the pulsation is applied from the outside by means of a control.
  • Pulsation impressed from the outside is to be understood here to mean, for example, an oscillating or intermittent change in the volume flow, which subsequently causes the exhaust gas to be burned in the same way.
  • the pulsation of the volume flow can be represented, for example, by a sawtooth or rectangular profile.
  • other regulations for example pressure control of the second reaction gas, are also included in the proposed solution to the problem.
  • all possibilities are provided for pulsatingly changing the stoichiometry of the components of the exhaust gas and the components of the second reaction gas in the post-combustion process of the second combustion stage.
  • This can also be understood to mean an additional pulsating operation of the first reaction gas.
  • the proposed supply options deviating from the pulsating operation of the volume flow are therefore to be subsumed under the pulsating operation of the volume flow.
  • an oscillating supply of the second reaction gas in the form of air or air enriched with oxygen, water vapor, ammonia and / or the like, a mixture of these with recirculated exhaust gas, pure exhaust gas or the like, which is capable of pulsating properties is proposed.
  • the proportion of nitrogen oxides can be reduced, for example, by dis- and / or comproportionation reactions or oxidation and reaction.
  • this stoichiometric behavior of the components of exhaust gas and second reaction gas which changes over time, can be achieved by means of an oscillating supply of the first reaction gas, for example air or air enriched with oxygen, water vapor or a mixture of oxygen-containing gases when solid fuels are converted in the first combustion stage to reduce nitrogen oxide be supplemented and improved.
  • the first reaction gas for example air or air enriched with oxygen, water vapor or a mixture of oxygen-containing gases when solid fuels are converted in the first combustion stage to reduce nitrogen oxide be supplemented and improved.
  • the pulsation is controlled by means of time intervals of the same length or of different lengths, in which no or little second reaction gas is metered in at first time intervals and more reaction gas is metered into the exhaust gas space in second time intervals.
  • the metering can be frequency-dependent, that is to say dependent on the repetition rate of maxima and minima of the reaction gas over time and / or dependent on the amplitude of these maxima or minima.
  • the frequency is controlled depending on the carbon monoxide content after the second firing stage. For example, a medium half-hourly value from 100 mg / Nm 3 carbon monoxide preferably to an average half-hour value of less than 50 mg / Nm 3 carbon monoxide.
  • the oscillation frequency of the second reaction gas can be controlled, for example, in such a way that the half-hourly value of the carbon monoxide is less than 50 mg / Nm 3 and the nitrogen oxide contents are reduced, preferably minimized.
  • An oscillation frequency can be dependent on further parameters, for example the amplitude of the oscillation frequency, the oxygen content, additional components such as ammonia, water vapor and possibly an added gas quantity from the exhaust gas recirculation, the thermal output of the combustion system and / or local conditions.
  • a range of the oscillation frequencies can be provided, for example, between 0.1 Hz and 10 Hz, preferably 0.5 Hz and 5 Hz.
  • the oscillation or pulsation of the second reaction phase can only be provided during a combustion phase and can be suspended, for example, during a start-up phase of the combustion system.
  • the second reaction gas can be supplied continuously or switched off.
  • the pulsation of the second reaction gas can be activated when a predetermined nitrogen oxide content in the exhaust gas is reached or exceeded, for example when the NO x concentrations are above 400 mg / Nm 3 .
  • the NO x concentration can be continuously detected, for example by a sensor or detector.
  • the object is achieved by a combustion system for the combustion of solid fuel supplied to a fuel bed with a primary combustion stage with a first supply device for supplying a first oxygen-containing reaction gas and a secondary combustion stage downstream of the first combustion stage with a second oxygen-containing reaction gas into an exhaust gas space above the Solved fuel bed supplying second feed device, wherein a volume flow of the second reaction gas is pulsed in time controlled by means of the second feed device during a combustion process.
  • the volume flow can be set to oscillate or intermittently.
  • the volume flow can be clocked in the form of a sawtooth profile or rectangular profile.
  • the second feed device can be provided with a time-controlled pinch valve or a cellular wheel sluice.
  • the second reaction gas can contain oxygen and / or water vapor.
  • the object is achieved by a method for operating a combustion system for burning a solid fuel supplied to a fuel bed with a first combustion stage with a first supply device for supplying a first oxygen-containing reaction gas and a second combustion stage with a second supply device for supplying a second oxygen-containing reaction gas in one of the first Combustion stage following exhaust gas space solved, the fuel being oxidized in the first combustion stage under substoichiometric conditions and by periodically varying the supply of the second reaction gas, afterburning of exhaust gases of the first combustion stage is carried out alternately under substoichiometric and superstoichiometric reaction conditions.
  • a volume flow of the second reaction gas can be increased and weakened at alternating time intervals.
  • the time intervals for an increase in the volume flow can be equal to or different from the time intervals for a weakening of the volume flow.
  • the volume flow can be varied in a rectangular or sawtooth shape depending on the time.
  • a frequency of the volume flow such as the oscillation frequency can be controlled depending on a carbon monoxide content of the exhaust gas.
  • the frequency can be set to a carbon monoxide content of less than 100 mg / Nm3, preferably less than 50 mg / Nm3.
  • Ammonia can be added to the second reaction gas.
  • Steam can be added to the second reaction gas.
  • Portions of the exhaust gas from the combustion system can be admixed with the second reaction gas or the second reaction gas can be formed from the exhaust gas from the combustion system.
  • the first reaction gas can also be operated in a modulated manner, such as pulsed, oscillating or intermittent.
  • the Figure 1 shows a schematic representation of the combustion system 1 with the fuel bunker 2 and the loading table 4 with plunger 3, which transports the solid fuel 5 onto the fuel bed 6 designed as a grate.
  • the fuel 5 On the fuel bed 6, the fuel 5 is burned in the first combustion stage 7 while supplying the first reaction gas 8 via the first supply device 9 under substoichiometric conditions, that is to say oxidized. Air or oxygen-enriched air is preferably used as the first reaction gas 8.
  • the solid fuel 5 can be formed from waste, biomass, coal, coke or mixtures thereof.
  • the first feed device 9 is designed here, for example, as a blower.
  • the ash from the first firing stage 7 is discharged into the ash box 10.
  • the second combustion stage 12 for afterburning incompletely oxidized components of the first volume flow in the form of the exhaust gas of the first combustion stage 7 is arranged in the exhaust pipe 11.
  • the second supply device 13 for supplying the second reaction gas 14 is provided on the second firing stage 12.
  • the second feed device 13 doses the second volume flow at least temporarily in a pulsating manner with a preferably adjustable repetition rate such as oscillation frequency, for example 0.1 Hz to 10 Hz, preferably 0.5 Hz to 5 Hz.
  • the second reaction gas 14 is formed from air, air enriched with oxygen, air enriched with ammonia, water vapor or the like, partly from air mixed with exhaust gas from the combustion system 1, or completely from exhaust gas.
  • the second feed device 13 has a device for forming the pulsation of a volume flow of the second reaction gas 14, for example a pinch valve, a cellular wheel sluice or the like.
  • the resulting pulsating changing stoichiometry between the incompletely burned components of the first combustion stage 7 and the components of the second reaction gas 14, in particular oxygen has a positive influence on the special reaction chemistry of the nitrogen oxides carried in the exhaust gas, so that their content drops, for example by Oxygen deficiency can be reduced to nitrogen.
  • the oxidation of the other, not completely burned components of the exhaust gas of the first combustion stage 7, such as carbon monoxide and hydrocarbons can advantageously be influenced by the pulsation, so that their content decreases.
  • the Figure 2 shows that compared to the combustion system 1 of FIG Figure 1 Firing system 1a produced with reduced dimensions in a schematic illustration with the combustion chamber 3a operated in a batch process, which is filled with fuel 5a.
  • the first reaction gas Via the fuel bed 6a in the form of a grate, the first reaction gas is introduced from below in the direction of arrow 15a and the first combustion stage 7a is thus formed.
  • the exhaust pipe 11a Via the exhaust pipe 11a, the exhaust gas resulting from a substoichiometric combustion taking place in the first combustion stage 7a reaches the afterburning chamber 16a, into which the second reaction gas is pulsed in the direction of the arrow 17a to form the second combustion stage 12a.
  • the introduction of the second reaction gas can in principle be provided on all combustion systems in an adjustable vertical or at any other angle with respect to the direction of movement of the exhaust gas with or against the direction of movement.
  • a targeted mixing of the exhaust gas and the second reaction gas can be controlled become.
  • the measuring points 18a, 19a, 20a designated here are provided at different points, the measuring point 19a allowing an optical access and the measuring points 18a, 20a an analysis of the components present at these points, for example after the first Allow firing stage 7a and after the second firing stage 12a.
  • the post-combustion chamber 16a is followed by the heat exchanger 21a, the filter chamber 22a, the Venturi nozzle 23a, the carbon adsorber 24a and the blower 25a in the direction of movement of the exhaust gas.
  • Figure 3 schematically shows the second volume flow with an oscillating supply of air for carrying out the second combustion stage, which is arranged downstream of the first combustion stage in the direction of movement of the exhaust gas.
  • the second reaction gas is fed to the first volume flow such as exhaust gas from the first combustion stage by means of the second supply device in a pulsating manner over time t.
  • the mixing of the components is of little or no importance here. Rather, the first combustion stage is operated sub-stoichiometrically with oxygen, i.e. with a combustion air ratio ⁇ ⁇ 1, so that in the second combustion stage, due to the pulsating operation of the second reaction gas, no or less oxygen in first time periods ⁇ t 1 and more oxygen in alternating second time periods ⁇ t 2 is introduced to the first volume flow.
  • first time periods ⁇ t 1 for example, components that are not completely oxidized, such as carbon monoxide (CO) and nitrogen compounds, such as ammonia (NH 3 ) and nitrogen oxides (NO x ), remain in the first volume flow from the first combustion stage, such as primary firing. If sufficient air or oxygen is added to the exhaust gas from the primary combustion in the second time periods ⁇ t 2 , so that the combustion air number ⁇ > 1 results, carbon monoxide becomes carbon dioxide (CO 2 ) and the nitrogen oxides with the ammonia in oxygen (O 2 ) and water ( H 2 O) implemented. If continuous operation with a combustion air ratio ⁇ > 1 is known, the nitrogen oxides are further oxidized and cannot be reduced.
  • CO carbon monoxide
  • nitrogen compounds such as ammonia (NH 3 ) and nitrogen oxides (NO x .
  • the time segments .DELTA.t 1 and .DELTA.t 2 can be of different lengths, and the height of the amplitude .DELTA.A can vary.
  • the residence time of the mixture of exhaust gas and second reaction gas can thus be set both over the time length of the time segments ⁇ t 1 , ⁇ t 2 , the amplitude ⁇ A and through the frequency, that is to say the repetition rate of the time segments ⁇ t 1 , ⁇ t 2 .
  • the carbon monoxide content is used to control the oscillation frequency.
  • a currently valid half-hourly mean value of 100 mg / Nm 3 for waste incineration plants or preferably about 50% of the limit value, that is to say less than 50 mg / Nm 3 CO, can be regulated become.
  • the oscillation frequency is preferably adjusted so that a carbon monoxide content of less than 50 mg / Nm 3 is achieved and the nitrogen oxide content is reduced.
  • FIG. 16 shows diagram 26 of one in the firing system 1a of FIG Figure 2 carried out model combustion process with different parameters over time t.
  • Curve 27 shows the course of the volume flow of the first reaction gas - here air.
  • Curve 28 shows the course of the second volume flow of the second reaction gas - here air.
  • Curve 29 shows the curve of the oxygen content, curve 30 the curve of the carbon dioxide content, curve 31 the curve of the carbon monoxide content and curve 32 the curve of the nitrogen oxide content in each case at the measuring point 20a ( Figure 2 ).
  • Curve 33 shows the course of the degree of nitrogen conversion from nitrogen oxide to nitrogen.
  • the volume flow of the second reaction gas is operated in a pulsating manner.
  • the oxygen content of the pulse minima decreases due to the system.
  • the degree of nitrogen conversion increases.
  • the nitrogen oxide content in the exhaust gas decreases significantly while the carbon monoxide content is low at the same time.
  • the Figure 5 shows the diagram 34 with the bars 35, 36, 37 for the carbon monoxide content and with the bars 38, 39, 40 for the nitrogen oxide content over different oscillation frequencies f.
  • a sufficient reduction in the carbon monoxide contents for example of approximately 10 mg / Nm 3 CO based on 11 volume percent oxygen, is possible.
  • the nitrogen oxide levels remain at a high level of, for example, about 600 mg / Nm 3 NO x based on 11 volume percent oxygen.

