EP3362867B1 - Suivi du point de puissance maximale à vitesse variable, dispositif de commande de moteur électrique solaire pour moteurs à courant alternatif à induction et à aimants permanents - Google Patents

Suivi du point de puissance maximale à vitesse variable, dispositif de commande de moteur électrique solaire pour moteurs à courant alternatif à induction et à aimants permanents Download PDF

Info

Publication number
EP3362867B1
EP3362867B1 EP16856101.7A EP16856101A EP3362867B1 EP 3362867 B1 EP3362867 B1 EP 3362867B1 EP 16856101 A EP16856101 A EP 16856101A EP 3362867 B1 EP3362867 B1 EP 3362867B1
Authority
EP
European Patent Office
Prior art keywords
power
voltage
frequency
motor
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16856101.7A
Other languages
German (de)
English (en)
Other versions
EP3362867A4 (fr
EP3362867A1 (fr
Inventor
Yusuf Gurkaynak
Nikola Milivojevic
Gerhard Hautmann
John LOPORTO
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Premier Energy Holdings Inc
Original Assignee
Premier Energy Holdings Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Premier Energy Holdings Inc filed Critical Premier Energy Holdings Inc
Publication of EP3362867A1 publication Critical patent/EP3362867A1/fr
Publication of EP3362867A4 publication Critical patent/EP3362867A4/fr
Application granted granted Critical
Publication of EP3362867B1 publication Critical patent/EP3362867B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/66Regulating electric power
    • G05F1/67Regulating electric power to the maximum power available from a generator, e.g. from solar cell
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P1/00Arrangements for starting electric motors or dynamo-electric converters
    • H02P1/16Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters
    • H02P1/26Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters for starting an individual polyphase induction motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P1/00Arrangements for starting electric motors or dynamo-electric converters
    • H02P1/16Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters
    • H02P1/42Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters for starting an individual single-phase induction motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P1/00Arrangements for starting electric motors or dynamo-electric converters
    • H02P1/16Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters
    • H02P1/42Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters for starting an individual single-phase induction motor
    • H02P1/426Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters for starting an individual single-phase induction motor by using a specially adapted frequency converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P1/00Arrangements for starting electric motors or dynamo-electric converters
    • H02P1/16Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters
    • H02P1/46Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters for starting an individual synchronous motor
    • H02P1/52Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters for starting an individual synchronous motor by progressive increase of frequency of supply to motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/047V/F converter, wherein the voltage is controlled proportionally with the frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/32Electrical components comprising DC/AC inverter means associated with the PV module itself, e.g. AC modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • Wind and solar systems are both subject to vagaries of output caused by such natural phenomena as weather, including presence, absence, or damaging gusts of wind, clouds, snow accumulation, the seasons, and the day-night cycle, for purposes of this document such power is referred to as time-variable power.
  • Many off-grid solar and wind systems overcome these vagaries by using solar panels and wind turbines to provide power to charge a battery or other electrical energy storage system; energy is then drawn from the storage system as needed to power loads.
  • Batteries, and other electrical energy storage systems such as hydroelectric pumped storage systems, are expensive and sometimes environmentally unfriendly.
  • systems may take advantage of thermal inertia and gravity by, for example, pumping water from deep wells into stock tanks, gravity tanks or cisterns, when time-variable power is available, then storing the water for later use.
  • Typical motor loads associated with off-grid distributed energy generation include solar water pumping (including hydroelectric pumped storage), solar-powered air conditioning and refrigeration, and other systems where at least some motor loads are active only where there is enough solar insolation or wind to run them, while when solar or wind power is not available, some or all loads are off.
  • wind turbine systems In addition to solar power systems, wind turbine systems also have time-variable output, and may have motor loads.
  • the invention is defined by the system of claim 1 and the method of claim 12. Preferred embodiments of invention are disclosed in dependent claims 2-11 and 13-15.
  • a system 100 ( Fig. 1 ) has a solar photovoltaic power source including one or more photovoltaic panels 102, a controller 104, and a motor load 106. Solar panels of the photovoltaic power source are coupled in series, parallel, or series-parallel to provide a DC (Direct Current) output 108 at a first voltage. This first voltage is received in controller 104 at a DC to DC voltage converter 110 to provide power 112 at a second voltage convenient for operating other components of controller 104, in a particular embodiment DC-DC converter 110 is a boost converter, however in alternative embodiments buck-boost or other converter configurations are used.
  • DC-DC converter 110 is a boost converter, however in alternative embodiments buck-boost or other converter configurations are used.
  • the controller also has a DC-powered variable frequency AC motor drive (VFD) 114 coupled to receive power at the second voltage from DC-DC converter 110, and to provide a single/multiphase AC drive power 116 at a third voltage to motor load 106.
  • VFD 114 has sine-wave output.
  • Both the DC-DC converter 110 and VFD 114 operate under control of a microcontroller 118.
  • Filter capacitors 120 are typically provided to reduce voltage ripple and help with surge currents at the second voltage 112.
  • the DC-DC converter 110 converts power received from solar panels 102 to a regulated and predetermined DC link voltage 112 on filter capacitors 120, suitable for the operation of VFD 114.
  • DC-DC converter 110 is controlled by microcontroller 118 to operate with first voltage 108 at a maximum power point of the solar panels 102 and its output 112 at a convenient voltage for operating the VFD 114.
