EP3347590B1 - Fuel injector, method for ascertaining the position of a movable armature, and motor control - Google Patents

Fuel injector, method for ascertaining the position of a movable armature, and motor control Download PDF

Info

Publication number
EP3347590B1
EP3347590B1 EP16734726.9A EP16734726A EP3347590B1 EP 3347590 B1 EP3347590 B1 EP 3347590B1 EP 16734726 A EP16734726 A EP 16734726A EP 3347590 B1 EP3347590 B1 EP 3347590B1
Authority
EP
European Patent Office
Prior art keywords
armature
fuel injector
coil
electrically insulating
pole piece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16734726.9A
Other languages
German (de)
French (fr)
Other versions
EP3347590A1 (en
Inventor
Hong Zhang
Nikolay Belyaev
Anatoliy Lyubar
Gerd RÖSEL
Markus Stutika
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vitesco Technologies GmbH
Original Assignee
Vitesco Technologies GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vitesco Technologies GmbH filed Critical Vitesco Technologies GmbH
Publication of EP3347590A1 publication Critical patent/EP3347590A1/en
Application granted granted Critical
Publication of EP3347590B1 publication Critical patent/EP3347590B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0014Valves characterised by the valve actuating means
    • F02M63/0015Valves characterised by the valve actuating means electrical, e.g. using solenoid
    • F02M63/0024Valves characterised by the valve actuating means electrical, e.g. using solenoid in combination with permanent magnet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • F02M51/0664Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding
    • F02M51/0685Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature and the valve being allowed to move relatively to each other or not being attached to each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0689Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means and permanent magnets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0689Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means and permanent magnets
    • F02M51/0692Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means and permanent magnets as valve or armature return means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/16Rectilinearly-movable armatures
    • H01F7/1607Armatures entering the winding
    • H01F7/1615Armatures or stationary parts of magnetic circuit having permanent magnet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2051Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit using voltage control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2055Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit with means for determining actual opening or closing time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/08Fuel-injection apparatus having special means for influencing magnetic flux, e.g. for shielding or guiding magnetic flux
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/20Fuel-injection apparatus with permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/16Rectilinearly-movable armatures
    • H01F2007/1676Means for avoiding or reducing eddy currents in the magnetic circuit, e.g. radial slots

Definitions

  • the present invention relates to the technical field of fuel injectors.
  • the present invention relates in particular to a fuel injector for an internal combustion engine of a motor vehicle.
  • the present invention also relates to a method for determining a position of a movable armature in a fuel injector for an internal combustion engine of a motor vehicle as well as an engine controller which is set up to use the method.
  • Figure 1 shows a solenoid injector 1 with idle stroke between armature 3 and nozzle needle 5.
  • the armature 3 When a voltage is applied to the coil 4 mounted in the coil housing 7, the armature 3 is moved in the direction of the pole piece 2 by electromagnetic forces. As a result of mechanical coupling, after the idle stroke has been overcome, the nozzle needle 5 also moves and releases injection holes for fuel supply. Armature 3 and nozzle needle 5 continue to move until armature 3 strikes pole piece 2 (needle stroke). To close the injector 1, the excitation voltage is switched off and thus the magnetic force is reduced. The nozzle needle 5 and armature 3 are moved into the closed position by the spring force of the spring 6. Idle stroke and needle stroke are run through in reverse order. In the case of fuel injectors without an idle stroke, this need not first be overcome, otherwise the control of such a fuel injector proceeds in a similar manner.
  • the patent application DE 38 43 138 A1 described measurement of the coil current or the voltage superimposed characteristic signals used. It is known that a feedback signal can be obtained on coil-operated assemblies by the eddy-current-driven coupling between the mechanics (armature 3 and injector needle 5) and magnetic circuit (coil 4 and the magnetic parts around coil 4, i.e. armature 3, pole piece 2, coil housing 7, injector housing and magnetic ring on top of the coil, which form the magnetic circuit) is used to generate the signal.
  • the physical effect is based on the speed-dependent self-induction in the electromagnetic circuit as a result of the movement of the armature 3 and the injector needle 5.
  • a voltage is induced in the electromagnet or a characteristic change in the course of the induced voltage is caused, which is superimposed on the control signal (characteristic signal).
  • EP 2 455 603 A1 discloses a method for detecting the opening and closing process of an injector, the injector having a permanent magnet in order to increase the closing force which extends in the housing at least over the entire stroke of the armature next to the armature.
  • the evaluation of the characteristic signal shape is particularly problematic for the detection of opening. Since the magnetic circuit is typically in magnetic saturation when it is opened or is driven into magnetic saturation, as well as being influenced by the other static (e.g. leakage flux, non-linearity) and dynamic (e.g. magnetic flux displacement, eddy currents) phenomena, the effect on the magnetic circuit is minimal and therefore difficult to detect. Even with the detection of the closing time the characteristic signal can be very weak depending on the design of the magnetic circuit.
  • the DE 10 2008 001 822 A1 discloses a solenoid valve which has a slotted armature plate to reduce eddy currents.
  • the present invention is based on the object of providing an improved fuel injector with reduced eddy current-related losses, which at the same time also has good detection properties.
  • the present invention is also based on the object of providing a method for determining the armature position in such a fuel injector.
  • a fuel injector for an internal combustion engine of a motor vehicle has: (a) a pole piece, (b) one along an axis of movement movable armature, (c) a coil and (d) a permanent magnet, wherein the movable armature has at least one electrically insulating element which is designed to reduce eddy currents in the armature, and wherein the permanent magnet is mounted so that it generates a magnetic field, which causes a force acting on the armature in the direction of the pole piece.
  • the permanent magnet is attached subsequently to the coil in the direction of the axis of movement of the armature or it is attached radially outwards of the coil relative to the axis of movement of the armature.
  • the fuel injector described is based on the knowledge that the electrically insulating element reduces the eddy currents in the armature and thus improves the efficiency of the fuel injector and that the attachment of the permanent magnet increases the voltage induced by the armature movement, so that this induced voltage even with reduced eddy currents can be used to detect the opening and closing of the fuel injector.
  • the magnetic field generated by the permanent magnet also leads, due to the magnetic force acting on the armature, to faster opening of the fuel injector when a voltage pulse is applied to the coil. Overall, the present invention thus provides a fuel injector with improved efficiency and improved dynamic and detection properties.
  • the at least one electrically insulating element has or consists of a slot filled with air and / or an electrically insulating material and / or a non-magnetic material.
  • an “electrically insulating element” is therefore also understood to mean an air gap.
  • each electrically insulating area specifically designed to reduce eddy currents in the armature represents an “electrically insulating element”, even if the area is not formed by a solid body.
  • At least one slot is formed in the armature so that it interrupts a potential eddy current path.
  • the slot can be filled exclusively with air, it can be filled exclusively with an electrically insulating material, it can be filled exclusively with a non-magnetic material or it can be filled with any combination of two or three of the aforementioned substances / materials, such as for example a combination of air and electrically insulating material, a combination of air and non-magnetic material, a combination of electrically insulating material and non-magnetic material, or a combination of air, electrically insulating material and non-magnetic material.
  • the non-magnetic material is in particular also electrically insulating.
  • the mechanical stability and the hydraulic properties of the armature can be improved.
  • the anchor can be constructed in one piece or modular.
  • the at least one slot can be formed during a casting process when the anchor is being formed or subsequently by cutting or milling.
  • the at least one slot can be formed between individual modules.
  • the armature is formed from two or more sheet metal parts, which are essentially isolated from one another by the at least one electrically insulating element.
  • the armature consists of several sheet metal parts, for example iron layers, which are completely or partially separated from one another by the at least one electrically insulating element, so that as many potential eddy current paths as possible are interrupted.
  • At least one electric insulating element can in particular consist of a thin layer or foil of insulating material.
  • the at least one electrically insulating element extends radially relative to the movement axis of the armature.
  • the at least one electrically insulating element forms a surface which extends radially outward from the movement axis or from an area in the vicinity of the movement axis.
  • the slots filled with air or an electrically insulating solid material extend radially to the axis of movement from the outside into the armature. In the axial direction, the slots preferably extend over the entire length of the armature.
  • Preferred embodiments have one, two, three, four, five, six, seven, eight or even more such insulating surfaces.
  • the permanent magnet is attached next to the coil and radially outward relative to the axis of movement of the armature.
  • the permanent magnet is arranged following the coil radially outward. In particular, it laterally encloses the coil in plan view along the axis of movement.
  • the permanent magnet is attached to the outside of the coil when it is viewed in the direction of the axis of movement of the armature.
  • the permanent magnet preferably has an axial magnetization in order to form a magnetic field which surrounds the coil windings and causes a force acting on the armature in the direction of the pole piece, i.e. parallel to the axis of movement of the armature.
  • the fuel injector furthermore has a coil housing which contains the permanent magnet.
  • the coil housing with the permanent magnet encloses at least that part of the coil that does not point in the direction of the axis of movement or lies inward.
  • the pole piece and / or the coil housing has at least one electrically insulating element which is designed to reduce eddy currents in the pole piece or the coil housing.
  • the at least one electrically insulating element in the pole piece and / or coil housing can generally be formed in a manner similar to the above-described electrically insulating element in the armature.
  • the pole piece and / or the coil housing can be constructed in a modular, one-piece or laminated manner and the at least one electrically insulating element can be formed as a slot or a layer of insulating material.
  • the armature and / or the pole piece and / or the coil housing has a material that generates few eddy currents.
  • the material can be a soft magnetic composite material which is formed, for example, from iron particles that are coated with an inorganic insulation. Such materials are known to the person skilled in the art, for example under the trademark "Somaloy".
  • a method for determining a position of a movable armature in a fuel injector for an internal combustion engine of a motor vehicle is described.
  • the fuel injector has a coil.
  • the armature has at least one electrically insulating element which is designed to reduce eddy currents.
  • the fuel injector has a permanent magnet which is attached in such a way that it generates a magnetic field which causes a force acting on the armature in the direction of a pole piece.
  • the acquisition of the time profile of the electrical voltage over and / or the electrical current intensity through the coil can take place while the fuel injector is being activated.
  • the control of the fuel injector is in particular the energization of the coil with the operating current in order to move the armature for the injection of fuel from a closed position to the pole piece into an open position and to hold the armature in the open position if necessary.
  • the acquisition of the time profile of the electrical voltage over and / or the electrical current intensity through the coil during the Closing process - ie after switching off the operating current through the coil - take place.
  • the method determines the beginning and end of opening and closing processes of the fuel injector.
  • the combination of the armature with the permanent magnet - provided with the electrically insulating element - is particularly important for detecting the induction voltage or the induced current of the coil during the closing process advantageous in order to obtain an induction signal that is satisfactory for position determination in spite of the suppressed eddy currents.
  • an engine controller for a vehicle which is set up to carry out the method according to the second aspect.
  • This engine control enables efficient and flexible control of the fuel injector, whereby energy can be saved in the control and the injection quantities can be set very precisely at the same time.
  • the motor control can be done by means of a computer program, i. software, as well as by means of one or more special electrical circuits, i. in hardware or in any hybrid form, i.e. using software components and hardware components.
  • the Figure 1 shows a fuel injector 1 according to the prior art.
  • the known fuel injector 1 with idle stroke shows how initially described, a pole piece 2, a movable armature 3, a coil 4, a nozzle needle 5, a spring 6 and a coil housing 7.
  • the known fuel injector 1 is not described further at this point.
  • the Figure 2 shows a fuel injector 200 according to an embodiment of the invention.
  • the fuel injector 200 is basically in the same way as the known fuel injector 1 in FIG Figure 1 but differs from this in at least two aspects, as will be further explained below.
  • the fuel injector 200 with idle stroke has a pole piece 202, an armature 204 movable along the axis of movement 205, a coil 206, a permanent magnet 208, a coil housing 210, a nozzle needle 212 and a spring 214.
  • the permanent magnet 208 is attached to the outside of the coil 206 in the coil housing 210 and magnetized in a direction that is parallel to the axis of movement 205 of the armature 204, so that a magnetic field indicated by the dashed line 216 is permanently present.
  • the magnetic field 216 provides a force on the armature 204 which acts in the direction of the pole piece 202, that is, parallel to the axis of movement 205.
  • the armature 204 has at least one electrically insulating element in order to reduce eddy currents in the armature 204.
  • the at least one electrically insulating element is in the Figure 2 not shown, but will be used in conjunction with the below Figures 4A and 4B described.
  • the armature can be constructed from a special material, for example from a soft magnetic composite material such as Somaloy®, which generates few eddy currents.
  • the reduction in the eddy currents leads to improved energy efficiency due to the correspondingly reduced losses, so that the necessary magnetic force at a lower current strength in the Coil 206 can be reached. As a result, the opening process can also be completed more quickly.
  • the latter is additionally supported by the permanently present magnetic field 216, since this provides a force offset. If an increase in the closing speed is desired, the spring force of the spring 214 can be increased relative to the spring 6 in the known fuel injector 1. Furthermore, the permanently present magnetic field 216 has the result that a voltage is induced in the coil 206 when the armature 204 and / or the needle 212 move.
  • the state of the fuel injector 200 with regard to the opening and closing process can be detected, that is to say the position of the armature 204 can be determined.
  • the opening process can best be detected by evaluating the induced current.
  • the Figure 3 shows a fuel injector 300 according to an embodiment not belonging to the invention.
  • the fuel injector 300 differs from that in FIG Figure 2 fuel injector 200 shown and described above in that the permanent magnet 308 is not attached to the outside but to the top of the coil 306.
  • the permanent magnet 308 is magnetized in a direction which is perpendicular to the movement axis 305 of the armature 304, so that a magnetic field identified by the dashed line 316 is also permanently present in this embodiment.
  • the permanent magnet 308 is attached to the underside of the coil 306.
  • FIGS. 4A and 4B show embodiments of an armature 404a, 404b for a fuel injector according to embodiments of the invention. More specifically, the anchor 404a in FIG Figure 4A a total of eight electrically insulating elements 420 which extend radially outward relative to the movement axis 405 and thus effectively interrupt possible eddy current paths in the armature 405.
  • the electrically insulating elements 420 are shown in FIG Figure 4A shown as slots in armature 404a, but can nonetheless be designed as insulating layers.
  • the anchor can be modular or laminated. There may be fewer or more than eight elements 420.
  • the slots 420 can be empty, i.e.
  • the armature 404a as 404b can be made of a material (for example a soft magnetic composite material such as Somaloy®) which has the property of generating few eddy currents.
  • the fuel injectors 200 and 300 described above can furthermore be provided in the pole piece 202, 302 in order to reduce eddy currents also in the pole piece 202, 302 and thus to further improve the efficiency and dynamics.
  • electrically insulating elements can also be provided in the coil housing 210, 310 in order to reduce eddy currents in the coil housing 210, 310 and thus to further improve the efficiency and dynamics.
  • Such insulating elements can, for example, be used in the same manner as those just referred to in relation to the Figures 4A and 4B elements 420 described be constructed.
  • the pole piece 202, 302 and the coil housing 210, 310 can also have an eddy current-reducing material, such as Somaloy®.
  • the Figure 5 shows a graphic illustration 500 of the time curves of the voltage 502 induced in the coil 206, 306 and the armature position 504 during an injection process of a fuel injector according to the invention, for example the fuel injector 200 or 300.
  • the control is initiated with a voltage pulse (boost voltage) , which quickly builds up an operating current through the coil 206, 306, which magnetizes the coil 206, 306, so that the armature 204, 304 is moved from a closed position in the direction of the pole piece 202, 302 to an open position.
  • boost voltage boost voltage
  • the armature 204, 306 is held against the pole piece 202, 302 by a holding voltage which is reduced compared to the boost voltage. In this state, the voltage induced in coil 206, 306 drops and disappears if neither the operating current changes nor the armature 204, 304 moves.
  • the present invention provides an improved fuel injector which, compared to known fuel injectors, has improved energy efficiency and improved properties with regard to movement detection.