Description

Die Erfindung betrifft ein Feuerungssystem zur Verbrennung von festem, auf ein Brennstoffbett zugeführtem Brennstoff mit einer primären Brennstufe mit einer ersten Zufuhreinrichtung zur Zufuhr eines ersten sauerstoffhaltigen Reaktionsgases und Durchführung eines unvollständigen Verbrennvorgangs mit Erzeugung eines ersten Volumenstroms und einer der ersten Brennstufe nachgeschalteten sekundären Brennstufe mit einem von einer zweiten Zufuhreinrichtung zugeführten zweiten Volumenstrom eines zweiten sauerstoffhaltigen Reaktionsgases in einen Abgasraum oberhalb des Brennstoffbetts zuführenden zweiten Zufuhreinrichtung.The invention relates to a firing system for the combustion of solid fuel supplied to a fuel bed with a primary combustion stage with a first supply device for supplying a first oxygen-containing reaction gas and carrying out an incomplete combustion process with generation of a first volume flow and a secondary combustion stage downstream of the first combustion stage with one of a second volume flow of a second oxygen-containing reaction gas supplied to a second supply device into a second supply device supplying an exhaust gas space above the fuel bed.

Feuerungssysteme, das heißt, Anlagen, die chemisch gebundene Energie in thermische Energie umwandeln wie beispielsweise Müllverbrennungsanlagen sind aus dem Stand der Technik hinreichend bekannt. Hierbei wird fester Brennstoff auf ein Brennstoffbett transportiert und gegebenenfalls mit Unterstützung einer zusätzlichen Brennstoffquelle mit flüssigem oder gasförmigem Brennstoff unter Zufuhr von Reaktionsgas, beispielsweise Luft oder beispielsweise mit Sauerstoff angereicherter Luft, mittels einer ersten Zufuhreinrichtung, beispielsweise eines Gebläses in einer ersten Brennstufe verbrannt. Hierbei ist in derartigen Feuerungssystemen eine Minimierung des Schadstoffausstoßes in deren Abgasen anzustreben, um beispielsweise die gesetzlich geltenden Grenzwerte einzuhalten oder zu unterschreiten. Beispielsweise kann der ersten Brennstufe eine zweite Brennstufe nachgeschaltet sein, die in dem der ersten Brennstufe nachgeschalteten Abgasraum mittels einer zweiten Zufuhreinrichtung ein zweites Reaktionsgas zuführt um eine Nachverbrennung nicht vollständig oxidierter Schadstoffe, beispielsweise Kohlenmonoxid in Kohlendioxid oder unvollständig verbrannte Kohlenwasserstoffe zu oxidieren. Hierbei hat sich gezeigt, dass Stickoxide bei einer konstanten Zufuhr von Reaktionsgas, beispielsweise Luft in der zweiten Brennstufe in einer gestuften Betriebsweise zwar reduziert werden, diese Reduktion ist zur Einhaltung aktueller Grenzwerte häufig nur unter hohem Aufwand möglich.Firing systems, that is to say plants which convert chemically bound energy into thermal energy, such as waste incineration plants, are sufficiently known from the prior art. In this case, solid fuel is transported to a fuel bed and, if necessary, burned with the aid of an additional fuel source with liquid or gaseous fuel with the supply of reaction gas, for example air or, for example, oxygen-enriched air, by means of a first supply device, for example a fan, in a first combustion stage. In such combustion systems, the aim is to minimize the emission of pollutants in their exhaust gases, for example in order to comply with or fall below the legally applicable limit values. For example, the first combustion stage can be followed by a second combustion stage, which in the exhaust gas chamber downstream of the first combustion stage supplies a second reaction gas by means of a second feed device in order to oxidize afterburning incompletely oxidized pollutants, for example carbon monoxide in carbon dioxide or incompletely burned hydrocarbons. It has been shown here that nitrogen oxides are reduced with a constant supply of reaction gas, for example air in the second combustion stage in a staged operating mode, this reduction is often only possible with great effort in order to comply with current limit values.

Es wird daher in der DE 103 47 340 A1 eine Vorrichtung und ein Verfahren zur Optimierung des Abgasausbrands in Verbrennungsanlagen vorgeschlagen, bei dem eine zweite sekundäre Zuführung des zweiten Reaktionsgases über Düsen erfolgt, die abhängig von Sensoren zur Detektion von nicht vollständig verbrannten Verbindungen zur Einleitung von Reaktionsgas gesteuert werden.It is therefore in the DE 103 47 340 A1 proposed a device and a method for optimizing the exhaust gas burnout in combustion plants, in which a second secondary supply of the second reaction gas takes place via nozzles which are controlled as a function of sensors for the detection of incompletely burned compounds for the introduction of reaction gas.

Aus der DE 20 2006 005 464 B3 ist ein Verfahren zur primärseitigen Stickoxidminderung in einem zweistufigen Verbrennungsprozess bekannt, bei dem die Temperatur des Abgases beim Verlassen des Brennstoffs an der Abgasausbrandzone durch Zufuhr eines Wasser-Gas-Gemisches so eingestellt wird, dass weniger Stickoxide entstehen.From the DE 20 2006 005 464 B3 A method for reducing nitrogen oxide on the primary side in a two-stage combustion process is known, in which the temperature of the exhaust gas when the fuel leaves the exhaust gas burnout zone is adjusted by supplying a water-gas mixture in such a way that fewer nitrogen oxides are formed.

Aus der WO 94/24484 A1 ist ein Verfahren zur Reduzierung aller Emissionen bei der Verbrennung von Abfällen bekannt, bei dem ein Teil des in der Verbrennungsanlage entstehenden Rauchgases zurückgeführt und diesem reiner Sauerstoff beigeführt wird. Weiterhin wird als Stand der Technik zur Verhinderung einer Stickoxidbildung die Verbrennung bei Luftüberschuss, also bei einer überstöchiometrischen Zufuhr des Reaktionsgases vorgeschlagen, um eine bessere Durchmischung des (gasförmigen) Brennstoffs und des ersten Reaktionsgases in Form der Verbrennungsluft zu erzielen. Hierbei führt der Luftüberschuss zwar zu einer besseren Durchmischung, der Überschuss an Luft (Sauerstoff) jedoch auch zu einer stärkeren Oxidierung des Brennstoffs und damit zu einer vermehrten Bildung von Stickoxiden.From the WO 94/24484 A1 A method for reducing all emissions from the incineration of waste is known, in which part of the flue gas generated in the incineration plant is recycled and pure oxygen is added to it. Furthermore, the state of the art for preventing nitrogen oxide formation is combustion with excess air, that is to say with a stoichiometric supply of the reaction gas, in order to achieve better mixing of the (gaseous) fuel and the first reaction gas in the form of the combustion air. The excess air leads to better mixing, but the excess air (oxygen) also leads to a stronger oxidation of the fuel and thus to an increased formation of nitrogen oxides.