  • VFD 114 converts DC power to an AC voltage 116 suitable for motor 106 at a variable motor drive voltage and frequency, the motor drive voltage and frequency determined by microcontroller 118 according to power available from solar panels 102..
  • Microcontroller 118 senses voltage and current on the solar panels 102 and sets up a frequency reference for VFD 114, so that power transfer from solar PV panels 102 is maximized according to an "Maximum Power Point Tracking - MPPT" algorithm by executing firmware in memory 122, where operating frequency of the VFD is reduced from a rated motor operating frequency to conserve power when little power is available from solar panels 102 and increased to the rated motor operating frequency when full power is available from solar panels 102.
  • Microcontroller 118 has a table containing a motor phase voltage-frequency operational curve in memory 122, which determines phase output 116 RMS voltage value based on the reference frequency. Therefore, frequency and voltage on the variable drive output are both variable and under control of microcontroller 118, in order to maximize power transfer for various solar conditions. It is expected that with some motor loads such as positive-displacement pumps, lower speed operation of motor and motor load will consume less power than high speed operation of the same motor and pump load. In a particular embodiment, microcontroller 118 also has additional control inputs, such as a water-tank level sensor or a thermostat, to permit operation when motor operation is needed or desired, shutting down motor operation when motor operation is not required and to avoid damage that could arise from, for example, overflowing water storage tanks.
  • additional control inputs such as a water-tank level sensor or a thermostat
  • Microcontroller 118 also senses the second voltage in order to regulate DC-DC converter 110 output voltage and power drawn from solar panels 102 such that maximum power is drawn from the panels.
  • Microcontroller 118 in some embodiments also is configured with a maximum motor drive frequency for use with VFD drive 114 and motor 106, and limits the reference frequency and DC-DC converter operation accordingly even when this results in less power drawn from the solar panels that would otherwise be available.
  • a current sensor CT is positioned next to a connector 152 intended for coupling to panels 102, so to measure current provided by the panels 102 as current Ipv and provide measurements to microcontroller 118.
  • a diode D is positioned to automatically shorts the PV panels if polarity of panels 102 is reversed.
  • Capacitor C1 is provided to attenuate voltage ripple on the solar PV panels, while voltage Vpv provided by the solar panels is also monitored by the microcontroller 118. Power absorbed from solar panels 102 is determined from Ipv and Vpv measurements by multiplication.
  • DC-DC converter is a boost converter including power inductor (L) and two power switches Q1 and Q2, connected so to provide boost functionality when operated using control of a pulse-width and pulse-rate modulated signal Sboost provided by microcontroller 118.
  • Boosted voltage is filtered in capacitor bank 122, and second voltage DC level 112 is measured as Vdc by microcontroller 118.
  • DC link voltage presents an input to VFD 114, which may have additional voltage conversion devices and in a particular embodiment is a single or three-phase switching driver having 2 or 6 power switches controlled by signals S VFD from microcontroller118. Operation of VFD 114 results in variable frequency and voltage AC waveforms provided on the output of variable drive output terminals 154 for provision to AC motor 106.
  • Microcontroller 118 operates under control of firmware residing in memory 122.
  • the firmware includes a start-up routine, a maximum power point tracking (MPPT) operational routine, and a shutdown routine.
  • MPPT maximum power point tracking
  • the Microcontroller 118 checks the Vpv voltage received from PV panels 102 and only if the voltage is higher than a predetermined minimum starting voltage recorded in memory 122 it continues with start-up routine. If Vpv voltage is lower than minimum, it waits for Vpv to exceed the minimum.
  • microcontroller 118 sets 304 the frequency of an initial sine wave that VFD 114 will create. Microcontroller 118 then determines a magnitude of the sine wave (phase RMS voltage) from the frequency using a voltage-frequency curve (V-f curve) shown on fig. 3 and stored in memory 122.
  • Memory 122 in embodiments includes one or more of a read-only memory, programmable read-only memory, or an electrically-erasable and rewritable read-only memory, and the V-f curve is determined as needed for the specific motor 106 type used. The V-f curve does not start from zero, but has a voltage offset (Vmin) giving a minimum phase RMS motor voltage for a minimum frequency value.
  • microcontroller 118 is checking the voltage across solar PV panels 102 (Vpv signal). If the value of Vpv drops by more than a power-drop limit value from memory 122, to a predetermined value Vd (stored in the memory of the microcontroller) then microcontroller 118 concludes that motor should stop rotation, and it shuts down 318 the operation of VFD 114, waits certain period of time 320 as appropriate for the motor and loads driven by motor 114, and goes into START-UP ROUTINE
  • the motor 106 is a three-phase motor, and variable-frequency motor drive 114 provides three phases of alternating current to drive motor 106; in an alternative embodiment motor 106 is a split-phase motor, where VFD 114 provides to motor drive phases and a phase-shifted start or run power supply to motor 106. In another particular embodiment, motor 106 is a single phase motor having integral motor starting circuitry including a starting capacitor, and VFD 114 provides to motor 106 a single phase of AC power.
  • variable frequency motor drive 114 provides a sine-wave output to drive motor 106.
  • the solar panel 102 of Fig. 1 is replaced with a wind turbine generator system and an associated rectifier to provide DC power to DC-DC converter 110; in such a system a wind turbine rotation speed sensor may optionally be provided as an input to microcontroller 118 and firmware 122 adapted to use wind turbine speed information, as well as current and voltage information, in adjusting VFD 114 so as to avoid stalling the wind turbine and optimize power transfer to motor 106.
  • the solar panel 102 of Fig. 1 is replaced with a generator driven by a gasoline, diesel, gas turbine, or steam engine (which may be piston or turbine); typically with an associated rectifier to rectify any AC produced by the generator and to provide DC power to DC-DC converter 110.
  • a throttle input is provided to controller 104, the system then is capable of acting as a variable-ratio electric transmission.
