EP3361168B1 - Unité de source de chaleur et climatiseur d'air comportant l'unité de source de chaleur - Google Patents
Unité de source de chaleur et climatiseur d'air comportant l'unité de source de chaleur Download PDFInfo
- Publication number
- EP3361168B1 EP3361168B1 EP17155593.1A EP17155593A EP3361168B1 EP 3361168 B1 EP3361168 B1 EP 3361168B1 EP 17155593 A EP17155593 A EP 17155593A EP 3361168 B1 EP3361168 B1 EP 3361168B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- heat exchanger
- air
- heat source
- source unit
- refrigerant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000001816 cooling Methods 0.000 claims description 143
- 239000003507 refrigerant Substances 0.000 claims description 135
- 239000007788 liquid Substances 0.000 claims description 27
- 238000011144 upstream manufacturing Methods 0.000 claims description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 44
- 230000005494 condensation Effects 0.000 description 26
- 238000009833 condensation Methods 0.000 description 26
- 238000012423 maintenance Methods 0.000 description 21
- 230000017525 heat dissipation Effects 0.000 description 18
- 238000009434 installation Methods 0.000 description 18
- 238000007789 sealing Methods 0.000 description 12
- 230000001143 conditioned effect Effects 0.000 description 9
- 238000010438 heat treatment Methods 0.000 description 8
- 230000005484 gravity Effects 0.000 description 6
- 230000008901 benefit Effects 0.000 description 5
- 239000012071 phase Substances 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 210000004243 sweat Anatomy 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 230000013011 mating Effects 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 230000021715 photosynthesis, light harvesting Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F1/00—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
- F24F1/06—Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
- F24F1/20—Electric components for separate outdoor units
- F24F1/24—Cooling of electric components
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F1/00—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
- F24F1/06—Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
Definitions
- Air conditioners generally employ a heat pump to cool and/or heat air in one or more rooms to be conditioned.
- the heat pump generally comprises a refrigerant circuit having at least a compressor, a heat source heat exchanger, an expansion valve and at least one indoor heat exchanger.
- the heat source unit is to be understood as the unit of the air conditioner (heat pump) that comprises the heat source heat exchanger used to transfer heat energy between a source of heat, such as air, ground or water, and a refrigerant flowing in the refrigerant circuit.
- Known heat source units generally comprise an external housing accommodating at least the compressor, the heat source heat exchanger and an electric box accommodating electrical components configured to control the air conditioner, particularly the refrigerant circuit of the heat pump.
- JP-A-2016- 191505 discloses an electric box having an air passage comprising an air inlet and an air outlet opening into an interior of the external housing and a fan configured to induce an air flow through the air passage from the air inlet to the air outlet for cooling the electrical components.
- US 2016/0258636 A1 additionally suggests a heat dissipating plate disposed with a first portion in direct contact with an electrical component and with a second portion outside the electric box.
- a refrigerant piping connected to the refrigerant circuit is coupled to the second portion of the heat dissipating plate. It may for maintenance reasons or to make modifications of a controller contained in the electric box be required to access the electric box.
- the refrigerant piping has to be disassembled from the second portion of the heat dissipating plate. Due to the fragility of the refrigerant piping, there is a risk of damaging the refrigerant piping.
- WO 2015/002493 A1 discloses an air conditioner including a control box having a space formed therein, a PCB arranged to form an air circulation passage in the space, the PCB having a plurality of electric components mounted thereto, a cooling module for making a first electronic component of the plurality of electronic components to heat exchange with refrigerant, and a circulating fan arranged in the air circulation passage to make air flow to a second electric component of the plurality of electric components after being cooled by the cooling module, thereby dissipating heat from an inside of the control box with a mixed cooling system of a refrigerant cooling system and an air cooling system, efficiently.
- hot refrigerant components such as the compressor, a liquid receiver or an oil separator accommodated in the external housing of the heat source unit dissipate heat as well.
- the heat source unit is under certain circumstances disposed in an installation environment or space, such as installation rooms inside a building. This is particularly the case when using water as the source of heat. Because the heat source unit as a whole dissipates heat, the temperature in the installation room may increase, which is perceived disadvantageous. If other equipment is also installed in the installation room and the other equipment is sensible to high temperatures, even additional cooling of the installation room may be required.
- a basic idea to address this problem is the provision of a cooling heat exchanger to be connected to the refrigerant circuit of the air conditioner and flown through by a refrigerant.
- the cooling heat exchanger is arranged so as to be flown through by the air flow induced through the air passage of the electric box, whereby the air is cooled.
- an amount of heat dissipated by the heat source unit particularly the air expelled from the electric box after cooling the electrical components, can be reduced or even be eliminated.
- condensation water which is formed on the cooling heat exchanger due to the temperature difference and humidity in the air, comes into contact with the electrical components.
- a further object may be to provide a heat source unit and an air conditioner having such a heat source unit in which the risk of condensation water coming into contact with electrical components of the electric box is minimized.
- a heat source unit for an air conditioner and an air conditioner having such a heat source unit in which a - cooling heat exchanger to cool the air flowing through the air passage of the electric box recovers the heat dissipated from the electrical components and uses the heat in the refrigerant circuit of the air conditioner.
- the cooling heat exchanger is arranged in the refrigerant circuit so as to enable heat recovery at the same time minimizing any negative effects on a possible capacity and operation of the air conditioner.
- a simple control mechanism for controlling the refrigerant flow through the cooling heat exchanger is desired to minimize costs.
- An even further object may be to provide a heat source unit for an air conditioner and an air conditioner having such a heat source unit in which access to the electric box is simplified for ease of maintenance.
- a heat source unit as defined in claim 1 is suggested. Further embodiments including an air conditioner having such a heat source unit are defined in the dependent claims, the following description and the drawings.
- a heat source unit for an air conditioner is suggested.
- the air conditioner may be operated in a cooling operation for cooling a room (or a plurality of rooms) to be conditioned and optionally in heating operation for heating a room (or a plurality of rooms) to be conditioned. If the air conditioner is configured for more than one room even a mixed operation is conceivable in which one room to be conditioned is cooled whereas another room to be conditioned is heated.
- the suggested air conditioner comprises a refrigerant circuit.
- the refrigerant circuit may constitute a heat pump and comprise at least a compressor, a heat source heat exchanger, an expansion valve and at least one indoor heat exchanger.
- the heat source unit comprises an external housing defining an interior of the heat source unit and an exterior of the heat source unit.
- the external housing accommodates at least the compressor, the heat source heat exchanger, an electric box and a cooling heat exchanger.
- the cooling heat exchanger may function as an evaporator in the refrigerant circuit and may, hence, also be referred to as an evaporator.
- the external housing may further accommodate an expansion valve, a liquid receiver, an oil separator and an accumulator of the refrigerant circuit.