Die WO 03/083370 A1 beschreibt ein Verfahren und eine Vorrichtung zur Regelung der Primär- und Sekundärlufteinspritzung einer Müllverbrennungsanlage.The WO 03/083370 A1 describes a method and a device for regulating the primary and secondary air injection of a waste incineration plant.

Die DE 43 01 082 A1 beschreibt ein Verfahren zur Zuführung eines O2-haltigen Verbrennungsgases zur Verbrennung von stückigem Brenngut, insbesondere Müll, in einen Feuerraum mit zugeordnetem Feuerungsrost einer Verbrennungsanlage, bei dem ein Teil des Verbrennungsgases als Primärgas durch das Feuerungsrost mengengeregelt zugeführt wird und der andere Teil des Verbrennungsgases zumindest als Sekundärgas in mindestens einem Strahl mengengeregelt zugeführt wird, wobei der Kohlenmonoxidgehalt mittels Messwertaufnehmer aufgenommen und einer Auswert- und Steuereinheit zugeführt wird. Aufgabe der Erfindung ist die Weiterbildung eines Feuerungssystems und eines Verfahrens zu dessen Steuerung, bei welchem in einfacher Weise die Stickoxidgehalte verringert werden. Insbesondere soll ein Verfahren zum Betrieb eines Feuerungssystems vorgeschlagen werden, welches ohne große Umbauten auf bestehende Feuerungssysteme anwendbar ist.The DE 43 01 082 A1 describes a method for supplying an O2-containing combustion gas for the combustion of lumpy combustible material, in particular garbage, into a combustion chamber with an associated grate of an incinerator, in which part of the combustion gas is supplied as a primary gas through the grate and the other part of the combustion gas at least as Secondary gas is supplied in a quantity-controlled manner in at least one jet, the carbon monoxide content being recorded by means of a measuring sensor and being fed to an evaluation and control unit. The object of the invention is the development of a firing system and a method for controlling it, in which the nitrogen oxide contents are reduced in a simple manner. In particular, a method for operating a firing system is to be proposed which can be applied to existing firing systems without major modifications.

Die Aufgabe wird durch die Vorrichtung des Anspruchs 1 und das Verfahren des Anspruchs 6 gelöst. Die von diesen Ansprüchen abhängigen Ansprüche geben vorteilhafte Ausführungsformen der Vorrichtung des Anspruchs 1 beziehungsweise des Verfahrens des Anspruchs 6 wieder.The object is achieved by the device of claim 1 and the method of claim 6. The claims dependent on these claims represent advantageous embodiments of the device of claim 1 or the method of claim 6.

Das vorgeschlagene Verfahren ist für die Verbrennungstechnik in mehrstufigen Feuerungssystemen vorgesehen. Mehrstufige Feuerungssysteme wie vorgeschlagen werden vorteilhafterweise in Verbrennungssystemen für feste Brennstoffe eingesetzt, bei der der feste Brennstoff in der ersten Brennstufe unter Zufuhr eines ersten Reaktionsgases wie Luft oder mit Sauerstoff angereicherter Luft in ein Abgas und damit einen ersten Volumenstrom überführt wird und der erste Volumenstrom in einer weiteren Brennstufe beispielsweise mit einem zweiten Volumenstrom eines zweiten Reaktionsgases, beispielsweise Luft und/oder zumindest teilweise rückgeführtem Abgas gegebenenfalls mit weiteren Gaszusätzen, beispielsweise Ammoniak, und/oder Wasserdampf nachverbrannt wird. Diese mehrstufigen, beispielweise zweistufigen Prozesse können beispielweise im Bereich der Rostfeuerungen, beispielsweise in Müllverbrennungsanlagen, Biomassefeuerungen, Sonderabfallverbrennungsanlagen oder dergleichen mit Drehrohr-, Wirbelschicht-, Festbett-, Etagenofentechnik oder dergleichen vorgesehen werden. Die zweite Brennstufe dient im Wesentlichen der unter- und überstöchiometrischen Behandlung der Abgase des ersten Volumenstroms der ersten Brennstufe mit dem zweiten Volumenstrom des zweiten Reaktionsgases und damit einem möglichst vollständigen Ausbrand von Gasspezies wie beispielsweise Kohlenmonoxid und organischen Kohlenwasserstoffen mit Luft oder zurückgeführtem Rauchgas. Hierbei erfolgt in bevorzugter Weise die Verbrennung des Brennstoffs in der ersten Brennstufe unterstöchiometrisch, so dass ein Restgehalt an nicht oder nicht vollständig oxidierten Komponenten, beispielsweise Kohlenstoff wie Ruß, Kohlenmonoxid und Ammoniak in dem ersten Volumenstrom verbleiben kann. In der Nachverbrennung der zweiten Brennstufe dienen diese unvollständig oxidierten Komponenten als Reduktionsmittel oder Katalysatoren zur Reduktion von Stickoxiden. Beispielsweise kann zwischen dem verbliebenen Ammoniak und Stickoxiden während der pulsierenden Zufuhr des zweiten Reaktionsgases im zweiten Volumenstrom und damit unter unter- und überstöchiometrischer Bedingungen während der Mischung der Volumenströme eine verbesserte Komproportionierung zu Stickstoff gefördert werden.The proposed method is intended for combustion technology in multi-stage combustion systems. Multi-stage combustion systems as proposed are advantageously used in combustion systems for solid fuels, in which the solid fuel in the first combustion stage is converted into an exhaust gas and thus a first volume flow and the first volume flow in one while supplying a first reaction gas such as air or oxygen-enriched air a further combustion stage, for example with a second volume flow of a second reaction gas, for example air and / or at least partially recirculated exhaust gas, optionally with further gas additives, for example ammonia, and / or water vapor. These multi-stage, for example two-stage processes can be provided, for example, in the area of grate furnaces, for example in waste incineration plants, biomass furnaces, special waste incineration plants or the like with rotary kiln, fluidized bed, fixed bed, deck oven technology or the like. The second firing stage essentially serves the and over-stoichiometric treatment of the exhaust gases of the first volume flow of the first combustion stage with the second volume flow of the second reaction gas and thus the most complete possible burnout of gas species such as carbon monoxide and organic hydrocarbons with air or recirculated flue gas. In this case, the combustion of the fuel in the first combustion stage takes place sub-stoichiometrically, so that a residual content of incompletely or not fully oxidized components, for example carbon such as soot, carbon monoxide and ammonia, can remain in the first volume flow. In the afterburning of the second combustion stage, these incompletely oxidized components serve as reducing agents or catalysts for the reduction of nitrogen oxides. For example, improved comproportionation to nitrogen can be promoted between the remaining ammonia and nitrogen oxides during the pulsating supply of the second reaction gas in the second volume flow and thus under and over-stoichiometric conditions during the mixing of the volume flows.

Unter Komponenten der beiden Volumenströme sind zugeführte und während einer Reaktion, beispielsweise der Verbrennung des Brennstoffs entstehende Gase, Verbindungen und in den Volumenströmen mitgeführte Feststoffe einfacher oder komplexer Zusammensetzung sein. Beispielsweise können als Abgase im ersten Volumenstrom die Komponenten Kohlenmonoxid, Kohlendioxid, Wasserdampf, Ammoniak, Stickoxide, Kohlenwasserstoffe, Restsauerstoff, Ruß enthalten sein. Beispielsweise können im zweiten Volumenstrom Luft, Sauerstoff mit höheren Anteilen als in der Luft, Wasserdampf, Ammoniak und Anteile des Abgases vorhanden sein. Ein dritter, als erstes Reaktionsgas zugeführter Volumenstrom kann als Komponenten Luft, mit Sauerstoff angereicherte Luft, Sauerstoff sowie gegebenenfalls weitere Komponenten enthalten.Components of the two volume flows include gases or compounds that are supplied and that arise during a reaction, for example the combustion of the fuel, and solids carried in the volume flows of simple or complex composition. For example, the components carbon monoxide, carbon dioxide, water vapor, ammonia, nitrogen oxides, hydrocarbons, residual oxygen and soot can be contained as exhaust gases in the first volume flow. For example, air, oxygen with higher proportions than in the air, water vapor, ammonia and proportions of the exhaust gas can be present in the second volume flow. A third volume flow supplied as the first reaction gas can contain as components air, oxygen-enriched air, oxygen and optionally further components.