Description

Die vorliegende Erfindung betrifft das technische Gebiet der Kraftstoffinjektoren. Die vorliegende Erfindung betrifft insbesondere einen Kraftstoffinjektor für einen Verbrennungsmotor eines Kraftfahrzeuges. Die vorliegende Erfindung betrifft auch ein Verfahren zum Ermitteln einer Position eines beweglichen Ankers in einem Kraftstoffinjektor für einen Verbrennungsmotor eines Kraftfahrzeuges sowie eine Motorsteuerung, die zum Verwenden des Verfahrens eingerichtet ist.The present invention relates to the technical field of fuel injectors. The present invention relates in particular to a fuel injector for an internal combustion engine of a motor vehicle. The present invention also relates to a method for determining a position of a movable armature in a fuel injector for an internal combustion engine of a motor vehicle as well as an engine controller which is set up to use the method.

Figur 1 zeigt einen Solenoid-Injektor 1 mit Leerhub zwischen Anker 3 und Düsennadel 5. Beim Anlegen einer Spannung an die im Spulengehäuse 7 angebrachte Spule 4 wird durch elektromagnetische Kräfte der Anker 3 in Richtung des Polstücks 2 bewegt. Durch mechanische Kopplung bewegt sich nach Überwinden des Leerhubs dann ebenfalls die Düsennadel 5 und gibt Einspritzlöcher zur Kraftstoffzufuhr frei. Anker 3 und Düsennadel 5 bewegen sich weiter bis der Anker 3 auf das Polstück 2 trifft (Nadelhub) . Zum Schließen des Injektors 1 wird die Erregerspannung abgeschaltet und somit baut sich die magnetische Kraft ab. Düsennadel 5 und Anker 3 werden durch die Federkraft der Feder 6 in die Schließposition bewegt. Leerhub und Nadelhub werden in umgekehrter Reihenfolge durchlaufen. Bei Kraftstoffinjektoren ohne Leerhub muss dieser nicht erst überwunden werden, ansonsten verläuft die Ansteuerung eines solchen Kraftstoffinjektors in ähnlicher Art und Weise. Figure 1 shows a solenoid injector 1 with idle stroke between armature 3 and nozzle needle 5. When a voltage is applied to the coil 4 mounted in the coil housing 7, the armature 3 is moved in the direction of the pole piece 2 by electromagnetic forces. As a result of mechanical coupling, after the idle stroke has been overcome, the nozzle needle 5 also moves and releases injection holes for fuel supply. Armature 3 and nozzle needle 5 continue to move until armature 3 strikes pole piece 2 (needle stroke). To close the injector 1, the excitation voltage is switched off and thus the magnetic force is reduced. The nozzle needle 5 and armature 3 are moved into the closed position by the spring force of the spring 6. Idle stroke and needle stroke are run through in reverse order. In the case of fuel injectors without an idle stroke, this need not first be overcome, otherwise the control of such a fuel injector proceeds in a similar manner.

