EP3341604A1 - Servo system for controlling the position of an actuator in a motor vehicle - Google Patents

Servo system for controlling the position of an actuator in a motor vehicle

Info

Publication number
EP3341604A1
EP3341604A1 EP16744823.2A EP16744823A EP3341604A1 EP 3341604 A1 EP3341604 A1 EP 3341604A1 EP 16744823 A EP16744823 A EP 16744823A EP 3341604 A1 EP3341604 A1 EP 3341604A1
Authority
EP
European Patent Office
Prior art keywords
actuator
input
adder
output
loop
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP16744823.2A
Other languages
German (de)
French (fr)
Other versions
EP3341604B1 (en
Inventor
Ali ACHIR
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PSA Automobiles SA
Original Assignee
PSA Automobiles SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PSA Automobiles SA filed Critical PSA Automobiles SA
Publication of EP3341604A1 publication Critical patent/EP3341604A1/en
Application granted granted Critical
Publication of EP3341604B1 publication Critical patent/EP3341604B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D11/00Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated
    • F02D11/06Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance
    • F02D11/10Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type
    • F02D11/105Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type characterised by the function converting demand to actuation, e.g. a map indicating relations between an accelerator pedal position and throttle valve opening or target engine torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1431Controller structures or design the system including an input-output delay
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1432Controller structures or design the system including a filter, e.g. a low pass or high pass filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/0077Control of the EGR valve or actuator, e.g. duty cycle, closed loop control of position