In dem vorgeschlagenen Feuerungssystem ist zur Verringerung des Gehalts an Stickoxiden die Zufuhr eines Volumenstroms des zweiten Reaktionsgases mittels der zweiten Zufuhreinrichtung während eines Brennvorgangs zeitlich pulsierend gesteuert. Eine derartige zeitlich pulsierende Dosierung des Volumenstroms kann bei Neuanlagen von Feuerungssystemen vorgesehen und bei bereits bestehenden Feuerungsanlagen durch Anpassung der zweiten Zufuhreinrichtung in einfacher Weise nachgerüstet werden. Beispielsweise kann die zweite Zufuhreinrichtung mit einem Quetschventil, Zellradschleusen oder dergleichen, welche mit einer vorgegebenen oder vorgebbaren Frequenz den Volumenstrom des zweiten Reaktionsgases pulsierend unterbrechen oder kontinuierlich ändern und so zu einer zeitlichen Volumenstromstufung führen, versehen sein.In the proposed firing system, in order to reduce the nitrogen oxide content, the supply of a volume flow of the second reaction gas is controlled in a pulsating manner by means of the second supply device during a combustion process. Such a time-pulsating metering of the volume flow can be provided in new systems of firing systems and can be easily retrofitted in existing firing systems by adapting the second supply device. For example, the second feed device can be provided with a pinch valve, cellular wheel sluices or the like, which interrupt or continuously change the volume flow of the second reaction gas at a predetermined or predeterminable frequency and thus lead to a temporal volume flow gradation.

Die Pulsation wird von außen mittels einer Steuerung aufgeprägt. Unter von außen aufgeprägter Pulsation ist hierbei beispielsweise eine oszillierende oder intermittierende Änderung des Volumenstroms zu verstehen, die nachfolgend eine ebensolche pulsierende Nachverbrennung des Abgases bewirkt. Die Pulsation des Volumenstroms kann beispielsweise durch ein Sägezahn- oder Rechteckprofil abgebildet werden. Es versteht sich, dass neben einer Steuerung des Volumenstroms des zweiten Reaktionsgases auch andere Regelungen, beispielsweise eine Drucksteuerung des zweiten Reaktionsgases von der vorgeschlagenen Lösung der Aufgabe umfasst sind. Insbesondere sind alle Möglichkeiten vorgesehen, die Stöchiometrie der Komponenten des Abgases und der Komponenten des zweiten Reaktionsgases im Nachverbrennungsprozess der zweiten Brennstufe pulsierend zu ändern. Hierunter kann auch ein zusätzlich pulsierender Betrieb des ersten Reaktionsgases zu verstehen sein. Die vorgeschlagenen, von dem pulsierenden Betrieb des Volumenstroms abweichenden Zuführmöglichkeiten sind daher unter dem pulsierenden Betrieb des Volumenstroms zu subsummieren.The pulsation is applied from the outside by means of a control. Pulsation impressed from the outside is to be understood here to mean, for example, an oscillating or intermittent change in the volume flow, which subsequently causes the exhaust gas to be burned in the same way. The pulsation of the volume flow can be represented, for example, by a sawtooth or rectangular profile. It goes without saying that in addition to controlling the volume flow of the second reaction gas, other regulations, for example pressure control of the second reaction gas, are also included in the proposed solution to the problem. In particular, all possibilities are provided for pulsatingly changing the stoichiometry of the components of the exhaust gas and the components of the second reaction gas in the post-combustion process of the second combustion stage. This can also be understood to mean an additional pulsating operation of the first reaction gas. The proposed supply options deviating from the pulsating operation of the volume flow are therefore to be subsumed under the pulsating operation of the volume flow.

Beispielsweise wird eine oszillierende Zufuhr des zweiten Reaktionsgases in Form von Luft oder mit Sauerstoff, Wasserdampf, Ammoniak und/oder dergleichen angereicherter Luft, ein Gemisch aus diesen mit rückgeführtem Abgas, reines Abgas oder dergleichen vorgeschlagen, welches durch seine pulsierenden Eigenschaften in der Lage ist, die oxidativen und reduzierenden Eigenschaften der Mischung aus Abgas und Reaktionsgas zeitlich pulsierend so zu ändern. Auf diese Weise kann der Anteil an Stickoxiden beispielsweise durch Dis- und/oder Komproportionierungsreaktionen beziehungsweise Oxidation und Reaktion vermindert werden. Darüber hinaus kann dieses zeitlich sich ändernde stöchiometrische Verhalten der Komponenten von Abgas und zweitem Reaktionsgas mittels einer oszillierenden Zufuhr des ersten Reaktionsgases, beispielsweise Luft oder mit Sauerstoff angereicherter Luft, Wasserdampf oder ein Gemisch aus sauerstoffhaltigen Gasen bereits beim Umsatz fester Brennstoffe in der ersten Brennstufe zur Stickoxidminderung ergänzt und verbessert werden.For example, an oscillating supply of the second reaction gas in the form of air or air enriched with oxygen, water vapor, ammonia and / or the like, a mixture of these with recirculated exhaust gas, pure exhaust gas or the like, which is capable of pulsating properties, is proposed. To change the oxidative and reducing properties of the mixture of exhaust gas and reaction gas in a pulsating manner. In this way, the proportion of nitrogen oxides can be reduced, for example, by dis- and / or comproportionation reactions or oxidation and reaction. In addition, this stoichiometric behavior of the components of exhaust gas and second reaction gas, which changes over time, can be achieved by means of an oscillating supply of the first reaction gas, for example air or air enriched with oxygen, water vapor or a mixture of oxygen-containing gases when solid fuels are converted in the first combustion stage to reduce nitrogen oxide be supplemented and improved.

Die Steuerung der Pulsation ist mittels gleich langen oder unterschiedlich langen Zeitabständen erfolgen, in denen jeweils in ersten Zeitabständen kein oder wenig zweites Reaktionsgas dosiert wird und in zweiten Zeitabständen mehr Reaktionsgas in den Abgasraum dosiert wird. Alternativ oder zusätzlich kann die Dosierung frequenzabhängig, das heißt abhängig von der Wiederholungsrate von Maxima und Minima des Reaktionsgases über die Zeit und/oder abhängig von der Amplitude dieser Maxima oder Minima sein. Erfindungsgemäß wird die Frequenz abhängig vom Kohlenmonoxidgehalt nach der zweiten Brennstufe gesteuert. Beispielsweise kann auf einen mittleren Halbstundenwert von 100 mg/Nm3 Kohlenmonoxid bevorzugt auf einen mittleren Halbstundenwert kleiner 50 mg/Nm3 Kohlenmonoxid geregelt werden. Hierbei kann die Oszillationsfrequenz des zweiten Reaktionsgases beispielsweise so gesteuert werden, dass der Halbstundenwert des Kohlenmonoxids kleiner 50 mg/Nm3 beträgt und dabei die Stickoxidgehalte verringert, vorzugsweise minimiert werden. Eine Oszillationsfrequenz kann hierbei von weiteren Parametern, beispielsweise der Amplitude der Oszillationsfrequenz, des Sauerstoffgehalts, beigefügten weiteren Komponenten wie beispielsweise Ammoniak, Wasserdampf und gegebenenfalls einer beigemengten Gasmenge aus der Abgasrückführung, der thermischen Leistung des Feuerungssystems und/oder örtlichen Gegebenheiten abhängig sein. Ein Bereich der Oszillationsfrequenzen kann beispielsweise zwischen 0,1 Hz und 10 Hz, bevorzugt 0,5 Hz und 5 Hz vorgesehen sein.The pulsation is controlled by means of time intervals of the same length or of different lengths, in which no or little second reaction gas is metered in at first time intervals and more reaction gas is metered into the exhaust gas space in second time intervals. Alternatively or additionally, the metering can be frequency-dependent, that is to say dependent on the repetition rate of maxima and minima of the reaction gas over time and / or dependent on the amplitude of these maxima or minima. According to the invention, the frequency is controlled depending on the carbon monoxide content after the second firing stage. For example, a medium half-hourly value from 100 mg / Nm 3 carbon monoxide preferably to an average half-hour value of less than 50 mg / Nm 3 carbon monoxide. Here, the oscillation frequency of the second reaction gas can be controlled, for example, in such a way that the half-hourly value of the carbon monoxide is less than 50 mg / Nm 3 and the nitrogen oxide contents are reduced, preferably minimized. An oscillation frequency can be dependent on further parameters, for example the amplitude of the oscillation frequency, the oxygen content, additional components such as ammonia, water vapor and possibly an added gas quantity from the exhaust gas recirculation, the thermal output of the combustion system and / or local conditions. A range of the oscillation frequencies can be provided, for example, between 0.1 Hz and 10 Hz, preferably 0.5 Hz and 5 Hz.

Die Oszillation beziehungsweise Pulsation der zweiten Reaktionsphase kann ausschließlich während einer Verbrennungsphase vorgesehen sein und beispielsweise während einer Anfahrphase des Feuerungssystems ausgesetzt werden. In der Anfahrphase kann das zweite Reaktionsgas kontinuierlich zugeführt werden oder abgestellt sein. Beispielsweise kann die Pulsation des zweiten Reaktionsgases bei Erreichen oder Überschreiten eines vorgegebenen Gehalts an Stickoxiden im Abgas aktiviert werden, beispielsweise wenn die NOx- Konzentrationen oberhalb von 400 mg/Nm3 liegen. Hierzu kann die NOx-Konzentration beispielsweise von einem Sensor oder Detektor laufend erfasst werden.The oscillation or pulsation of the second reaction phase can only be provided during a combustion phase and can be suspended, for example, during a start-up phase of the combustion system. In the start-up phase, the second reaction gas can be supplied continuously or switched off. For example, the pulsation of the second reaction gas can be activated when a predetermined nitrogen oxide content in the exhaust gas is reached or exceeded, for example when the NO x concentrations are above 400 mg / Nm 3 . For this purpose, the NO x concentration can be continuously detected, for example by a sensor or detector.