Sowohl mechanische Toleranzen bei der Fertigung als auch elektrische Toleranzen bei der Ansteuerung führen zu Unterschieden beim Öffnungs- und Schließvorgang zwischen verschiedenen Injektoren. Die somit erzeugten injektorindividuellen zeitlichen Variationen des Beginns der Nadelbewegung (Öffnen) und des Endes der Nadelbewegung (Schließen) ergeben unterschiedliche Einspritzmengen.Both mechanical tolerances in production and electrical tolerances in control lead to differences in the opening and closing processes between different injectors. The injector-specific temporal variations of the start of the needle movement (opening) and the end of the needle movement (closing) thus generated result in different injection quantities.

Eine Ausregelung der durch die o.g. Toleranzen verursachten Mengenstreuung ist bekanntermaßen möglich. Vorzugsweise wird die in Patentanmeldung DE 38 43 138 A1 beschriebene Messung der dem Spulen-Strom bzw. der Spannung überlagerten charakteristischen Signale verwendet. Dabei ist bekannt, dass an spulenbetriebenen Baugruppen ein Feedbacksignal gewonnen werden kann, indem die wirbelstromgetriebene Kopplung zwischen Mechanik (Anker 3 und Injektornadel 5) und Magnetkreis (Spule 4 und die magnetische Teile um die Spule 4, das heißt Anker 3, Polstück 2, Spulengehäuse 7, Injektorgehäuse und Magnetring an der Oberseite der Spule, die den Magnetkreis bilden) zur Signalgenerierung genutzt wird. Der physikalische Effekt beruht auf der geschwindigkeitsabhängigen Selbstinduktion in den elektromagnetischen Kreis infolge der Bewegung des Ankers 3 und der Injektornadel 5. In Abhängigkeit der Bewegungsgeschwindigkeit wird im Elektromagnet eine Spannung induziert bzw. eine charakteristische Änderung des Verlaufs der induzierten Spannung verursacht, die dem Ansteuersignal überlagert ist (charakteristisches Signal).As is known, it is possible to correct the quantity spread caused by the above tolerances. Preferably, the patent application DE 38 43 138 A1 described measurement of the coil current or the voltage superimposed characteristic signals used. It is known that a feedback signal can be obtained on coil-operated assemblies by the eddy-current-driven coupling between the mechanics (armature 3 and injector needle 5) and magnetic circuit (coil 4 and the magnetic parts around coil 4, i.e. armature 3, pole piece 2, coil housing 7, injector housing and magnetic ring on top of the coil, which form the magnetic circuit) is used to generate the signal. The physical effect is based on the speed-dependent self-induction in the electromagnetic circuit as a result of the movement of the armature 3 and the injector needle 5. Depending on the speed of movement, a voltage is induced in the electromagnet or a characteristic change in the course of the induced voltage is caused, which is superimposed on the control signal (characteristic signal).

Auch die EP 2 455 603 A1 offenbart ein Verfahren zur Detektion des Öffnungs- und Schließvorgangs eines Injektors, wobei der Injektor zur Erhöhung der Schließkraft einen Permanentmagneten aufweist, der sich im Gehäuse zumindest über den gesamten Hubweg des Ankers neben dem Anker erstreckt.Also the EP 2 455 603 A1 discloses a method for detecting the opening and closing process of an injector, the injector having a permanent magnet in order to increase the closing force which extends in the housing at least over the entire stroke of the armature next to the armature.

Aus der US 5,127,585 A ist es bekannt, einen Permanentmagneten im Gehäuse eines Injektors anzuordnen, um eine Gleichgewichtslage des Ankers zu beeinflussen.From the U.S. 5,127,585 A it is known to arrange a permanent magnet in the housing of an injector in order to influence an equilibrium position of the armature.

Vor allem für die Detektion des Öffnens ist die Auswertung der charakteristischen Signalform problematisch. Da sich der Magnetkreis beim Öffnen typischerweise in der magnetischen Sättigung befindet bzw. in die magnetische Sättigung ausgesteuert wird, sowie durch die anderen statischen (z.B. Streuflusse, Nichtlinearität) und dynamischen (z.B. Magnetflussverdrängung, Wirbelströme) Erscheinungen beeinflusst ist, ist die Rückwirkung auf den Magnetkreis minimal und somit nur schlecht zu detektieren. Auch bei der Detektion des Schließzeitpunktes kann das charakteristische Signal je nach Design des Magnetkreises sehr schwach ausgeprägt sein.The evaluation of the characteristic signal shape is particularly problematic for the detection of opening. Since the magnetic circuit is typically in magnetic saturation when it is opened or is driven into magnetic saturation, as well as being influenced by the other static (e.g. leakage flux, non-linearity) and dynamic (e.g. magnetic flux displacement, eddy currents) phenomena, the effect on the magnetic circuit is minimal and therefore difficult to detect. Even with the detection of the closing time the characteristic signal can be very weak depending on the design of the magnetic circuit.

Messungen haben gezeigt, dass ein großer Teil (z.B. ca. 40%) der eingebrachten elektrischen Energie durch Wirbelströme verbraucht wird und folglich nicht zur Erzeugung von Magnetkraft bzw. mechanischer Energie zur Verfügung steht. Der genaue Wirbelstromverlust hängt u.a. von Material, Architektur des Kraftstoffinjektors und dem Ansteuerungsverfahren ab, weist aber in den meisten Fällen eine erhebliche Größe auf.
Aus diesem Grund werden verschiedene Möglichkeiten in Betracht gezogen um die Wirbelströme zu reduzieren und den Spulenantrieb somit effizienter zu gestalten.
Measurements have shown that a large part (eg approx. 40%) of the electrical energy introduced is consumed by eddy currents and is consequently not available to generate magnetic force or mechanical energy. The exact eddy current loss depends, among other things, on the material, architecture of the fuel injector and the control method, but in most cases it is considerable.
For this reason, various options are being considered to reduce the eddy currents and thus to make the coil drive more efficient.

Die DE 10 2008 001 822 A1 beispielsweise offenbart ein Magnetventil, das zur Reduzierung von Wirbelströmen eine geschlitzte Ankerplatte aufweist.The DE 10 2008 001 822 A1 for example, discloses a solenoid valve which has a slotted armature plate to reduce eddy currents.

Mit einer Reduzierung der Wirbelströme geht jedoch auch eine Verschlechterung der Detektionsmöglichkeiten für Öffnen/Schließen einher (Abschwächung des Signals).With a reduction in eddy currents, however, there is also a deterioration in the detection options for opening / closing (weakening of the signal).

Der vorliegenden Erfindung liegt die Aufgabe zugrunde, einen verbesserten Kraftstoffinjektor mit reduzierten wirbelstrombedingten Verluste bereitzustellen, der gleichzeitig auch gute Detektionseigenschaften aufweist. Der vorliegenden Erfindung liegt des Weiteren die Aufgabe zugrunde, ein Verfahren zum Ermitteln der Ankerposition in einem solchen Kraftstoffinjektor bereitzustellen.The present invention is based on the object of providing an improved fuel injector with reduced eddy current-related losses, which at the same time also has good detection properties. The present invention is also based on the object of providing a method for determining the armature position in such a fuel injector.

Diese Aufgabe wird gelöst durch die Gegenstände des unabhängigen Patentanspruchs. Vorteilhafte Ausführungsformen der vorliegenden Erfindung sind in den abhängigen Ansprüchen beschrieben.This object is achieved by the subject matter of the independent claim. Advantageous embodiments of the present invention are described in the dependent claims.

Gemäß einem ersten Aspekt der Erfindung wird ein Kraftstoffinjektor für einen Verbrennungsmotor eines Kraftfahrzeuges beschrieben. Der beschriebene Kraftstoffinjektor weist folgendes auf: (a) ein Polstück, (b) einen entlang einer Bewegungsachse beweglichen Anker, (c) eine Spule und (d) einen Permanentmagneten, wobei der bewegliche Anker zumindest ein elektrisch isolierendes Element aufweist, das zum Reduzieren von Wirbelströmen im Anker gestaltet ist, und wobei der Permanentmagnet so angebracht ist, dass er ein Magnetfeld erzeugt, das eine auf den Anker in Richtung des Polstückes wirkende Kraft bewirkt. Dabei ist der Permanentmagnet in Richtung der Bewegungsachse des Ankers nachfolgend auf die Spule angebracht oder er ist relativ zur Bewegungsachse des Ankers radial nach außen der Spule nachfolgend angebracht.According to a first aspect of the invention, a fuel injector for an internal combustion engine of a motor vehicle is described. The fuel injector described has: (a) a pole piece, (b) one along an axis of movement movable armature, (c) a coil and (d) a permanent magnet, wherein the movable armature has at least one electrically insulating element which is designed to reduce eddy currents in the armature, and wherein the permanent magnet is mounted so that it generates a magnetic field, which causes a force acting on the armature in the direction of the pole piece. The permanent magnet is attached subsequently to the coil in the direction of the axis of movement of the armature or it is attached radially outwards of the coil relative to the axis of movement of the armature.

Dem beschriebenen Kraftstoffinjektor liegt die Erkenntnis zugrunde, dass das elektrisch isolierende Element die Wirbelströme im Anker reduziert und somit die Effizienz des Kraftstoffinjektors verbessert und dass das Anbringen des Permanentmagneten eine Verstärkung der durch die Ankerbewegung induzierten Spannung bewirkt, so dass diese induzierte Spannung auch bei reduzierten Wirbelströmen zur Detektion von Öffnung und Schließung des Kraftstoffinjektors verwendet werden kann. Das von dem Permanentmagneten erzeugte Magnetfeld führt des Weiteren aufgrund der auf den Anker wirkenden Magnetkraft zu einem schnelleren Öffnen des Kraftstoffinjektors, wenn die Spule mit einem Spannungspuls beaufschlagt wird. Insgesamt stellt die vorliegende Erfindung somit einen Kraftstoffinjektor mit verbesserter Effizienz und verbesserten Dynamik- und Detektionseigenschaften bereit.The fuel injector described is based on the knowledge that the electrically insulating element reduces the eddy currents in the armature and thus improves the efficiency of the fuel injector and that the attachment of the permanent magnet increases the voltage induced by the armature movement, so that this induced voltage even with reduced eddy currents can be used to detect the opening and closing of the fuel injector. The magnetic field generated by the permanent magnet also leads, due to the magnetic force acting on the armature, to faster opening of the fuel injector when a voltage pulse is applied to the coil. Overall, the present invention thus provides a fuel injector with improved efficiency and improved dynamic and detection properties.