- the components of the refrigerant circuit accommodated in the external housing, particularly the compressor and the heat source heat exchanger are to be connected to the refrigerant circuit. Further, the heat source heat exchanger is configured to exchange heat between a refrigerant circulating in the refrigerant circuit and a heat source, particularly water even though air and ground are as well conceivable.
- the electric box accommodates electrical components which are configured to control the air conditioner, particularly the heat pump.
- the electric box has at least a top and side walls. A bottom end of the electric box may either be open or has a bottom.
- the side walls extend in general along a vertical direction from the bottom to the top. "Along the vertical direction" in this context does not require that the side walls are oriented vertical even though this is one possibility.
- the side walls may also be inclined to the vertical direction. As long as the side walls are not angled more than 45° to a vertical direction, the side walls are to be understood as extending along the vertical direction.
- an air passage comprising an air inlet and an air outlet is suggested.
- the air outlet is arranged in the electric box so as to open into the interior of the external housing. This is particularly preferred if also hot refrigerant components accommodated in the external housing are to be cooled as will be described later. Yet, it is also conceivable that the air outlet opens to the external of the external housing.
- the air inlet may either be arranged so as to open to the exterior of the external housing or into the interior of the external housing.
- An air flow through the air passage from the air inlet to the air outlet may be induced by natural convection.
- a fan may be provided either at the air inlet or the air outlet to induce the air flow as described later.
- a cooling heat exchanger to be connected to the refrigerant circuit of the air conditioner is suggested so as to minimize the amount of heat from the electrical components being dissipated into the surroundings of the heat source unit.
- the cooling heat exchanger may be arranged at one of the side walls of the electric box so as to be flown through by the air flow and exchange heat between the refrigerant and the air flow.
- the cooling heat exchanger was disposed upstream of the electrical components in the air passage (e.g. at the air inlet of the air passage) it is, however, conceivable that sweat is generated on the inside of the electric box because of the relatively cool air introduced into the air passage and the high temperature difference between the air passage and the electric box.
- the cooling heat exchanger is, hence, disposed downstream of the electrical components to be cooled in the direction of the air flow.
- the cooling heat exchanger may for example be disposed at the air outlet of the air passage. Accordingly, the air flowing into the air inlet from the interior of the external housing flows through the air passage and cools the electrical components in the air passage, whereby the temperature of the air increases.
- the air is cooled by flowing through the cooling heat exchanger, wherein the temperature of the refrigerant flowing through the cooling heat exchanger is increased and the refrigerant evaporates.
- the air expelled from an air outlet of the cooling heat exchanger has than a temperature which is at least similar if not the same as the temperature of air in the interior of the external housing and may even be lower.
- the electrical components do not further heat up the air in the interior of the external casing and hence heat dissipation to the exterior surroundings may be reduced.
- condensation water is formed on the surfaces of the cooling heat exchanger as explained earlier.
- the cooling heat exchanger is arranged downstream of electrical components of the electrical components and/or a heat sink heat conductively connected to electrical components of the electrical components which are disposed in the air flow, i.e. in the air passage, the risk is reduced that condensation water will come in contact with the electrical components or the heat sink.
- the air flow is away from the electrical components and the heat sink in the air passage, the air flow will rather transport any condensation water away from the electrical components and the heat sink.
- the risk of sweat formation inside the electric box is reduced.
- disposing the cooling heat exchanger downstream of the electrical components to be cooled has the advantage that a larger amount of heat may be transferred to the refrigerant so that heat recovery and the use of heat in the refrigerant circuit are improved.
- the fan is disposed at the air outlet. This has the advantage that maintenance of the fan is simplified, because the fan is easily accessible even from the outside of the electric box.
- the cooling heat exchanger downstream of the fan.
- a relatively large air flow "blows" any condensation water on the cooling heat exchanger away from the air passage and the air outlet.
- the fan can then form a barrier between the electrical components and the air passage and the cooling heat exchanger further preventing any condensation water from entering the air passage.
- a further advantage of this configuration may be that the efficiency of the fan is higher if it is disposed upstream of the cooling heat exchanger so that less power is required to drive the fan.
- the cooling heat exchanger may be oriented and particularly an air outlet of the cooling heat exchanger may be oriented or configured to expel the air leaving the cooling heat exchanger in a direction of hot refrigerant components accommodated in the external housing comprising at least one of the group consisting of the compressor, an oil separator and a liquid receiver.
- the cooling heat exchanger may have a duct connecting at one end to the air outlet of the air passage and at an opposite end to an air inlet of the cooling heat exchanger.
- the duct may form a passage changing the direction of the air flow from the air outlet of the electric box to the air inlet of the cooling heat exchanger.
- common plate-shaped heat exchangers may be used as cooling heat exchanger.
- the change of the flow direction is then achieved by the duct and the common plate - shaped heat exchanger is attached in an inclined orientation relative to the vertical direction to the duct, whereby the air outlet of the heat exchanger (cooling heat exchanger) is directed to the direction of the hot refrigerant components, whereby the air flow is directed on and cools the hot refrigerant components within the external housing.
- the heat dissipated from the hot refrigerant components to the interior of the external housing and, hence, the environment of the heat source unit can be reduced even further.
- the air outlet of the air passage is located closer to a top than to a bottom of the external housing.
- the air outlet of the air passage is located closer to the top than to a bottom end of the electric box.
- the cooling heat exchanger may be connected to a bypass line branched from a liquid refrigerant line and a gas suction line.
- Liquid refrigerant line is in this context to be understood as a line of the refrigerant circuit in which the flowing refrigerant is in the liquid phase.
- Gas suction line is in this context to be understood as a line of the refrigerant circuit on a suction side of the compressor in which gaseous refrigerant flows.
- the liquid refrigerant line is a line connecting the heat source heat exchanger and the indoor heat exchanger.
- the bypass line may be connected to the liquid refrigerant line in this example with an expansion valve interposed between the bypass line and the heat source heat exchanger.
- the gas suction line may be a line connected to a suction side of the compressor with one or more components, such as an accumulator, that may be interposed.
- the cooling heat exchanger is connected to a bypass line branched from a liquid refrigerant line, e.g. connected to the heat source heat exchanger, and a gas suction line, e.g. connected to a suction side of the compressor.
- an accumulator is disposed between the connection of the bypass line to the gas suction line and the suction side of the compressor.
- cooling heat exchanger may always be operated as long as the compressor is operating so that a reliable system is obtained without negatively affecting the refrigerant circuit of the air conditioner.
- this arrangement provides for an efficient use of the heat dissipated from the electrical components in the refrigerant circuit during heating operation of the air conditioner.
