EP3346219B1 - Wärmetauschergehäuse - Google Patents

Wärmetauschergehäuse Download PDF

Info

Publication number
EP3346219B1
EP3346219B1 EP17209199.3A EP17209199A EP3346219B1 EP 3346219 B1 EP3346219 B1 EP 3346219B1 EP 17209199 A EP17209199 A EP 17209199A EP 3346219 B1 EP3346219 B1 EP 3346219B1
Authority
EP
European Patent Office
Prior art keywords
housing
area
circumferential wall
heat transfer
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17209199.3A
Other languages
English (en)
French (fr)
Other versions
EP3346219A1 (de
Inventor
Andreas Collmer
Uwe Grotstollen
Axel Kouril
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eberspaecher Climate Control Systems GmbH and Co KG
Original Assignee
Eberspaecher Climate Control Systems GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eberspaecher Climate Control Systems GmbH and Co KG filed Critical Eberspaecher Climate Control Systems GmbH and Co KG
Publication of EP3346219A1 publication Critical patent/EP3346219A1/de
Application granted granted Critical
Publication of EP3346219B1 publication Critical patent/EP3346219B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/12Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically the surrounding tube being closed at one end, e.g. return type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H3/00Air heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H3/00Air heaters
    • F24H3/02Air heaters with forced circulation
    • F24H3/04Air heaters with forced circulation the air being in direct contact with the heating medium, e.g. electric heating element
    • F24H3/0405Air heaters with forced circulation the air being in direct contact with the heating medium, e.g. electric heating element using electric energy supply, e.g. the heating medium being a resistive element; Heating by direct contact, i.e. with resistive elements, electrodes and fins being bonded together without additional element in-between
    • F24H3/0429For vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/14Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally
    • F28F1/16Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally the means being integral with the element, e.g. formed by extrusion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/001Casings in the form of plate-like arrangements; Frames enclosing a heat exchange core
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • F28F2215/10Secondary fins, e.g. projections or recesses on main fins

