EP3351877A1 - Cool-box comprising a refrigerator attachment, said cool-box operating without power or ice - Google Patents

Cool-box comprising a refrigerator attachment, said cool-box operating without power or ice Download PDF

Info

Publication number
EP3351877A1
EP3351877A1 EP16792233.5A EP16792233A EP3351877A1 EP 3351877 A1 EP3351877 A1 EP 3351877A1 EP 16792233 A EP16792233 A EP 16792233A EP 3351877 A1 EP3351877 A1 EP 3351877A1
Authority
EP
European Patent Office
Prior art keywords
liquid
capsule
valve
housing
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP16792233.5A
Other languages
German (de)
French (fr)
Other versions
EP3351877A4 (en
Inventor
Stephane ESPINOSA NEED
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP3351877A1 publication Critical patent/EP3351877A1/en
Publication of EP3351877A4 publication Critical patent/EP3351877A4/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D5/00Devices using endothermic chemical reactions, e.g. using frigorific mixtures
    • F25D5/02Devices using endothermic chemical reactions, e.g. using frigorific mixtures portable, i.e. adapted to be carried personally
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B19/00Machines, plants or systems, using evaporation of a refrigerant but without recovery of the vapour
    • F25B19/005Machines, plants or systems, using evaporation of a refrigerant but without recovery of the vapour the refrigerant being a liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D3/00Devices using other cold materials; Devices using cold-storage bodies
    • F25D3/10Devices using other cold materials; Devices using cold-storage bodies using liquefied gases, e.g. liquid air
    • F25D3/107Devices using other cold materials; Devices using cold-storage bodies using liquefied gases, e.g. liquid air portable, i.e. adapted to be carried personally
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C5/00Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures
    • F17C5/02Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures for filling with liquefied gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C6/00Methods and apparatus for filling vessels not under pressure with liquefied or solidified gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
    • F25D19/02Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors plug-in type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2400/00General features of, or devices for refrigerators, cold rooms, ice-boxes, or for cooling or freezing apparatus not covered by any other subclass
    • F25D2400/12Portable refrigerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • F25D29/001Arrangement or mounting of control or safety devices for cryogenic fluid systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D3/00Devices using other cold materials; Devices using cold-storage bodies
    • F25D3/12Devices using other cold materials; Devices using cold-storage bodies using solidified gases, e.g. carbon-dioxide snow
    • F25D3/14Devices using other cold materials; Devices using cold-storage bodies using solidified gases, e.g. carbon-dioxide snow portable, i.e. adapted to be carried personally