Zusammenfassend wird die Aufgabe durch ein Feuerungssystem zur Verbrennung von festem, auf ein Brennstoffbett zugeführtem Brennstoff mit einer primären Brennstufe mit einer ersten Zufuhreinrichtung zur Zufuhr eines ersten sauerstoffhaltigen Reaktionsgases und einer der ersten Brennstufe nachgeschalteten sekundären Brennstufe mit einer ein zweites sauerstoffhaltiges Reaktionsgas in einen Abgasraum oberhalb des Brennstoffbetts zuführenden zweiten Zufuhreinrichtung gelöst, wobei mittels der zweiten Zufuhreinrichtung während eines Brennvorgangs ein Volumenstrom des zweiten Reaktionsgases zeitlich pulsierend gesteuert ist. Der Volumenstrom kann oszillierend oder intermittierend einstellbar sein. Der Volumenstrom kann in Form eines Sägezahnprofils oder Rechteckprofils getaktet sein. Die zweite Zufuhreinrichtung kann mit einem zeitlich getakteten Quetschventil oder einer Zellradschleuse versehen sein. Das zweite Reaktionsgas kann sauerstoffhaltig und/oder wasserdampfhaltig sein. Weiterhin wird die Aufgabe durch ein Verfahren zum Betrieb eines Feuerungssystems zur Verbrennung eines festen, auf ein Brennstoffbett zugeführten Brennstoffs mit einer ersten Brennstufe mit einer ersten Zuführungseinrichtung zur Zufuhr eines ersten sauerstoffhaltigen Reaktionsgases und einer zweiten Brennstufe mit einer zweiten Zufuhreinrichtung für eine Zufuhr eines zweiten sauerstoffhaltigen Reaktionsgases in einen der ersten Brennstufe nachfolgenden Abgasraum gelöst, wobei der Brennstoff in der ersten Brennstufe unter unterstöchiometrischen Bedingungen oxidiert wird und durch eine periodisch variierte Zufuhr des zweiten Reaktionsgases eine Nachverbrennung von Abgasen der ersten Brennstufe zeitlich wechselnd unter unterstöchiometrischen und überstöchiometrischen Reaktionsbedingungen durchgeführt wird. In einander abwechselnden Zeitabständen kann ein Volumenstrom des zweiten Reaktionsgases gesteigert und abgeschwächt werden. Die Zeitabstände einer Steigerung des Volumenstroms können gleich oder ungleich den Zeitabständen einer Abschwächung des Volumenstroms sein. Der Volumenstrom kann zeitabhängig in Rechteckform oder Sägezahnform variiert werden. Eine Frequenz des Volumenstroms wie Oszillationsfrequenz kann abhängig von einem Kohlenmonoxidgehalt des Abgases gesteuert werden. Die Frequenz kann auf einen Kohlenmonoxidgehalt kleiner 100 mg/Nm3, bevorzugt kleiner 50 mg/Nm3 eingestellt werden. Dem zweiten Reaktionsgas kann Ammoniak beigemischt werden. Dem zweiten Reaktionsgas kann Wasserdampf beigemischt werden. Dem zweiten Reaktionsgas können Anteile des Abgases des Feuerungssystems beigemischt werden oder das zweite Reaktionsgas kann aus dem Abgas des Feuerungssystems gebildet werden. Das erste Reaktionsgas kann ebenfalls moduliert wie zeitlich pulsierend, oszillierend oder intermittierend betrieben werden.In summary, the object is achieved by a combustion system for the combustion of solid fuel supplied to a fuel bed with a primary combustion stage with a first supply device for supplying a first oxygen-containing reaction gas and a secondary combustion stage downstream of the first combustion stage with a second oxygen-containing reaction gas into an exhaust gas space above the Solved fuel bed supplying second feed device, wherein a volume flow of the second reaction gas is pulsed in time controlled by means of the second feed device during a combustion process. The volume flow can be set to oscillate or intermittently. The volume flow can be clocked in the form of a sawtooth profile or rectangular profile. The second feed device can be provided with a time-controlled pinch valve or a cellular wheel sluice. The second reaction gas can contain oxygen and / or water vapor. Furthermore, the object is achieved by a method for operating a combustion system for burning a solid fuel supplied to a fuel bed with a first combustion stage with a first supply device for supplying a first oxygen-containing reaction gas and a second combustion stage with a second supply device for supplying a second oxygen-containing reaction gas in one of the first Combustion stage following exhaust gas space solved, the fuel being oxidized in the first combustion stage under substoichiometric conditions and by periodically varying the supply of the second reaction gas, afterburning of exhaust gases of the first combustion stage is carried out alternately under substoichiometric and superstoichiometric reaction conditions. A volume flow of the second reaction gas can be increased and weakened at alternating time intervals. The time intervals for an increase in the volume flow can be equal to or different from the time intervals for a weakening of the volume flow. The volume flow can be varied in a rectangular or sawtooth shape depending on the time. A frequency of the volume flow such as the oscillation frequency can be controlled depending on a carbon monoxide content of the exhaust gas. The frequency can be set to a carbon monoxide content of less than 100 mg / Nm3, preferably less than 50 mg / Nm3. Ammonia can be added to the second reaction gas. Steam can be added to the second reaction gas. Portions of the exhaust gas from the combustion system can be admixed with the second reaction gas or the second reaction gas can be formed from the exhaust gas from the combustion system. The first reaction gas can also be operated in a modulated manner, such as pulsed, oscillating or intermittent.

Die Erfindung wird anhand der in den Figuren 1 bis 5 dargestellten Ausführungsbeispiele näher erläutert. Dabei zeigen:

Figur 1
eine schematische Darstellung eines Feuerungssystems,
Figur 2
eine schematische Darstellung eines Feuerungssystems mit gegenüber dem Feuerungssystem der Figur 1 verringerten Ausmaßen,
Figur 3
eine systematische Darstellung eines pulsierenden Betriebs der Zufuhreinrichtung zur Zufuhr des zweiten Reaktionsgases,
Figur 4
ein Diagramm zur Darstellung eines Ablaufs eines Brennvorgangs des Feuerungssystems der Figur 2
und
Figur 5
ein Diagramm der Kohlenmonoxid- und Stickoxidgehalte im Abgas des Feuerungssystems abhängig von der Frequenz des zweiten Reaktionsgases.
The invention is based on the in the Figures 1 to 5 illustrated embodiments explained in more detail. Show:
Figure 1
a schematic representation of a firing system,
Figure 2
is a schematic representation of a firing system with compared to the firing system of Figure 1 reduced dimensions,
Figure 3
a systematic representation of a pulsating operation of the supply device for supplying the second reaction gas,
Figure 4
a diagram illustrating a sequence of a burning process of the combustion system of the Figure 2
and
Figure 5
a diagram of the carbon monoxide and nitrogen oxide contents in the exhaust gas of the combustion system depending on the frequency of the second reaction gas.

Die Figur 1 zeigt in schematischer Darstellung das Feuerungssystem 1 mit dem Brennstoffbunker 2 und dem Beschicktisch 4 mit Stößel 3, welcher den festen Brennstoff 5 auf das als Rost ausgebildete Brennstoffbett 6 transportiert. Auf dem Brennstoffbett 6 wird der Brennstoff 5 in der ersten Brennstufe 7 unter Zufuhr des ersten Reaktionsgases 8 über die erste Zufuhreinrichtung 9 unter unterstöchiometrischen Bedingungen verbrannt, das heißt oxidiert. Als erstes Reaktionsgas 8 wird bevorzugt Luft oder mit Sauerstoff angereicherte Luft verwendet. Der feste Brennstoff 5 kann aus Müll, Biomasse, Kohle, Koks oder Mischungen dieser gebildet sein. Die erste Zufuhreinrichtung 9 ist hier beispielsweise als Gebläse ausgebildet. Die Asche der ersten Brennstufe 7 wird in den Aschekasten 10 ausgetragen.The Figure 1 shows a schematic representation of the combustion system 1 with the fuel bunker 2 and the loading table 4 with plunger 3, which transports the solid fuel 5 onto the fuel bed 6 designed as a grate. On the fuel bed 6, the fuel 5 is burned in the first combustion stage 7 while supplying the first reaction gas 8 via the first supply device 9 under substoichiometric conditions, that is to say oxidized. Air or oxygen-enriched air is preferably used as the first reaction gas 8. The solid fuel 5 can be formed from waste, biomass, coal, coke or mixtures thereof. The first feed device 9 is designed here, for example, as a blower. The ash from the first firing stage 7 is discharged into the ash box 10.