Definitions

  • the present invention relates to a heat exchanger housing, in particular for a fuel-operated vehicle heater for heating air, comprising a circumferential wall region which is elongated radially in the direction of a housing longitudinal axis, surrounds a housing interior radially outwardly, adjoins the circumferential wall region in a first axial end region of the peripheral wall region and the housing interior in the axial direction final bottom wall portion and a subsequent in a second axial end portion of the peripheral wall portion of the peripheral wall region combustion module carrier area.
  • FIG. 7 shown fuel-powered vehicle heater 10 for heating air to be introduced into a vehicle interior known.
  • This vehicle heater 10 comprises a heat exchanger housing 12 with a peripheral wall region 14 elongated in the direction of a housing longitudinal axis L.
  • a housing interior 16 surrounded by the circumferential wall region 14 is axially closed in the direction of the housing longitudinal axis L by a bottom wall region 18 adjoining the peripheral wall region 14.
  • first heat transfer ribs 22 extending further into the bottom wall region 18 are provided.
  • At a side remote from the housing interior 16 outside 24 of the peripheral wall portion 14 are also extending into the bottom wall portion 18 continuing second heat transfer ribs 26 are provided.
  • a combustion chamber subassembly 30 with a combustion chamber housing 32 and a flame tube 34 is carried on a combustion subrack carrier region 28, which is likewise axially adjacent to the circumferential wall region 14.
  • a combustion air blower 40 designed here as a side channel blower, in the direction of the combustion chamber housing 32.
  • the combustion air blower 40 is also supported on the combustion rack support portion 28 of the heat exchanger housing 12.
  • the combustion air blower 40 includes an electric motor 42 which drives both a conveying wheel 43 serving to convey the combustion air and a conveying gear 44 serving to convey the air to be heated.
  • An outer casing 46 delimits the volume region to be flowed through by the air to be heated and has a heating air inlet opening 48 near the feed wheel 44.
  • the air conveyed by the conveying wheel 44 flows along the outer housing 46 in the direction of the heat exchanger housing 12 and flows around the second heat transfer ribs 26 before it exits the outer housing 46 at a hot air outlet opening 50 lying near the bottom wall area 18.
  • the combustion air conveyed by the combustion air blower 40 into the combustion chamber housing 32 is burnt there with fuel evaporated from the porous evaporator medium 36.
  • the combustion exhaust gases flow along the flame tube 34 and enter the inner space 16. There, the combustion exhaust gases flow back along the first heat transfer ribs 16 in the direction of an exhaust gas outlet opening 54 formed in an exhaust nozzle 52.
  • the heat exchanger housing 12 is provided with its peripheral wall portion 14, its bottom wall portion 18 and its combustion subrack support portion 28 as a single component integrally comprising these portions.
  • This component constructed of a complex structure of metal material, is manufactured in a casting process to provide all structural features.
  • a heat exchanger housing according to the preamble of claim 1 is known from DE 36 39 222 C1 known.
  • the heat exchanger housing according to the invention comprises at least three housing parts, wherein a first housing part substantially provides the peripheral wall area, a second housing part substantially provides the bottom wall area, and a third housing part substantially provides the combustion subrack area.
  • the inventively constructed heat exchanger housing is not formed with its three essential components circumferential wall area, bottom wall area and combustion module carrier area as a one-piece, integral component, but is divided into several separate housing parts. This makes it possible to provide each of these separate housing parts with the comparatively complex structure to be provided for this, without having to pay attention in the manufacturing process to structural features of the other housing parts.
  • first heat transfer ribs extending in the direction of the housing longitudinal axis are provided on an inner side of the circumferential wall region facing the housing interior.
  • second heat transfer ribs extending in the direction of the housing longitudinal axis may be provided on an outer side of the peripheral wall region facing away from the housing interior, wherein at least a part of, preferably all first heat transfer ribs and / or at least a part of, preferably all second heat transfer ribs in the direction of the housing longitudinal axis in the Substantially constant cross-sectional geometry, in particular rib height or rib thickness, have.
  • the circumferential wall region has a substantially constant radial dimension and / or wall thickness at least in the longitudinal extension region of the heat transfer ribs provided thereon in the direction of the housing longitudinal axis.
  • the circumferential wall region has a connection surface which is oriented radially inwards or radially outwards and runs around the longitudinal axis of the housing without interruption.
  • second heat transfer ribs be provided on the outside of the circumferential wall area in the radially outward oriented connection surface in the axial extension region of the connection surface, or that in the radially outward oriented connection surface in the axial extension region of the connection surface the inside of the personallyswandungs Symposiums first heat transfer ribs are provided.
  • the first housing part is preferably an extrusion component.
  • the first housing part that is substantially the peripheral wall area, with the structural features to be provided thereto, that is, e.g. the heat transfer ribs on the inside or on the outside and the above-given dimensioning specifications provide.
  • the structure as an extruded component also leads to a higher component quality, since fewer pores or voids are formed in the building material compared to a cast component, which is particularly important in view of the gas tightness required in a heat exchanger housing is essential.
  • the second housing part comprises a preferably substantially flat plate providing the bottom wall area.
  • the circumferential wall area with the heat transfer ribs provided thereon can be used particularly efficiently for heat transfer, in order to further simplify the overall construction it can be provided that on one of the inside of the housing facing the housing interior and / or on an outside of the plate facing away from the housing interior no heat transfer ribs are provided.
  • the plate may be connected in a radially outer edge region of the interior of the housing facing the inside with a substantially oriented in the direction of the housing longitudinal axis end face of the peripheral wall region.
  • the second housing part may comprise a substantially dome-like wall providing the bottom wall area.
  • heat transfer ribs be provided on an inner side of the wall facing the housing interior, and / or heat transfer ribs be provided on an outer side of the wall facing away from the housing interior.
  • connection surface which is oriented radially outward or radially inward, preferably substantially uninterrupted around the longitudinal axis of the housing.
  • the second housing part generally has no geometry that can be realized in an extrusion process, it is proposed that this is a punching or cutting component or a cast component.
  • the third housing part has for connection to the first housing part in a connecting region to be connected to the first housing part to a radially outside or radially inward oriented, uninterrupted around the housing longitudinal axis circumferential connection surface.
  • the third housing part has in its connection region a substantially circumferential wall axially extending peripheral wall, and that are provided on an inner side of the peripheral wall of the connecting portion heat transfer ribs, wherein on the inside of the Circumferential wall of the connecting portion provided heat transfer ribs on the inside of the designedswandungs Symposiums provided first heat transfer ribs continue in the direction of the housing longitudinal axis.
  • an exhaust gas outlet opening penetrating the peripheral wall can be provided in the connection region.
  • the third housing part may comprise a mounting area adjoining the connecting area in a radial widening area with a circumferential wall offset at least in regions radially outward relative to the peripheral wall of the connecting area.
  • the third housing part has a structure which can generally not be produced in an extrusion process, it is further proposed that this is a cast component.
  • the first housing part is connected to the second housing part and / or the third housing part by beam welding, preferably electron beam welding. Also other methods of making a material bond, such as laser welding or soldering, may be used.
  • the invention further relates to a vehicle heater comprising a heat exchanger housing constructed according to the invention, wherein on the Combustion board carrier area a combustion air blower and / or a combustion chamber assembly is supported.
  • a heat exchanger housing can be used in a vehicle heater for heating air, such as in Fig. 7 is shown.
  • a heat exchanger housing constructed according to the invention components or regions which correspond to components or regions already described above with respect to the prior art are designated by the same reference numeral.
  • the Fig. 1 to 4 show a first embodiment of a heat exchanger housing 12.
  • This heat exchanger housing 12 is constructed with three housing parts 56, 58, 60. These three housing parts 56, 58, 60 are components manufactured separately from one another, which are connected to one another to construct the heat exchanger housing 12.
  • the first housing part 56 essentially comprises the circumferential wall region 14 elongated in the direction of the housing longitudinal axis L, which generally has a substantially cylindrical structure, ie has substantially the same radial dimensioning and the same wall thickness in all longitudinal regions with respect to the housing longitudinal axis L.
  • the first housing part 56 is produced in an extrusion process as an extruded component, so that in particular its extension length in the direction of the housing longitudinal axis L in a simple manner to different sizes of a heat exchanger housing 12 to be built can be adjusted.
  • Elongated first heat transfer ribs 22 are provided in the direction of the housing longitudinal axis L on an inner side 20 of the inner space 16, which can be traversed by combustion exhaust gases, and terminate radially outwardly.
  • On an outer side facing away from the housing interior 16 outside 24 are also in the direction of the housing longitudinal axis L.
  • elongated second heat transfer ribs 26 are provided. Both the first heat transfer ribs 22, and the second heat transfer ribs 26 have in the direction of the housing longitudinal axis L a substantially constant rib height H, which, especially the Fig. 4 illustrated, provided in various circumferential areas ribs 22 and 26 may have mutually different rib heights and different rib structures. Since the ribs 22, 26 in the housing longitudinal direction L each have a substantially constant cross-sectional profile, these ribs 22, 26 can be provided in a simple manner in an extrusion process.
  • the housing interior 16 is closed off by the second housing part 58 provided with a substantially flat plate 64 in this exemplary embodiment.
  • the second housing part 58 which is provided, for example, as a punched component made of sheet metal material, can rest in a radially outer edge region 66 of its inner side 68 facing the housing interior 16 against an annular end face 70 of the peripheral wall region 14 oriented substantially in the direction of the housing longitudinal axis L and in this region with the circumferential wall region 14 material fit, preferably by beam welding, such. B. electron beam welding, be connected.
  • the bottom wall portion 18 forming the second housing part 58 in this embodiment no complex structural features, such as. B. provided thereon heat transfer ribs, has, it can be produced in a particularly simple and cost-effective manner. Further, the maximum overall length of the heat exchanger housing 10 is kept compact at the maximum possible axial length of the peripheral wall portion 14, so the first housing part 56.
  • the first housing part 56 is connected to the third housing part 60 forming the combustion subrack region 28.
  • the third housing part 60 has a connecting region 74 with a circumferential wall 76, which is dimensioned and substantially so is designed so that it continues the peripheral wall portion 14 axially.
  • the circumferential wall region 14 has, in this second axial end region 72, a connection surface 78 which is oriented radially outwards and which surrounds the housing longitudinal axis L without interruption. This can be provided, for example, by removing a length section of the second heat transfer ribs 26 and also the radially outer region of the circumferential wall region 14 in this longitudinal region of the first housing part 56 by material-removing machining.
  • connection surface 80 that revolves circumferentially around the housing longitudinal axis L and which radially adjoins the connecting surface 78 at the second axial end region 72 of the circumferential wall 14.
  • the two housing parts 56, 60 material fit, preferably by beam welding, such. B. electron beam welding, connected.
  • beam welding such. B. electron beam welding
  • heat transfer ribs 84 are provided on an inner side 82 of the circumferential wall 76 facing the housing interior 16.
  • the number of these heat transfer fins 84 corresponds to the number of the first heat transfer fins 72 on the inner side 20 of the peripheral wall 14, and the or at least part of the heat transfer fins 84 on the peripheral wall 76 is positioned such that these heat transfer fins 84 have heat transfer fins 22 on the inner side 20 of the peripheral wall region 14 continue in the direction of the housing longitudinal axis L.
  • the heat transfer fins 84 and the first heat transfer fins 22 have substantially identical cross-sectional profiles to one another, at least in their adjoining end regions, thus a substantially step-free transition between the first housing part 56 and the third Housing part 60 ensures, so that no impairment of the exhaust gas flow is formed in this adjoining area.
  • the third housing part 60 further has a mounting region 86 with a circumferential wall 88, which is offset radially outward with respect to the circumferential wall 76 of the connection region 74 and adjoins it in a step-like radial expansion region 90.
  • a radially outwardly leading exhaust nozzle 52 is further provided in the region of the connecting region 74 and the peripheral wall 76 with an exhaust outlet opening 54 formed therein and open in the direction of the housing interior 16. Since the third housing part 60 has a comparatively complex structure, in particular with the exhaust nozzle 52 to be provided, which can not be produced with all its structural features in an extrusion process, this third housing part 60 is preferably provided as a cast component in a casting process. wherein, for example, for the third housing part 60, the same building material, as can be used for the first housing part 56, for example, aluminum or an aluminum-containing alloy. Also, the second housing part 58 may be constructed with the same construction material as the first housing part 56, and the third housing part 58th
  • the in the Fig. 5 and 6 illustrated embodiment of a heat exchanger housing 10 differs from the above with reference to the Fig. 1 to 4 described embodiment is substantially in the construction of the second housing part 58.
  • This is constructed with a substantially dome-like and with respect to the housing interior 16 outwardly curved wall 92.
  • this wall 92 has a radially inwardly oriented and around the housing longitudinal axis L interruption-free circumferential connection surface 96.
  • a radially outwardly oriented connection surface 98 is provided in association with this radially inwardly oriented connection surface 96, similar to the second axial end region 72.
  • the two housing parts 56, 58 material fit, preferably by beam welding, such. B. electron beam welding, gas-tight connected over the entire circumference.
  • heat transfer ribs 102 are provided in association with the first heat transfer ribs 22 on the inner side 20 of the peripheral wall region 14. At least a portion of these, preferably all heat transfer fins 102 are positioned and / or dimensioned such that these first heat transfer fins 22 continue substantially continuously on the inner side 20 of the peripheral wall region 14. Thus, even in this area, in which the two housing parts 56, 58 adjoin one another, the exhaust gas flow in the housing interior 16 at the transition from the heat transfer ribs 102 to the first heat transfer ribs 22 is substantially not affected.
  • heat transfer ribs 106 are provided on a side facing away from the housing interior 16 outside 104 of the wall 92 of the second housing part 58. These are preferably arranged or dimensioned such that at least a part of, preferably all heat transfer ribs 106 continue second heat transfer ribs 26 on the outer side 24 of the peripheral wall region 14 substantially continuously. Thus, the air flow on the outside of the heat exchanger housing 10 in the adjoining region of the two housing parts 56, 58 to each other is not substantially affected.
  • a gap-like gap may be present, which is essentially formed by the length region in which the two connection surfaces 96, 98 overlap one another.
  • the heat transfer ribs 106 provided on the outside 104 of the wall 92 could be guided in the direction of the housing longitudinal axis L into that region of the wall 92 in which the radially inwardly oriented connection surface 96 is provided.
  • second housing part 58 has a comparatively complex, not in an extrusion process geometry, this is also preferably produced as a cast component in a casting process, in which case the same construction material as for the first housing part 56 and the third housing part 60 can be used.
  • the first housing part is such that it has a substantially constant over its entire axial length cross-sectional geometry, this first housing part can be made in an extrusion process, which leads to a better material quality and avoids the introduction of a Entformungsschräge. Only in those axial end regions, where, due to the structure of a respectively adjacent housing part, a radially oriented connection surface is to be provided, is a mechanical or machining post-processing of such an extrusion component necessary in order to produce the area required for the production of the welded connection.
  • the first housing part can be provided as an extruded component, this can be adapted in a simple manner to different dimensions of a heat exchanger housing to be constructed by appropriately sized lengths are separated from a strand produced by the extrusion process. Since a Entformungsschräge does not exist, has the peripheral wall area in all axial regions at the same radial distance from the flame tube, which favors the exhaust gas flow and improves the heat transfer capacity.
  • the other housing parts to be connected with such a first housing part which, if required by the complex geometry of these components, for example as die-cast components, can be adapted to the structure of a respective heat exchanger housing to be fitted, so that ultimately a modular housing System can be provided, in which for different heater types, for example, different third housing parts can be combined with correspondingly shaped combustion subrack carrier areas with different sized first housing parts or differently designed second housing parts.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Air-Conditioning For Vehicles (AREA)