Definitions

  • the present invention refers to a portable cooling for cooling, and maintaining in a cooled or frozen condition, both solid and liquid foods, without using any power supply or adding ice; the cooling is carried out by means of a cryogenic liquid such as liquid nitrogen or liquid oxygen that works as a cooling liquid, although in embodiments of the invention the cryogenic substance may be liquid or solid CO 2 .
  • a cryogenic liquid such as liquid nitrogen or liquid oxygen that works as a cooling liquid, although in embodiments of the invention the cryogenic substance may be liquid or solid CO 2 .
  • the invention disclosed in the present specification functions because the temperature of the capsule containing the cryogenic liquid is well below zero, for example: nitrogen liquefies at -196oC and argon at -185,9oC, introducing said capsule inside the cooling device and mitigating the temperature emitted towards the outside through the insulation and transmitting through the connection ducts with the inlet, cooling the container according to the needs of the cooling device, such that any food or beverage is cooled, refrigerated, or frozen.
  • this novel invention provides to the state of the art a product for cooling or maintaining in a cooled, refrigerated, or frozen condition food or beverage without using any external power supply such as electricity, or any ice or snow as in conventional coolers and maintaining, at all times, its cooling characteristics and attributes.
  • the main novelty provided by this invention is cooling, refrigerating, or freezing food or beverage with the following advantages:
  • the invention is intended for commercial, domestic and industrial use and it encompasses a wide range of products:
  • the application field is the industry of manufacturing cooling devices for food and beverage, and more particularly the industry of manufacturing coolers refrigerated by cryogenic liquid without any electric power supply.
  • patent US 2046953 A (Kellogg John L ) of 07/07/1936, employs a cryogenic gas, not a cryogenic liquid as the present application, with no metallic contact between the cooler container and space to be refrigerated, while in the present application the system cools through the metallic connection ducts between the capsule and the inside of the container.
  • the CO 2 when transitioning to a gaseous condition, is conducted through sleeves towards the inside of the beverage barrels, is mixed with the beverage, and it causes the pressurized injection of the beverage, cooling it at the same time.
  • the present application does not have anything to do with that, since it operates for cooling any food or beverage housed inside, through the metals connected to the capsule containing the cryogenic liquid.
  • the compared patent clearly discloses that the system forms part of the supply of carbonated beverages, where it is employed for injecting, with the aid of the CO 2 in a gaseous condition, the cooled beverage, because it mixes with the beverage.
  • the two patents in the application only two valves are employed, an external, insulating housing and a capsule containing the pressurized liquid.
  • the compared one has ducts having nothing to do with the connection ducts of the application, as well as sleeves for mixing the gas with the beverage.
  • the liquid only cools, but it does not mix with the beverage, it never mixes with whatever is going to be cooled. It is only injected and it returns to the environment as gas, from the same compartment (capsule).
  • Document ES 2 008 993 14 refers to a cryogenic freezer for freezing food products and the like, comprising: an insulated enclosure having a lower inlet and an upper outlet; transporter means for moving food products along a path from said inlet to said outlet, where most part of said path is a helical section having a plurality of superimposed floors; means for having the food products, moving along said path, contact liquid nitrogen at a lower zone generally close to said inlet for initially extracting a substantial amount of heat from the surface of said food products; means for producing a generally horizontal cryogenic vapor circulation in all upper zones of said helical section, thus creating a vertical temperature gradient inside said enclosure, where there are relatively warm temperatures close to the outlet; and means for controlling vapor exit through said inlet and said outlet such that at least 80% approximately of the cryogenic vapor generated inside said enclosure exits therefrom through said upper outlet.
  • Document ES 2 106 976 T3 discloses a refrigeration apparatus having at least a first and a second refrigeration compartments, each compartment having its own access door, comprising a first evaporator for said first compartment, where said evaporator operates at a first pressure value; a second evaporator for said second compartment, where said second evaporator operates at a higher pressure value than said first pressure value; a single condenser; a single compressor; a refrigerating circuit comprising a series of ducts for sequentially providing a refrigerant flow to said first and second evaporators, said condenser and said compressor; valve means in said refrigerant circuit for conducting refrigerant to a selected one of said evaporators from said condenser and for preventing a refrigerant flow to said first evaporator when refrigerant is being conducted to said second evaporator for cooling said second compartment; a retention valve in the aspiration side duct of said first evaporator, for preventing the return ref
  • Document ES 2 289 552 T3 discloses a product cooling procedure comprising N adsorption/desorption cycles carried out under vacuum conditions, where N is an integer greater than 1, where each cycle comprises the steps consisting of: - extracting heat from a refrigerant fluid in vapor phase in a condenser at a first pressure below the critical pressure of said fluid for condensing said refrigerant flow, - introducing said refrigerant fluid in liquid phase in an evaporator at a second pressure below the first pressure for vaporizing a portion of said refrigerant fluid and cooling the remaining portion of the refrigerant fluid to a vaporization temperature of said refrigerant fluid at said second pressure, where said vaporization temperature decreases from a cycle to the next, where said first and second pressures are chosen in each cycle such that said vaporization temperature in a cycle is each time lower than the condensation temperature of said refrigerant fluid in the next cycle to the first pressure of said next cycle - providing heat to the liquid portion of said refrigerant fluid