- the bypass line may have an expansion valve, wherein the opening degree of the expansion valve is controllable. Yet, according to an embodiment, the bypass line may have a valve and a capillary both upstream of the cooling heat exchanger. According to one embodiment, the valve is switched ON/OFF only, that is the valve is (completely) opened/closed only.
- the valve may be a solenoid valve.
- the use of a controlled expansion valve enables a more sophisticated control. Yet, this is not under all circumstances necessary with respect to the cooling heat exchanger flown through by the air flow.
- the use of a valve and a capillary instead of the expansion valve provides for a simpler configuration, which is less costly and can dispense the more complicated control logic necessary when using an expansion valve. In either case, it is possible to adapt the cooling performance of the cooling heat exchanger on the needs of the system and the circumstances such as operation conditions of the air conditioner.
- a bottom end portion of the cooling heat exchanger slopes downward towards an air outlet of the cooling heat exchanger.
- the cooling heat exchanger may have a bottom plate being arranged so as to slope downward towards the air outlet of the cooling heat exchanger. Accordingly, any condensation water which drops or flows down from the cooling heat exchanger will be guided by the bottom end portion, e.g. the bottom plate, from an air inlet of the cooling heat exchanger to an air outlet of the cooling heat exchanger, at which position the condensation water may drop down into a drain pan accommodated in the external housing. Thus, any condensation water is guided away from the air inlet of the cooling heat exchanger. As a result, it can surely be prevented that any condensation water will flow into the air passage and come in contact with the electrical components or the heat sink.
- the cooling heat exchanger has a plurality of fins and tubes, wherein the fins are arranged with a longitudinal extension along a vertical direction.
- the fins are in principle plate shaped having a length and a width much larger than a height.
- the length and the width define a main surface of the fins.
- the tubes generally extend perpendicular to the main surfaces of the fins. "Along a vertical direction" is, in this context, to be understood in the same manner as explained with respect to the side walls above.
- the fins do not need to be oriented vertical but merely need to extend in a direction from a bottom to a top of the external housing.
- the fins are with a longitudinal extension inclined relative to the vertical direction.
- a further aspect concerns an air conditioner having a heat source unit according to any aspect as described above.
- the heat source unit is connected to at least one indoor unit having an indoor heat exchanger forming the refrigerant circuit.
- the air conditioner has the refrigerant circuit which may constitute a heat pump.
- the refrigerant circuit may comprise the compressor, the heat source heat exchanger, an expansion valve and at least one indoor heat exchanger to form a heat pump circuit.
- Additional components as known for air conditioners may be included as well such as a liquid receiver, an accumulator and an oil separator.
- the air conditioner uses water as a heat source.
- the air conditioner is mounted in a building comprising one or more rooms to be conditioned and the heat source unit is installed in an installation environment or space, such as an installation room of the building.
- Figure 1 shows an example of an air conditioner 1 installed in an office building.
- the office building has a plurality of rooms 105 to be conditioned such as conference rooms, a reception area and working places of the employees.
- the air conditioner 1 comprises a plurality of indoor units 100 to 102.
- the indoor units are disposed in the rooms 105 and may have different configurations, such as wall-mounted 102, ceiling mounted 101 or duct-type indoor units 100.
- the air conditioner further comprises a plurality of heat source units 2.
- the heat source units 2 are installed in an installation room 29 of the office building. Other equipment such as servers (not shown) may be installed in the installation room 29 as well.
- the heat source units 2 use water as heat source.
- a water circuit 104 is provided which is connected to a boiler, dry-cooler, cooling tower, ground loop or the like.
- the water circuit 104 may as well have a heat pump circuit including a refrigerant circuit.
- An outdoor unit comprising the heat source heat exchanger of this heat pump circuit may be disposed on the roof of the office building and use air as the heat source.
- the concept of the heat source unit of the present disclosure is also applicable to other heat sources such as air or ground.
- one or more of the indoor units 100 to 102 may be operated to cool the respective rooms 105 whereas others are operated to heat the respective rooms.
- FIG. 2 A simplified schematic diagram of the air conditioner is shown in figure 2 .
- the air conditioner 1 in figure 2 is mainly constituted by an indoor unit 100 and the heat source unit 2. Yet, the air conditioner 1 in figure 2 may also have a plurality of indoor units 100.
- the indoor units may have any configuration such as those described with respect to figure 1 above.
- figure 2 shows the refrigerant circuit constituting a heat pump.
- the refrigerant circuit comprises a compressor 3, a 4-way valve 4 for switching between cooling and heating operation, a heat source heat exchanger 5, an expansion valve 6, and optional additional expansion valve 7 and an indoor heat exchanger 103.
- the heat source heat exchanger 5 is additionally connected to the water circuit 104 as the heat source.
- refrigerant In cooling operation, high-pressure refrigerant is discharged from the compressor 3, flows through the 4-way valve 4 to the heat source heat exchanger 5 functioning as a condenser whereby the refrigerant temperature is decreased and gaseous refrigerant condensed. Thus, heat is transferred from the refrigerant to the water in the water circuit 104. Subsequently, the refrigerant passes the expansion valve 6 and the optional expansion valve 7, wherein the refrigerant is expanded before being introduced into the indoor heat exchanger 103 functioning as an evaporator. In the indoor heat exchanger 103, the refrigerant is evaporated and heat is extracted from the air in the room 105 to be conditioned, whereby the air is cooled and reintroduced into the room 105.
- the temperature of the refrigerant is increased.
- the refrigerant passes the 4-way valve 4 and is introduced into the compressor 3 as low-pressure gaseous refrigerant at the suction side of the compressor 3.
- the line connecting the heat source heat exchanger 5 and the indoor heat exchanger 103 is considered a liquid refrigerant line 25.
- the line connecting the 4-way valve 4 and the suction side of the compressor 3 is considered a gas suction line 26.
- high-pressure refrigerant is discharged from the compressor 3, flows through the 4-way valve 4 to the indoor heat exchanger 103 (dotted line of the 4 way valve 4) functioning as the condenser, whereby the refrigerant temperature is decreased and gaseous refrigerant condensed.
- the refrigerant passes the optional expansion valve 7 and the expansion valve 6, wherein the refrigerant is expanded before being introduced into the heat source heat exchanger 5 functioning as an evaporator via the liquid refrigerant line 25.
- the refrigerant is evaporated and heat is extracted from water in the water circuit 104.
- the temperature of the refrigerant is increased. Subsequently, the refrigerant passes the 4-way valve 4 (dotted line of the 4-way valve 4) and is introduced into the compressor 3 as low-pressure gaseous refrigerant at the suction side of the compressor 3 via the gas suction line 26.
- the refrigerant circuit shown in figure 2 further comprises a bypass line 24 branched from the liquid refrigerant line 25 and connected to the gas suction line 26.