Gemäß einem Ausführungsbeispiel der Erfindung weist das zumindest eine elektrisch isolierende Element einen mit Luft und/oder einem elektrisch isolierenden Material und/oder einem nichtmagnetischen Material gefüllten Schlitz auf oder besteht daraus. Unter einem "elektrisch isolierenden Element" wird im vorliegenden Zusammenhang somit auch ein Luftspalt verstanden. Insbesondere stellt jeder gezielt zur Verringerung von Wirbelströmen in dem Anker ausgebildete elektrisch isolierende Bereich ein "elektrisch isolierendes Element" dar, auch wenn der Bereich nicht von einem Festkörper gebildet ist.According to an exemplary embodiment of the invention, the at least one electrically insulating element has or consists of a slot filled with air and / or an electrically insulating material and / or a non-magnetic material. In the present context, an “electrically insulating element” is therefore also understood to mean an air gap. In particular, each electrically insulating area specifically designed to reduce eddy currents in the armature represents an “electrically insulating element”, even if the area is not formed by a solid body.

Mit anderen Worten ist zumindest ein Schlitz im Anker so gebildet, dass er einen potenziellen Wirbelstromweg unterbricht. Der Schlitz kann ausschließlich mit Luft gefüllt sein, er kann ausschließlich mit einem elektrisch isolierenden Material gefüllt sein, er kann ausschließlich mit einem nichtmagnetischen Material gefüllt sein oder er kann mit einer beliebigen Kombination von zwei oder drei der vorher erwähnten Stoffe/Materialien gefüllt sein, wie zum Beispiel einer Kombination von Luft und elektrisch isolierendem Material, einer Kombination von Luft und nichtmagnetischem Material, einer Kombination von elektrisch isolierendem Material und nichtmagnetischem Material oder einer Kombination von Luft, elektrisch isolierendem Material und nichtmagnetischem Material. Das nichtmagnetische Material ist insbesondere auch elektrisch isolierend.In other words, at least one slot is formed in the armature so that it interrupts a potential eddy current path. The slot can be filled exclusively with air, it can be filled exclusively with an electrically insulating material, it can be filled exclusively with a non-magnetic material or it can be filled with any combination of two or three of the aforementioned substances / materials, such as for example a combination of air and electrically insulating material, a combination of air and non-magnetic material, a combination of electrically insulating material and non-magnetic material, or a combination of air, electrically insulating material and non-magnetic material. The non-magnetic material is in particular also electrically insulating.

Durch teilweises oder ganzes Füllen des zumindest einem Schlitz mit einem elektrisch isolierenden Material und/oder einem nichtmagnetischen Material, kann die mechanische Stabilität und die hydraulischen Eigenschaften des Ankers verbessert werden.By partially or completely filling the at least one slot with an electrically insulating material and / or a non-magnetic material, the mechanical stability and the hydraulic properties of the armature can be improved.

Der Anker kann einstückig oder modular aufgebaut sein. Im Falle eines einstückigen Aufbaus kann der zumindest eine Schlitz während eines Gießverfahren bei der Formung des Ankers oder nachfolgend durch Schneiden oder Fräsen gebildet sein. Im Falle eines modularen Aufbaus kann der zumindest eine Schlitz zwischen einzelnen Modulen gebildet sein.The anchor can be constructed in one piece or modular. In the case of a one-piece construction, the at least one slot can be formed during a casting process when the anchor is being formed or subsequently by cutting or milling. In the case of a modular structure, the at least one slot can be formed between individual modules.

Gemäß einem weiteren Ausführungsbeispiel der Erfindung ist der Anker aus zwei oder mehr Blechteilen gebildet, die durch das zumindest eine elektrisch isolierende Element im Wesentlichen voneinander isoliert sind.According to a further exemplary embodiment of the invention, the armature is formed from two or more sheet metal parts, which are essentially isolated from one another by the at least one electrically insulating element.

In diesem Ausführungsbeispiel besteht der Anker aus mehreren Blechteilen, zum Beispiel Eisenschichten, die von dem zumindest einen elektrisch isolierenden Element ganz oder teilweise voneinander getrennt sind, so dass möglichst viele potenzielle Wirbelstromwege unterbrochen sind. Das zumindest eine elektrisch isolierende Element kann insbesondere aus einer dünnen Schicht oder Folie von isolierendem Material bestehen.In this exemplary embodiment, the armature consists of several sheet metal parts, for example iron layers, which are completely or partially separated from one another by the at least one electrically insulating element, so that as many potential eddy current paths as possible are interrupted. At least one electric insulating element can in particular consist of a thin layer or foil of insulating material.

Gemäß einem weiteren Ausführungsbeispiel der Erfindung erstreckt sich das zumindest eine elektrisch isolierende Element radial relativ zur Bewegungsachse des Ankers.According to a further exemplary embodiment of the invention, the at least one electrically insulating element extends radially relative to the movement axis of the armature.

Mit anderen Worten bildet das zumindest eine elektrisch isolierende Element eine Fläche, die sich von der Bewegungsachse oder von einem Bereich in der Nähe der Bewegungsachse radial nach außen erstreckt. Beispielsweise erstrecken sich die mit Luft oder einem elektrisch isolierenden festen Material gefüllten Schlitze radial zur Bewegungsachse hin von außen in den Anker hinein. In axialer Richtung erstrecken sich die Schlitze vorzugsweise über die gesamte Länge des Ankers.In other words, the at least one electrically insulating element forms a surface which extends radially outward from the movement axis or from an area in the vicinity of the movement axis. For example, the slots filled with air or an electrically insulating solid material extend radially to the axis of movement from the outside into the armature. In the axial direction, the slots preferably extend over the entire length of the armature.

Bevorzugte Ausführungsformen weisen eine, zwei, drei, vier, fünf, sechs, sieben, acht oder noch mehr solche isolierenden Flächen auf.Preferred embodiments have one, two, three, four, five, six, seven, eight or even more such insulating surfaces.

Gemäß der Erfindung ist der Permanentmagnet neben der Spule und radial nach außen relativ zur Bewegungsachse des Ankers angebracht. Anders ausgedrückt ist der Permanentmagnet der Spule radial nach außen nachfolgend angeordnet. Insbesondere umschließt er in Draufsicht entlang der Bewegungsachse die Spule lateral.According to the invention, the permanent magnet is attached next to the coil and radially outward relative to the axis of movement of the armature. In other words, the permanent magnet is arranged following the coil radially outward. In particular, it laterally encloses the coil in plan view along the axis of movement.

Mit anderen Worten ist der Permanentmagnet an der Außenseite der Spule angebracht, wenn diese in Richtung der Bewegungsachse des Ankers betrachtet wird. In dieser Konfiguration weist der Permanentmagnet vorzugsweise eine axiale Magnetisierung auf, um ein Magnetfeld zu bilden, das die Spulenwicklungen umschließt und eine auf den Anker in Richtung des Polstücks, das heißt parallel zu der Bewegungsachse des Ankers, wirkende Kraft bewirkt.In other words, the permanent magnet is attached to the outside of the coil when it is viewed in the direction of the axis of movement of the armature. In this configuration, the permanent magnet preferably has an axial magnetization in order to form a magnetic field which surrounds the coil windings and causes a force acting on the armature in the direction of the pole piece, i.e. parallel to the axis of movement of the armature.

Gemäß einem weiteren Ausführungsbeispiel der Erfindung weist der Kraftstoffinjektor ferner ein Spulengehäuse auf, das den Permanentmagneten enthält. Das Spulengehäuse mit dem Permanentmagneten umschließt zumindest den Teil der Spule, der nicht in Richtung der Bewegungsachse zeigt bzw. nach innen liegt.According to a further exemplary embodiment of the invention, the fuel injector furthermore has a coil housing which contains the permanent magnet. The coil housing with the permanent magnet encloses at least that part of the coil that does not point in the direction of the axis of movement or lies inward.

Gemäß einem weiteren Ausführungsbeispiel der Erfindung weist das Polstück und/oder das Spulengehäuse zumindest ein elektrisch isolierendes Element auf, das zum Reduzieren von Wirbelströmen im Polstück bzw. Spulengehäuse gestaltet ist.According to a further exemplary embodiment of the invention, the pole piece and / or the coil housing has at least one electrically insulating element which is designed to reduce eddy currents in the pole piece or the coil housing.

Das zumindest eine elektrisch isolierende Element im Polstück und/oder Spulengehäuse kann im Allgemeinen in ähnlicher Art und Weise, wie das oben beschriebene elektrisch isolierende Element im Anker, gebildet sein. Mit anderen Worten kann das Polstück und/oder das Spulengehäuse modular, einstückig oder geblecht aufgebaut sein und das zumindest eine elektrisch isolierende Element kann als ein Schlitz oder eine Schicht von isolierendem Material gebildet sein.The at least one electrically insulating element in the pole piece and / or coil housing can generally be formed in a manner similar to the above-described electrically insulating element in the armature. In other words, the pole piece and / or the coil housing can be constructed in a modular, one-piece or laminated manner and the at least one electrically insulating element can be formed as a slot or a layer of insulating material.