  • Document ES 2 113 908 T3 refers to a domestic cooling apparatus having at least a cooling chamber having a closure door, where refrigerated product containers, a vaporizer and a fan supplying air from the environment and situated in the natural convection stream produced by the cooling power of the vaporized are provided, characterized in that the fan forcibly exchanges refrigerant air both during the cooling activity and during the defreezing activity such that, due to the situation and form of the refrigerated product containers and the ventilator, refrigerant air is transported to the zone of the walls of the refrigerator enclosure and along the door, covering them completely along their length and width.
  • Document ES 2 296 668 T3 is an air cooling device comprising a compressor having an inlet and an outlet, a turbo expander having a turbine rotor through which said compressor is connected to said turbo expander, a first fan mounted to a shaft shared with said turbo expander, a first double duct heat exchanger, a cooling chamber having a second fan and an air cooler mounted inside the chamber, a second double duct heat exchanger, a water tank connected to a second duct of the second heat exchanger, and a moisture separator; where a first duct of the double duct heat exchanger, a first duct of the first double duct heat exchanger, the moisture separator, the turbo expander, the air cooler, and the second duct of the first double duct heat exchanger are connected in series to the compressor inlet.
  • Document ES 2 188 161 T3 refers to a domestic cooler cooled by means of the Peltier effect, having an enclosure to be cooled formed by one or two thermally insulated enclosures, where air circulates by means of natural convection, where heat entering the enclosures is extracted by means of the evaporation of a liquid where at least one enclosure to be cooled is cooled by two cascade-coupled units, where each unit comprises two thermosiphons separated by Peltier effect granules, where one of the thermosiphons of each unit for condensing a liquid housed therein is provided on a cold side of the Peltier effect granules and where the other thermosiphon of each unit for evaporating a liquid housed therein is provided on a hot side of the Peltier effect granules, characterized in that each thermosiphon includes a first circuit for circulating the evaporated liquid towards a zone where the liquid must condense, and a second circuit for returning the liquid to a zone where it must evaporate, where
  • thermosiphons contain water as a refrigerant fluid having appropriate vacuum degrees, such that evaporation takes place at the desired temperatures in each thermosiphon.
  • the portable cooler having a connectable refrigerator, having no power supply or ice, of the present invention is made of the following elements:
  • the invention disclosed in the present specification functions because the temperature of the capsule containing the cryogenic liquid is well below zero, for example: nitrogen liquefies at -196oC and argon at -185,9oC, introducing said capsule inside the cooling device and mitigating the temperature emitted towards the outside through the insulation and transmitting through the connection ducts with the inlet, cooling the container according to the needs of the cooling device, such that any food or beverage is cooled, refrigerated, or frozen.
  • the inside temperature may be manually regulated by means of the connection ducts, by connecting or disconnecting attachment points for achieving said temperature.
  • an apparatus for recharging the cold of the cryogenic liquid through the valve is needed.
  • Said apparatus for recharging the cold is made of a cryogenic liquid or cryogenic gas bottle and an injection valve.
  • the product is introduced inside said apparatus, and it introduces the liquid or gas through a valve. Once the product is recharged, the housing may be closed again and the apparatus is ready to be used again.
  • the container slowly loses its cooling capability and it must be charged for recovering its cooling function.
  • the housing of the invention is dismounted by means of a threaded cover, the cryogenic container being exposed for receiving a liquid injection to the capsule such that said container can recover its cooling function.
  • solid CO 2 can be introduced.
  • a preferred embodiment of the portable cooler (1) being the object of the present invention is made of the following elements:
  • the invention disclosed in the present specification functions because the temperature of the capsule (5) containing the cryogenic liquid is well below zero, for example: nitrogen liquefies at -196oC and argon at -185,9oC, connecting said capsule (5) to the housing (2) and mitigating the temperature emitted towards the outside through the insulating material (4) and transmitting through the attachment points consisting of thermal conductive sheets (3), cooling the container according to the needs of the cooling device, such that any food or beverage is cooled, refrigerated, or frozen.
  • an apparatus for recharging the cryogenic liquid through the valve is needed.
  • Said apparatus for recharging the cold is made of a cryogenic liquid or cryogenic gas bottle and an injection valve.
  • the product is introduced inside said apparatus, and it introduces the liquid or gas through a valve. Once the product is recharged, the housing is closed again and the apparatus is ready to be used again.
  • the container slowly loses its cooling capability and it must be charged for recovering its cooling function.
  • the housing of the invention is dismounted by means of a threaded cover, the cryogenic container being exposed for receiving a liquid injection to the capsule such that said container can recover its cooling function.
  • the portable cooler of the present invention may adopt other configurations suitable for other applications, and it can also use CO 2 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)