- the bypass line 24 is connected to the liquid refrigerant line 25 between the expansion valve 6 and the indoor heat exchanger 103. If the optional expansion valve 7 is provided, the bypass line 24 is connected between the expansion valve 6 and the optional expansion valve 7.
- the bypass line 24 comprises a valve 20 which may assume an open and a closed position (ON/OFF).
- the valve 20 may be a solenoid valve.
- the bypass line 24 comprises a capillary 21.
- the capillary 21 is disposed downstream of the valve 20 in the direction of the flow of refrigerant during cooling operation.
- the valve 20 may as well be disposed downstream of the capillary 21.
- a cooling heat exchanger 22 (described in more detail below) is connected to the bypass line 24 downstream of the capillary 21 and the valve 20 in the direction of flow of refrigerant during cooling operation.
- the function of this cooling heat exchanger 22, the valve 20 and the capillary 21 will be described further below.
- the components contained in the dotted rectangle indicating the heat source unit 2 in figure 2 are accommodated in an external housing 10 (see figure 4 ) of the heat source unit 2.
- the external housing 10 has side walls 15 and a top 13 both shown in a dotted lines. Furthermore, the external housing 10 has a bottom 14. Thus, the external housing 10 defines an interior 12 of the external housing 10 and an exterior 11 of the external housing 10 which in one example may be the installation room 29 as an example of an installation environment or installation space (see figure 1 ). In the present example, the bottom 14 has a drain pan 16 for collecting any condensation water accumulated in the external housing 10. The bottom 14 supports the remaining components of the heat source unit 2 to be explained in the following. According to one example, none of the components contained in the external housing 10 is fixed to the side walls 15 or the top 13, but all components are directly or indirectly, via the support structures, fixed to the bottom 14.
- the compressor 3, and a liquid receiver 8 commonly used in refrigerant circuits of air conditioners are shown as a components accommodated in the external housing 10. Further components are an oil separator 9 and an accumulator 108 (see Fig. 7 ).
- the compressor 3, the liquid receiver 8 and the oil separator 9 are considered as hot refrigerant components, because at least a proportion of the refrigerant passing through these components is gaseous and hot.
- the accumulator 108 in contrast is considered as a cold refrigerant component as only low pressure refrigerant passes through the accumulator 108.
- the external housing 10 may have vents 16 to allow ventilation of the interior 12 in case the later described zero heat dissipation control is not active.
- the heat source unit 2 comprises an electric box 30.
- the electric box 30 has the shape of a parallelepiped casing, but other shapes are conceivable as well.
- the electric box 30 has a top 31, the side walls (in the present example four side walls, namely a back 32, a front 33 and two opposite sides 34) and a bottom 35.
- the bottom may be open.
- the electric box 30 has a height between the bottom end 35 and the top 31, a depth between the back 32 and the front 33 and a width between the two opposite sides 34.
- the electric box 30 is longitudinal having a height larger (at least twice as large) than the depth and the width.
- the electric box 30 accommodates a plurality of electrical components 36 configured to control the air conditioner and particularly its components such as the compressor 3, the expansion valves 6 and 7 or the valve 20.
- the electrical components 36 are schematically shown in figure 3 only.
- the electric box 30 further defines an air passage 37 having an air inlet 38 and an air outlet 39.
- the air inlet 38 is disposed closer to the bottom 35 or the bottom end of the electric box 30 than the air outlet 39.
- the air outlet 39 is located adjacent to the top 31 of the electric box 30. Due to the longitudinal configuration of the electric box 30 and it is orientation with respect to the longitudinal extension along a vertical direction, the air outlet 39 is located adjacent to a top 13 of the external housing 10 (closer to the top 13 than to the bottom 14).
- both the air inlet 38 and the air outlet 39 open into the interior 12 of the external housing 10.
- the electrical components 36 which require cooling, are either directly disposed in the air passage 37 as shown in figure 3 and/or a heat sink is provided which is heat conductively connected to electrical components to be cooled and the heat sink is directly disposed in the air passage 37.
- the present embodiment shows a fan 40 to induce an air flow 41 (arrows in figure 3 ) from the air inlet 38 to the air outlet 39 through the air passage 37. Accordingly, the air passes the electrical components 36 for cooling, wherein heat is transferred from the electrical components either directly or via the mentioned heat sink to the air flowing through the air passage 37.
- a fan 40 to induce an air flow 41 (arrows in figure 3 ) from the air inlet 38 to the air outlet 39 through the air passage 37. Accordingly, the air passes the electrical components 36 for cooling, wherein heat is transferred from the electrical components either directly or via the mentioned heat sink to the air flowing through the air passage 37.
- more than one fan 40 may be provided.
- the fan 40 is arranged at the air outlet 39 of the air passage so that air from the interior 12 of the external housing 10 is sucked into the air inlet 38 passes through the air passage 37 and is expelled to the interior 12 of the external housing adjacent to the top 13 of the external housing 10. Accordingly, natural convection is assisted in that relatively cool air is expelled at the top and will naturally flow down towards the bottom 14.
- the cooling heat exchanger 22 is arranged downstream of the electrical components 36 as seen in the direction of the air flow 41.
- the cooling heat exchanger 22 is also disposed at the air outlet 39 of the air passage 37 and even downstream of the fan 40 in the direction of the air flow 41.
- the cooling heat exchanger 22 is attached to the air outlet 39 via a duct 23.
- the duct 23 forms an air passage between the air outlet 39 of the air passage 37 and an air inlet 27 of the cooling heat exchanger 22.
- the duct 23 can be used to change the direction of the air flow 41 and/or to mount a commonly known parallelepiped heat exchanger has the cooling heat exchanger 22 in an angled fashion as will be described later.
- the cooling heat exchanger 22 has a plurality of tubes 43 curved at end portions of the cooling heat exchanger 22 and passing a plurality of fins 42 schematically indicated in figure 7 .
- the fins 42 are longitudinal, plate shaped and extend with their longitudinal extension along a vertical direction, i.e. between the bottom 14 and the top 13. It is to be understood, that extending along a vertical direction is as long realized as a longitudinal centerline of the fins 42 in a side view as in figure 3 does not intersect a vertical line at an angle of more than 45°.
- the fins 42 are flat and have a longitudinal extension (lengths) and widths much larger than the height, whereby a main surface of the fins 42 is defined by the length and the width.
- the cooling heat exchanger 22, and particularly the longitudinal direction of the fins 42 is angled by an angle ⁇ (see figure 3 ) relative to the vertical direction.
- an air outlet 28 of the cooling heat exchanger is oriented such that the air flow 41 is directed toward hot refrigerant components, in the present example the compressor 3, the liquid receiver 8 as well as an oil separator 9 (see figure 8 ).
- the angle ⁇ may be in a range between 0° and 25°.
- the cooling heat exchanger 22 has a bottom end portion 44 such as a bottom plate.