Über der ersten Brennstufe 7 ist im Abgasrohr 11 die zweite Brennstufe 12 zur Nachverbrennung nicht vollständig oxidierter Komponenten des ersten Volumenstroms in Form des Abgases der ersten Brennstufe 7 angeordnet. An der zweiten Brennstufe 12 ist die zweite Zufuhreinrichtung 13 zur Zufuhr des zweiten Reaktionsgases 14 vorgesehen. Die zweite Zufuhreinrichtung 13 dosiert zumindest zeitweise pulsierend mit einer bevorzugt regelbaren Wiederholungsrate wie Oszillationsfrequenz, beispielsweise 0,1 Hz bis 10 Hz, bevorzugt 0,5 Hz bis 5 Hz den zweiten Volumenstrom. Das zweite Reaktionsgas 14 ist aus Luft, mit Sauerstoff angereicherter Luft, mit Ammoniak, Wasserdampf oder dergleichen angereicherter Luft, teilweise aus Abgas des Feuerungssystems 1 vermischter Luft oder komplett aus Abgas gebildet. Die zweite Zufuhreinrichtung 13 verfügt über eine Einrichtung zur Ausbildung der Pulsation eines Volumenstroms des zweiten Reaktionsgases 14, beispielsweise ein Quetschventil, eine Zellradschleuse oder dergleichen. Durch die sich hierdurch einstellende pulsierend ändernde Stöchiometrie zwischen den nicht vollständig verbrannten Komponenten der ersten Brennstufe 7 und den Komponenten des zweiten Reaktionsgases 14, insbesondere Sauerstoff wird die spezielle Reaktionschemie der im Abgas mitgeführten Stickoxide positiv beeinflusst, so dass deren Gehalt absinkt, indem diese beispielsweise unter Sauerstoffmangel zu Stickstoff reduziert werden. Gleichzeitig ist unter Sauerstoffüberschuss die Oxidation der übrigen, nicht vollständig verbrannten Komponenten des Abgases der ersten Brennstufe 7 wie Kohlenmonoxid und Kohlenwasserstoffe vorteilhaft durch die Pulsation beeinflussbar, so dass deren Gehalt abnimmt.Above the first combustion stage 7, the second combustion stage 12 for afterburning incompletely oxidized components of the first volume flow in the form of the exhaust gas of the first combustion stage 7 is arranged in the exhaust pipe 11. The second supply device 13 for supplying the second reaction gas 14 is provided on the second firing stage 12. The second feed device 13 doses the second volume flow at least temporarily in a pulsating manner with a preferably adjustable repetition rate such as oscillation frequency, for example 0.1 Hz to 10 Hz, preferably 0.5 Hz to 5 Hz. The second reaction gas 14 is formed from air, air enriched with oxygen, air enriched with ammonia, water vapor or the like, partly from air mixed with exhaust gas from the combustion system 1, or completely from exhaust gas. The second feed device 13 has a device for forming the pulsation of a volume flow of the second reaction gas 14, for example a pinch valve, a cellular wheel sluice or the like. The resulting pulsating changing stoichiometry between the incompletely burned components of the first combustion stage 7 and the components of the second reaction gas 14, in particular oxygen, has a positive influence on the special reaction chemistry of the nitrogen oxides carried in the exhaust gas, so that their content drops, for example by Oxygen deficiency can be reduced to nitrogen. At the same time, with excess oxygen, the oxidation of the other, not completely burned components of the exhaust gas of the first combustion stage 7, such as carbon monoxide and hydrocarbons, can advantageously be influenced by the pulsation, so that their content decreases.

Die Figur 2 zeigt das gegenüber dem Feuerungssystem 1 der Figur 1 mit verringerten Ausmaßen hergestellte Feuerungssystem 1a in schematischer Darstellung mit der im Batch-Verfahren betriebenen Brennkammer 3a, die mit Brennstoff 5a befüllt ist. Über das Brennstoffbett 6a in Form eins Rosts wird von unten das erste Reaktionsgas in Richtung des Pfeils 15a eingebracht und damit die erste Brennstufe 7a gebildet. Über das Abgasrohr 11a gelangt das aus einer in der ersten Brennstufe 7a erfolgenden unterstöchiometrischen Verbrennung resultierende Abgas in die Nachbrennkammer 16a, in die in Richtung des Pfeils 17a pulsierend das zweite Reaktionsgas zur Ausbildung der zweiten Brennstufe 12a eingebracht wird. Die Einbringung des zweiten Reaktionsgases kann grundsätzlich an allen Feuerungssystemen einstellbar senkrecht oder in jedem anderen Winkel gegenüber der Bewegungsrichtung des Abgases mit oder gegen die Bewegungsrichtung vorgesehen werden. Hierbei kann eine gezielte Vermischung des Abgases und des zweiten Reaktionsgases gesteuert werden.The Figure 2 shows that compared to the combustion system 1 of FIG Figure 1 Firing system 1a produced with reduced dimensions in a schematic illustration with the combustion chamber 3a operated in a batch process, which is filled with fuel 5a. Via the fuel bed 6a in the form of a grate, the first reaction gas is introduced from below in the direction of arrow 15a and the first combustion stage 7a is thus formed. Via the exhaust pipe 11a, the exhaust gas resulting from a substoichiometric combustion taking place in the first combustion stage 7a reaches the afterburning chamber 16a, into which the second reaction gas is pulsed in the direction of the arrow 17a to form the second combustion stage 12a. The introduction of the second reaction gas can in principle be provided on all combustion systems in an adjustable vertical or at any other angle with respect to the direction of movement of the exhaust gas with or against the direction of movement. Here, a targeted mixing of the exhaust gas and the second reaction gas can be controlled become.

An dem als Modellanlage konzipierten Feuerungssystem 1a sind an unterschiedlichen Stellen, beispielsweise die hier bezeichneten Messstellen 18a, 19a, 20a vorgesehen, wobei die Messstelle 19a einen optischen Zugang erlaubt und die Messstellen 18a, 20a eine Analyse der an diesen Stellen vorhandenen Komponenten beispielsweise nach der ersten Brennstufe 7a und nach der zweiten Brennstufe 12a erlauben. An die Nachbrennkammer 16a schließen sich in Bewegungsrichtung des Abgases der Wärmetauscher 21a, die Filterkammer 22a, die Venturidüse 23a, der Kohleadsorber 24a und das Gebläse 25a an. Figur 3 zeigt schematisch den zweiten Volumenstrom mit einer oszillierenden Zufuhr von Luft zur Durchführung der zweiten Brennstufe, die in Bewegungsrichtung des Abgases der ersten Brennstufe nachfolgend angeordnet ist. Das zweite Reaktionsgas wird zum ersten Volumenstrom wie Abgas der ersten Brennstufe mittels der zweiten Zufuhreinrichtung über die Zeit t pulsierend zugeführt. Hierbei kommt es nicht oder nicht wesentlich auf die Vermischung der Komponenten an. Vielmehr wird die erste Brennstufe unterstöchiometrisch mit Sauerstoff, also mit einem Verbrennungsluftverhältnis λ < 1 betrieben, so dass in der zweiten Brennstufe durch die pulsierende Betriebsweise des zweiten Reaktionsgases in ersten Zeitabschnitten Δt1 kein oder weniger und in mit diesen abwechselnden zweiten Zeitabschnitten Δt2 mehr Sauerstoff an den ersten Volumenstrom herangeführt wird. Hierbei verbleiben in den ersten Zeitabschnitten Δt1 beispielsweise nicht vollständig oxidierte Komponenten wie Kohlenmonoxid (CO) und Stickstoffverbindungen wie Ammoniak (NH3) und Stickoxide (NOx) in dem ersten Volumenstrom aus der ersten Brennstufe wie Primärfeuerung. Wird in den zweiten Zeitabschnitten Δt2 dem Abgas aus der Primärverbrennung ausreichend Luft beziehungsweise Sauerstoff zugeführt, so dass die Verbrennungsluftzahl λ > 1 resultiert, werden Kohlenmonoxid zu Kohlendioxid (CO2) und die Stickoxide mit dem Ammoniak in Sauerstoff (O2) und Wasser (H2O) umgesetzt. Bei bekanntem dauerhaftem Betrieb mit einer Verbrennungsluftzahl λ > 1 werden die Stickoxide weiteroxidiert und können nicht reduziert werden. Die Zeitabschnitte Δt1 und Δt2 können dabei unterschiedlich lang sein, ebenso kann die Höhe der Amplitude ΔA variieren. Die Verweilzeit der Mischung aus Abgas und zweitem Reaktionsgas kann damit sowohl über die zeitliche Länge der Zeitabschnitte Δt1, Δt2, die Amplitude ΔA sowie durch die Frequenz, das heißt die Wiederholungsrate der Zeitabschnitte Δt1, Δt2 eingestellt werden. Erfindungsgemäß wird der Kohlenmonoxidgehalt zur Steuerung der Oszillationsfrequenz verwendet. Beispielsweise kann auf einen derzeit gültigen Halbstundenmittelwert von 100 mg/Nm3 für Abfallverbrennungsanlagen oder bevorzugt auf zirka 50 % des Grenzwertes, das heißt, kleiner 50 mg/Nm3 CO geregelt werden. Die Oszillationsfrequenz wird dabei in bevorzugter Weise so angepasst, dass ein Kohlenmonoxidgehalt kleiner 50 mg/Nm3 erzielt und der Stickoxidgehalt verringert wird.On the combustion system 1a designed as a model system, the measuring points 18a, 19a, 20a designated here are provided at different points, the measuring point 19a allowing an optical access and the measuring points 18a, 20a an analysis of the components present at these points, for example after the first Allow firing stage 7a and after the second firing stage 12a. The post-combustion chamber 16a is followed by the heat exchanger 21a, the filter chamber 22a, the Venturi nozzle 23a, the carbon adsorber 24a and the blower 25a in the direction of movement of the exhaust gas. Figure 3 schematically shows the second volume flow with an oscillating supply of air for carrying out the second combustion stage, which is arranged downstream of the first combustion stage in the direction of movement of the exhaust gas. The second reaction gas is fed to the first volume flow such as exhaust gas from the first combustion stage by means of the second supply device in a pulsating manner over time t. The mixing of the components is of little or no importance here. Rather, the first combustion stage is operated sub-stoichiometrically with oxygen, i.e. with a combustion air ratio λ <1, so that in the second combustion stage, due to the pulsating operation of the second reaction gas, no or less oxygen in first time periods Δt 1 and more oxygen in alternating second time periods Δt 2 is introduced to the first volume flow. In the first time periods Δt 1, for example, components that are not completely oxidized, such as carbon monoxide (CO) and nitrogen compounds, such as ammonia (NH 3 ) and nitrogen oxides (NO x ), remain in the first volume flow from the first combustion stage, such as primary firing. If sufficient air or oxygen is added to the exhaust gas from the primary combustion in the second time periods Δt 2 , so that the combustion air number λ> 1 results, carbon monoxide becomes carbon dioxide (CO 2 ) and the nitrogen oxides with the ammonia in oxygen (O 2 ) and water ( H 2 O) implemented. If continuous operation with a combustion air ratio λ> 1 is known, the nitrogen oxides are further oxidized and cannot be reduced. The time segments .DELTA.t 1 and .DELTA.t 2 can be of different lengths, and the height of the amplitude .DELTA.A can vary. The residence time of the mixture of exhaust gas and second reaction gas can thus be set both over the time length of the time segments Δt 1 , Δt 2 , the amplitude ΔA and through the frequency, that is to say the repetition rate of the time segments Δt 1 , Δt 2 . According to the invention, the carbon monoxide content is used to control the oscillation frequency. For example, a currently valid half-hourly mean value of 100 mg / Nm 3 for waste incineration plants or preferably about 50% of the limit value, that is to say less than 50 mg / Nm 3 CO, can be regulated become. The oscillation frequency is preferably adjusted so that a carbon monoxide content of less than 50 mg / Nm 3 is achieved and the nitrogen oxide content is reduced.