Abstract

The invention relates to a cool-box comprising a refrigerator attachment, said cool-box operating without power or ice. The cool-box is formed by a preferably plastic casing to which a metal capsule is anchored that contains a cryogenic liquid, such as liquid nitrogen or liquid oxygen, acting as a liquid coolant. The capsule is removably attached to the casing of the cool-box using anchors, and the capsule is equipped with a valve for the injection-refilling of liquid coolant and an exhaust relief valve. The cool-box also comprises an insulating lid and connecting pipes made from thermally conductive sheet metal, which join the capsule to the interior of the casing, thereby transferring cold.

Description

    TECHNICAL OBJECT OF THE INVENTION
  • The present invention refers to a portable cooling for cooling, and maintaining in a cooled or frozen condition, both solid and liquid foods, without using any power supply or adding ice; the cooling is carried out by means of a cryogenic liquid such as liquid nitrogen or liquid oxygen that works as a cooling liquid, although in embodiments of the invention the cryogenic substance may be liquid or solid CO2.
  • The invention disclosed in the present specification functions because the temperature of the capsule containing the cryogenic liquid is well below zero, for example: nitrogen liquefies at -196ºC and argon at -185,9ºC, introducing said capsule inside the cooling device and mitigating the temperature emitted towards the outside through the insulation and transmitting through the connection ducts with the inlet, cooling the container according to the needs of the cooling device, such that any food or beverage is cooled, refrigerated, or frozen.
  • Advantageously, this novel invention provides to the state of the art a product for cooling or maintaining in a cooled, refrigerated, or frozen condition food or beverage without using any external power supply such as electricity, or any ice or snow as in conventional coolers and maintaining, at all times, its cooling characteristics and attributes.
  • The main novelty provided by this invention is cooling, refrigerating, or freezing food or beverage with the following advantages:
    • Great stability of the product thanks to the length of the cooling.
    • No need of external power supply (electricity), thus saving energy.
    • Economic savings.
    • 100% ecologic.
    • Contributes to environmental care.
    • Drinking water and ice savings.
    • Dispenses with the use of plastic bags for carrying ice.
  • The invention is intended for commercial, domestic and industrial use and it encompasses a wide range of products:
    • Cooler of both solid products and beverages.
    • Portable cooler always cold.
    • Fixed cooler.
    • Freezing cooler
  • The application field is the industry of manufacturing cooling devices for food and beverage, and more particularly the industry of manufacturing coolers refrigerated by cryogenic liquid without any electric power supply.
  • PRIOR ART OF THE INVENTION
  • Although no invention identical to the one described here was found, below we describe documents reflecting the state of the art in connection with the proposed invention.
  • Thus, patent US 2046953 A (Kellogg John L ) of 07/07/1936, employs a cryogenic gas, not a cryogenic liquid as the present application, with no metallic contact between the cooler container and space to be refrigerated, while in the present application the system cools through the metallic connection ducts between the capsule and the inside of the container. In said compared patent the CO2, when transitioning to a gaseous condition, is conducted through sleeves towards the inside of the beverage barrels, is mixed with the beverage, and it causes the pressurized injection of the beverage, cooling it at the same time. On the other hand, the present application does not have anything to do with that, since it operates for cooling any food or beverage housed inside, through the metals connected to the capsule containing the cryogenic liquid. Also, the compared patent clearly discloses that the system forms part of the supply of carbonated beverages, where it is employed for injecting, with the aid of the CO2 in a gaseous condition, the cooled beverage, because it mixes with the beverage. There is a great difference between the two patents, in the application only two valves are employed, an external, insulating housing and a capsule containing the pressurized liquid. The compared one, on the other hand, has ducts having nothing to do with the connection ducts of the application, as well as sleeves for mixing the gas with the beverage. When, in the system of the application, the liquid only cools, but it does not mix with the beverage, it never mixes with whatever is going to be cooled. It is only injected and it returns to the environment as gas, from the same compartment (capsule).
  • Document US 2104466 A (Marzolf George B ) of 04/01/1938, is very different to the present application, since the latter serves for cooling, maintaining in a refrigerated condition, or even freezing food and beverage, while the compared one, on the other hand, is used for transporting and for dispensing carbonated beverages. There is no other type of beverage for cooling because, otherwise, they would become carbonated when mixed with the liquid.
  • Document US 1993730 A (Carpenter Walter E) of 12/03/1935 , is a patent employing dry ice, not a cryogenic liquid as in the present application. Further, the insulation is completely different, because the external housing is metallic, not plastic as in the application. Additionally, it requires a housing for covering the system along with the barrels, while the application cools by thermodynamic means, (by the metallic connection ducts), and the compared one by means of insulated compartments and sleeves.
  • Document ES 2 008 993 14 refers to a cryogenic freezer for freezing food products and the like, comprising: an insulated enclosure having a lower inlet and an upper outlet; transporter means for moving food products along a path from said inlet to said outlet, where most part of said path is a helical section having a plurality of superimposed floors; means for having the food products, moving along said path, contact liquid nitrogen at a lower zone generally close to said inlet for initially extracting a substantial amount of heat from the surface of said food products; means for producing a generally horizontal cryogenic vapor circulation in all upper zones of said helical section, thus creating a vertical temperature gradient inside said enclosure, where there are relatively warm temperatures close to the outlet; and means for controlling vapor exit through said inlet and said outlet such that at least 80% approximately of the cryogenic vapor generated inside said enclosure exits therefrom through said upper outlet.