Gemäß einem weiteren Ausführungsbeispiel der Erfindung weist der Anker und/oder das Polstück und/oder das Spulengehäuse ein Material auf, das wenige Wirbelströme erzeugt. Das Material kann ein weichmagnetisches Kompositmaterial sein, das beispielsweise aus Eisenpartikeln gebildet ist, die mit einer anorganischen Isolierung umhüllt sind. Dem Fachmann sind derartige Materialien beispielsweise unter der Marke "Somaloy" bekannt.According to a further exemplary embodiment of the invention, the armature and / or the pole piece and / or the coil housing has a material that generates few eddy currents. The material can be a soft magnetic composite material which is formed, for example, from iron particles that are coated with an inorganic insulation. Such materials are known to the person skilled in the art, for example under the trademark "Somaloy".

Gemäß einem zweiten Aspekt der Erfindung wird ein Verfahren zum Ermitteln einer Position eines beweglichen Ankers in einem Kraftstoffinjektor für einen Verbrennungsmotor eines Kraftfahrzeuges beschrieben. Der Kraftstoffinjektor weist eine Spule auf. Der Anker weist zumindest ein elektrisch isolierendes Element auf, das zum Reduzieren von Wirbelströmen gestaltet ist. Der Kraftstoffinjektor weist einen Permanentmagneten auf, der so angebracht ist, dass er ein Magnetfeld erzeugt, das eine auf den Anker in Richtung eines Polstückes wirkende Kraft bewirkt.According to a second aspect of the invention, a method for determining a position of a movable armature in a fuel injector for an internal combustion engine of a motor vehicle is described. The fuel injector has a coil. The armature has at least one electrically insulating element which is designed to reduce eddy currents. The fuel injector has a permanent magnet which is attached in such a way that it generates a magnetic field which causes a force acting on the armature in the direction of a pole piece.

Das Verfahren weist - ggf. zusätzlich zu weiteren optionalen Schritten -folgende Schritte auf:

  • Erfassen des zeitlichen Verlaufs der elektrischen Spannung über und/oder der elektrischen Stromstärke durch die Spule,
  • Analysieren des erfassten zeitlichen Verlaufs der elektrischen Spannung und/oder des erfassten zeitlichen Verlaufs der Stromstärke, um eine induzierte Spannung und/oder einen induzierten Strom zu identifizieren, die aufgrund der Ankerbewegung und des von dem Permanentmagneten erzeugten Magnetfeldes in der Spule induziert werden, und
  • Bestimmen der Ankerposition basierend auf der induzierten Spannung und/oder dem induzierten Strom.
The method has the following steps - possibly in addition to further optional steps:
  • Detection of the time course of the electrical voltage over and / or the electrical current strength through the coil,
  • Analyzing the recorded time profile of the electrical voltage and / or the recorded time profile of the current intensity in order to identify an induced voltage and / or an induced current which are induced in the coil due to the armature movement and the magnetic field generated by the permanent magnet, and
  • Determining the armature position based on the induced voltage and / or the induced current.

Bei einer zweckmäßigen Ausgestaltung weist das Verfahren zusätzlich die folgenden Schritte auf:

  • Bestromen der Spule mit einem Betriebsstrom, um den Anker zur Einspritzung von Kraftstoff von einer Schließstellung zum Polstück hin in eine Öffnungsstellung zu bewegen und insbesondere in der Öffnungsstellung zu halten,
  • Abschalten des Betriebsstroms um einen Schließvorgang einzuleiten, während dem sich der Anker von der Öffnungsstellung zurück in die Schließstellung bewegt,
In an expedient embodiment, the method also has the following steps:
  • Energizing the coil with an operating current in order to move the armature for the injection of fuel from a closed position towards the pole piece into an open position and in particular to hold it in the open position,
  • Switching off the operating current in order to initiate a closing process, during which the armature moves from the open position back to the closed position,

Das Erfassen des zeitlichen Verlaufs der elektrischen Spannung über und/oder der elektrischen Stromstärke durch die Spule kann während einer Ansteuerung des Kraftstoffinjektors erfolgen. Die Ansteuerung des Kraftstoffinjektors ist dabei insbesondere das Bestromen der Spule mit dem Betriebsstrom, um den Anker zur Einspritzung von Kraftstoff von einer Schließstellung zum Polstück hin in eine Öffnungsstellung zu bewegen und den Anker ggf. in der Öffnungsstellung zu halten.The acquisition of the time profile of the electrical voltage over and / or the electrical current intensity through the coil can take place while the fuel injector is being activated. The control of the fuel injector is in particular the energization of the coil with the operating current in order to move the armature for the injection of fuel from a closed position to the pole piece into an open position and to hold the armature in the open position if necessary.

Alternativ oder zusätzlich kann das Erfassen des zeitlichen Verlaufs der elektrischen Spannung über und/oder der elektrischen Stromstärke durch die Spule während des Schließvorgangs - d.h. nach dem Abschalten des Betriebsstroms durch die Spule - erfolgen.Alternatively or additionally, the acquisition of the time profile of the electrical voltage over and / or the electrical current intensity through the coil during the Closing process - ie after switching off the operating current through the coil - take place.

Bei dem Verfahren werden insbesondere Anfang und Ende von Öffnungs- und Schließvorgängen des Kraftstoffinjektors bestimmt.. Insbesondere für die Erfassung der Induktionsspannung bzw. des induzierten Stroms der Spule während des Schließvorgangs ist die Kombination des - mit dem elektrisch isolierenden Element versehenen - Ankers mit dem Permanentmagneten vorteilhaft um trotz der unterdrückten Wirbelströme überhaupt ein für die Positionsbestimmung zufriedenstellendes Induktionssignal zu erhalten.The method determines the beginning and end of opening and closing processes of the fuel injector. The combination of the armature with the permanent magnet - provided with the electrically insulating element - is particularly important for detecting the induction voltage or the induced current of the coil during the closing process advantageous in order to obtain an induction signal that is satisfactory for position determination in spite of the suppressed eddy currents.

Gemäß einem dritten Aspekt der Erfindung wird eine Motorsteuerung für ein Fahrzeug beschrieben, die zur Durchführung des Verfahrens gemäß dem zweiten Aspekt eingerichtet ist.According to a third aspect of the invention, an engine controller for a vehicle is described which is set up to carry out the method according to the second aspect.

Diese Motorsteuerung ermöglicht eine effiziente und flexible Ansteuerung des Kraftstoffinjektors, wobei Energie bei der Ansteuerung eingespart werden kann und die Einspritzmengen gleichzeitig sehr präzise eingestellt werden können.This engine control enables efficient and flexible control of the fuel injector, whereby energy can be saved in the control and the injection quantities can be set very precisely at the same time.

Die Motorsteuerung kann sowohl mittels eines Computerprogramms, d.h. einer Software, als auch mittels einer oder mehrerer spezieller elektrischer Schaltungen, d.h. in Hardware oder in beliebig hybrider Form, d.h. mittels Software-Komponenten und Hardware-Komponenten, realisiert werden.The motor control can be done by means of a computer program, i. software, as well as by means of one or more special electrical circuits, i. in hardware or in any hybrid form, i.e. using software components and hardware components.

Es wird darauf hingewiesen, dass Ausführungsformen der Erfindung mit Bezug auf unterschiedliche Erfindungsgegenstände beschrieben wurden. Insbesondere sind einige Ausführungsformen der Erfindung mit Verfahrensansprüchen und andere Ausführungsformen der Erfindung mit Vorrichtungsansprüchen beschrieben. Dem Fachmann wird jedoch bei der Lektüre dieser Anmeldung sofort klar werden, dass, sofern nicht explizit anders angegeben, zusätzlich zu einer Kombination von Merkmalen, die zu einem Typ von Erfindungsgegenstand gehören, auch eine beliebige Kombination von Merkmalen möglich ist, die zu unterschiedlichen Typen von Erfindungsgegenständen gehören.It should be noted that embodiments of the invention have been described with reference to different subjects of the invention. In particular, some embodiments of the invention are described with method claims and other embodiments of the invention with device claims. However, when reading this application, it will immediately become clear to the person skilled in the art that, unless explicitly stated otherwise, in addition to a combination of features belonging to a type of subject matter of the invention, any combination of Features is possible that belong to different types of subject matter.

Weitere Vorteile und Merkmale der vorliegenden Erfindung ergeben sich aus der folgenden beispielhaften Beschreibung einer bevorzugten Ausführungsform.

  • Figur 1 zeigt einen Kraftstoffinjektor gemäß dem Stand der Technik.
  • Figur 2 zeigt einen Kraftstoffinjektor gemäß einer Ausführungsform der Erfindung.
  • Figur 3 zeigt einen Kraftstoffinjektor gemäß einer nicht zur Erfindung gehörenden Ausführungsform.
  • Figuren 4A und 4B zeigen Ausführungen eines Ankers für einen Kraftstoffinjektor gemäß Ausführungsformen der Erfindung.
  • Figur 5 zeigt eine grafische Darstellung der zeitlichen Verläufe von Spulenspannung und Ankerposition bei Ansteuerung eines Kraftstoffinjektors gemäß der Erfindung.
Further advantages and features of the present invention emerge from the following exemplary description of a preferred embodiment.
  • Figure 1 shows a fuel injector according to the prior art.
  • Figure 2 Figure 3 shows a fuel injector according to an embodiment of the invention.
  • Figure 3 shows a fuel injector according to an embodiment not belonging to the invention.
  • Figures 4A and 4B show embodiments of an armature for a fuel injector according to embodiments of the invention.
  • Figure 5 shows a graphical representation of the time curves of coil voltage and armature position when a fuel injector is activated according to the invention.