- the bottom end portion 44 is downwardly inclined from the air inlet 27 of the cooling heat exchanger 22 towards the air outlet 28 of the cooling heat exchanger 22.
- the bottom end portion 44 slopes downward towards a bottom 14 of the external housing 10.
- the particular example provides several means for guiding any condensation water away from the air outlet 39 of the air passage 37 so as to prevent any water from coming into contact with the electrical components 36 or the heat sink in the air passage 37.
- the fins 42 are oriented with their longitudinal direction along a vertical direction. Accordingly, any condensation water formed on the main surfaces of the fins 42 flows down along the fins 42 and, hence, in a vertical direction due to gravity.
- the bottom end portion 44 of the cooling heat exchanger 22 is downwardly inclined. Accordingly, any condensation water which has flown down the fins 42 and reaches the bottom end portion 44 is guided by the bottom end portion 44 to the air outlet 28 of the cooling heat exchanger 22.
- the condensation water may drop down into the drain pan 16 in the bottom 14 of the external housing 10. Thus, any condensation water is securely guided away from the air outlet 39 of the air passage 37.
- the cooling heat exchanger 22 is arranged at the air outlet 39 of the air passage 37 and consequently downstream of the electrical components 36 or the heat sink disposed in the air passage 37 in the direction of the air flow 41. Accordingly, the air flow 41 "blows” any condensation water formed on the cooling heat exchanger 22 in a direction away from the air outlet 39 and the electrical components 36. This configuration also assists preventing condensation water from coming into contact with sensible parts of the electric box 30.
- the fan 40 is disposed between the cooling heat exchanger 22 and to the electrical components 36 in the air passage 37. Accordingly, the fan 40 can be considered as a partition separating the cooling heat exchanger 22 from the air passage 37. Hence, the fan 40 is an additional barrier for condensation water and prevents the condensation water from entering the air passage 37.
- the electric box 30 is, in the present embodiment, supported so as to be rotatable about an axis of rotation 46.
- the support structure 45 is shown in more detail in figures 6 to 9 .
- the electric box 30 is hinged to the support structure 45 so as to be movable between a use position shown in figure 3 and a maintenance position in which the electric box 30 is tilted about the axis of rotation 46 in a counterclockwise direction shown by the arrow in figure 3 and 6 .
- the axis of rotation 46 is located at a first end of the electric box close to the bottom 35, i.e. opposite to the top 31.
- the electric box 30 is at the top 31 releasably fixed to the support structure to retain the electric box 30 in the use position by bolts 57 (see figure 5 ) .
- the support structure 45 (best visible from figure 9 ) is formed by a frame 47.
- the frame 47 is fixed to the bottom 14 of the external housing 10.
- the frame 47 has two upright columns 48.
- the columns 48 are mounted to the bottom 14 of the external housing 10.
- Each of the columns 48 has at its bottom end close to the bottom 14 of the external housing 10 a slot 49.
- a boss 50 is provided on either side 34 of the electric box 30 and engaged with one of the slots 49.
- the detailed representation of the slot 49 in figures 6 and 7 shows an inserting portion 51 used to insert the boss 50 into the slot 49 or to remove the boss 50 from the slot 49 and, hence, to completely remove the electric box 30 from the heat source unit 2.
- the inserting portion 51 has an opening 52 at one end for introducing the boss 50.
- an engagement portion 53 is formed at the opposite end of the inserting portion 51.
- the engagement portion has a lower section 54 supporting the boss 50 in the use position in an upward direction and an upper section 55 supporting the boss 50 in the maintenance position in a downward direction.
- the axis of rotation 46 is formed by the bosses 50. It is also clear from the side view of figure 6 , that the center of gravity 56 of the electric box 30 is arranged so that the electric box 30 tends to rotate about the axis of rotation 46 in a clockwise direction that is towards the interior 12 of the external housing 10.
- the electric box 30 may be releasably fixed to the frame 47 by bolts 57 (see figure 5 ).
- the electric box When releasing the bolts 57 at the upper end near the top 31 of the electric box 30 from the frame 47, the electric box may be rotated about the axis of rotation 46 or the bosses 50, respectively, in a counterclockwise direction as will be explained in more detail below.
- a handle 64 see figure 5
- an outer surface of the electric box 30 it is conceivable to provide.
- the cooling heat exchanger 22 is in the present example together with the duct 23 fixed to the frame 47 by bolts.
- the air outlet 39 or more particularly an opening 59 of the frame 47 facing the air outlet 39 of the air passage 37 is surrounded by an elastic sealing 60.
- the elastic sealing 60 is as well fixed to the frame 47.
- the sealing, particularly the contact surface of the sealing facing the electric box 30 defines a plane 61.
- the center of gravity 56 is in a side view ( figure 6 ) disposed between the plane 61 and the axis of rotation 36 (formed by the boss 50).
- the electric box 30 tends to rotate against the contact surface of the sealing 60 by gravity ensuring a proper contact with the sealing at the air outlet 39 between the outlet 39 and the cooling heat exchanger 22 and its optional duct 23.
- the sealing could also be established by correct dimensioning and adding sufficient fixation points between the mating surfaces.
- a separate clamping element may be used to press the mating surfaces together.
- the electrical components 36 in the electric box 13 need to be connected to some of the components of the refrigerant circuit contained in the external housing 10.
- the electric box 30 has either an open bottom or an opening is provided in the bottom 35.
- a first electric wire 62 connected to a first electric component in the electric box 30 leaves the electric box through the bottom end of the electric box 30 and is connected to the first electric component such as the solenoid valve 20 (see figure 2 and figure 8 ).
- the electric wire 62 schematically indicated in figure 3 is guided from the bottom 35 to the bottom 14 of the external housing 10, along the bottom 14 and from the bottom 14 to the first electric component (in the example the valve 20).
- a second electric wire 63 leaves the electric box 30 through an opening 70 (see figure 7 ) between the bottom 35 and the top 31 of the electric box 30. Also the second electric wire 63 is guided to the bottom 14 of the external housing 10 and from the bottom to the component such as the compressor 3. Neither the first electric wire 62 nor the second electric wire 63 is fixed to the bottom 14 of the external housing 10 in the example.
- the electric box 30 and the cooling heat exchanger 22 are independently fixed to the support structure 45 (the frame 47). There is no attachment of the electric box 30 to the cooling heat exchanger 22. Accordingly, moving the electric box 30 into the maintenance position (not shown) does not affect the cooling heat exchanger 22 and its refrigerant piping 24.
- the cooling heat exchanger 22, the duct 23 (if present) and the sealing 60 remain mounted in their position on the frame 47 and are not moved together with the electric box 30.
- the fan 40 may as well be fixed to the electric box 30 and may be pivoted into the maintenance position together with the electric box 30 to enable easy maintenance or substitution of a damaged fan 40.