  • Document ES 2 106 976 T3 discloses a refrigeration apparatus having at least a first and a second refrigeration compartments, each compartment having its own access door, comprising a first evaporator for said first compartment, where said evaporator operates at a first pressure value; a second evaporator for said second compartment, where said second evaporator operates at a higher pressure value than said first pressure value; a single condenser; a single compressor; a refrigerating circuit comprising a series of ducts for sequentially providing a refrigerant flow to said first and second evaporators, said condenser and said compressor; valve means in said refrigerant circuit for conducting refrigerant to a selected one of said evaporators from said condenser and for preventing a refrigerant flow to said first evaporator when refrigerant is being conducted to said second evaporator for cooling said second compartment; a retention valve in the aspiration side duct of said first evaporator, for preventing the return refrigerant flow from said second evaporator to said first evaporator; and means in said refrigerant circuit for evacuating refrigerant from said first evaporator after stopping the refrigerant flow to said first evaporator for ensuring there is enough refrigerant charge for the sequential operation of the second evaporator.
  • Document ES 2 289 552 T3 discloses a product cooling procedure comprising N adsorption/desorption cycles carried out under vacuum conditions, where N is an integer greater than 1, where each cycle comprises the steps consisting of: - extracting heat from a refrigerant fluid in vapor phase in a condenser at a first pressure below the critical pressure of said fluid for condensing said refrigerant flow, - introducing said refrigerant fluid in liquid phase in an evaporator at a second pressure below the first pressure for vaporizing a portion of said refrigerant fluid and cooling the remaining portion of the refrigerant fluid to a vaporization temperature of said refrigerant fluid at said second pressure, where said vaporization temperature decreases from a cycle to the next, where said first and second pressures are chosen in each cycle such that said vaporization temperature in a cycle is each time lower than the condensation temperature of said refrigerant fluid in the next cycle to the first pressure of said next cycle - providing heat to the liquid portion of said refrigerant fluid at said second pressure in said evaporator for evaporating said refrigerant fluid, - adsorbing said refrigerant fluid in vapor phase in at least an adsorption/desorption enclosure connected to said evaporator and containing a zeolite adsorbent, - after an amount of said refrigerant fluid is adsorbed by said zeolite adsorbent, regenerating said zeolite adsorbent by means of heating for desorbing said amount of refrigerant phase fluid in vapor phase, - conducting again said amount of refrigerant fluid in vapor phase to said condenser, said procedure further comprising the following steps: carrying out N-1 heat exchanges each time between the refrigerant fluid in the evaporator of one cycle and the refrigerant fluid in the condenser of the next cycle according to the cycle order for proving heat to said evaporator and extracting heat from said condenser, and cooling said product by means of a heat exchange with the refrigerant fluid at least in the evaporator in the last cycle.
  • Document ES 2 113 908 T3 refers to a domestic cooling apparatus having at least a cooling chamber having a closure door, where refrigerated product containers, a vaporizer and a fan supplying air from the environment and situated in the natural convection stream produced by the cooling power of the vaporized are provided, characterized in that the fan forcibly exchanges refrigerant air both during the cooling activity and during the defreezing activity such that, due to the situation and form of the refrigerated product containers and the ventilator, refrigerant air is transported to the zone of the walls of the refrigerator enclosure and along the door, covering them completely along their length and width.
  • Document ES 2 296 668 T3 is an air cooling device comprising a compressor having an inlet and an outlet, a turbo expander having a turbine rotor through which said compressor is connected to said turbo expander, a first fan mounted to a shaft shared with said turbo expander, a first double duct heat exchanger, a cooling chamber having a second fan and an air cooler mounted inside the chamber, a second double duct heat exchanger, a water tank connected to a second duct of the second heat exchanger, and a moisture separator; where a first duct of the double duct heat exchanger, a first duct of the first double duct heat exchanger, the moisture separator, the turbo expander, the air cooler, and the second duct of the first double duct heat exchanger are connected in series to the compressor inlet.
  • Document ES 2 188 161 T3 refers to a domestic cooler cooled by means of the Peltier effect, having an enclosure to be cooled formed by one or two thermally insulated enclosures, where air circulates by means of natural convection, where heat entering the enclosures is extracted by means of the evaporation of a liquid where at least one enclosure to be cooled is cooled by two cascade-coupled units, where each unit comprises two thermosiphons separated by Peltier effect granules, where one of the thermosiphons of each unit for condensing a liquid housed therein is provided on a cold side of the Peltier effect granules and where the other thermosiphon of each unit for evaporating a liquid housed therein is provided on a hot side of the Peltier effect granules, characterized in that each thermosiphon includes a first circuit for circulating the evaporated liquid towards a zone where the liquid must condense, and a second circuit for returning the liquid to a zone where it must evaporate, where said second circuit is not the same as the first circuit. In one of the cascade-coupled units, heat is extracted from the hot sides of the granules by means of a fluid that condenses in an environment air exchanger provided at an elevated position with respect to the granules, where the condensed fluid returns by gravity. The thermosiphons contain water as a refrigerant fluid having appropriate vacuum degrees, such that evaporation takes place at the desired temperatures in each thermosiphon.