Es wird darauf hingewiesen, dass die nachfolgend beschriebenen Ausführungsformen lediglich eine beschränkte Auswahl an möglichen Ausführungsvarianten der Erfindung darstellt. Gleiche, gleichartige oder gleich wirkende Elemente sind in den Figuren mit den gleichen Bezugszeichen versehen. In manchen Figuren können einzelne Bezugszeichen zur Verbesserung der Übersichtlichkeit weggelassen sein. Die Figuren und die Größenverhältnisse der in den Figuren dargestellten Elemente untereinander sind nicht als maßstäblich zu betrachten. Vielmehr können einzelne Elemente zur besseren Darstellbarkeit und/oder für eine bessere Verständlichkeit übertrieben groß dargestellt sein.It should be noted that the embodiments described below only represent a limited selection of possible embodiment variants of the invention. Identical, identical or identically acting elements are provided with the same reference symbols in the figures. In some figures, individual reference symbols can be omitted to improve clarity. The figures and the proportions of the elements shown in the figures are not to be regarded as being to scale. Rather, individual elements can be shown exaggeratedly large for better illustration and / or for better understanding.

Die Figur 1 zeigt einen Kraftstoffinjektor 1 gemäß dem Stand der Technik. Der bekannte Kraftstoffinjektor 1 mit Leerhub weist, wie eingangs beschrieben, ein Polstück 2, einen beweglichen Anker 3, eine Spule 4, eine Düsennadel 5, eine Feder 6 und ein Spulengehäuse 7 auf. Um Wiederholungen zu vermeiden, wird der bekannte Kraftstoffinjektor 1 an dieser Stelle nicht weiter beschrieben.The Figure 1 shows a fuel injector 1 according to the prior art. The known fuel injector 1 with idle stroke shows how initially described, a pole piece 2, a movable armature 3, a coil 4, a nozzle needle 5, a spring 6 and a coil housing 7. In order to avoid repetition, the known fuel injector 1 is not described further at this point.

Die Figur 2 zeigt einen Kraftstoffinjektor 200 gemäß einer Ausführungsform der Erfindung. Der Kraftstoffinjektor 200 ist grundsätzlich in der gleichen Art und Weise wie der bekannten Kraftstoffinjektor 1 in Figur 1 aufgebaut, unterscheidet sich aber, wie es unten weiter erläutert wird, in mindestens zwei Aspekten von diesem.The Figure 2 shows a fuel injector 200 according to an embodiment of the invention. The fuel injector 200 is basically in the same way as the known fuel injector 1 in FIG Figure 1 but differs from this in at least two aspects, as will be further explained below.

Der Kraftstoffinjektor 200 mit Leerhub weist spezifischer ein Polstück 202, einen entlang Bewegungsachse 205 beweglichen Anker 204, eine Spule 206, einen Permanentmagneten 208, ein Spulengehäuse 210, eine Düsennadel 212 und eine Feder 214 auf. Der Permanentmagnet 208 ist an der Außenseite der Spule 206 im Spulengehäuse 210 angebracht und in einer Richtung magnetisiert, die parallel zu der Bewegungsachse 205 des Ankers 204 ist, so dass ein von der gestrichelten Linie 216 gekennzeichnetes Magnetfeld permanent vorhanden ist. Das Magnetfeld 216 stellt eine Kraft auf den Anker 204 bereit, die in Richtung des Polstückes 202 wirkt, das heißt parallel zu der Bewegungsachse 205. Dies stellt einen ersten Unterschied zum bekannten Kraftstoffinjektor 1 in der Figur 1 dar. Ein weiterer Unterschied besteht darin, dass der Anker 204 zumindest ein elektrisch isolierendes Element aufweist, um Wirbelströme im Anker 204 zu reduzieren. Das zumindest eine elektrisch isolierende Element ist in der Figur 2 nicht gezeigt, wird aber unten in Verbindung mit den Figuren 4A und 4B beschrieben. Des Weiteren kann der Anker aus einem speziellen Material aufgebaut sein, zum Beispiel aus einem weichmagnetischen Kompositmaterial wie Somaloy®, das wenige Wirbelströme erzeugt.More specifically, the fuel injector 200 with idle stroke has a pole piece 202, an armature 204 movable along the axis of movement 205, a coil 206, a permanent magnet 208, a coil housing 210, a nozzle needle 212 and a spring 214. The permanent magnet 208 is attached to the outside of the coil 206 in the coil housing 210 and magnetized in a direction that is parallel to the axis of movement 205 of the armature 204, so that a magnetic field indicated by the dashed line 216 is permanently present. The magnetic field 216 provides a force on the armature 204 which acts in the direction of the pole piece 202, that is, parallel to the axis of movement 205. This represents a first difference to the known fuel injector 1 in FIG Figure 1 Another difference is that the armature 204 has at least one electrically insulating element in order to reduce eddy currents in the armature 204. The at least one electrically insulating element is in the Figure 2 not shown, but will be used in conjunction with the below Figures 4A and 4B described. Furthermore, the armature can be constructed from a special material, for example from a soft magnetic composite material such as Somaloy®, which generates few eddy currents.

Die Reduktion der Wirbelströme führt aufgrund der entsprechend reduzierten Verluste zu einer verbesserten Energieeffizienz, so dass die notwendige Magnetkraft bei geringerer Stromstärke in der Spule 206 erreicht werden kann. Folglich kann der Öffnungsvorgang auch entsprechend schneller abgeschlossen werden. Letzteres wird zusätzlich von dem permanent vorhandenen Magnetfeld 216 unterstützt, da dieses ein Kraftoffset bereitstellt. Falls eine Erhöhung der Schließgeschwindigkeit erwünscht ist, kann die Federkraft der Feder 214 gegenüber der Feder 6 im bekannten Kraftstoffinjektor 1 erhöht werden. Des Weiteren führt das permanent vorhandene Magnetfeld 216 dazu, dass eine Spannung in der Spule 206 induziert wird, wenn Anker 204 und/oder Nadel 212 sich bewegen. Durch Auswertung dieser induzierten Spannung oder des entsprechenden Stromes kann der Zustand des Kraftstoffinjektors 200 in Bezug auf Öffnungs- und Schließvorgang detektiert werden, das heißt, die Position des Ankers 204 kann ermittelt werden. Insbesondere der Öffnungsvorgang lässt sich am besten durch Auswertung des induzierten Stromes detektieren.The reduction in the eddy currents leads to improved energy efficiency due to the correspondingly reduced losses, so that the necessary magnetic force at a lower current strength in the Coil 206 can be reached. As a result, the opening process can also be completed more quickly. The latter is additionally supported by the permanently present magnetic field 216, since this provides a force offset. If an increase in the closing speed is desired, the spring force of the spring 214 can be increased relative to the spring 6 in the known fuel injector 1. Furthermore, the permanently present magnetic field 216 has the result that a voltage is induced in the coil 206 when the armature 204 and / or the needle 212 move. By evaluating this induced voltage or the corresponding current, the state of the fuel injector 200 with regard to the opening and closing process can be detected, that is to say the position of the armature 204 can be determined. In particular, the opening process can best be detected by evaluating the induced current.

Die Figur 3 zeigt einen Kraftstoffinjektor 300 gemäß einer nicht zur Erfindung gehörenden Ausführungsform. Der Kraftstoffinjektor 300 unterscheidet sich von dem in der Figur 2 gezeigten und oben beschriebenen Kraftstoffinjektor 200 darin, dass der Permanentmagnet 308 nicht an der Außenseite sondern an der Oberseite der Spule 306 angebracht ist. Der Permanentmagnet 308 ist in einer Richtung magnetisiert, die senkrecht zu der Bewegungsachse 305 des Ankers 304 ist, so dass auch in dieser Ausführungsform ein von der gestrichelten Linie 316 gekennzeichnetes Magnetfeld permanent vorhanden ist. In einer weiteren, nicht gezeigten Ausführungsform ist der Permanentmagnet 308 auf der Unterseite der Spule 306 angebracht.The Figure 3 shows a fuel injector 300 according to an embodiment not belonging to the invention. The fuel injector 300 differs from that in FIG Figure 2 fuel injector 200 shown and described above in that the permanent magnet 308 is not attached to the outside but to the top of the coil 306. The permanent magnet 308 is magnetized in a direction which is perpendicular to the movement axis 305 of the armature 304, so that a magnetic field identified by the dashed line 316 is also permanently present in this embodiment. In a further embodiment, not shown, the permanent magnet 308 is attached to the underside of the coil 306.