  • Variable ratio electric transmissions have many uses, while different in architecture and many details of operation (including use of DC motors) from the presently described system, the US Navy operated variable-ratio electric transmissions instead of reduction gears in the main engine systems of the New Mexico, Tennessee, and Colorado classes of battleships from 1918 to 1947.
  • a traditional split phase motor system 400 ( Fig 6 ) with a capacitor-start controller 402 and a 3-wire single phase motor 404, with a starting capacitor 406 and a control relay 408 in the controller 402.
  • Motor 404 has a main winding 410 and an auxiliary, starting, winding 412.
  • the control relay 408 connects the capacitor 406 in series with the starting winding 412 to the AC source 414 during motor startup, in parallel with main winding 410.
  • the control relay 408 disconnects the capacitor 406 and starting winding 412 once the motor has started rotation.
  • the capacitor 406 effectively gives a 90-degree phase shift between power applied to the main winding 410 and the starting winding 412.
  • a separate capacitor Crun 409 is provided to allow some use of starting winding 412 while the motor is running to increase torque, in these controllers Crun typically has a significantly smaller value than Cstart to help reduce run-time current and power dissipation from motor-starting surge currents. While this traditional motor system 400 is quite commonly used, it has drawbacks, among which are very high surge current and power required to start the motor at full operating frequencies.
  • the MPPT variable-frequency motor control system described with reference to Figs 1-3 is used with the embodiment of Fig. 7 discussed below.
  • Vaux VPhs ⁇ Vph 1 , where Vaux is voltage across the starting winding
  • Vmain VPh 2 ⁇ VPh 1
  • PhS auxiliary winding power
  • Vaux Vdc ⁇ duty 1 ⁇ sin x ⁇ 90 °
  • Fig 7 is a schematic illustration of a frequency-controllable, split-phase, DC-to AC variable motor drive inverter 450 configured for starting and running a 3-wire, split-phase, motor from a single-ended DC supply 452.
  • a positive 454 and a negative 456 Ph2 power switching device are driven alternately to provide a phase 2 (Ph2) AC signal 458 to drive main winding 460 of 3-wire split-phase motor 462.
  • a separate positive 464 and a negative 466 Ph1 power switching device are driven alternately to provide a phase 1 (Ph1) AC signal 468 to drive a common connection to which is connected a first end of starting winding 470 and a second end of main winding 460 of 3-wire split-phase motor 462.
  • a separate positive 474 and a negative 476 PhS power switching device are driven alternately to provide an offset phase 3 (PhS) AC signal 478 to drive a connection to which is connected a second end of starting winding 470 of 3-wire split-phase motor 462.
  • PhS phase 3
  • the frequency-controllable, split-phase, DC-to AC variable motor drive inverter 450 is operated to provide waveforms as illustrated in Fig. 8 .
  • power switching devices 454, 456, 464, 466, 474, 476 are not mere switching transistors, but are bidirectional power transfer devices using high frequency switching-converter techniques adapted to provide sinusoidal waveforms.
  • the positive 454 and negative 456 power switching devices are operated to provide a sinewave 490 at a startup frequency to the Ph2 connection of main winding 460, while the positive 464 and negative 466 power switching devices are operated to provide a sinewave 492 at the startup frequency to the Ph1 connection of main winding 460.
  • the positive 474 and negative 476 PhS power switching devices are operated to provide a sinewave 494 at the startup frequency to the PhS connection of startup winding 470 with a controllable phase offset 496.
  • positive 474 and negative 476 power switching devices are turned off to disconnect the startup winding 470, while drive to positive 454, 464 and negative 456, 466 power switching devices continue to provide power to main winding 460 to run the motor.
  • phase shift 496 is configured to have the starting winding voltage PhS 494, 478 lag the negative drive voltage Ph1 468, 492 by 63 degrees for optimum efficiency.
  • Fig. 9 is a schematic illustration of an alternative split-phase inverter configured for starting and running a 3-wire induction motor.
  • This embodiment uses a pair of DC sources 502, 504 to give positive 552 and negative 554 power rails with an effectively neutral connection 506.
  • One of these DC sources 502 is the DC link voltage previously discused, the other DC source 504 is a high frequency switching DC-DC converter or charge pump driven by DC source 502.
  • Neutral 506 replaces Ph1 468 of Fig. 7 .
  • Positive 510 and negative 514 power switching devices are configured to drive a Ph2 line 518 for driving the main winding 520 of the motor, unlike the embodiment of Fig. 7 where the AC motor drive phases 458, 468, 478 swing between zero and a high DC voltage, in this embodiment the AC motor drive phases 518 and 522 swing both positive and negative with respect to neutral 506.
  • Positive 512 and negative 516 power switching devices are configured to drive a PhS line 522 for driving the auxiliary or starting winding 524 of the motor.
  • ppositive 512 and negative 516 power switching devices are directly coupled to the starting winding 524.
  • positive supply 552 is coupled to positive power switching devices 510, 512, and negative supply 554 to negative power switching devices 514, 516.
  • variable frequency motor drivers of Figs. 7 and 9 operate the power switching devices 454, 456, 464, 466, 474, 476, 510, 512, 514, 516 under control of a Controller 118 ( Fig. 1 ) that provides for variable frequency and variable voltage operation, and permits control of the phase relationship between Ph2 458, 490, 506 and PhS 478, 494, 522, in respect to Ph1 468, 494, 518. Since the phase relationship between Ph1 and PhS is directly synthesized by the controller, instead of by a voltage drop through a reactive device such as a starting or running capacitor ( Fig. 6 ), this phase relationship is optimizable for rapid starting and efficient power operation.
  • an offset DPhase 123 ( Fig. 1 ) in memory of controller 118 is added to a current phase of main winding output Ph2 to provide a current phase of VphS; these current phases are used in synthesizing pulses to the positive and negative drive power switching devices that drive outputs VPh2, VPh1 and VphS.
  • the embodiments discussed with reference to Figs. 7 , 8, and 9 begin motor operation at the startup frequency, the startup frequency being significantly lower than a full, maximum-power, operating frequency. Once motor rotation has begun, the present system ramps its operating frequency and operating voltage up until available power is exceeded, or a full rated operating frequency is reached. If available power is exceeded, operating frequency is reduced to conserve power in accordance with a maximum-power-point tracking algorithm as heretofore described.