  • Conclusions: According to the investigation, we believe none of the documents found affect the novelty and inventive step of the compared invention, since none of them solves the problems as the present invention does.
  • DESCRIPTION OF THE INVENTION
  • The portable cooler having a connectable refrigerator, having no power supply or ice, of the present invention is made of the following elements:
    • A housing, preferably made of plastic,
    • An insulating lining, where the material used for said lining may be expanded polystyrene.
    • A capsule containing said cryogenic liquid made of a metal or metal alloy having good thermal conductivity characteristics. Said capsule may contain a vent valve for alleviating the pressure of the cryogenic liquid.
    • Sheets made of metal or metal alloy having good thermal conductivity characteristics, connecting the capsule with the inside of the housing.
    • Connecting means for connecting the capsule to the cooler housing, such that said capsule is dismountable for recharging the cryogenic liquid.
    • An insulated cover.
    • A cryogenic liquid, such as liquid nitrogen or liquid oxygen, functioning as a refrigerant liquid.
    • A valve for recharging the refrigerant liquid by means of injection.
    • Connection ducts consisting of sheets of a thermal conducting material.
  • The invention disclosed in the present specification functions because the temperature of the capsule containing the cryogenic liquid is well below zero, for example: nitrogen liquefies at -196ºC and argon at -185,9ºC, introducing said capsule inside the cooling device and mitigating the temperature emitted towards the outside through the insulation and transmitting through the connection ducts with the inlet, cooling the container according to the needs of the cooling device, such that any food or beverage is cooled, refrigerated, or frozen. The inside temperature may be manually regulated by means of the connection ducts, by connecting or disconnecting attachment points for achieving said temperature.
  • In addition to the elements disclosed above, an apparatus for recharging the cold of the cryogenic liquid through the valve is needed. Said apparatus for recharging the cold is made of a cryogenic liquid or cryogenic gas bottle and an injection valve. The product is introduced inside said apparatus, and it introduces the liquid or gas through a valve. Once the product is recharged, the housing may be closed again and the apparatus is ready to be used again.
  • The container slowly loses its cooling capability and it must be charged for recovering its cooling function. To this end, the housing of the invention is dismounted by means of a threaded cover, the cryogenic container being exposed for receiving a liquid injection to the capsule such that said container can recover its cooling function. In different embodiments, solid CO2 can be introduced.
  • BRIEF DESCRIPTION OF THE FIGURES
  • In order to better understand the present specification, a non limiting drawing showing a preferred embodiment of the invention is provided:
    • Figure 1: Conventional perspective view of the portable cooler having the capsule connected to the housing.
    • Figure 2: Conventional perspective view of the portable cooler having the capsule disconnected from the housing.
    • Figure 3: Cross section view of the cooler.
    • Figure 4: Front and side cross section view of the housing. In said figure, the following number elements are shown:
      1. 1. Portable cooler
      2. 2. Housing
      3. 3. Connection ducts consisting of thermally conductive sheets
      4. 4. Insulating material
      5. 5. Capsule
      6. 6. Cryogenic liquid
      7. 7. Insulating cover
      8. 8. Recharge valve
      9. 9. Vent valve
      10. 10. Capsule connection means
    DESCRIPTION OF A PREFERRED EMBODIMENT
  • A preferred embodiment of the portable cooler (1) being the object of the present invention is made of the following elements:
    • A housing (2), preferably made of plastic,
    • A sandwich insulating material (4), where said material may be expanded polystyrene.
    • A capsule (5) containing said cryogenic liquid made of a metal or metal alloy having good thermal conductivity characteristics. Said capsule (5) contains a recharge valve (8) and a vent (9), the latter being for alleviating the pressure of the cryogenic liquid (6).
    • Connection ducts consisting of sheets made of metal (3) or metal alloy having good thermal conductivity characteristics, connecting the capsule (5) with the inside of the housing (2), permitting the transfer of cold.
    • Connecting means (10) of the capsule (5) to the housing (2) of the portable cooler (1), such that said capsule (5) is dismountable for recharging the cryogenic liquid (6).
    • An insulated cover (7).
    • A cryogenic liquid (6), such as liquid nitrogen or liquid oxygen, functioning as a refrigerant liquid.
    • A valve (8) for recharging the refrigerant liquid by means of injection.
    • A vent valve (9) for alleviating.
  • The invention disclosed in the present specification functions because the temperature of the capsule (5) containing the cryogenic liquid is well below zero, for example: nitrogen liquefies at -196ºC and argon at -185,9ºC, connecting said capsule (5) to the housing (2) and mitigating the temperature emitted towards the outside through the insulating material (4) and transmitting through the attachment points consisting of thermal conductive sheets (3), cooling the container according to the needs of the cooling device, such that any food or beverage is cooled, refrigerated, or frozen.
  • In addition to the elements disclosed above, an apparatus for recharging the cryogenic liquid through the valve is needed. Said apparatus for recharging the cold is made of a cryogenic liquid or cryogenic gas bottle and an injection valve. The product is introduced inside said apparatus, and it introduces the liquid or gas through a valve. Once the product is recharged, the housing is closed again and the apparatus is ready to be used again.
  • The container slowly loses its cooling capability and it must be charged for recovering its cooling function. To this end, the housing of the invention is dismounted by means of a threaded cover, the cryogenic container being exposed for receiving a liquid injection to the capsule such that said container can recover its cooling function.
  • In different embodiments, the portable cooler of the present invention may adopt other configurations suitable for other applications, and it can also use CO2.