Die Figuren 4A und 4B zeigen Ausführungen eines Ankers 404a, 404b für einen Kraftstoffinjektor gemäß Ausführungsformen der Erfindung. Spezifischer weist der Anker 404a in der Figur 4A insgesamt acht elektrisch isolierende Elemente 420 auf, die sich relativ zu der Bewegungsachse 405 radial nach außen erstrecken und somit mögliche Wirbelstromwege im Anker 405 effektiv unterbrechen. Die elektrisch isolierende Elemente 420 sind in der Figur 4A als Schlitze im Anker 404a gezeigt, können aber gleichwohl als isolierende Schichten ausgebildet sein. Der Anker kann dabei modular oder geblecht aufgebaut sein. Es können weniger oder mehr als acht Elemente 420 vorgesehen sein. Die Schlitze 420 können leer sein, das heißt mit Luft gefüllt, oder sie können, wie es in der Figur 4B gezeigt ist, ganz oder teilweise mit einem isolierenden und/oder nichtmagnetischen Material 422, zum Beispiel Kunststoff, gefüllt sein, zum Beispiel um die hydraulischen Eigenschaften des Ankers 404b zu beeinflussen. Der Anker 404a als 404b kann aus einem Material (zum Beispiel einem weichmagnetischen Kompositmaterial wie Somaloy®) hergestellt sein, das die Eigenschaft aufweist, wenige Wirbelströme zu erzeugen.The Figures 4A and 4B show embodiments of an armature 404a, 404b for a fuel injector according to embodiments of the invention. More specifically, the anchor 404a in FIG Figure 4A a total of eight electrically insulating elements 420 which extend radially outward relative to the movement axis 405 and thus effectively interrupt possible eddy current paths in the armature 405. The electrically insulating elements 420 are shown in FIG Figure 4A shown as slots in armature 404a, but can nonetheless be designed as insulating layers. The anchor can be modular or laminated. There may be fewer or more than eight elements 420. The slots 420 can be empty, i.e. filled with air, or they can, as shown in FIG Figure 4B is shown, be completely or partially filled with an insulating and / or non-magnetic material 422, for example plastic, for example in order to influence the hydraulic properties of the armature 404b. The armature 404a as 404b can be made of a material (for example a soft magnetic composite material such as Somaloy®) which has the property of generating few eddy currents.

In den oben mit Bezug auf die Figuren 2 und 3 beschriebenen Kraftstoffinjektoren 200 und 300 können des Weiteren elektrisch isolierende Elemente im Polstück 202, 302 vorgesehen sein, um Wirbelströme auch im Polstück 202, 302 zu reduzieren und somit die Effizienz und Dynamik weiter zu verbessern. Des Weiteren können auch elektrisch isolierende Elemente im Spulengehäuse 210, 310 vorgesehen sein, um Wirbelströme im Spulengehäuse 210, 310 zu reduzieren und somit die Effizienz und Dynamik noch weiter zu verbessern. Solche isolierende Elemente können zum Beispiel in gleicher Art und Weis wie die soeben mit Bezug auf die Figuren 4A und 4B beschriebenen Elementen 420 aufgebaut sein. Des Weiteren können auch das Polstück 202, 302 und das Spulengehäuse 210, 310 ein wirbelstromreduzierendes Material aufweisen, wie zum Beispiel Somaloy®.In the above with reference to the Figures 2 and 3 The fuel injectors 200 and 300 described above can furthermore be provided in the pole piece 202, 302 in order to reduce eddy currents also in the pole piece 202, 302 and thus to further improve the efficiency and dynamics. Furthermore, electrically insulating elements can also be provided in the coil housing 210, 310 in order to reduce eddy currents in the coil housing 210, 310 and thus to further improve the efficiency and dynamics. Such insulating elements can, for example, be used in the same manner as those just referred to in relation to the Figures 4A and 4B elements 420 described be constructed. Furthermore, the pole piece 202, 302 and the coil housing 210, 310 can also have an eddy current-reducing material, such as Somaloy®.

Die Figur 5 zeigt eine grafische Darstellung 500 der zeitlichen Verläufe der in der Spule 206, 306 induzierten Spannung 502 und der Ankerposition 504 bei während eines Einspritzvorgangs eines Kraftstoffinjektors gemäß der Erfindung, zum Beispiel des Kraftstoffinjektors 200 oder 300. Die Ansteuerung wird mit einem Spannungspuls (Boostspannung) eingeleitet, der schnell einen Betriebsstrom durch die Spule 206, 306 aufbaut, welcher die Spule 206, 306 magnetisiert, so dass der Anker 204, 304 aus einer Schließstellung in Richtung des Polstücks 202, 302 zu einer Öffnungsstellung hin bewegt wird .Nach überwinden des Leerhubs wird die Düsennadel 212, 312 vom Anker 204, 304 mitgenommen und ebenfalls in Richtung des Polstücks 202, 302 bewegt. Nach Erreichen der Öffnungsstellung - im vorliegenden Ausführungsbeispiel bei ca. t=0,25ms - wird der Anker 204, 306 durch eine gegenüber der Boostspannung reduzierte Haltespannung im Anschlag mit dem Polstück 202, 302 gehalten. In diesem Zustand sinkt die in Spule 206, 306 induzierte Spannung ab und verschwindet, wenn sich weder der Betriebsstrom ändert noch der Anker 204, 304 bewegt.The Figure 5 shows a graphic illustration 500 of the time curves of the voltage 502 induced in the coil 206, 306 and the armature position 504 during an injection process of a fuel injector according to the invention, for example the fuel injector 200 or 300. The control is initiated with a voltage pulse (boost voltage) , which quickly builds up an operating current through the coil 206, 306, which magnetizes the coil 206, 306, so that the armature 204, 304 is moved from a closed position in the direction of the pole piece 202, 302 to an open position. After overcoming the idle stroke is the nozzle needle 212, 312 taken from the armature 204, 304 and also moved in the direction of the pole piece 202, 302. After the opening position has been reached - in the present exemplary embodiment at approx. T = 0.25 ms - the armature 204, 306 is held against the pole piece 202, 302 by a holding voltage which is reduced compared to the boost voltage. In this state, the voltage induced in coil 206, 306 drops and disappears if neither the operating current changes nor the armature 204, 304 moves.

Der Schließvorgang wird beispielsweise durch Abschalten der Haltespannung eingeleitet - im vorliegenden Ausführungsbeispiel zum Zeitpunkt t=0,5ms -. Der dadurch bedingte Abbau des elektromagnetischen Feldes erzeugt beispielsweise den in Fig. 5 zwischen t=0,5 ms und t=0,6ms sichtbaren rechteckförmigen Verlauf der Induktionsspannung in der Spule 206, 306. Nach zumindest teilweisem Abbau des elektromagnetischen Felds bewegen sich der Anker und die Düsennadel bewegen sich - vorliegend ab t=0,6ms - getrieben von der Federkraft der Feder 214, 314 wieder weg vom Polstück 202, 302. Aufgrund dieser Bewegung und des Permanentmagneten wird trotz der mittels der Schlitze 420 im Anker 204, 304 stark reduzierten Wirbelström eine im Kurvenabschnitt 506 deutlich erkennbare Spannung induziert, die zum Detektieren vom Anfang und Ende der Schließbewegung in an sich bekannter Art und Weise verwendet werden kann. Obwohl dies in der Figur 5 nicht deutlich erkennbar ist, wird eine erfassbare Spannung und entsprechender Strom auch während der Öffnungsbewegung induziert, so dass auch der Anfang und das Ende dieser Bewegung detektiert werden können, am besten durch Auswertung des Stromes.The closing process is initiated, for example, by switching off the holding voltage - in the present exemplary embodiment at time t = 0.5 ms. The resulting reduction in the electromagnetic field generates, for example, the in Fig. 5 between t = 0.5 ms and t = 0.6 ms visible rectangular shape of the induction voltage in the coil 206, 306. After at least a partial reduction of the electromagnetic field, the armature and the nozzle needle move - in the present case from t = 0.6 ms - driven by the spring force of the spring 214, 314 again away from the pole piece 202, 302. Due to this movement and the permanent magnet, despite the eddy currents, which are greatly reduced by means of the slots 420 in the armature 204, 304, a clearly recognizable voltage is induced in the curve section 506 which is necessary for detection can be used from the beginning and end of the closing movement in a manner known per se. Although this is in the Figure 5 is not clearly recognizable, a detectable voltage and corresponding current is also induced during the opening movement, so that the beginning and the end of this movement can also be detected, ideally by evaluating the current.

Insgesamt stellt die vorliegende Erfindung einen verbesserten Kraftstoffinjektor bereit, der gegenüber bekannten Kraftstoffinjektoren eine verbesserte Energieeffizienz sowie verbesserte Eigenschaften in Bezug auf Bewegungsdetektion aufweist.Overall, the present invention provides an improved fuel injector which, compared to known fuel injectors, has improved energy efficiency and improved properties with regard to movement detection.

Claims (10)