  • auxiliary or start winding 470, 524 may see an effectively lower voltage across the winding than does the main winding 460, 520. This is a consequence of because main winding 460, 520 sees voltage between Ph2 458, 506 and Ph1 468, 518 that are 180-degrees apart, while the auxiliary or start winding 470, 524 sees an effective AC voltage between Ph1 468, 512, and PhS 478, 522, that is reduced because phase difference between PhS and Ph1 is not 180 degrees; at zero phase difference between Ph2 and PhS voltage difference PhS-Ph1 is at a maximum but at a 180 degree phase difference between Ph2 and PhS, where PhS aligns with Ph1, voltage difference PhS-Ph1 reaches zero.
  • firmware is an ordered sequence of machine readable instructions stored in a memory, the machine readable instructions provided to adapt the microcontroller to perform particular tasks such as tracking a maximum power point of photovoltaic panels by adjusting power drawn by the variable frequency motor drive and by regulating the second DC voltage.
  • a system designated A including an AC electric motor; at least one photovoltaic panel; a DC-DC converter coupled to receive power from the at least one photovoltaic panel and provide a second DC voltage; a variable-frequency motor drive coupled to receive the second DC voltage and provide AC power to the AC electric motor; and a microcontroller configured to regulate the second DC voltage and to use a maximum-power-point tracking firmware to adjust frequency of the variable frequency motor drive to optimize power output.
  • a system designated AA including the system designated A wherein the microcontroller is also configured to adjust a voltage of the AC power provided to the AC electric motor.
  • a system designated AB including the system designated A or AA wherein the microcontroller is configured to adjust the voltage of the AC power provided to the AC electric motor with the voltage of the AC power increasing linearly with a frequency of the AC power.
  • a system designated AD including the system designated AA, AB, or A wherein the microcontroller has firmware adapted to gradually increase the second DC voltage and a frequency of the AC power until the AC motor starts rotating, and wherein the microcontroller recognizes that the AC motor has started rotating by detecting a change in current received from the at least one photovoltaic panel.
  • a system designated AE including the system designated AA, AB, AD, or A wherein the maximum power point tracking firmware comprises machine readable instructions to change a frequency of the variable frequency motor drive in steps while searching for the maximum possible power received from the at least one photovoltaic panel, while regulating the second DC voltage level to a voltage increasing proportionally with frequency of the variable frequency motor drive.
  • a system designated AE including the system designated AA, AB, AD, or A wherein the maximum power point tracking firmware comprises machine readable instructions to adjust the second DC voltage to obtain maximum possible power from the at least one photovoltaic panel, while the firmware comprises machine readable instructions to adjust an operating frequency of the variable frequency drive .
  • a system designated AF including the system designated AA, AB, AD, AE or A wherein the maximum power point tracking firmware comprises machine readable instructions adapted to monitor the second DC voltage and if said second DC voltage decreases below a predetermined threshold to decrease a frequency of the variable frequency motor drive.
  • a system designated AG including the system designated AA, AB, AD, AE, AF or A wherein the system is configured to detect failure of the AC electric motor to start, and when the AC electric motor fails to start to shut down the variable-frequency motor drive for a retry time and to retry starting the AC electric motor after the retry time.
  • a system designated AH including the system designated AA, AB, AD, AE, AF or AJ or A wherein the AC power comprises a first phase AC power coupled to a main winding of the AC electric motor and a starting phase AC power coupled to a starting winding of the AC electric motor, the first phase AC power and the starting phase AC power being offset by a nonzero phase shift.
  • a system designated AJ including the system designated AH wherein the nonzero phase shift is between 58 and 68 degrees or 112 and 122 degrees.
  • a system designated AK including the system designated AA, AB, AD, AE, AF, AG, AH, AJ, or A wherein the AC power further comprises a third phase AC power 180-degrees out of phase with the first phase AC power, the third phase AC power coupled to both the starting winding and the main winding.
  • a method designated B of operating an AC motor powered by a limited DC power source providing a first DC voltage comprising: converting power from the limited DC power source to a second DC voltage; converting power from the second DC voltage to an AC motor voltage at a first AC frequency and a first AC voltage; providing the AC motor voltage to the AC motor; detecting startup of the AC motor; after startup of the AC motor, increasing voltage and frequency of the AC motor voltage until reaching either a maximum frequency, or a limit of the DC power source.
  • a method designated BA including the method designated B wherein the AC motor voltage comprises a first phase and a starting phase AC, the first phase and starting phase differing in phase by between 58 and 68 degrees or between 112 and 122 degrees.
  • a method designated BB including the method designated B or BA wherein the limit of the DC power source is determined by monitoring a voltage of the DC power source as the frequency of the AC motor voltage is increased, and determining when a slight increase of the frequency of the AC motor voltage triggers a percentage drop in the voltage of the DC power source that exceeds a percentage voltage drop limit
  • a method of operating an AC motor powered by a limited DC power source providing a first DC voltage including: converting power from the limited DC power source to a second DC voltage; converting power from the second DC voltage to an AC motor voltage at a first AC frequency and a first AC voltage; providing the AC motor voltage to the AC motor; detecting startup of the AC motor; and after startup of the AC motor varying the frequency of the AC motor drive to search for a maximum power point (MPP) of the limited DC voltage.
  • MPP maximum power point
  • the method of claim 15 wherein the limited DC voltage is sourced by a device selected from the group consisting of a photovoltaic panel and a wind turbine.