Claims (2)

  1. Portable cooler having a connectable refrigerator, having no power supply or ice, made of a housing (2) preferably of plastic, a sandwich insulating material (4), where said material may be expanded polystyrene, characterized by having the following elements:
    - A capsule (5) containing a cryogenic liquid made of a metal or metal alloy having good thermal conductivity characteristics, where said capsule (5) contains a recharge valve (8) and a vent (9) valve for alleviating the cryogenic liquid (6).
    - Connection ducts consisting of sheets made of metal (3) or metal alloy having good thermal conductivity characteristics, connecting the capsule (5) with the inside of the housing (2) for transferring the cold.
    - Connecting means (10) of the capsule (5) to the housing (2) of the portable cooler (1), such that said capsule (5) is dismountable for recharging the cryogenic liquid (6).
    - An insulated cover (7).
    - A cryogenic liquid (6), such as liquid nitrogen or liquid oxygen, functioning as a refrigerant liquid.
    - A valve (8) for recharging the refrigerant liquid by means of injection.
    - A vent valve (9) for alleviating.
  2. Portable cooler having a connectable refrigerator, having no power supply or ice, characterized by functioning because the temperature of the capsule (5) containing the cryogenic liquid is well below zero, for example: nitrogen liquefies at -196ºC and argon at -185,9ºC, connecting said capsule (5) to the housing (2) and mitigating the temperature emitted towards the outside through the insulating material (4) and transmitting through the attachment points consisting of thermal conductive sheets (3), cooling the container according to the needs of the cooling device, such that any food or beverage is cooled, refrigerated, or frozen, where an apparatus for recharging the cryogenic liquid through the valve is needed, said apparatus being made of a cryogenic liquid bottle and an injection valve such that, when operated, the product is introduced inside said apparatus, and it introduces the liquid or gas through a valve. Once the product is recharged, the housing is closed again and the apparatus is ready to be used again, where the container slowly looses its cooling capability and it must be charged for recovering its cooling function. To this end, the housing of the invention is dismounted by means of a threaded cover, the cryogenic container being exposed for receiving a liquid injection to the capsule such that said container can recover its cooling function.
EP16792233.5A 2015-05-11 2016-03-23 Cool-box comprising a refrigerator attachment, said cool-box operating without power or ice Withdrawn EP3351877A4 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201500342A ES2589512B1 (en) 2015-05-11 2015-05-11 Portable refrigerator with attachable refrigerator, no power source or ice.
PCT/ES2016/000040 WO2016180997A1 (en) 2015-05-11 2016-03-23 Cool-box comprising a refrigerator attachment, said cool-box operating without power or ice

Publications (2)

Publication Number Publication Date
EP3351877A1 true EP3351877A1 (en) 2018-07-25
EP3351877A4 EP3351877A4 (en) 2019-07-10

Family

ID=57247393

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16792233.5A Withdrawn EP3351877A4 (en) 2015-05-11 2016-03-23 Cool-box comprising a refrigerator attachment, said cool-box operating without power or ice

Country Status (4)

Country Link
US (1) US20180216854A1 (en)
EP (1) EP3351877A4 (en)
ES (1) ES2589512B1 (en)
WO (1) WO2016180997A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018042064A1 (en) * 2016-09-05 2018-03-08 Espinosa Need Stephane Rechargeable modular device for refrigerators
USD952701S1 (en) * 2020-10-21 2022-05-24 Ningbo Aquart Electrical Appliance Co., Ltd. Car refrigerator
EP4040091A1 (en) * 2021-02-03 2022-08-10 Dieter Ebert Self-cooling drinking straw