Description

  • Die vorliegende Erfindung betrifft ein Wärmetauschergehäuse, insbesondere für ein brennstoffbetriebenes Fahrzeugheizgerät zur Erwärmung von Luft, umfassend einen in Richtung einer Gehäuselängsachse langgestreckten, einen Gehäuseinnenraum radial außen umgebenden Umfangswandungsbereich, einen in einem ersten axialen Endbereich des Umfangswandungsbereichs an den Umfangswandungsbereich anschließenden und den Gehäuseinnenraum in axialer Richtung abschließenden Bodenwandungsbereich sowie einen in einem zweiten axialen Endbereich des Umfangswandungsbereichs an den Umfangswandungsbereich anschließenden Verbrennungsbaugruppenträgerbereich.
  • Aus der DE 197 34 814 C1 ist ein in Fig. 7 dargestelltes brennstoffbetriebenes Fahrzeugheizgerät 10 zur Erwärmung von in einen Fahrzeuginnenraum einzuleitender Luft bekannt. Dieses Fahrzeugheizgerät 10 umfasst ein Wärmetauschergehäuse 12 mit einem in Richtung einer Gehäuselängsachse L langgestreckten Umfangswandungsbereich 14. Ein von dem Umfangswandungsbereich 14 umgebener Gehäuseinnenraum 16 ist in Richtung der Gehäuselängsachse L von einem an den Umfangswandungsbereich 14 anschließenden Bodenwandungsbereich 18 axial abgeschlossen. An einer dem Gehäuseinnenraum 16 zugewandten Innenseite 20 des Umfangswandungsbereichs 14 sind bis in den Bodenwandungsbereich 18 sich fortsetzende erste Wärmeübertragungsrippen 22 vorgesehen. An einer von dem Gehäuseinnenraum 16 abgewandten Außenseite 24 des Umfangswandungsbereichs 14 sind ebenfalls bis in den Bodenwandungsbereich 18 sich fortsetzende zweite Wärmeübertragungsrippen 26 vorgesehen.
  • An einem ebenfalls an den Umfangswandungsbereich 14 axial anschließenden Verbrennungsbaugruppenträgerbereich 28 ist eine Brennkammerbaugruppe 30 mit einem Brennkammergehäuse 32 und einem Flammrohr 34 getragen. In an einem Bodenbereich des Brennkammergehäuses 32 vorgesehenes poröses Verdampfermedium 36 wird über eine Brennstoffzuführleitung 38 flüssiger Brennstoff eingespeist. Die zur Verbrennung erforderliche Luft wird durch ein Verbrennungsluftgebläse 40, hier ausgebildet als Seitenkanalgebläse, in Richtung zum Brennkammergehäuse 32 gefördert. Das Verbrennungsluftgebläse 40 ist ebenfalls am Verbrennungsbaugruppenträgerbereich 28 des Wärmetauschergehäuses 12 getragen. Das Verbrennungsluftgebläse 40 umfasst einen Elektromotor 42, welcher sowohl ein zum Fördern der Verbrennungsluft dienendes Förderrad 43, als auch ein zum Fördern der zu erwärmenden Luft dienendes Förderrad 44 antreibt. Ein Außengehäuse 46 umgrenzt den von der zu erwärmenden Luft zu durchströmenden Volumenbereich und weist nahe dem Förderrad 44 eine Heizlufteintrittsöffnung 48 auf. Die durch das Förderrad 44 geförderte Luft strömt entlang des Außengehäuses 46 in Richtung zum Wärmetauschergehäuse 12 und umströmt die zweiten Wärmeübertragungsrippen 26, bevor sie an einer dem Bodenwandungsbereich 18 nahe liegenden Heizluftaustrittsöffnung 50 aus dem Außengehäuse 46 austritt.
  • Die durch das Verbrennungsluftgebläse 40 in das Brennkammergehäuse 32 geförderte Verbrennungsluft wird dort mit aus dem porösen Verdampfermedium 36 abgedampftem Brennstoff verbrannt. Die Verbrennungsabgase strömen entlang des Flammrohrs 34 und gelangen in den Innenraum 16. Dort strömen die Verbrennungsabgase entlang der ersten Wärmeübertragungsrippen 16 zurück in Richtung zu einer in einem Abgasstutzen 52 gebildeten Abgasauslassöffnung 54.
  • Bei diesem bekannten Fahrzeugheizgerät ist das Wärmetauschergehäuse 12 mit seinem Umfangswandungsbereich 14, seinem Bodenwandungsbereich 18 und seinem Verbrennungsbaugruppenträgerbereich 28 als ein einziges, diese Bereiche integral umfassendes Bauteil bereitgestellt. Dieses mit komplexer Struktur aus Metallmaterial aufgebaute Bauteil wird in einem Gussverfahren hergestellt, um alle Strukturmerkmale vorsehen zu können.
  • Eine Wärmetauschergehäuse gemäß dem Oberbegriff des Anspruchs 1 ist aus der DE 36 39 222 C1 bekannt.
  • Es ist die Aufgabe der vorliegenden Erfindung, ein Wärmetauschergehäuse insbesondere für ein brennstoffbetriebenes Fahrzeugheizgerät zur Erwärmung von Luft vorzusehen, welches mit komplexer Struktur in einfacher Art und Weise herstellbar ist.
  • Erfindungsgemäß wird diese Aufgabe gelöst durch ein Wärmetauschergehäuse, insbesondere für ein brennstoffbetriebenes Fahrzeugheizgerät zur Erwärmung von Luft, gemäß Anspruch 1. Dieses umfasst
    • einen in Richtung einer Gehäuselängsachse langgestreckten, einen Gehäuseinnenraum radial außen umgebenden Umfangswandungsbereich,
    • einen in einem ersten axialen Endbereich des Umfangswandungsbereichs an den Umfangswandungsbereich anschließenden und den Gehäuseinnenraum in axialer Richtung abschließenden Bodenwandungsbereich, und
    • einen in einem zweiten axialen Endbereich des Umfangswandungsbereichs an den Umfangswandungsbereich anschließenden Verbrennungsbaugruppenträgerbereich.
  • Das erfindungsgemäße Wärmetauschergehäuse umfasst wenigstens drei Gehäuseteile, wobei ein erstes Gehäuseteil im Wesentlichen den Umfangswandungsbereich bereitstellt, ein zweites Gehäuseteil im Wesentlichen den Bodenwandungsbereich bereitstellt und ein drittes Gehäuseteil im Wesentlichen den Verbrennungsbaugruppenträgerbereich bereitstellt.
  • Das erfindungsgemäß aufgebaute Wärmetauschergehäuse ist mit seinen drei wesentlichen Bestandteilen Umfangswandungsbereich, Bodenwandungsbereich und Verbrennungsbaugruppenträgerbereich nicht als ein einteiliges, integrales Bauteil ausgebildet, sondern ist in mehrere separate Gehäuseteile aufgeteilt. Dies ermöglicht es, jedes dieser separaten Gehäuseteile mit der für dieses vorzusehenden, vergleichsweise komplexen Struktur bereitzustellen, ohne dabei im Herstellungsvorgang auf Strukturmerkmale der anderen Gehäuseteile achten zu müssen.
  • Um im Umfangswandungsbereich eine effiziente Übertragung von Wärme von im Gehäuseinnenraum strömenden Verbrennungsabgasen auf ein das Wärmetauschergehäuse an seiner Außenseite umströmendes Wärmeträgermedium, insbesondere Luft, erreichen zu können, sind an einer dem Gehäuseinnenraum zugewandten Innenseite des Umfangswandungsbereichs in Richtung der Gehäuselängsachse sich erstreckende erste Wärmeübertragungsrippen vorgesehen. Ferner können an einer von dem Gehäuseinnenraum abgewandten Außenseite des Umfangswandungsbereichs in Richtung der Gehäuselängsachse sich erstreckende zweite Wärmeübertragungsrippen vorgesehen sein, wobei wenigstens ein Teil der, vorzugsweise alle ersten Wärmeübertragungsrippen oder/und wenigstens ein Teil der, vorzugsweise alle zweiten Wärmeübertragungsrippen in Richtung der Gehäuselängsachse eine im Wesentlichen konstante Querschnittsgeometrie, insbesondere Rippenhöhe bzw. Rippendicke, aufweisen.
  • Für eine verbesserte Wärmeübertragung bei gleichwohl kompakter Ausgestaltung kann erfindungsgemäß ferner vorgesehen sein, dass der Umfangswandungsbereich wenigstens im Längserstreckungsbereich der daran vorgesehenen Wärmeübertragungsrippen in Richtung der Gehäuselängsachse eine im Wesentlichen konstante radiale Abmessung oder/und Wandungsstärke aufweist.