- the first electric wire 62 guided through the bottom 35 of the electric box 30 moves towards the inner side of the external housing 10 and, therefore, in a direction toward the electrical component 20 to which it is connected. Accordingly, no strain is applied to the first electric wire 62 by moving the electric box 30 into the maintenance position.
- the second electric wire 63 leaving the electric box through the opening 70 is first guided to the bottom 13 of the external housing 10.
- strain on the second electric wire 63 can be avoided when moving the electric box 30 into the maintenance position.
- the above configuration enables easy access to the electric box and does not require any disassembly/assembly work on the cooling heat exchanger 22 and it is refrigerant piping 24. For this reason, damages to the cooling heat exchanger 22 and its refrigerant piping 24 can be prevented.
- the electric box 30 is pivoted about the axis of rotation 46 (bosses 50) in an opposite direction (clockwise in figures 3 and 6 ) into the use position shown in the drawings.
- the boss 50 again moves back to the lower section 54 of the engagement portion 53 of the slot 49 so that the electric box 30 is securely supported in a vertical direction.
- the center of gravity 56 is closer to a plane 61 formed by the contact surface of the sealing 60 than to the axis of rotation 46 (bosses 50) in a side view, the weight of the electric box 30 ensures that the electric box 30 is securely pressed against the contact surface of the sealing 60 and does even without the bolts 57 not "drop" out of the maintenance opening.
- the bolts 57 are reinserted and the maintenance wall 106 is reinstalled.
- controller 65 is provided which is schematically shown in figure 2 .
- the controller 65 has the purpose of controlling the air conditioner 1 and particularly the refrigerant circuit.
- the controller 65 may be accommodated in the electric box 30.
- the controller 65 may be configured to control the air conditioner 1 on the basis of parameters obtained from different sensors.
- a first temperature sensor 66 is disposed in the interior 12 of the external housing 10.
- the first temperature sensor 66 detects the temperature in the interior 12 of the external housing 10.
- the position of the first temperature sensor 66 is determined relative to the position of the other components in the external casing at a position in which a relatively stable and representative temperature can be measured. Thus, this position has to be determined by experiments.
- a second temperature sensor 67 may be arranged in the installation room 29 in which the heat source unit 2 is installed.
- the second temperature sensor 67 hence, measures a temperature in the installation room 29 in other words the temperature of the environment (exterior) of the external housing 10.
- thermistor 68 third temperature sensor
- an accumulator 108 is disposed in the line between the cooling heat exchanger 22 and the inlet of the compressor 3 (suction side).
- the exit line 69 is to be understood as that line connecting the cooling heat exchanger 22 to the gas suction line 26, i.e. between an exit of the cooling heat exchanger 22 and the connection of the bypass line 24 to the gas suction line 26.
- the thermistor 65 measures the temperature of the refrigerant in the exit line 69.
- a pressure sensor 71 is provided and configured to measure the pressure of the refrigerant in the gas suction line 26.
- valve 20 In setting "0", the valve 20 is completely closed and no refrigerant flows through the cooling heat exchanger 22. In this setting, the electric components 36 may still be cooled by operating the fan but the heat is dissipated to the interior 12 of the external casing 10, and hence the external casing 10 and the heat source unit 2 dissipate heat to the installation room 29. The zero heat dissipation control is switched OFF.
- zero heat dissipation control is ON. Yet, in this setting, the cooling capacity of the air conditioner has priority over the zero heat dissipation control. In particular, if a temperature measured in a room 105 to be conditioned exceeds a set temperature of the air conditioner in that room 105 by a certain value, and the air conditioner can only satisfy this additional cooling demand if the zero heat dissipation control is deactivated, the valve 20 will be closed. To put it differently, the valve 20 is closed, when a required cooling capacity of the air conditioner exceeds a predetermined threshold.
- a heat source heat exchanger 5 can transfer a certain amount of heat (further referred to as 100% heat load) to (in this example) water (water circuit 104) at certain operating conditions.
- the heat source unit 4 can remove heat from the room (105) in correspondence with 100% heat load (cooling operation). Assuming that the heat loss from the electronic components and hot refrigerant components corresponds to 4% of the total heat load, only 96% of heat load (cooling capacity) can be used to cool the room 105 during cooling operation. If the above setting is activated, the ZED control can be deactivated resulting in a 100% available capacity to cool the room 105.
- the heat source heat exchanger 5 will subtract 100% of heat from the water in the water circuit 104 and deliver this heat, together with the 4% heat loss from the electric components 36, to the room 105. This results in a heating capacity of 104%, whereby the heating performance of the air conditioner 1 is increased.
- zero heat dissipation control is ON independent of the cooling capacity of the air conditioner. However, under a certain special control operations, such as start - up and oil return, zero heat dissipation control is still deactivated (the valve 20 is closed) in order to avoid damaging of the compressor 3 due to liquid refrigerant flowing back into the compressor 3.
- start - up mode for example, the rotational speed of the compressor increases to nominal speed. At a low rotational speed, the circulated refrigerant amount is low.
- the distance between the heat source unit 2 and the indoor unit 100 is large, the refrigerant in the liquid line connecting the heat source unit 2 and the indoor unit 100 has a relatively high inertia.
- bypass line 24 is relatively short and has a low inertia.
- a higher proportion of the refrigerant flows through the bypass line 24, whereas a reduced amount or even no refrigerant may flow to the indoor unit 100. This may result in lower comfort in the room 105 in which the indoor unit 100 is mounted. This may be prevented by closing the valve 20.
- a high mass flow rate is generated to flush oil out of the refrigerant circuit components. If the valve 20 is open, the mass flow rate through the refrigerant circuit component was reduced resulting in a decreased oil return efficiency.
- the zero heat dissipation control may be performed on the basis of different parameters.
- the temperature of the interior 12 of the external casing 10 is measured by the first temperature sensor 66 and the controller 65 controls the valve 20 on the basis of the temperature measured by the first temperature sensor 66.
- the controller 65 compares the temperature measured by the first temperature sensor 66 with a predetermined temperature.
- a predetermined temperature it is preferred that one either freely inputs the predetermined temperature or can select from different settings as shown in the table below to define the predetermined temperature.
- Setting 0 1 2 3 4 5 6 7 Predetermined temperature [°C] 25 27 29 31 33 35 37 39
- the controller 65 compares the temperature measured by the first temperature sensor 66 with the predetermined temperature. If the temperature measured by the first temperature sensor 66 exceeds the predetermined temperature, the controller 65 is configured to activate the zero heat dissipation control and open the valve 20 (completely).
- the controller 65 is configured to deactivate the zero heat dissipation control and close the valve 20 (completely).
- the predetermined temperature is 31°C.