Claims (15)

  1. Système comprenant :
    un moteur électrique CA (106, 462) ;
    au moins un panneau photovoltaïque (102, 452) ;
    un convertisseur CC-CC (110) couplé pour recevoir de l'énergie du au moins un panneau photovoltaïque (102, 452) et pour fournir une deuxième tension CC (112) ;
    une commande de moteur à fréquence variable (114, 450) couplé pour recevoir la seconde tension CC (112) et pour fournir un courant alternatif (116) au moteur électrique CA (106, 462) ; et
    un microcontrôleur configuré pour réguler la seconde tension CC (112) ;
    le microcontrôleur étant configuré pour augmenter graduellement et simultanément la seconde tension CC (112) et une fréquence du courant alternatif (116) jusqu'à ce que le moteur électrique CA (106, 462) commence à tourner, et
    caractérisé en ce que
    le microcontrôleur est configuré pour détecter que le moteur électrique CA (106, 462) a commencé à tourner en détectant une diminution du courant reçu de l'au moins un panneau photovoltaïque (102, 452), et lorsque le moteur électrique CA (106, 462) a commencé à tourner, pour utiliser un microprogramme de suivi du point de puissance maximale pour augmenter la fréquence du courant alternatif (116) afin d'optimiser une sortie de puissance, tout en régulant la seconde tension CC (112) à une valeur prédéterminée.
  2. Système de la revendication 1, dans lequel le microcontrôleur est également configuré pour ajuster une tension du courant alternatif (116) fournie au moteur électrique CA (106, 462) lors de l'utilisation du microprogramme de suivi du point de puissance maximale pour ajuster la fréquence du courant alternatif (116) afin d'optimiser la sortie de puissance, et
    dans lequel le microprogramme de suivi du point de puissance maximale comprend des instructions lisibles par machine pour augmenter la fréquence du courant alternatif (116) en premières étapes jusqu'à une limite de fréquence ;
    et si la seconde tension CC (112) chute de plus d'un seuil avant que la limite de fréquence ne soit atteinte, pour diminuer la fréquence du courant alternatif (116) en secondes étapes, jusqu'à ce que la seconde tension CC (112) soit à nouveau régulée à la valeur prédéterminée, et pour augmenter ensuite la fréquence du courant alternatif (116) en premières étapes vers la limite de fréquence, les secondes étapes étant plus grandes en taille que les premières étapes.
  3. Système de la revendication 1 ou 2 dans lequel le moteur électrique CA (106, 462) est un moteur à induction CA.
  4. Système selon la revendication 1, 2 ou 3, dans lequel le microprogramme de suivi du point de puissance maximale comprend des instructions lisibles par machine pour ajuster la seconde tension CC (112) afin d'obtenir une puissance maximale possible à partir du au moins un panneau photovoltaïque (102, 452).
  5. Système selon la revendication 1, 2, 3 ou 4, dans lequel le microprogramme de suivi du point de puissance maximale comprend des instructions lisibles par machine adaptées pour surveiller la seconde tension CC (112) et, si ladite seconde tension CC (112) diminue en dessous d'un seuil prédéterminé, pour diminuer la fréquence du courant alternatif (116).
  6. Système selon la revendication 1, 2, 3, 4 ou 5, dans lequel le système est configuré pour détecter un défaut de démarrage du moteur électrique CA (106, 462), et lorsque le moteur électrique CA (106, 462) ne parvient pas à démarrer, pour arrêter la commande de moteur à fréquence variable (114, 450) pendant un temps de réessaie et pour réessayer de démarrer le moteur électrique CA (106, 462) après le temps de réessaie.
  7. Système de la revendication 6, dans lequel le système est configuré pour compter les tentatives de réessaie pour démarrer le moteur électrique CA (106, 462) et, lors du comptage d'un nombre maximal de tentatives de réessaie, pour arrêter la commande de moteur à fréquence variable (114, 450) pendant un temps de réessaie prolongé, et pour réessayer de démarrer le moteur électrique CA (106, 462) après le temps de réessaie prolongé.
  8. Système selon la revendication 1, 2, 3, 4, 5, 6 ou 7, dans lequel le microprogramme de suivi du point de puissance maximale comprend des instructions lisibles par machine pour modifier la fréquence du courant alternatif (116) en étapes tout en recherchant la puissance maximale possible reçue de l'au moins un panneau photovoltaïque (102, 452), tout en régulant la seconde tension CC (112) à un niveau augmentant proportionnellement à la fréquence du courant alternatif (116).