  • Zur Verbindung mit wenigstens einem der anderen Gehäuseteile weist wenigstens in dem mit dem dritten Gehäuseteil zu verbindenden axialen Endbereich der Umfangswandungsbereich eine nach radial innen oder nach radial außen orientierte, unterbrechungsfrei um die Gehäuselängsachse umlaufende Verbindungsfläche auf.
  • Um dabei gleichwohl eine größtmögliche Oberfläche zur Wärmeübertragung bereitzustellen, wird ferner vorgeschlagen, dass bei nach radial innen orientierter Verbindungsfläche im axialen Erstreckungsbereich der Verbindungsfläche an der Außenseite des Umfangswandungsbereichs zweite Wärmeübertragungsrippen vorgesehen sind, oder dass bei nach radial außen orientierter Verbindungsfläche im axialen Erstreckungsbereich der Verbindungsfläche an der Innenseite des Umfangswandungsbereichs erste Wärmeübertragungsrippen vorgesehen sind.
  • Das erste Gehäuseteil ist vorzugsweise ein Strangpress-Bauteil. Durch die
  • Herstellung in einem Strangpress-Verfahren wird es möglich, das erste Gehäuseteil, also im Wesentlichen den Umfangswandungsbereich, mit den daran vorzusehenden Strukturmerkmalen, also z.B. den Wärmeübertragungsrippen an der Innenseite bzw. an der Außenseite und den vorangehend auch angegebenen Dimensionierungsvorgaben, bereitzustellen. Der Aufbau als Strangpress-Bauteil führt ferner zu einer höheren Bauteilequalität, da im Vergleich zu einem Guss-Bauteil weniger Poren bzw. Lunker im Aufbaumaterial entstehen, was insbesondere hinsichtlich der bei einem Wärmetauschergehäuse erforderlichen Gasdichtigkeit von wesentlicher Bedeutung ist. Ferner kann die bei Guss-Bauteilen aufgrund des Herstellungsvorgangs grundsätzlich erforderliche, hinsichtlich der Strömungsführung und des Wärmeübertragungsvermögens jedoch nachteilhafte Entformungsschräge entfallen.
  • Bei einer aufgrund des besonders einfachen Aufbaus vorteilhaften Ausgestaltung kann vorgesehen sein, dass das zweite Gehäuseteil eine vorzugsweise im Wesentlichen ebene, den Bodenwandungsbereich bereitstellende Platte umfasst.
  • Da bei dem erfindungsgemäßen Aufbau der Umfangswandungsbereich mit den daran vorgesehenen Wärmeübertragungsrippen besonders effizient zur Wärmeübertragung genutzt werden kann, kann zum weiteren Vereinfachen des Gesamtaufbaus vorgesehen sein, dass an einer dem Gehäuseinnenraum zugewandten Innenseite der Platte oder/und an einer von dem Gehäuseinnenraum abgewandten Außenseite der Platte keine Wärmeübertragungsrippen vorgesehen sind.
  • Die Platte kann in einem radial äußeren Randbereich einer dem Gehäuseinnenraum zugewandten Innenseite mit einer im Wesentlichen in Richtung der Gehäuselängsachse orientierten Stirnfläche des Umfangswandungsbereichs verbunden sein.
  • Bei einer alternativen, eine weiter vergrößerte Oberfläche zur Wärmeübertragung bereitstellenden Ausgestaltung kann das zweite Gehäuseteil eine im Wesentlichen kuppelartige, den Bodenwandungsbereich bereitstellenden Wandung umfassen.
  • Zur weiteren Verbesserung des Wärmeübertragungsvermögens wird vorgeschlagen, dass an einer dem Gehäuseinnenraum zugewandten Innenseite der Wandung Wärmeübertragungsrippen vorgesehen sind, oder/und dass an einer von dem Gehäuseinnenraum abgewandten Außenseite der Wandung Wärmeübertragungsrippen vorgesehen sind.
  • Um im Übergang zwischen dem ersten Gehäuseteil und dem zweiten Gehäuseteil eine Beeinträchtigung der Strömung der Verbrennungsabgase bzw. des zu erwärmenden Wärmeträgermediums soweit als möglich zu vermeiden, wird vorgeschlagen, dass an der Innenseite der Wandung vorgesehene Wärmeübertragungsrippen an der Innenseite des Umfangswandungsbereichs vorgesehene erste Wärmeübertragungsrippen in Richtung der Gehäuselängsachse fortsetzen, oder/und dass an der Außenseite der Wandung vorgesehene Wärmeübertragungsrippen an der Außenseite des Umfangswandungsbereichs vorgesehene zweite Wärmeübertragungsrippen in Richtung der Gehäuselängsachse fortsetzen.
  • Für die Verbindung des mit einer kuppelartigen Wandung aufgebauten zweiten Gehäuseteils mit dem ersten Gehäuseteil wird vorgeschlagen, dass in einem radial äußeren Randbereich der Wandung eine nach radial außen oder nach radial innen orientierte, vorzugsweise im Wesentlichen unterbrechungsfrei um die Gehäuselängsachse umlaufende Verbindungsfläche vorgesehen ist.
  • Da das zweite Gehäuseteil im Allgemeinen keine in einem Strangpress-Verfahren realisierbare Geometrie aufweist, wird vorgeschlagen, dass dieses ein Stanz- oder Schneide-Bauteil oder ein Guss-Bauteil ist.
  • Das dritte Gehäuseteil weist zur Verbindung mit dem ersten Gehäuseteil in einem mit dem ersten Gehäuseteil zu verbindenden Verbindungsbereich eine nach radial außen oder nach radial innen orientierte, unterbrechungsfrei um die Gehäuselängsachse umlaufende Verbindungsfläche auf.
  • Im Übergang zwischen dem ersten Gehäuseteil und dem dritten Gehäuseteil werden Strömungsbeeinträchtigungen dadurch vermieden, dass das dritte Gehäuseteil in seinem Verbindungsbereich eine im Wesentlichen den Umfangswandungsbereich axial fortsetzende Umfangswandung aufweist, und dass an einer Innenseite der Umfangswandung des Verbindungsbereichs Wärmeübertragungsrippen vorgesehen sind, wobei an der Innenseite der Umfangswandung des Verbindungsbereichs vorgesehene Wärmeübertragungsrippen an der Innenseite des Umfangswandungsbereichs vorgesehene erste Wärmeübertragungsrippen in Richtung der Gehäuselängsachse fortsetzen.
  • Zum Ausstoßen der im Gehäuseinnenraum strömenden Verbrennungsabgase kann im Verbindungsbereich eine die Umfangswandung durchsetzende Abgasauslassöffnung vorgesehen sein. Durch das Vorsehen der Abgasauslassöffnung am dritten Gehäuseteil wird das Bereitstellen einer derartigen Öffnung am ersten Gehäuseteil vermieden, was dessen Herstellbarkeit in einem Strangpress-Verfahren begünstigt.
  • Ferner kann das dritte Gehäuseteil einen in einem radialen Erweiterungsbereich an den Verbindungsbereich anschließenden Montagebereich mit einer bezüglich der Umfangswandung des Verbindungsbereichs wenigstens bereichsweise nach radial außen versetzten Umfangswandung umfassen.
  • Da auch das dritte Gehäuseteil eine im Allgemeinen nicht in einem Strangpress-Verfahren herstellbare Struktur aufweist, wird weiter vorgeschlagen, dass dieses ein Guss-Bauteil ist.
  • Um eine stabile, gleichwohl jedoch gasdichte Verbindung zwischen den verschiedenen Gehäuseteilen zu realisieren, wird vorgeschlagen, dass das erste Gehäuseteil mit dem zweiten Gehäuseteil oder/und dem dritten Gehäuseteil durch Strahlschweißen, vorzugsweise Elektronenstrahlschweißen, verbunden ist. Auch andere Verfahren zur Herstellung einer materialschlüssigen Verbindung, wie z.B. Laserschweißen oder Löten, können angewandt werden.
  • Die Erfindung betrifft ferner ein Fahrzeugheizgerät, umfassend ein erfindungsgemäß aufgebautes Wärmetauschergehäuse, wobei an dem
    Verbrennungsbaugruppenträgerbereich ein Verbrennungsluftgebläse oder/und eine Brennkammerbaugruppe getragen ist.
  • Die Erfindung wird nachfolgend mit Bezug auf die beiliegenden Figuren detailliert beschrieben. Es zeigt:
  • Fig. 1
    eine perspektivische Explosionsansicht eines mit drei Gehäuseteilen aufgebauten Wärmetauschergehäuses;
    Fig. 2
    eine Längsschnittdarstellung des Wärmetauschergehäuses der Fig. 1, geschnitten längs einer Linie II-II in Fig. 3;
    Fig. 3