- the differential temperature is 3°C. If for example the temperature measured by the first temperature sensor 66 in the interior 12 of the external housing 10 exceeds 31°C, the valve 20 is opened by the controller 65. Accordingly, the refrigerant flows through the capillary 21, is expanded and then flows into the cooling heat exchanger 22. In the cooling heat exchanger, the refrigerant extracts heat from the air flow 41 by heat exchange, whereby the air flow 41 is cooled and cooled air is expelled into the interior 12 of the external housing 10.
- the hot refrigerant components such as the compressor 3, the liquid receiver 8 and the oil separator 9 are cooled, because of the orientation of the air outlet 28 of the cooling heat exchanger 22 in an angled fashion.
- the cooled air flow 41 is directed in a direction of the hot refrigerant components which are accordingly cooled.
- air that is cooler than the air in the interior 12 of the external housing 10 is expelled from the cooling heat exchanger 22 into the interior 12.
- the temperature decreases in the external housing 10.
- the controller 65 closes the valve 20 and no refrigerant flows through the cooling heat exchanger 22. This process is repeated as shown in figure 10 .
- a second temperature sensor 67 disposed in the installation room 29 and measuring the temperature in the installation room 29 to control the valve 20.
- the zero heat dissipation control is activated (the valve 20 is opened) if the temperature detected by the first temperature sensor 66 is higher than the temperature measured by the second temperature sensor 67.
- the controller 65 overrides the above control related to the 1 st temperature sensor 66, if the temperature measured by the second temperature sensor 67 is lower than the temperature detected by the first temperature sensor 66 and closes the valve 20 despite the fact that the temperature measured by the first temperature sensor 66 is higher than the predetermined temperature.
- thermosensor 66 instead of using the first temperature sensor 66 to merely use the second temperature sensor 67 and control the valve 20 on the basis of a comparison between the temperature measured by the second temperature sensor 67 and a predetermined temperature in the same manner as explained above with respect to the first temperature sensor 66.
- the valve 20 is opened to activate the zero heat dissipation control. Subsequently, if the temperature measured by the second temperature sensor 67 falls below the predetermined temperature minus the differential temperature, the valve 20 is again closed.
- a second differential temperature in the same manner as the first differential temperature. If the temperature measured by the second temperature sensor 67 is higher than the predetermined temperature and the delta between the temperature measured by the second temperature sensor 67 and the predetermined temperature is higher than the second differential temperature, the valve 20 is opened. In the same manner as described above, if the temperature measured by the second temperature sensor 67 falls below the predetermined temperature by the first differential temperature, the valve 20 is closed and the zero heat dissipation control is deactivated.
- An even further control mechanism to activate/deactivate the zero heat dissipation control may be based on the thermistor 68 disposed at the exit line 69 and particularly the temperature of the refrigerant in the exit line 69 measured by the thermistor 68.
- the controller 65 uses the pressure measured by the pressure sensor 71 disposed at the gas suction line 26. In particular, the controller 65 concludes on the two-phase temperature (the temperature at which a phase change from liquid to gas takes place) on the basis of the pressure measured by the pressure sensor is 71. Subsequently, the controller 65 compares this two-phase temperature and the temperature measured by the thermistor 68.
- the controller 65 uses the controller 65 to conclude or calculate on the basis of a pressure in the gas suction line 26 and the temperature at an outlet of the cooling heat exchanger 22 (cooling heat exchanger gas outlet) on a superheat degree. Subsequently, and depending on the superheat degree open or close the valve 20.
- This control is particularly a safety measure to prevent liquid refrigerant from remaining in the exit line 26 and/or being pumped into the accumulator 108 (if present) or the compressor 3.
- the controller 65 is configured to switch to the OFF-mode of the valve 20, when the calculated superheat degree falls below a predetermined value for a predetermined period of time.
- the pressure difference between the liquid line 25 and the gas suction line 26 will depend on the operational conditions of the heat source unit 2. If there is a pressure drop in the bypass line 24, a refrigerant flow may be induced from the gas suction line 26 into the bypass line 24.
- the refrigerant flowing through the cooling heat exchanger 22 and the thermal capacity of the air may be out of balance resulting in a fully evaporated refrigerant with a possible high superheat or a not fully evaporated refrigerant which contains liquid refrigerant.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Other Air-Conditioning Systems (AREA)
Claims (10)
- Unité source de chaleur (2) pour un climatiseur (1) comprenant un circuit de réfrigérant, l'unité de source de chaleur comprenant :un logement externe (10) recevant :un compresseur (3) destiné à être raccordé au circuit de réfrigérant ;un échangeur de chaleur source de chaleur (5) destiné à être raccordé au circuit de réfrigérant et configuré pour échanger de la chaleur entre un réfrigérant circulant dans le circuit de réfrigérant et une source de chaleur (104) ;un coffret électrique (30) ayant une paroi supérieure (31) et des parois latérales (32 à 34), le coffret électrique recevant des composants électriques (36) configurés pour commander le climatiseur et ayant un passage d'air (37) comprenant une entrée d'air (38) et une sortie d'air (39), un écoulement d'air (41) étant induit à travers le passage d'air allant de l'entrée d'air (38) à la sortie d'air (39) pour refroidir au moins certains des composants électriques (36),caractérisé parun échangeur de chaleur de refroidissement (22) reçu dans le logement externe (10) et destiné à être raccordé au circuit de réfrigérant, dans laquelle l'échangeur de chaleur de refroidissement (22) est agencé de façon à être traversé par l'écoulement d'air (41) et à échanger de la chaleur entre le réfrigérant et l'écoulement d'air (41) et est disposé en aval de composants électriques (36) et/ou d'un dissipateur de chaleur raccordé de façon thermoconductrice à des composants électriques (36) disposés dans le passage d'air (37).
- Unité source de chaleur selon la revendication 1, dans laquelle un ventilateur (40) est ménagé dans le logement externe (10) et configuré pour induire l'écoulement d'air (41) à travers le passage d'air (37) allant de l'entrée d'air (38) à la sortie d'air (39).
- Unité source de chaleur selon la revendication 2, dans laquelle le ventilateur (40) est disposé au niveau de la sortie d'air.
- Unité source de chaleur selon l'une quelconque des revendications précédentes, dans laquelle une sortie d'air (28) de l'échangeur de chaleur de refroidissement (22) est orientée de façon à expulser de l'air depuis le passage d'air (37) en sortie de l'échangeur de chaleur de refroidissement en direction de composants de réfrigérant chauds (3, 8, 9) reçus dans le logement externe (10).
- Unité source de chaleur selon l'une quelconque des revendications précédentes, dans laquelle la sortie d'air (39) du passage d'air (37) est située plus près d'un sommet (13) que d'une base (14) du logement externe (10).