  9. Système de l'une quelconque des revendications précédentes, dans lequel le moteur électrique CA est un moteur à induction CA monophasé à trois fils (462) et est couplé à la commande de moteur à fréquence variable (114, 450) de sorte que le courant alternatif (116) fournie par la commande de moteur à fréquence variable (450) comprend un courant alternatif de première phase (Ph1, 468) couplée à un nœud commun du moteur électrique CA (462), un courant alternatif de troisième phase (PhS, 478) couplée à un enroulement de démarrage (470) du moteur électrique CA (462), et un courant alternatif de deuxième phase (Ph2, 458) couplée à un enroulement principal (460) du moteur électrique CA (462) ; un déphasage entre la première phase (Ph1) et la seconde phase (Ph2) étant de 180 degrés ;
    dans lequel le courant alternatif de troisième phase (PhS, 478) est déconnectée après la détection de la rotation du moteur électrique CA (462).
  10. Système de la revendication 9 dans lequel le courant alternatif de troisième phase (PhS, 478) a une magnitude 2,23 fois plus grande que les magnitudes du courant alternatif de première phase (Ph1, 468) et du courant alternatif de deuxième phase (Ph2, 458) jusqu'à ce que le moteur électrique AC (462) soit détecté comme ayant commencé à tourner.
  11. Système selon la revendication 9 ou 10, dans lequel un déphasage entre le courant alternatif de première phase (Ph1, 468) couplée à la fois à l'enroulement de démarrage (470) et à l'enroulement principal (460) et le courant alternatif de troisième phase (PhS, 478) est de 63 degrés.
  12. Procédé de fonctionnement d'un moteur CA (106, 462) alimenté par une source de puissance CC limitée (102, 452) fournissant une première tension CC comprenant :
    convertir de la puissance provenant de la source source de puissance CC limitée (102, 452) en une seconde tension CC (112) ;
    convertir de la puissance de la seconde tension CC (112) en un courant alternatif (116) à une première fréquence CA et une première tension CA ;
    fournir le courant alternatif (116) au moteur CA (106, 462) ;
    ramper une fréquence et une tension du courant alternatif (116) à partir de valeurs faibles vers une tension et une fréquence de fonctionnement jusqu'à ce que le moteur CA (106, 462) démarre ;
    caractérisé par
    détecter le démarrage du moteur CA (106, 462) en détectant une diminution du courant reçu de la source de puissance CC limitée (102, 452) ;
    après avoir détecté le démarrage du moteur CA (106, 462), augmenter la tension et la fréquence du courant alternatif (116) jusqu'à atteindre soit une fréquence maximale, soit jusqu'à atteindre une fréquence où la seconde tension CC (112) diminue.
  13. Procédé de la revendication 12, dans lequel le courant alternatif (116) comprend une première phase (Ph1, 468) et une phase de démarrage (PhS, 478), la première phase (Ph1, 468) et la phase de démarrage (PhS, 478) différant en phase entre 58 et 68 degrés ou entre 112 et 122 degrés.
  14. Procédé de la revendication 12 ou 13, dans lequel la limite de la source de puissance CC limitée (102, 452) est déterminée en surveillant une tension de la source de puissance CC limitée (102, 452) lorsque la fréquence du courant alternatif (116) est augmentée, et en déterminant quand une légère augmentation de la fréquence du courant alternatif (116) déclenche une chute en pourcentage de la tension de la source de puissance CC limitée (102, 452) qui dépasse une limite de chute de tension en pourcentage.
  15. Procédé selon la revendication 12, 13 ou 14, dans lequel :
    la tension de la source de puissance CC limitée (102, 452) est fournie par un dispositif choisi du groupe constitué par un panneau photovoltaïque (102, 452) et une éolienne ;
    le moteur CA (106, 462) est un moteur à phase divisée (462) et le courant alternatif (116) comprend un courant alternatif de première phase (Ph1, 468) couplée à un enroulement principal (460) du moteur CA (462) et un courant alternatif de phase de démarrage (PhS, 478) couplée à un enroulement de démarrage (470) du moteur CA (462) ;
    dans lequel le courant alternatif de la première phase (Ph1, 468) et le courant alternatif de la phase de départ (PhS, 478) sont décalés d'un déphasage compris entre 58 et 68 degrés ou entre 112 et 122 degrés ; et
    dans lequel le courant alternatif de la phase de démarrage (PhS, 478) est coupée après qu'il a été déterminé que le moteur CA (462) a démarré et que le courant alternatif (116) a atteint une fréquence de seuil.
EP16856101.7A 2015-10-13 2016-10-12 Suivi du point de puissance maximale à vitesse variable, dispositif de commande de moteur électrique solaire pour moteurs à courant alternatif à induction et à aimants permanents Active EP3362867B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562240979P 2015-10-13 2015-10-13
PCT/US2016/056618 WO2017066307A1 (fr) 2015-10-13 2016-10-12 Suivi du point de puissance maximale à vitesse variable, dispositif de commande de moteur électrique solaire pour moteurs à courant alternatif à induction et à aimants permanents