    eine Axialansicht des Wärmetauschergehäuses der Fig.2 in Blickrichtung III in Fig. 2;
    Fig. 4
    eine Querschnittdarstellung des Wärmetauschergehäuses der Fig. 1, geschnitten längs einer Linie IV-IV in Fig. 2;
    Fig. 5
    eine der Fig. 1 entsprechende perspektivische Explosionsansicht einer alternativen Ausgestaltungsart eines Wärmetauschergehäuses mit drei Gehäuseteilen;
    Fig. 6
    eine der Fig. 2 entsprechende Längsschnittdarstellung des Wärmetauschergehäuses der Fig. 5;
    Fig. 7
    ein aus dem Stand der Technik bekanntes Fahrzeugheizgerät.
  • Bevor im Folgenden mit Bezug auf die Fig. 1 bis 6 verschiedene Ausgestaltungsformen eines Wärmetauschergehäuses beschrieben werden, ist darauf hinzuweisen, dass ein derartiges Wärmetauschergehäuse in einem Fahrzeugheizgerät zur Erwärmung von Luft eingesetzt werden kann, wie es beispielsweise in Fig. 7 dargestellt ist. In der folgenden Beschreibung eines erfindungsgemäß aufgebauten Wärmetauschergehäuses werden Komponenten bzw. Bereiche, welche vorangehend mit Bezug auf den Stand der Technik bereits beschriebenen Komponenten bzw. Bereichen entsprechen, mit dem gleichen Bezugszeichen bezeichnet.
  • Die Fig. 1 bis 4 zeigen eine erste Ausgestaltungsform eines Wärmetauschergehäuses 12. Dieses Wärmetauschergehäuse 12 ist mit drei Gehäuseteilen 56, 58, 60 aufgebaut. Diese drei Gehäuseteile 56, 58, 60 sind voneinander separat hergestellte Bauteile, welche zum Aufbau des Wärmetauschergehäuses 12 miteinander verbunden werden.
  • Das erste Gehäuseteil 56 umfasst im Wesentlichen den in Richtung der Gehäuselängsachse L langgestreckte Umfangswandungsbereich 14, welcher im Allgemeinen eine im Wesentlichen zylindrische Struktur aufweist, also in allen Längenbereichen bezüglich der Gehäuselängsachse L im Wesentlichen die gleiche radiale Dimensionierung und die gleiche Wandungsstärke aufweist. Vorzugsweise wird das erste Gehäuseteil 56 in einem Strangpress-Verfahren als Strangpress-Bauteil hergestellt, so dass insbesondere auch dessen Erstreckungslänge in Richtung der Gehäuselängsachse L in einfacher Art und Weise an verschiedene Baugrößen eines aufzubauenden Wärmetauschergehäuses 12 angepasst werden kann.
  • An einer Innenseite 20 des einen von Verbrennungsabgasen durchströmbaren Innenraum 16 nach radial außen abschließenden Umfangswandungsbereichs 14 sind in Richtung der Gehäuselängsachse L langgestreckte erste Wärmeübertragungsrippen 22 vorgesehen. An einer vom Gehäuseinnenraum 16 abgewandten Außenseite 24 sind ebenfalls in Richtung der Gehäuselängsachse L langgestreckte zweite Wärmeübertragungsrippen 26 vorgesehen. Sowohl die ersten Wärmeübertragungsrippen 22, als auch die zweiten Wärmeübertragungsrippen 26 weisen in Richtung der Gehäuselängsachse L eine im Wesentlichen konstante Rippenhöhe H auf, wobei, was vor allem die Fig. 4 veranschaulicht, in verschiedenen Umfangsbereichen vorgesehene Rippen 22 bzw. 26 zueinander unterschiedliche Rippenhöhen und unterschiedliche Rippenstrukturen aufweisen können. Da die Rippen 22, 26 in der Gehäuselängsrichtung L ein jeweils im Wesentlichen konstantes Querschnittsprofil aufweisen, können auch diese Rippen 22, 26 in einfacher Weise in einem Strangpress-Verfahren bereitgestellt werden.
  • In einem ersten axialen Endbereich 62 des ersten Gehäuseteils 56 bzw. des Umfangswandungsbereichs 14 ist der Gehäuseinnenraum 16 durch das in diesem Ausgestaltungsbeispiel mit einer im Wesentlichen ebenen Platte 64 bereitgestellte zweite Gehäuseteil 58 abgeschlossen. Das beispielsweise als Stanzbauteil aus Blechmaterial bereitgestellte zweite Gehäuseteil 58 kann in einem radial äußeren Randbereich 66 seiner dem Gehäuseinnenraum 16 zugewandten Innenseite 68 an einer im Wesentlichen in Richtung der Gehäuselängsachse L orientierten, ringartigen Stirnfläche 70 des Umfangswandungsbereichs 14 anliegen und in diesem Bereich mit dem Umfangswandungsbereich 14 materialschlüssig, vorzugsweise durch Strahlschweißen, wie z. B. Elektronenstrahlschweißen, verbunden sein.
  • Da das mit der Platte 64 bereitgestellte, den Bodenwandungsbereich 18 bildende zweite Gehäuseteil 58 bei diesem Ausgestaltungsbeispiel keine komplexen Strukturmerkmale, wie z. B. daran vorgesehene Wärmeübertragungsrippen, aufweist, kann es in besonders einfacher und kostengünstiger Weise hergestellt werden. Ferner wird bei maximal möglicher axialer Baulänge des Umfangswandungsbereichs 14, also des ersten Gehäuseteils 56, die gesamte Baulänge des Wärmetauschergehäuses 10 kompakt gehalten.
  • In seinem zweiten axialen Endbereich 72 ist das erste Gehäuseteil 56 mit dem den Verbrennungsbaugruppenträgerbereich 28 bildenden dritten Gehäuseteil 60 verbunden. Dazu weist das dritte Gehäuseteil 60 einen Verbindungsbereich 74 mit einer Umfangswandung 76 auf, welche im Wesentlichen so dimensioniert und gestaltet ist, dass sie den Umfangswandungsbereich 14 axial fortsetzt. Der Umfangswandungsbereich 14 weist in diesem zweiten axialen Endbereich 72 eine nach radial außen orientierte, um die Gehäuselängsachse L unterbrechungsfrei umlaufende Verbindungsfläche 78 auf. Diese kann beispielsweise dadurch bereitgestellt werden, dass in diesem Längenbereich des ersten Gehäuseteils 56 durch materialabhebende Bearbeitung ein Längenabschnitt der zweiten Wärmeübertragungsrippen 26 und auch der radial äußere Bereich des Umfangswandungsbereichs 14 abgetragen werden. An der Umfangswandung 76 des Verbindungsbereichs 74 des dritten Gehäuseteils 60 ist eine in Umfangsrichtung um die Gehäuselängsachse L unterbrechungsfrei umlaufende Verbindungsfläche 80 bereitgestellt, welche mit enger Passung der Verbindungsfläche 78 am zweiten axialen Endbereich 72 der Umfangswandung 14 radial gegenüberliegt. Im Bereich dieser beiden einander radial gegenüberliegenden Verbindungsflächen 78, 80 sind die beiden Gehäuseteile 56, 60 materialschlüssig, vorzugsweise durch Strahlschweißen, wie z. B. Elektronenstrahlschweißen, verbunden. Ebenso wie am ersten axialen Endbereich 62 kann somit eine um die Gehäuselängsachse L unterbrechungsfrei umlaufende, gasdichte Verbindung zweier jeweils aneinander angrenzender Gehäuseteile realisiert werden.
  • Im Verbindungsbereich 74 des dritten Gehäuseteils 60 sind an einer dem Gehäuseinnenraum 16 zugewandten Innenseite 82 der Umfangswandung 76 Wärmeübertragungsrippen 84 vorgesehen. Vorzugsweise entspricht die Anzahl dieser Wärmeübertragungsrippen 84 der Anzahl der ersten Wärmeübertragungsrippen 72 an der Innenseite 20 der Umfangswandung 14, und die oder zumindest ein Teil der Wärmeübertragungsrippen 84 an der Umfangswandung 76 ist so positioniert, dass diese Wärmeübertragungsrippen 84 Wärmeübertragungsrippen 22 an der Innenseite 20 des Umfangswandungsbereichs 14 in Richtung der Gehäuselängsachse L fortsetzen. Da vorzugsweise die Wärmeübertragungsrippen 84 und die ersten Wärmeübertragungsrippen 22 zueinander im Wesentlichen identische Querschnittsprofile aufweisen, zumindest in ihren aneinander angrenzenden Endbereichen, wird somit ein im Wesentlichen stufenfreier Übergang zwischen dem ersten Gehäuseteil 56 und dem dritten Gehäuseteil 60 gewährleistet, so dass in diesem Angrenzungsbereich keine Beeinträchtigung des Abgasstroms entsteht.