- Unité source de chaleur selon l'une quelconque des revendications précédentes, dans laquelle l'échangeur de chaleur de refroidissement (22) est raccordé à une conduite de dérivation (24) se ramifiant à partir d'une conduite de réfrigérant liquide (25) et d'une conduite d'aspiration de gaz (26).
- Unité source de chaleur selon la revendication 6, dans laquelle la conduite de dérivation (24) a une vanne (20) et un capillaire (21) tous deux en amont de l'échangeur de chaleur de refroidissement (22).
- Unité source de chaleur selon l'une quelconque des revendications précédentes, dans laquelle une partie d'extrémité inférieure (44) de l'échangeur de chaleur de refroidissement (22) s'incline vers le bas en direction d'une sortie d'air (28) de l'échangeur de chaleur de refroidissement.
- Unité source de chaleur selon l'une quelconque des revendications précédentes, dans laquelle l'échangeur de chaleur de refroidissement (22) possède une pluralité d'ailettes (42) et de tubes (43), dans laquelle les ailettes sont agencées avec une extension longitudinale dans une direction verticale.
- Climatiseur (1) ayant une unité source de chaleur (2) selon l'une quelconque des revendications précédentes raccordée à au moins une unité intérieure (100 à 102) possédant un échangeur de chaleur intérieur (103) formant le circuit de réfrigérant.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17155593.1A EP3361168B1 (fr) | 2017-02-10 | 2017-02-10 | Unité de source de chaleur et climatiseur d'air comportant l'unité de source de chaleur |
CN201880009923.XA CN110249182B (zh) | 2017-02-10 | 2018-02-09 | 热源单元和具有该热源单元的空气调节器 |
US16/481,277 US11131466B2 (en) | 2017-02-10 | 2018-02-09 | Heat source unit and air conditioner having the heat source unit |
JP2019543397A JP7012732B2 (ja) | 2017-02-10 | 2018-02-09 | 熱源ユニットおよび熱源ユニットを有する空調装置 |
PCT/JP2018/004605 WO2018147412A1 (fr) | 2017-02-10 | 2018-02-09 | Unité de source de chaleur et climatiseur ayant l'unité de source de chaleur |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17155593.1A EP3361168B1 (fr) | 2017-02-10 | 2017-02-10 | Unité de source de chaleur et climatiseur d'air comportant l'unité de source de chaleur |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3361168A1 EP3361168A1 (fr) | 2018-08-15 |
EP3361168B1 true EP3361168B1 (fr) | 2022-04-20 |
Family
ID=58016616
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17155593.1A Active EP3361168B1 (fr) | 2017-02-10 | 2017-02-10 | Unité de source de chaleur et climatiseur d'air comportant l'unité de source de chaleur |
Country Status (1)
Country | Link |
---|---|
EP (1) | EP3361168B1 (fr) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115435486A (zh) * | 2021-06-02 | 2022-12-06 | 珠海拓芯科技有限公司 | 一种电控盒散热机构以及空调器 |
CN113531881B (zh) * | 2021-07-13 | 2022-07-29 | 山东华宇工学院 | 一种暖通空调用组合式散热结构 |
CN113891614A (zh) * | 2021-08-31 | 2022-01-04 | 合肥美的暖通设备有限公司 | 电控盒的加热控制方法、装置以及空调器 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102173373B1 (ko) * | 2013-07-05 | 2020-11-03 | 엘지전자 주식회사 | 공기조화기 |
KR102166764B1 (ko) | 2013-10-10 | 2020-10-19 | 삼성전자주식회사 | 컨트롤박스 및 이를 포함하는 공기조화기의 실외기 |
JP6565272B2 (ja) | 2015-03-31 | 2019-08-28 | ダイキン工業株式会社 | 冷凍装置の熱源ユニット |
KR102403512B1 (ko) * | 2015-04-30 | 2022-05-31 | 삼성전자주식회사 | 공기 조화기의 실외기, 이에 적용되는 컨트롤 장치 |
-
2017
- 2017-02-10 EP EP17155593.1A patent/EP3361168B1/fr active Active
Also Published As
Publication number | Publication date |
---|---|
EP3361168A1 (fr) | 2018-08-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3361192B1 (fr) | Unité source de chaleur et climatiseur équipé de ladite source de chaleur | |
EP3361191B1 (fr) | Unité de source de chaleur et climatiseur comportant l'unité de source de chaleur | |
EP3361173B1 (fr) | Unité de source de chaleur et climatiseur comportant l'unité de source de chaleur | |
US11131466B2 (en) | Heat source unit and air conditioner having the heat source unit | |
JP5734427B2 (ja) | 可変冷媒流ヒートポンプのための低周囲気温時冷房用キット | |
KR100954358B1 (ko) | 공기조화기 실외기의 컨트롤박스 | |
EP3361168B1 (fr) | Unité de source de chaleur et climatiseur d'air comportant l'unité de source de chaleur | |
JP6888102B2 (ja) | 熱交換器ユニットおよび冷凍サイクル装置 | |
WO2015121994A1 (fr) | Dispositif de refroidissement d'appareil électronique et boîtier de refroidissement | |
JP6933233B2 (ja) | 冷凍装置の室外ユニット | |
EP3361166B1 (fr) | Unité source de chaleur et climatiseur équipé de ladite source de chaleur | |
CN217817102U (zh) | 空调烟机 | |
KR102174514B1 (ko) | 공기조화 시스템 | |
KR20070052547A (ko) | 공기조화기 | |
KR100621243B1 (ko) | 멀티형 공기조화기 | |
CN213901280U (zh) | 空调室外机 | |
CN213901281U (zh) | 空调室外机 | |
KR100939019B1 (ko) | 수냉식 공조 시스템의 실내기 | |
KR20080058782A (ko) | 멀티형 공기조화기 | |
KR100593083B1 (ko) | 공기조화기의 실외기 시스템 | |
KR20160039954A (ko) | 공기조화기 및 공기조화기용 방열장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20181002 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20211207 |
|
RAP3 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: DAIKIN INDUSTRIES, LTD. Owner name: DAIKIN EUROPE N.V. |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602017056139 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1485418 Country of ref document: AT Kind code of ref document: T Effective date: 20220515 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20220420 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1485418 Country of ref document: AT Kind code of ref document: T Effective date: 20220420 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220420 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220420 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220822 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220720 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220420 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220420 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220721 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220420 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220420 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220720 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220420 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220420 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220420 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220420 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220820 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602017056139 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220420 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220420 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220420 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220420 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220420 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220420 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20230123 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220420 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220420 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230530 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220420 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230210 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230228 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230228 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220420 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230210 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20231228 Year of fee payment: 8 Ref country code: GB Payment date: 20240109 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240103 Year of fee payment: 8 Ref country code: BE Payment date: 20240105 Year of fee payment: 8 |