Die Figur 4 zeigt das Diagramm 26 eines in dem Feuerungssystem 1a der Figur 2 durchgeführten modellhaften Verbrennungsvorgangs mit unterschiedlichen Parametern über die Zeit t. Die Kurve 27 zeigt den Verlauf des Volumenstroms des ersten Reaktionsgases - hier Luft. Die Kurve 28 zeigt den Verlauf des zweiten Volumenstroms des zweiten Reaktionsgases - hier Luft. Die Kurve 29 zeigt den Verlauf des Sauerstoffgehalts, die Kurve 30 den Verlauf des Kohlendioxidgehalts, die Kurve 31 den Verlauf des Kohlenmonoxidgehalts und die Kurve 32 den Verlauf des Stickoxidgehalts jeweils an der Messstelle 20a (Figur 2). Die Kurve 33 zeigt den Verlauf des Stickstoffkonversionsgrads von Stickoxid zu Stickstoff.The Figure 4 FIG. 16 shows diagram 26 of one in the firing system 1a of FIG Figure 2 carried out model combustion process with different parameters over time t. Curve 27 shows the course of the volume flow of the first reaction gas - here air. Curve 28 shows the course of the second volume flow of the second reaction gas - here air. Curve 29 shows the curve of the oxygen content, curve 30 the curve of the carbon dioxide content, curve 31 the curve of the carbon monoxide content and curve 32 the curve of the nitrogen oxide content in each case at the measuring point 20a ( Figure 2 ). Curve 33 shows the course of the degree of nitrogen conversion from nitrogen oxide to nitrogen.

Zwischen Minute 14 und Minute 45 wird der Volumenstrom des zweiten Reaktionsgases pulsierend betrieben. Dadurch nimmt unter anderem systembedingt an den Pulsminima der Sauerstoffgehalt ab. Der Stickstoffkonversionsgrad nimmt zu. Demzufolge nimmt der Stickoxidgehalt im Abgas signifikant bei gleichzeitig niedrigem Kohlenmonoxidgehalt ab.Between minute 14 and minute 45, the volume flow of the second reaction gas is operated in a pulsating manner. As a result, the oxygen content of the pulse minima decreases due to the system. The degree of nitrogen conversion increases. As a result, the nitrogen oxide content in the exhaust gas decreases significantly while the carbon monoxide content is low at the same time.

Die Figur 5 zeigt das Diagramm 34 mit den Balken 35, 36, 37 für den Kohlenmonoxidgehalt und mit den Balken 38, 39, 40 für den Stickoxidgehalt über unterschiedliche Oszillationsfrequenzen f. Die Balken 35, 38 zeigen die Gehalte bei kontinuierlicher Zufuhr- also Frequenz f = 0 - des zweiten Reaktionsgases in das Feuerungssystem 1a der Figur 2. Bereits mit einer herkömmlichen Nachverbrennung ist dabei eine ausreichende Reduzierung der Kohlenmonoxidgehalte beispielsweise von zirka 10 mg/Nm3 CO bezogen auf 11 Volumenprozent Sauerstoff möglich. Allerdings verbleiben die Stickoxidgehalte auf einem hohen Niveau von beispielsweise zirka 600 mg/Nm3 NOx bezogen auf 11 Volumenprozent Sauerstoff. Wird in der vorgegebenen Versuchsumgebung das zweite Reaktionsgas mit der Oszillationsfrequenz f = 1 Hz pulsierend in die zweite Brennstufe überführt, vermindert sich in Balken 39 der Stickoxidgehalt zwar auf zirka die Hälfte, der Gehalt an Kohlenmonoxid in Balken 36 vergrößert sich aber um ein Vielfaches. Wird die Oszillationsfrequenz f = 2 Hz eingestellt, kann der Gehalt an Kohlendioxid in Balken 37 wieder auf den ursprünglichen Wert bei nicht pulsierendem Betrieb gesenkt werden. Gleichzeitig bleibt der Gehalt an Stickoxiden in Balken 40 im Bereich der Hälfte des Gehalts an Stickoxiden bei nicht pulsierendem Betrieb. Bei diesen Ergebnissen wird davon ausgegangen, dass die Gehalte bei pulsierendem Betrieb unter anderem abhängig von den Systemeigenschaften des Feuerungssystems 1a (Figur 2) sind und dass für jedes Feuerungssystem die optimalen Oszillationsfrequenzen separat zu ermitteln sind. Insoweit sind die vorgeschlagenen Oszillationsfrequenzen für die Erfindung nicht begrenzend.The Figure 5 shows the diagram 34 with the bars 35, 36, 37 for the carbon monoxide content and with the bars 38, 39, 40 for the nitrogen oxide content over different oscillation frequencies f. The bars 35, 38 show the contents with a continuous supply - that is, frequency f = 0 - of the second reaction gas into the firing system 1 a Figure 2 . With conventional afterburning, a sufficient reduction in the carbon monoxide contents, for example of approximately 10 mg / Nm 3 CO based on 11 volume percent oxygen, is possible. However, the nitrogen oxide levels remain at a high level of, for example, about 600 mg / Nm 3 NO x based on 11 volume percent oxygen. If the second reaction gas with the oscillation frequency f = 1 Hz is pulsed into the second firing stage in the given test environment, the nitrogen oxide content in bars 39 is reduced to about half, but the carbon monoxide content in bars 36 increases many times over. If the oscillation frequency f = 2 Hz is set, the carbon dioxide content in bar 37 can be reduced to the original value during non-pulsating operation. At the same time, the content of nitrogen oxides in bars 40 remains in the region of half the content of nitrogen oxides during non-pulsating operation. These results assume that the contents during pulsating operation depend, among other things, on the system properties of the combustion system 1a ( Figure 2 ) and that the optimal oscillation frequencies must be determined separately for each firing system. To this extent, the proposed oscillation frequencies are not limiting for the invention.

BezugszeichenlisteReference list

11
FeuerungssystemFiring system
1a1a
FeuerungssystemFiring system
22nd
BrennstoffbunkerFuel bunker
33rd
StößelPestle
3a3a
BrennkammerCombustion chamber
44th
BeschicktischLoading table
55
Brennstofffuel
5a5a
Brennstofffuel
66
BrennstoffbettFuel bed
6a6a
BrennstoffbettFuel bed
77
erste Brennstufefirst firing stage
7a7a
erste Brennstufefirst firing stage
88th
erstes Reaktionsgasfirst reaction gas
99
ZufuhreinrichtungFeeder
1010th
AschekastenAsh pan
1111
AbgasrohrExhaust pipe
11a11a
AbgasrohrExhaust pipe
1212th
zweite Brennstufesecond burning stage
12a12a
zweite Brennstufesecond burning stage
1313
zweite Zufuhreinrichtungsecond feeder
1414
zweites Reaktionsgassecond reaction gas
15a15a
Pfeilarrow
16a16a
NachbrennkammerAfterburner
17a17a
Pfeilarrow
18a18a
MessstelleMeasuring point
19a19a
MessstelleMeasuring point
20a20a
MessstelleMeasuring point
21a21a
WärmetauscherHeat exchanger
22a22a
FilterkammerFilter chamber
23a23a
VenturidüseVenturi nozzle
24a24a
KohleadsorberCoal adsorber
25a25a
Gebläsefan
2626
Diagrammdiagram
2727
KurveCurve
2828
KurveCurve
2929
KurveCurve
3030th
KurveCurve
3131
KurveCurve
3232
KurveCurve
3333
KurveCurve
3434
Diagrammdiagram
3535
Balkenbar
3636
Balkenbar
3737
Balkenbar
3838
Balkenbar
3939
Balkenbar
4040
Balkenbar