  • Das dritte Gehäuseteil 60 weist ferner einen Montagebereich 86 mit einer Umfangswandung 88 auf, die bezüglich der Umfangswandung 76 des Verbindungsbereichs 74 nach radial außen versetzt liegt und in einem stufenartig ausgebildeten radialen Erweiterungsbereich 90 an diese anschließt.
  • Am dritten Gehäuseteil 60 ist ferner im Bereich von dessen Verbindungsbereich 74 bzw. der Umfangswandung 76 ein nach radial außen führender Abgasstutzen 52 mit einer darin ausgebildeten und in Richtung zum Gehäuseinnenraum 16 offenen Abgasauslassöffnung 54 vorgesehen. Da insbesondere auch mit dem daran vorzusehenden Abgasstutzen 52 das dritte Gehäuseteil 60 eine vergleichsweise komplexe Struktur aufweist, die mit all ihren Strukturmerkmalen nicht in einem Strangpress-Verfahren herstellbar ist, wird dieses dritte Gehäuseteil 60 vorzugsweise in einem Guss-Verfahren als Guss-Bauteil bereitgestellt, wobei beispielsweise für das dritte Gehäuseteil 60 das gleiche Aufbaumaterial, wie für das erste Gehäuseteil 56 verwendet werden kann, beispielsweise Aluminium oder eine Aluminium enthaltende Legierung. Auch das zweite Gehäuseteil 58 kann mit dem gleichen Aufbaumaterial aufgebaut sein, wie das erste Gehäuseteil 56, bzw. das drittte Gehäuseteil 58.
  • Die in den Fig. 5 und 6 dargestellte Ausgestaltungsform eines Wärmetauschergehäuses 10 unterscheidet sich von der vorangehend mit Bezug auf die Fig. 1 bis 4 beschriebenen Ausgestaltungsform im Wesentlichen im Aufbau des zweiten Gehäuseteils 58. Dieses ist mit einer im Wesentlichen kuppelartigen und bezüglich des Gehäuseinnenraums 16 nach außen gewölbten Wandung 92 aufgebaut. In einem radial äußeren Randbereich 94 weist diese Wandung 92 eine nach radial innen orientierte und um die Gehäuselängsachse L unterbrechungsfrei umlaufende Verbindungsfläche 96 auf. Im ersten axialen Endbereich 62 des ersten Gehäuseteils 56 ist in Zuordnung zu dieser nach radial innen orientierten Verbindungsfläche 96, ähnlich wie am zweiten axialen Endbereich 72, eine nach radial außen orientierte Verbindungsfläche 98 vorgesehen. Diese kann, ähnlich wie im zweiten axialen Endbereich, dadurch bereitgestellt werden, dass in diesem Längenbereich die an der Außenseite 24 vorgesehenen zweiten Wärmeübertragungsrippen 26 bzw. der radial äußere Bereich des Umfangswandungsbereichs 14 entfernt werden. Im Bereich dieser mit enger Passung einander gegenüberliegenden bzw. aneinander anliegenden Verbindungsflächen 96, 98 sind die beiden Gehäuseteile 56, 58 materialschlüssig, vorzugsweise durch Strahlschweißen, wie z. B. Elektronenstrahlschweißen, über den gesamten Umfang miteinander gasdicht verbunden.
  • An einer dem Gehäuseinnenraum 16 zugewandten Innenseite 100 der Wandung 92 sind in Zuordnung zu den ersten Wärmeübertragungsrippen 22 an der Innenseite 20 des Umfangswandungsbereichs 14 Wärmeübertragungsrippen 102 vorgesehen. Zumindest ein Teil dieser, vorzugsweise alle Wärmeübertragungsrippen 102 ist so positioniert oder/und dimensioniert, dass diese erste Wärmeübertragungsrippen 22 an der Innenseite 20 des Umfangswandungsbereichs 14 im Wesentlichen stufenfrei fortsetzen. Somit wird auch in diesem Bereich, in welchem die beiden Gehäuseteile 56, 58 aneinander angrenzen, die Abgasströmung im Gehäuseinnenraum 16 beim Übergang von den Wärmeübertragungsrippen 102 zu den ersten Wärmeübertragungsrippen 22 im Wesentlichen nicht beeinträchtigt.
  • An einer vom Gehäuseinnenraum 16 abgewandten Außenseite 104 der Wandung 92 des zweiten Gehäuseteils 58 sind Wärmeübertragungsrippen 106 vorgesehen. Diese sind vorzugsweise derart angeordnet bzw. dimensioniert, dass zumindest ein Teil der, vorzugsweise alle Wärmeübertragungsrippen 106 zweite Wärmeübertragungsrippen 26 an der Außenseite 24 des Umfangswandungsbereichs 14 im Wesentlichen stufenfrei fortsetzen. Somit wird auch die Luftströmung an der Außenseite des Wärmetauschergehäuses 10 im Angrenzungsbereich der beiden Gehäuseteile 56, 58 aneinander im Wesentlichen nicht beeinträchtigt. Man erkennt dabei in Fig. 6, dass im Übergang von den zweiten Wärmeübertragungsrippen 26 zu den Wärmeübertragungsrippen 106 an der Wandung 92 ein spaltartiger Zwischenraum vorhanden sein kann, welcher im Wesentlichen durch den Längenbereich, in welchem die beiden Verbindungsflächen 96, 98 einander überlappen, gebildet ist. Um diesen spaltartigen Zwischenraum zu vermeiden, könnten die an der Außenseite 104 der Wandung 92 vorgesehenen Wärmeübertragungsrippen 106 in Richtung der Gehäuselängsachse L bis in denjenigen Bereich der Wandung 92 geführt sein, in welchem die nach radial innen orientierte Verbindungsfläche 96 bereitgestellt ist.
  • Da auch das in den Fig. 5 und 6 dargestellte zweite Gehäuseteil 58 eine vergleichsweise komplexe, in einem Strangpress-Verfahren nicht herstellbare Geometrie aufweist, wird auch dieses vorzugsweise als Guss-Bauteil in einem Guss-Verfahren hergestellt, wobei auch hier das gleiche Aufbaumaterial wie für das erste Gehäuseteil 56 bzw. das dritte Gehäuseteil 60 verwendet werden kann.
  • Mit dem vorangehend beschriebenen, mehrteiligen Aufbau eines Wärmetauschergehäuses wird es möglich, jedes der Gehäuseteile mit der für dieses optimalen Geometrie und Struktur in einem eigenständigen Fertigungsprozess herzustellen. Da insbesondere das erste Gehäuseteil so beschaffen ist, dass es eine über seine gesamte axiale Länge im Wesentlichen konstante Querschnittsgeometrie aufweist, kann dieses erste Gehäuseteil in einem Strangpress-Verfahren hergestellt werden, was zu einer besseren Materialqualität führt und die Einführung einer Entformungsschräge vermeidet. Lediglich in denjenigen axialen Endbereichen, wo, bedingt durch den Aufbau eines jeweils angrenzenden Gehäuseteils eine radial orientierte Verbindungsfläche bereitzustellen ist, ist eine mechanische bzw. spanabhebende Nachbearbeitung eines derartigen Strangpress-Bauteils erforderlich, um die für die Herstellung der Schweißverbindung erforderliche Fläche zu erzeugen. Da das erste Gehäuseteil als Strangpress-Bauteil bereitgestellt werden kann, kann dieses in einfacher Art und Weise an verschiedene Dimensionierungen eines aufzubauenden Wärmetauschergehäuses angepasst werden, indem entsprechend bemessene Längenabschnitte von einem im Strangpress-Verfahren hergestellten Strang abgetrennt werden. Da eine Entformungsschräge nicht vorhanden ist, weist der Umfangswandungsbereich in allen axialen Bereichen den gleichen Radialabstand zum Flammrohr auf, was die Abgasströmung begünstigt und das Wärmeübertragungsvermögen verbessert.
  • Auch die mit einem derartigen ersten Gehäuseteil zu verbindenden anderen Gehäuseteile, welche, sofern die komplexe Geometrie dieser Bauteile dies erfordert, beispielsweise als Druckguss-Bauteile bereitgestellt sein können, können angepasst an die Struktur eines jeweils aufzubauenden Wärmetauschergehäuses angepasst ausgewählt werden, so dass letztendlich ein modulares System bereitgestellt werden kann, bei welchen für verschiedene Heizgerätetypen beispielsweise auch verschiedene dritte Gehäuseteile mit entsprechend geformten Verbrennungsbaugruppenträgerbereichen kombiniert werden können mit verschieden dimensionierten ersten Gehäuseteilen bzw. auch verschieden gestalteten zweiten Gehäuseteilen.