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3385073A (en) * 1966-10-06 1968-05-28 Cryo Therm Inc Refrigeration system for shipping perishable commodities
US3410109A (en) * 1967-01-09 1968-11-12 Howard R. Maryland Iceless freezer chest
US3633381A (en) * 1970-01-26 1972-01-11 Peter A Haaf Open-cycle portable refrigerator
US4266407A (en) * 1980-01-22 1981-05-12 Gibson David E Portable cooler
AU3529095A (en) * 1994-09-22 1996-04-09 Courage Limited Beverage container
US6029457A (en) * 1997-07-01 2000-02-29 Mve, Inc. Wide mouth vacuum-insulated receptacle
EP1359380A3 (en) * 2003-06-04 2003-12-03 Rainer Dominik Mayr-Hassler Liquid container
WO2006100412A1 (en) * 2005-03-23 2006-09-28 Coldway Societe Anonyme Refrigerated or heated removable insulated container
NL1028913C1 (en) * 2005-04-29 2006-10-31 Michael Louis Maria Verhoef Beverage bottle cooler, contains removable liquid nitrogen container connected to tube with gas outlet openings
DE202005014967U1 (en) * 2005-09-22 2006-10-26 Mayr-Hassler, Rainer Dominik A cooling or heating system for cans and bottles of drink or food has a deep cylindrical insulated vessel and a thermal transfer system
DE202006004344U1 (en) * 2006-03-20 2006-06-08 Kerspe, Jobst H., Dr.-Ing. Self-cooling transport container for sample transport, e.g. for medical and oncologocial samples having a vacuum enclosed sample storage space that is cooled by making use of latent heat principles
US20080178629A1 (en) * 2007-01-30 2008-07-31 The Coleman Company, Inc. Insulated container utilizing non-contact cooling
DE202010014715U1 (en) * 2010-10-25 2012-01-30 Gabriel Einstein Device for cooling a beverage container or beverage
EP2466186A1 (en) * 2010-12-16 2012-06-20 Air Products and Chemicals, Inc. A process for filling a gas storage container
EP2466187A1 (en) * 2010-12-16 2012-06-20 Air Products And Chemicals, Inc. A gas storage container
EP2492618B1 (en) * 2011-02-22 2013-07-03 Service of Secrecy Sicherheitsdienstleistungs GmbH Device for cooling a drink container or a drink
ES2454871B1 (en) * 2012-09-11 2015-03-02 Need Stephane Espinosa Food chiller without power or ice

Also Published As

Publication number Publication date
ES2589512A1 (en) 2016-11-14
EP3351877A4 (en) 2019-07-10
US20180216854A1 (en) 2018-08-02
WO2016180997A1 (en) 2016-11-17
ES2589512B1 (en) 2017-10-11

Similar Documents

Publication Publication Date Title
EP2778575B1 (en) Active insulation hybrid dual evaporator with rotating fan
TWI420063B (en) Cooling apparatus
EP3236182A1 (en) Ice-making device for refrigerator and refrigerator including the same
ES2289552T3 (en) COOLING PROCEDURE OF A PRODUCT, PARTICULARLY FOR THE LICUEFACTION OF A GAS AND DEVICE TO CARRY OUT IT.
JP2005326138A (en) Cooling device and vending machine with it
US20180180344A1 (en) Ultra-low temperature freezer
EP3351877A1 (en) Cool-box comprising a refrigerator attachment, said cool-box operating without power or ice
US20140298854A1 (en) Dual evaporator refrigeration system with zeotropic refrigerant mixture
JP2008096085A (en) Cooling apparatus
CN102997558A (en) Refrigerator
JP2014048030A (en) Cooling warehouse
CN103210427B (en) The cooling device of automatic vending machine
JP2007093112A (en) Cooling storage
TW514716B (en) Stirling cooling apparatus, cooler, and refrigerator
RU2680453C2 (en) Thermally insulated vessel
RU2505756C2 (en) Refrigerating unit
JP2004324902A (en) Freezing refrigerator
CN102007349A (en) Refrigerator, in particular household refrigerator, comprising a condenser with heat storage elements
JP2010249444A (en) Freezer-refrigerator
JP2004176931A (en) Ice thermal storage refrigerating device with secondary carbon dioxide cooling medium
WO2014041216A1 (en) Refrigerating device for food, that does not comprise an energy source or ice
WO2009157318A1 (en) Cooling device
US9869496B2 (en) Liquid chiller system
EP2397797A1 (en) Refrigerator
JP2005003351A (en) Cooling device

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180214

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20190612

RIC1 Information provided on ipc code assigned before grant

Ipc: F25D 5/02 20060101ALI20190605BHEP

Ipc: F25D 3/10 20060101AFI20190605BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200204

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20200815