Publications (3)

Publication Number Publication Date
EP3362867A1 EP3362867A1 (fr) 2018-08-22
EP3362867A4 EP3362867A4 (fr) 2019-05-22
EP3362867B1 true EP3362867B1 (fr) 2021-07-21

Family

ID=58517816

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16856101.7A Active EP3362867B1 (fr) 2015-10-13 2016-10-12 Suivi du point de puissance maximale à vitesse variable, dispositif de commande de moteur électrique solaire pour moteurs à courant alternatif à induction et à aimants permanents

Country Status (9)

Country Link
US (1) US10931220B2 (fr)
EP (1) EP3362867B1 (fr)
JP (1) JP7061760B2 (fr)
CN (1) CN108431719B (fr)
AU (1) AU2016338999B2 (fr)
DK (1) DK3362867T3 (fr)
ES (1) ES2894360T3 (fr)
IL (1) IL258401B (fr)
WO (1) WO2017066307A1 (fr)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101783121B1 (ko) * 2016-01-18 2017-09-28 엘에스산전 주식회사 인버터
US10491145B2 (en) 2017-08-11 2019-11-26 Rolls-Royce North American Technologies Inc. Gas turbine generator speed DC to DC converter control system
US10483887B2 (en) 2017-08-11 2019-11-19 Rolls-Royce North American Technologies, Inc. Gas turbine generator temperature DC to DC converter control system
US10476417B2 (en) * 2017-08-11 2019-11-12 Rolls-Royce North American Technologies Inc. Gas turbine generator torque DC to DC converter control system
US11384967B2 (en) 2017-10-05 2022-07-12 Carrier Corporation Multi power converter unit for a trailer refrigeration unit
US10840831B2 (en) 2018-02-27 2020-11-17 Premier Energy Holdings, Inc. Solar hybrid solution for single phase starting capacitor motor applications with grid start
US10560033B2 (en) * 2018-02-27 2020-02-11 Suntech Drive, Llc Solar hybrid solution for single phase starting capacitor motor applications
US11855558B2 (en) 2018-02-27 2023-12-26 Premier Energy Holdings, Inc. AC start, solar run hybrid solution for single phase, starting capacitor, motor applications with solar power measurement
CN113302571B (zh) * 2019-01-24 2022-09-23 三菱电机株式会社 光伏发电驱动系统及光伏发电驱动系统的控制方法
WO2020240593A1 (fr) * 2019-05-28 2020-12-03 Cri Pumps Private Limited Dispositif de commande de pompe intégré
US11867412B2 (en) * 2020-12-22 2024-01-09 Premier Energy Holdings, Inc. Device and method for converting solar PV energy into thermal energy storage using combined heat-pump and resistive heating elements in water heater
CN112768268B (zh) * 2021-01-28 2022-05-20 桐乡科联新能源有限公司 分布式光伏电站组串式逆变器夜间无功抑制控制装置
TWI766719B (zh) * 2021-06-09 2022-06-01 龍華科技大學 可防止最大功率錯誤追蹤之方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4145646A (en) * 1975-04-14 1979-03-20 Werderitch Frank J Start-stop circuit for split phase motor
US4263540A (en) * 1979-07-05 1981-04-21 General Electric Company Two-speed refrigerant motor compressor
JPS6265116A (ja) * 1985-09-17 1987-03-24 Toshiba Corp 太陽光発電装置
US5136216A (en) * 1991-02-15 1992-08-04 York International Corporation Ac motor drive system
DE4232134A1 (de) * 1992-09-25 1994-03-31 Philips Patentverwaltung Schaltungsanordnung zum Speisen eines Zweiphasen-Asynchronmotors
US6232742B1 (en) * 1994-08-02 2001-05-15 Aerovironment Inc. Dc/ac inverter apparatus for three-phase and single-phase motors
JP2003009572A (ja) * 2001-06-22 2003-01-10 Ebara Corp 太陽電池を用いた回転機器の制御装置
US7126294B2 (en) 2002-01-31 2006-10-24 Ebara Corporation Method and device for controlling photovoltaic inverter, and feed water device
US7148650B1 (en) * 2005-06-22 2006-12-12 World Water & Power Corp. Maximum power point motor control
JP5119025B2 (ja) * 2008-03-31 2013-01-16 株式会社日立産機システム モータ制御装置、空気圧縮機、空気調和機、乗客コンベアの制御装置及びコンベアの制御装置
US8334616B2 (en) * 2008-09-19 2012-12-18 Electric Power Research Institute, Inc. Photovoltaic integrated variable frequency drive
US8030788B2 (en) * 2008-12-31 2011-10-04 General Electric Company Method and systems for an engine starter/generator
JP5424784B2 (ja) 2009-08-28 2014-02-26 株式会社荏原製作所 ドライ真空ポンプ用電源装置、及びその運転方法
US8937822B2 (en) * 2011-05-08 2015-01-20 Paul Wilkinson Dent Solar energy conversion and utilization system
US20160197566A1 (en) * 2013-08-16 2016-07-07 Tecumseh Products Company, Inc. Method and apparatus to control a single-phase induction motor
US9698710B2 (en) 2013-08-22 2017-07-04 Sharp Kabushiki Kaisha Solar energy utilization system