Claims (13)

  1. Wärmetauschergehäuse, insbesondere für ein brennstoffbetriebenes Fahrzeugheizgerät zur Erwärmung von Luft, umfassend:
    - einen in Richtung einer Gehäuselängsachse (L) langgestreckten, einen Gehäuseinnenraum (16) radial außen umgebenden Umfangswandungsbereich (14),
    - einen in einem ersten axialen Endbereich (62) des Umfangswandungsbereichs (14) an den Umfangswandungsbereich (14) anschließenden und den Gehäuseinnenraum (16) in axialer Richtung abschließenden Bodenwandungsbereich (18),
    - einen in einem zweiten axialen Endbereich (72) des Umfangswandungsbereichs (14) an den Umfangswandungsbereich (14) anschließenden Verbrennungsbaugruppenträgerbereich (28),
    wobei das Wärmetauschergehäuse (12) wenigstens drei Gehäuseteile (56, 58, 60) umfasst, wobei ein erstes Gehäuseteil (56) im Wesentlichen den Umfangswandungsbereich (14) bereitstellt, ein zweites Gehäuseteil (58) im Wesentlichen den Bodenwandungsbereich (18) bereitstellt und ein drittes Gehäuseteil (60) im Wesentlichen den Verbrennungsbaugruppenträgerbereich (28) bereitstellt, wobei das dritte Gehäuseteil (60) in einem mit dem ersten Gehäuseteil (56) zu verbindenden Verbindungsbereich (74) eine im Wesentlichen den Umfangswandungsbereich (14) axial fortsetzende Umfangswandung (76) aufweist, wobei an einer dem Gehäuseinnenraum (16) zugewandten Innenseite (20) des Umfangswandungsbereichs (14) in Richtung der Gehäuselängsachse (L) sich erstreckende erste Wärmeübertragungsrippen (22) vorgesehen sind, wobei das dritte Gehäuseteil (60) in seinem Verbindungsbereich (74) eine nach radial außen oder nach radial innen orientierte, unterbrechungsfrei um die Gehäuselängsachse (L) umlaufende Verbindungsfläche (80) aufweist, und in einem mit dem dritten Gehäuseteil (60) zu verbindenden axialen Endbereich (72) der Umfangswandungsbereich (14) eine nach radial innen oder nach radial außen orientierte, unterbrechungsfrei um die Gehäuselängsachse (L) umlaufende Verbindungsfläche (78) aufweist,
    dadurch gekennzeichnet, dass an einer Innenseite (82) der Umfangswandung (76) des Verbindungsbereichs (74) Wärmeübertragungsrippen (84) vorgesehen sind, wobei an der Innenseite (82) der Umfangswandung (76) des Verbindungsbereichs (74) vorgesehene Wärmeübertragungsrippen (84) an der Innenseite (20) des Umfangswandungsbereichs (14) vorgesehene erste Wärmeübertragungsrippen (22) in Richtung der Gehäuselängsachse (L) fortsetzen.
  2. Wärmetauschergehäuse nach Anspruch 1, dadurch gekennzeichnet, dass an einer von dem Gehäuseinnenraum (16) abgewandten Außenseite (24) des Umfangswandungsbereichs (14) in Richtung der Gehäuselängsachse (L) sich erstreckende zweite Wärmeübertragungsrippen (26) vorgesehen sind, wobei wenigstens ein Teil der, vorzugsweise alle ersten Wärmeübertragungsrippen (22) oder/und wenigstens ein Teil der, vorzugsweise alle zweiten Wärmeübertragungsrippen (26) in Richtung der Gehäuselängsachse (L) eine im Wesentlichen konstante Querschnittsgeometrie aufweisen, vorzugsweise wobei der Umfangswandungsbereich (14) wenigstens im Längserstreckungsbereich der daran vorgesehenen Wärmeübertragungsrippen (22, 26) in Richtung der Gehäuselängsachse (L) eine im Wesentlichen konstante radiale Abmessung oder/und Wandungsstärke aufweist.
  3. Wärmetauschergehäuse nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass in jedem axialen Endbereich (62, 72) der Umfangswandungsbereich (14) eine nach radial innen oder nach radial außen orientierte, unterbrechungsfrei um die Gehäuselängsachse (L) umlaufende Verbindungsfläche (78, 98) aufweist.
  4. Wärmetauschergehäuse nach Anspruch 2 und Anspruch 3, dadurch gekennzeichnet, dass bei nach radial innen orientierter Verbindungsfläche im axialen Erstreckungsbereich der Verbindungsfläche an der Außenseite des Umfangswandungsbereichs zweite Wärmeübertragungsrippen vorgesehen sind, oder dass bei nach radial außen orientierter Verbindungsfläche (78, 98) im axialen Erstreckungsbereich der Verbindungsfläche (78, 98) an der Innenseite (20) des Umfangswandungsbereichs (14) erste Wärmeübertragungsrippen (22) vorgesehen sind.
  5. Wärmetauschergehäuse nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das erste Gehäuseteil (56) ein Strangpress-Bauteil ist, oder/und dass das zweite Gehäuseteil (58) eine vorzugsweise im Wesentlichen ebene, den Bodenwandungsbereich (18) bereitstellende Platte (64) umfasst.
  6. Wärmetauschergehäuse nach Anspruch 5, dadurch gekennzeichnet, dass an einer dem Gehäuseinnenraum (16) zugewandten Innenseite (68) der Platte (64) oder/und an einer von dem Gehäuseinnenraum (16) abgewandten Außenseite der Platte (64) keine Wärmeübertragungsrippen vorgesehen sind, oder/und dass in einem radial äußeren Randbereich (66) einer dem Gehäuseinnenraum (16) zugewandten Innenseite (68) die Platte (64) mit einer im Wesentlichen in Richtung der Gehäuselängsachse (L) orientierten Stirnfläche (70) des Umfangswandungsbereichs (14) verbunden ist.
  7. Wärmetauschergehäuse nach einem der Ansprüche 1-5, dadurch gekennzeichnet, dass das zweite Gehäuseteil (58) eine im Wesentlichen kuppelartige, den Bodenwandungsbereich (18) bereitstellenden Wandung (92) umfasst, vorzugsweise wobei an einer dem Gehäuseinnenraum (16) zugewandten Innenseite (100) der Wandung (92) Wärmeübertragungsrippen (102) vorgesehen sind oder/und an einer von dem Gehäuseinnenraum (16) abgewandten Außenseite (104) der Wandung (92) Wärmeübertragungsrippen (106) vorgesehen sind.
  8. Wärmetauschergehäuse nach Anspruch 2 und Anspruch 7, dadurch gekennzeichnet, dass an der Innenseite (100) der Wandung (92) vorgesehene Wärmeübertragungsrippen (102) an der Innenseite (20) des Umfangswandungsbereichs (14) vorgesehene erste Wärmeübertragungsrippen (22) in Richtung der Gehäuselängsachse (L) fortsetzen, oder/und dass an der Außenseite (104) der Wandung (92) vorgesehene Wärmeübertragungsrippen (106) an der Außenseite (24) des Umfangswandungsbereichs (14) vorgesehene zweite Wärmeübertragungsrippen (26) in Richtung der Gehäuselängsachse (L) fortsetzen.
  9. Wärmetauschergehäuse nach einem der Ansprüche 6-8, dadurch gekennzeichnet, dass in einem radial äußeren Randbereich (94) der Wandung (92) eine nach radial außen oder nach radial innen orientierte, vorzugsweise im Wesentlichen unterbrechungsfrei um die Gehäuselängsachse (L) umlaufende Verbindungsfläche (96) vorgesehen ist.
  10. Wärmetauschergehäuse nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das zweite Gehäuseteil (58) ein Stanz- oder Schneide-Bauteil oder ein Guss-Bauteil ist.
  11. Wärmetauschergehäuse nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass im Verbindungsbereich (74) eine die Umfangswandung (76) durchsetzende Abgasauslassöffnung (54) vorgesehen ist, oder/und dass das dritte Gehäuseteil (60) einen in einem radialen Erweiterungsbereich (90) an den Verbindungsbereich (74) anschließenden Montagebereich (86) mit einer bezüglich der Umfangswandung (76) des Verbindungsbereichs (74) wenigstens bereichsweise nach radial außen versetzten Umfangswandung (88) umfasst.
  12. Wärmetauschergehäuse nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das dritte Gehäuseteil (60) ein Guss-Bauteil ist, oder/und dass das erste Gehäuseteil (56) mit dem zweiten Gehäuseteil (58) oder/und dem dritten Gehäuseteil (60) durch Strahlschweißen, vorzugsweise Elektronenstrahlschweißen, verbunden ist.
  13. Fahrzeugheizgerät, umfassend ein Wärmetauschergehäuse (10) nach einem der vorangehenden Ansprüche, wobei an dem Verbrennungsbaugruppenträgerbereich (28) ein Verbrennungsluftgebläse oder/und eine Brennkammerbaugruppe getragen ist.
EP17209199.3A 2017-01-05 2017-12-21 Wärmetauschergehäuse Active EP3346219B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102017100133.6A DE102017100133A1 (de) 2017-01-05 2017-01-05 Wärmetauschergehäuse