Claims (15)

  1. Firing system (1, 1a) for the combustion of solid fuel (5, 5a) supplied to a fuel bed (6, 6a) with a primary combustion stage (7, 7a) having a first supply device (9) for supplying a first oxygen-containing reaction gas (8) and performing an incomplete combustion process by generating a first volume flow and a secondary combustion stage (12, 12a) downstream of the first combustion stage (7, 7a) with a second volume flow of a second oxygen-containing reaction gas (14) supplied by a second supply device (13) into an exhaust gas chamber above the fuel bed (6, 6a), wherein by means of the second supply device (13) a mixture of components of the volume flows is provided which has changed stoichiometrically over time, in that the second supply device (13) is controlled in a pulsating manner by means of a controller, characterised in that the controller is configured to increase and reduce the second volume flow of the second reaction gas (14) in alternating time intervals (Δt1, Δt2) such that an oscillation frequency (f) of the second volume flow is controlled as a function of a carbon monoxide content of the exhaust gas.
  2. Firing system (1, 1a) according to claim 1, characterised in that the volume flow can be set to be oscillating
  3. Firing system (1, 1a) according to claim 2, characterised in that the volume flow can be set to be intermittent.
  4. Firing system (1, 1a) according to claim 2 or 3, characterised in that the second supply device (13) is provided with a clock-timed pinch valve or rotary feeder.
  5. Firing system (1, 1a) according to any of claims 1 to 4, characterised in that at least one of the two volume flows contains ammonia and/or water vapour.
  6. Method for operating a firing system (1, 1a) for combusting a solid fuel (5, 5a) supplied to a fuel bed (6, 6a) with a first combustion stage (7, 7a) having a first supply device (9) for supplying a first oxygen-containing reaction gas (8) and a second combustion stage (12, 12a) having a second supply device (13) for supplying a second oxygen-containing reaction gas (14) into an exhaust gas chamber following the first combustion stage (7, 7a), wherein the fuel (5, 5a) in the first combustion stage (7, 7a) is oxidised in substoichiometric conditions to a first volume flow and by supplying a second, periodically varied volume flow of the second reaction gas (14) a post-combustion takes place of exhaust gases of the first combustion stage (7, 7a) changing overtime in substoichiometric and superstoichiometric reaction conditions, characterised in that at changing time intervals (Δt1, Δt2) the second volume flow of the second reaction gas (14) is increased and decreased such that an oscillation frequency (f) of the second volume flow is controlled as a function of a carbon monoxide content of the exhaust gas.
  7. Method according to claim 6, characterised in that the time intervals (Δt2) of an increase of the second volume flow are equal to the time intervals (Δt1) of a decrease of the second volume flow.
  8. Method according to claim 6, characterised in that the time intervals (Δt2) of an increase of the second volume flow are not equal to the time intervals (Δt1) of a decrease of the second volume flow.
  9. Method according to any of claims 6 to 8, characterised in that the second volume flow is varied as a function of time in rectangular form or saw tooth form.
  10. Method according to any of claims 6 to 9, characterised in that the frequency is set to a carbon monoxide content of less than 100 mg/Nm3.
  11. Method according to claim 10, characterised in that the frequency is set to a carbon monoxide content of less than 50 mg/Nm3.
  12. Method according to any of claims 6 to 11, characterised in that an incomplete combustion of the fuel (5, 5a) is controlled to a residual content of ammonia in the first volume flow and/or ammonia is admixed to the second volume flow.
  13. Method according to any of claims 6 to 12, characterised in that water vapour is admixed to the second reaction gas (14).
  14. Method according to any of claims 6 to 13, characterised in that portions of the first volume flow are admixed to the second volume flow.
  15. Method according to any of claims 6 to 14, characterised in that the first reaction gas (8) is modulated in operation.
EP16797719.8A 2015-10-19 2016-10-19 Firing system and method for operating same Active EP3365603B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015117718.8A DE102015117718A1 (en) 2015-10-19 2015-10-19 Firing system and method for its operation
PCT/DE2016/100485 WO2017067540A1 (en) 2015-10-19 2016-10-19 Firing system and method for operating same

Publications (2)

Publication Number Publication Date
EP3365603A1 EP3365603A1 (en) 2018-08-29
EP3365603B1 true EP3365603B1 (en) 2020-07-22

Family

ID=57345622

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16797719.8A Active EP3365603B1 (en) 2015-10-19 2016-10-19 Firing system and method for operating same

Country Status (3)

Country Link
EP (1) EP3365603B1 (en)
DE (1) DE102015117718A1 (en)
WO (1) WO2017067540A1 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB402934A (en) * 1932-12-01 1933-12-14 Kai Petersen New or improved method of and apparatus for admitting secondary combustion air into the combustion chambers of furnaces
DE3712039A1 (en) * 1987-04-09 1988-10-27 Muellverbrennungsanlage Wupper Incineration boiler, in particular for incinerating wastes
DE4301082C2 (en) * 1993-01-16 1997-11-27 Steinmueller Gmbh L & C Method for supplying an O¶2¶-containing combustion gas for the combustion of lumpy combustible material in a combustion chamber with the associated grate of an incinerator and device for carrying out the method
DE4313102A1 (en) * 1993-04-22 1994-10-27 Sbw Sonderabfallentsorgung Bad Method of reducing the amount of exhaust gas to eliminate NO¶x¶ emissions from combustion, preferably from waste incineration
FR2837913B1 (en) * 2002-03-29 2004-11-19 Air Liquide OXYGEN DOPING PROCESS USING PULSED COMBUSTION
DE60309301T2 (en) * 2002-04-03 2007-06-06 Keppel Seghers Holdings Pte.Ltd. METHOD AND DEVICE FOR REGULATING THE PRIMARY AND SECONDARY AIR INJECTION OF A WASTE INCINERATION PLANT
DE10347340A1 (en) 2003-10-11 2005-05-19 Forschungszentrum Karlsruhe Gmbh Apparatus and method for optimizing exhaust burnout in incinerators
DE102006005464B3 (en) * 2006-02-07 2007-07-05 Forschungszentrum Karlsruhe Gmbh Primary reduction of the formation of nitric oxide, nitrous oxide and ammonia in exhaust fumes comprises combusting fuel in a furnace having a gas hot bed, supplying a secondary oxygen gas and axially mixing the exhaust components
DE102011002205A1 (en) * 2011-04-20 2012-10-25 Alstom Technology Ltd. Waste heat steam generator and a method for operating a waste heat steam generator

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3365603A1 (en) 2018-08-29
DE102015117718A1 (en) 2017-04-20
WO2017067540A1 (en) 2017-04-27

Similar Documents

Publication Publication Date Title
EP1982112B1 (en) Method of reducing nitrogen oxide on the primary side in a two-stage combustion process
EP1698827B1 (en) Process for burning fuels and more particularly wastes
DE3331989A1 (en) METHOD FOR REDUCING NO (DOWN ARROW) X (DOWN ARROW) EMISSIONS FROM THE COMBUSTION OF NITROGENOUS FUELS
DE3915992A1 (en) Process for the reduction of nitrogen oxides
EP2984054A1 (en) Method for operating a plant for producing cement
WO2016166076A1 (en) Plant for production of cement with reduced emission of pollutant gases
EP1851481A1 (en) Method for increasing the package throughput in rotary kiln plants
EP1281026B1 (en) Method and device for incinerating organic waste material
WO1986006151A1 (en) Process and installation for burning refuse materials
EP0132584A2 (en) Method and installation for reducing the emission of noxious matter in the flue gases of combustion plants
EP3365603B1 (en) Firing system and method for operating same
EP2691701A1 (en) Method for optimising the burnout of exhaust gases of an incinerator
DE19619764C2 (en) Process for minimizing the NO¶x¶ content in flue gases
DD290042A5 (en) COMBUSTION METHOD FOR INHIBITING THE FORMATION OF NITROGEN OXIDES IN COMBUSTION AND ARRANGEMENT FOR IMPLEMENTING THE PROCESS
DE102009019118A1 (en) House heating system with continuous solids combustion and method for their operation
DE3009366A1 (en) Flue gas dry detoxification, esp. desulphurisation plant - with fluidised bed of solid absorbent across gas path after combustion zone
DE60022298T2 (en) Method and apparatus for improving combustion in a circulating fluidized bed plant
EP1077077A2 (en) Method for the thermal treatment of solids
EP1918015A1 (en) Flue gas equilibration in waste incineration plants
CH673149A5 (en)
DE10051733B4 (en) Process for the gradual combustion of fuels
EP0363812A2 (en) Method and installation for generating steam, especially in heat power plants
EP3155342A1 (en) Method for exhaust gas treatment, and system comprising an exhaust gas treatment device
WO2024061688A1 (en) Avoiding of emissions in the production of artificial pozzolans made of mineral material, in particular clays
EP3869100A1 (en) Method for combustion of fuel

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180329

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20191209

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAL Information related to payment of fee for publishing/printing deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20200507

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016010606

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1293740

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201023

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201022

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201123

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201022

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016010606

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

26N No opposition filed

Effective date: 20210423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201019

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201031

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231025

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231023

Year of fee payment: 8

Ref country code: DE

Payment date: 20231018

Year of fee payment: 8

Ref country code: CH

Payment date: 20231102

Year of fee payment: 8

Ref country code: AT

Payment date: 20231019

Year of fee payment: 8