Also Published As

Publication number Publication date
WO2017066307A1 (fr) 2017-04-20
IL258401A (en) 2018-05-31
CN108431719A (zh) 2018-08-21
CN108431719B (zh) 2021-02-09
DK3362867T3 (da) 2021-10-18
ES2894360T3 (es) 2022-02-14
JP7061760B2 (ja) 2022-05-02
AU2016338999B2 (en) 2021-03-18
JP2018530840A (ja) 2018-10-18
US20180278193A1 (en) 2018-09-27
EP3362867A4 (fr) 2019-05-22
IL258401B (en) 2022-06-01
EP3362867A1 (fr) 2018-08-22
AU2016338999A1 (en) 2018-05-24
US10931220B2 (en) 2021-02-23

Similar Documents

Publication Publication Date Title
EP3362867B1 (fr) Suivi du point de puissance maximale à vitesse variable, dispositif de commande de moteur électrique solaire pour moteurs à courant alternatif à induction et à aimants permanents
US6954004B2 (en) Doubly fed induction machine
CN104660129A (zh) 开关磁阻风力发电机控制系统及控制方法
CN204559455U (zh) 开关磁阻风力发电机控制系统
US20190052089A1 (en) Power generation system having variable speed engine and method for cranking the variable speed engine
JP2012050181A (ja) 風力発電装置
CN105071726A (zh) 开关磁阻风力发电并网系统控制方法
US11114963B2 (en) Method and system for enhancing electrical power production by a power generation system by controlling switches to place a rotor-side converter in parallel with a line-side converter
Mishra et al. Stage solar PV powered water pump with a storage system
Kumar et al. Grid interfaced solar PV powered brushless DC motor driven water pumping system
AU2021106106B4 (en) Powering of submersible pumps via renewable energy sources
US10560033B2 (en) Solar hybrid solution for single phase starting capacitor motor applications
US9419556B2 (en) Method and arrangement for operating a pump
Mishra et al. An Economical Solar Water Pump With Grid and Battery Backup for Continuous Operation
CN204498036U (zh) 一种双馈风力发电机的励磁装置
JP3712895B2 (ja) 太陽電池による機械動力発生システム
WO2021180113A1 (fr) Système de production d'énergie éolienne à double alimentation et procédé de production d'énergie associé
US20170335851A1 (en) Solar Powered Pumping System
US10840831B2 (en) Solar hybrid solution for single phase starting capacitor motor applications with grid start
CN114844093A (zh) 一种光伏并网系统及其控制方法
JP5555125B2 (ja) 発電システム
Parveen et al. Solar Water Pumping System with Captive Energy Storage Functionality
Shahapure et al. Modelling and Field Oriented Control of Grid Interfaced Solar Integrated Synchronous Motor Drive
Kotra et al. Control algorithm for a PV powered BLDC drive for air conditioner application
AU2022271456A1 (en) Control of submersible pumps powered via renewable energy sources

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180511

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20190423

RIC1 Information provided on ipc code assigned before grant

Ipc: H02M 7/537 20060101ALI20190415BHEP

Ipc: H02M 7/5387 20070101ALI20190415BHEP

Ipc: H02P 1/28 20060101ALI20190415BHEP

Ipc: H02S 40/32 20140101ALI20190415BHEP

Ipc: H02P 1/42 20060101ALI20190415BHEP

Ipc: H02P 27/06 20060101ALI20190415BHEP

Ipc: H02S 40/30 20140101ALI20190415BHEP

Ipc: H02P 27/08 20060101ALI20190415BHEP

Ipc: H02P 1/30 20060101ALI20190415BHEP

Ipc: H02P 1/26 20060101ALI20190415BHEP

Ipc: H02M 3/158 20060101ALI20190415BHEP

Ipc: H02P 27/04 20160101ALI20190415BHEP

Ipc: G05F 1/67 20060101AFI20190415BHEP

Ipc: H01L 31/042 20140101ALI20190415BHEP

Ipc: H02P 1/52 20060101ALI20190415BHEP

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: PREMIER ENERGY HOLDINGS, INC.

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210216

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602016061064

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1413168

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20211012

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210721

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1413168

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210721

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211021

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210721

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210721

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210721

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210721

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211122

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211021

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210721

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210721

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210721

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2894360

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20220214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210721

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210721

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211022

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602016061064

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210721

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210721

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210721

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210721

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210721

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210721

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20211031

26N No opposition filed

Effective date: 20220422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210721

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211012

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211012

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20161012

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210721

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230526

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230921

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230921

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231107

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230926

Year of fee payment: 8

Ref country code: DK

Payment date: 20231016

Year of fee payment: 8

Ref country code: DE

Payment date: 20230926

Year of fee payment: 8