Publications (2)

Publication Number Publication Date
EP3346219A1 EP3346219A1 (de) 2018-07-11
EP3346219B1 true EP3346219B1 (de) 2019-06-26

Family

ID=60781823

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17209199.3A Active EP3346219B1 (de) 2017-01-05 2017-12-21 Wärmetauschergehäuse

Country Status (4)

Country Link
EP (1) EP3346219B1 (de)
CN (1) CN108278920A (de)
DE (1) DE102017100133A1 (de)
RU (1) RU2672993C1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018120030A1 (de) 2018-08-17 2020-02-20 Eberspächer Climate Control Systems GmbH & Co. KG Fahrzeugheizgerät
DE102020105941A1 (de) * 2020-03-05 2021-09-09 Eberspächer Climate Control Systems GmbH Verfahren zur Herstellung eines Metallguss-Wärmetauschergehäuses für ein Fahrzeugheizgerät

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3208828A1 (de) * 1982-03-11 1983-09-22 Webasto-Werk W. Baier GmbH & Co, 8035 Gauting Mit fluessigem brennstoff betriebenes heizgeraet
DE3416878A1 (de) * 1984-05-08 1985-11-14 Webasto-Werk W. Baier GmbH & Co, 8035 Gauting Heizgeraet, insbesondere fahrzeug-zusatzheizgeraet
CA1282315C (en) * 1985-10-10 1991-04-02 Bernhard Umlauf Fuel operated vehicle heater
DE3639222C1 (en) * 1986-11-15 1988-07-07 Webasto Ag Fahrzeugtechnik Air-heating device
JPH0811523A (ja) * 1994-06-29 1996-01-16 Sanden Corp 暖房用ボイラ
DE19734814C1 (de) 1997-08-12 1999-01-14 Webasto Thermosysteme Gmbh Brennstoffbetriebene Heizvorrichtung mit optimierter Verbrennungsgasführung
DE10146610A1 (de) * 2001-09-21 2003-04-24 Eberspaecher J Gmbh & Co Wärmetauscheranordnung für eine Heizeinrichtung, insbesondere eine Kraftfahrzeugheizung
DE102005053514A1 (de) * 2004-11-26 2006-07-06 Webasto Ag Luftheizgerät für ein Kraftfahrzeug
DE102011004159A1 (de) * 2011-02-15 2012-08-16 J. Eberspächer GmbH & Co. KG Wärmetauscheranordnung, insbesondere für ein brennstoffbetriebenes Fahrzeugheizgerät
DE102011079018A1 (de) * 2011-07-12 2013-01-17 J. Eberspächer GmbH & Co. KG Fahrzeugheizgerät
DE102011081457A1 (de) * 2011-08-24 2013-02-28 J. Eberspächer GmbH & Co. KG Wärmetauschergehäuse, insbesondere für ein brennstoffbetriebenes Fahrzeugheizgerät
DE102012211857A1 (de) * 2012-07-06 2014-01-09 Behr Gmbh & Co. Kg Wärmeübertrager
DE102015106600A1 (de) * 2015-04-29 2016-11-03 Eberspächer Climate Control Systems GmbH & Co. KG Fahrzeugheizgerät

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CN108278920A (zh) 2018-07-13
EP3346219A1 (de) 2018-07-11
RU2672993C1 (ru) 2018-11-21
DE102017100133A1 (de) 2018-07-05

Similar Documents

Publication Publication Date Title
EP2385225B1 (de) Schalldämpfer
EP0683851B1 (de) In einem inneren und einem äusseren mantelrohr gehalterter metallischer wabenkörper, insbesondere katalysator-trägerkörper
DE102005053514A1 (de) Luftheizgerät für ein Kraftfahrzeug
EP3346219B1 (de) Wärmetauschergehäuse
DE102019100262A1 (de) Baugruppe aus einem Diffusor und einem Gasgenerator, Gassackmodul und Verfahren zur Montage einer Baugruppe
DE102011004159A1 (de) Wärmetauscheranordnung, insbesondere für ein brennstoffbetriebenes Fahrzeugheizgerät
EP3091306B1 (de) Fahrzeugheizgerät
DE10211591A1 (de) Luftheizgerät zur Integration in eine luftführende Gehäuseanordnung
EP3597997B1 (de) Fahrzeugheizgerät
DE102009046781A1 (de) Wärmetauscheranordnung, insbesondere für ein Fahrzeugheizgerät
EP1464893B1 (de) Brenneranordnung für ein Heizgerät und Heizgerät, insbesondere Fahrzeugheizgerät
DE102004018693B4 (de) Abgasanlage
DE4330214A1 (de) Wärmetauscher
DE102005053518A1 (de) Verfahren zum Herstellen eines Wärmetauschers
DE10000288C1 (de) Spiralwärmeaustauscher
WO2003044441A1 (de) Abgaswärmeübertrager
EP3643898B1 (de) Verfahren zur herstellung einer abgasbehandlungsanordnung
EP3088834A1 (de) Wärmeübertrager
EP3327261B1 (de) Abgasbehandlungsanordnung
DE102005053515A1 (de) Wärmetauscher für ein Luftheizgerät
DE10203116B4 (de) Heizgerät mit einem becherförmigen Wärmeübertrager
EP2106975B1 (de) Gehäuseanordnung für einen Gasgenerator
EP3845403B1 (de) Wärmetauschergehäuse
DE102004008358A1 (de) Wärmetauscheranordnung, insbesondere für ein Fahrzeugheizgerät
WO2010139620A9 (de) Vorwärmvorrichtung zum vorwärmen von flüssigem und/oder gasförmigem treibstoff für eine brennkraftmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: GROTSTOLLEN, UWE

Inventor name: COLLMER, ANDREAS

Inventor name: KOURIL, AXEL

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190111

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F28D 7/12 20060101AFI20190225BHEP

Ipc: F28F 9/00 20060101ALI20190225BHEP

Ipc: F28F 1/16 20060101ALI20190225BHEP

Ipc: F24H 3/04 20060101ALI20190225BHEP

INTG Intention to grant announced

Effective date: 20190320

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1148783

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190715

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017001636

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190626

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190626

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190626

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190626

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190926

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190926

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190927

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190626

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190626

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190626

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190626

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190626

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191028

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191026

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190626

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190626

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190626

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200320

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017001636

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG2D Information on lapse in contracting state deleted

Ref country code: IS

26N No opposition filed

Effective date: 20200603

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502017001636

Country of ref document: DE

Representative=s name: RUTTENSPERGER LACHNIT TROSSIN GOMOLL, PATENT- , DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502017001636

Country of ref document: DE

Owner name: EBERSPAECHER CLIMATE CONTROL SYSTEMS GMBH, DE

Free format text: FORMER OWNER: EBERSPAECHER CLIMATE CONTROL SYSTEMS GMBH & CO. KG, 73730 ESSLINGEN, DE

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20191231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190626

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191221

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191221

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20171221

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190626

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190626

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20211221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211221

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20231219

Year of fee payment: 7

Ref country code: DE

Payment date: 20231231

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1148783

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221221