  1. Fuel injector (200; 300) for an internal combustion engine of a motor vehicle, the fuel injector (200; 300) having
    - a pole piece (202; 302),
    - an armature (204; 304; 404a; 404b) which can be moved along a movement axis,
    - a coil (206; 306) and
    - a permanent magnet (208; 308), characterized in that the movable armature (204; 304; 404a; 404b) has at least one electrically insulating element which is designed to reduce eddy currents in the armature (204; 304; 404a; 404b), and wherein the permanent magnet (208; 308) is fitted such that it generates a magnetic field (316) which produces a force which acts on the armature in the direction of the pole piece (202; 302),
    wherein the permanent magnet (208; 308) is subsequently fitted radially toward the outside of the coil (206; 306) relative to the movement axis of the armature (204; 304; 404a; 404b) and is magnetized in a direction which is parallel to the movement axis of the armature (204; 304; 404a; 404b).
  2. Fuel injector (200; 300) according to Claim 1, wherein the at least one electrically insulating element has a slot (420) which is filled with air and/or with an electrically insulating material and/or with a non-magnetic material.
  3. Fuel injector (200; 300) according to Claim 1, wherein the armature (204; 304; 404a; 404b) is formed from two or more sheet metal parts which are substantially insulated from one another by the at least one electrically insulating element.
  4. Fuel injector (200; 300) according to one of the preceding claims, wherein the at least one electrically insulating element extends radially relative to the movement axis of the armature (204; 304; 404a; 404b).
  5. Fuel injector (200; 300) according to one of the preceding claims, further having a coil housing (210; 310) which contains the permanent magnet (208; 308).
  6. Fuel injector (200; 300) according to one of the preceding claims, wherein the pole piece (202; 302) and/or the coil housing (210; 310) have/has at least one electrically insulating element which is designed to reduce eddy currents in the pole piece (202; 302) or coil housing (210; 310).
  7. Fuel injector (200; 300) according to one of the preceding claims, wherein the armature (204; 304; 404a; 404b) and/or the pole piece (202; 302) and/or the coil housing (210; 310) comprise/comprises a material which generates few eddy currents.
  8. Method for ascertaining a position (504) of a movable armature (204; 304; 404a; 404b) in a fuel injector (200; 300) according to one of Claims 1 to 7 for an internal combustion engine of a motor vehicle,
    wherein the method comprises the following steps:
    - detecting the time profile of the electrical voltage across and/or the electric current intensity through the coil (206; 306),
    - analysing the detected time profile of the electrical voltage and/or of the detected time profile of the current intensity in order to identify an induced voltage (502) and/or an induced current which are/is induced, in particular, on account of the armature movement and the magnetic field (216; 316), which is generated by the permanent magnet (208; 308), in the coil (206, 306), and
    - determining the armature position based on the induced voltage (502) and/or the induced current.
  9. Method according to Claim 8, comprising the further steps of:
    - supplying an operating current to the coil (206; 306) in order to move the armature (204; 304; 404a; 404b) from a closed position, in the direction of the pole piece (202; 302), to an open position for the purpose of injecting fuel,
    - disconnecting the operating current in order to initiate a closing process during which the armature (204; 304; 404a, 404b) returns from the open position to the closed position, wherein the time profile of the electrical voltage across and/or the electric current intensity through the coil (206; 306) is detected during the closing process.
  10. Engine controller for a vehicle, which engine controller is designed to carry out a method according to Claim 8 or 9.
EP16734726.9A 2015-09-11 2016-07-06 Fuel injector, method for ascertaining the position of a movable armature, and motor control Active EP3347590B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015217362.3A DE102015217362A1 (en) 2015-09-11 2015-09-11 Fuel injector, method for determining the position of a movable armature and engine control
PCT/EP2016/066042 WO2017041925A1 (en) 2015-09-11 2016-07-06 Fuel injector, method for ascertaining the position of a movable armature, and motor control

Publications (2)

Publication Number Publication Date
EP3347590A1 EP3347590A1 (en) 2018-07-18
EP3347590B1 true EP3347590B1 (en) 2020-11-11

Family

ID=56345174

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16734726.9A Active EP3347590B1 (en) 2015-09-11 2016-07-06 Fuel injector, method for ascertaining the position of a movable armature, and motor control

Country Status (6)

Country Link
US (1) US10920728B2 (en)
EP (1) EP3347590B1 (en)
KR (1) KR102111221B1 (en)
CN (1) CN108026883A (en)
DE (1) DE102015217362A1 (en)
WO (1) WO2017041925A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3084772B1 (en) * 2018-08-01 2021-06-18 Schneider Electric Ind Sas ELECTROMAGNETIC ACTUATOR AND ELECTRICAL SWITCHING APPARATUS INCLUDING THIS ACTUATOR
CN109378151B (en) * 2018-11-28 2021-08-06 四川航天烽火伺服控制技术有限公司 Miniature self-locking electromagnet
JP7435430B2 (en) 2020-12-14 2024-02-21 株式会社デンソー injection control device
KR102554863B1 (en) * 2020-12-15 2023-07-12 주식회사 제이시스메디칼 Needle free injector using a magnetic field
KR102619606B1 (en) * 2021-09-30 2023-12-28 주식회사 현대케피코 Fuel injection valve and operating method for therefor
CN114458503B (en) * 2022-03-09 2022-09-02 哈尔滨工程大学 High-response high-speed electromagnetic valve with multiple permanent magnet-electromagnetic coupling magnetic circuits

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5127585A (en) * 1989-02-25 1992-07-07 Siemens Aktiengesellschaft Electromaagnetic high-pressure injection valve

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2375461A1 (en) * 1976-12-22 1978-07-21 Souriau & Cie INJECTOR NEEDLE LIFT SENSOR
DE3843138A1 (en) 1988-12-22 1990-06-28 Bosch Gmbh Robert METHOD OF CONTROLLING AND DETECTING THE MOVEMENT OF AN ARMATURE OF AN ELECTROMAGNETIC SWITCHING DEVICE
JP4342751B2 (en) * 2001-07-23 2009-10-14 株式会社日本自動車部品総合研究所 Fuel injection valve
EP2064472B1 (en) 2006-09-07 2016-08-31 Fluid Automation Systems S.A. Bistable valve
CN101016874B (en) * 2007-03-13 2011-08-03 中国计量学院 Fuel-saving injection apparatus used in vehicles
EP2119990A1 (en) * 2008-05-16 2009-11-18 Siemens Aktiengesellschaft Furnace assembly
DE102008001822A1 (en) * 2008-05-16 2009-11-19 Robert Bosch Gmbh Solenoid valve with anchor slot
DE102009045307A1 (en) * 2009-10-02 2011-04-07 Robert Bosch Gmbh Method and control device for operating a valve
DE102009047525A1 (en) 2009-12-04 2011-06-09 Robert Bosch Gmbh Electromagnetically actuated valve
DE102010029595A1 (en) 2010-06-01 2011-12-01 Robert Bosch Gmbh Magnetic assembly and injection valve with a magnetic assembly
EP2455603A1 (en) * 2010-11-17 2012-05-23 Continental Automotive GmbH Valve assembly for an injection valve and injection valve
GB201207289D0 (en) * 2011-06-14 2012-06-06 Sentec Ltd Flux switch actuator
JP5633479B2 (en) * 2011-06-30 2014-12-03 株式会社デンソー Control device for internal combustion engine
JP5825001B2 (en) * 2011-09-16 2015-12-02 ブラザー工業株式会社 Printing system, printer, relay device, printer program, and printing method
JP2014235916A (en) * 2013-06-03 2014-12-15 パナソニック株式会社 Electromagnetic drive unit and electromagnetic relay using electromagnetic drive unit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5127585A (en) * 1989-02-25 1992-07-07 Siemens Aktiengesellschaft Electromaagnetic high-pressure injection valve

Also Published As

Publication number Publication date
KR102111221B1 (en) 2020-05-14
CN108026883A (en) 2018-05-11
US10920728B2 (en) 2021-02-16
KR20180041160A (en) 2018-04-23
EP3347590A1 (en) 2018-07-18
WO2017041925A1 (en) 2017-03-16
DE102015217362A1 (en) 2017-03-16
US20180195482A1 (en) 2018-07-12

Similar Documents

Publication Publication Date Title
EP3347590B1 (en) Fuel injector, method for ascertaining the position of a movable armature, and motor control
DE19518056B4 (en) Device for controlling the armature movement of an electromagnetic switching device and method for driving
DE60128021T2 (en) Position measuring device in an electromagnetic lift valve and method for fixing the same
DE102014200365A1 (en) Sensor arrangement and magnetization device and use of the sensor arrangement in a motor vehicle control unit
DE102010056435A1 (en) Solenoid-actuated device and method therefor
EP1925814A1 (en) Fuel injector with a measuring device
WO1998038656A1 (en) Motion recognition process, in particular for regulating the impact speed of an armature on an electromagnetic actuator, and actuator for carrying out the process
DE102011016895B4 (en) Method for determining the state of wear of an electromagnetic actuator during its operation
DE102010041880A1 (en) Determining the ballistic trajectory of an electromagnetically driven armature of a Spulenaktuators
DE102006058073A1 (en) Magnetic valve, for a motor fuel injector, has a coil to energize a magnet to open/close the valve unit at the valve seat
DE102015206739B4 (en) Determination of a stroke of a solenoid valve
DE102012108583B4 (en) electromagnet
DE102006059375A1 (en) Electromagnetic actuator, particularly for operating gas exchange valve or injection device, has component, which is made of magnetizing material, and component is provided with multiple holes
DE102013102276B4 (en) twist protection
EP1774165B1 (en) Fuel injection valve
EP2496824B1 (en) Control valve assembly
DE102017204855B3 (en) Method for detecting a change in a working path of a magnet armature of a fuel injection valve forming at least part of a total air gap
DE102017204849B3 (en) Method for detecting a change in a working path of a magnet armature of a fuel injection valve forming at least part of a total air gap
DE102019121538A1 (en) Seat plate for an injector and method for producing such a seat plate
DE102016203645A1 (en) Method for controlling a solenoid valve
DE102011117688B3 (en) Electrical lifting magnet, has casing provided with conical disk and yoke disk that are connected with each other through projection welding process, where disks are aligned with each other by component through welding apparatus
DE102015209946A1 (en) electromagnet
DE102012218325A1 (en) Actuator, in particular for the injection of a fuel into a combustion chamber of an internal combustion engine
DE102013207162B4 (en) Method and data processing device for reducing an inrush current for a valve of a high-pressure pump
EP2201238B1 (en) Leakage flux reduced armature

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180411

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200107

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: VITESCO TECHNOLOGIES GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200713

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1333709

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016011678

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20201111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210212

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210311

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210311

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210211

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016011678

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502016011678

Country of ref document: DE

Owner name: VITESCO TECHNOLOGIES GMBH, DE

Free format text: FORMER OWNER: VITESCO TECHNOLOGIES GMBH, 30165 HANNOVER, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210706

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210706

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210311

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210706

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210706

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1333709

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210706

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210706

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160706

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230724

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230731

Year of fee payment: 8