Definitions

  • the invention relates to actuator position servo systems equipping a motor vehicle. More particularly, the invention relates to the compensation of pure delays present in these position control systems.
  • actuators include actuators present in the air loop of a motor vehicle such as a valve / exhaust gas recirculation valve, commonly referred to as the EGR valve, or an air intake butterfly of a turbocharger.
  • FIG. 1 illustrates, by way of example, the overall architecture of a system 100 for controlling the position of an actuator 1, implemented in the computer of a motor vehicle.
  • This architecture includes a supervisor 2 in charge of ordering (dashed arrows) the following tasks:
  • This control task is performed by a position controller 4, implementing a control law of the actuator 1;
  • FIG. 2a illustrates the servo-positioning performance of an actuator 1 of the air loop of a motor vehicle for a perfect system, that is to say having no pure delay. In this figure are illustrated two curves:
  • the curve 201 in thick dashed lines shows in ordinate, in percentage, a position setpoint for an actuator 1, as a function of a time in seconds represented on the abscissa;
  • the curve 202 in fine solid lines illustrates in the ordinate, at the same percentage scale, the position of the actuator 1 as a function of the same time in seconds represented on the abscissa.
  • this pure delay can be attributed to accumulations of different delays such as:
  • the curve 203 in thick dashed lines illustrates in ordinate, in percentage, a position setpoint for the actuator 1, as a function of a time in seconds represented on the abscissa;
  • the curve 204 in full-line shows in ordinate, at the same scale of percentage, the position of the actuator 1 according to the same time in seconds represented in abscissa.
  • FIG. 2b shows a performance degradation compared with FIG. 2a, in particular the presence oscillations around the position set point.
  • the absence of compensation for the pure delay causes the position controller 4 to significantly degrade the closed loop response time of the actuator 1, in order to maintain acceptable overshoot values of the position setpoint, typically less than 5%.
  • a known solution in the general field of automatic is to add to a system 100 servo, such as that shown in Figure 1, a predictor 6 delay.
  • the latter has the task of correcting the command developed by the position controller 4, in order to mitigate the impact of the pure delay on the quality of the servocontrol in the position of the actuator 1.
  • the predictor 6 of delay takes as inputs, the inputs 102 and outputs 103 of the regulator 4, and develops a compensation 104 of the pure delay, it returns to the regulator 4 position.
  • Various solutions are known for producing a delay predictor in a servo system.
  • the document FR2749613 describes a system for regulating the richness of the air-fuel mixture in an internal combustion engine, this system comprising a control device produced in the form of a Smith predictor.
  • the structure of the Smith predictor described in this document proves, however, particularly complex to implement, and remains expensive in terms of computational load induced.
  • the implementation of such a solution involves a particularly complex adjustment of a set of parameters at the on-board computer in the vehicle, such a setting being expensive in time of realization.
  • the predictors of existing delays are, in the state, not adapted to the position control for actuators equipping a motor vehicle.
  • An object of the present invention is to overcome all the aforementioned drawbacks.
  • a second object of the present invention is to provide a pure delay compensation device for an actuator position servo system fitted to a motor vehicle.
  • a third object of the present invention is to minimize the complexity of implementation of a pure delay compensation device, for an actuator position servo system in a motor vehicle.
  • a fourth object of the present invention is to optimally control the position of the actuators in a motor vehicle.
  • a servo system of the position Y (s) of an actuator to a position setpoint R (s) in a motor vehicle having a function predetermined transfer G (s) associated with a pure delay e ⁇ ds , s being the Laplace variable, d representing the pure delay, this system being realized via:
  • the position control U (s) being elaborated using a Proportional Derivative type regulator, formed by a Proportional action loop and a Derivative action loop, made respectively by a first and a second loop of feedback between the Y (s) position and subtractor inputs of a first adder, the controller performing a third feedback loop between the Y (s) position and a subtractor input of a second adder, the second adder having as summing input the position setpoint R (s); the position setpoint R (s) also being used as input of an amplifying loop whose output is connected to an summing input of the first adder;
  • the output of the second adder being used as an input of an integral action loop whose output is connected to an summing input of the first adder, so that the first adder calculates at its output the position U (s) according to its inputs summators and subtractors;
  • this system comprising a pure delay compensator in which: the position control U (s) is used as the first summing input of a third adder and as input of a pure delay block of transfer function e ⁇ ds , the output of this pure delay block being used as the subtractor input of the third adder, so that the third adder calculates its output from its summing input and its subtractor input;
  • the input of a high-pass filter is connected to the output of the third adder
  • the input of an amplifier is connected to the output of the high-pass filter
  • the output of the amplifier corresponds to a delay compensation term P (s), this output being used as a subtracting input by the second adder.
  • the high-pass filter and the amplifier are sized from a first-order system approximating the transfer function G (s) of the actuator, this system having a static gain k and a time constant ⁇ .
  • the amplifier has for gain, the static gain k.
  • the high-pass filter has the function of transfer.
  • ⁇ 2 is a parameterizable time constant.
  • the Proportional action loop is associated with a gain k £
  • the actuator is an actuator of the air loop of a motor vehicle.
  • a motor vehicle comprising the computer described above.
  • FIG. 1 illustrates the overall architecture of a position servo-control system of an actuator implemented in a computer equipping a motor vehicle;
  • FIGS. 2a and 2b illustrate the temporal variations of the position of an actuator, respectively for a perfect and real servo-control system, with respect to a position command;
  • FIG. 3 illustrates a device for controlling the position of an actuator
  • Figure 4 illustrates a position servo system of an actuator including a Smith predictor
  • FIG. 5 illustrates a system for controlling the position of an actuator comprising a pure delay compensator according to one embodiment.
  • FIG 3 a position control device 300 of an actuator 1, the device 300 having a pure delay d_.
  • the actuator 1 is, for example, an actuator of the air loop of a motor vehicle, such as a valve / a valve of an exhaust gas recirculation system, or a throttle valve. admission of a turbocharger.
  • the servo-control device 300 is here represented in the Laplace domain and can be implemented in a position controller 4, such as that illustrated in FIG.
  • the position controller 4 is configured to implement a control law of the position of the actuator 1. To do this, the behavior of the actuator 1 in the control device 300 is modeled by a transfer function G (s) in the Laplace domain, where s is the Laplace variable.
  • the transfer function G (s) can be obtained in different ways, for example communicated directly by a model provided by the manufacturer of the actuator 1, modeled via an appropriate simulation tool (eg Simulink®), or still obtained experimentally by applying to the actuator 1 a step-type input and observing its output response.
  • an appropriate simulation tool eg Simulink®
  • the pure delay d. associated with the actuator 1 is meanwhile represented by the term e ⁇ ds in the Laplace domain.
  • the actuator 1 and its pure delay are modeled by a transfer function block 30 G (s) e ⁇ ds , receiving for input a position command U (s) destined for the actuator 1.
  • the actual position of the actuator 1, following receipt of the position control U (s), corresponds to an ideal response of the actuator 1, to which is added a disturbance on its position.
  • the ideal response of the actuator 1, following receipt of the position command U (s), corresponds to the application of the transfer function G (s) e ⁇ ds , whose response is obtained at the output of the block 30.
  • the disturbance in position results, in turn, in particular aeraulic forces applying to the actuator 1, for example pressure variations during its movement.
  • the disturbance on the position of the actuator 1 is represented in FIG. 3 by the function D (s) at the input of an adder 7, the other input of this adder 7 corresponding to the ideal response of the actuator 1 following the command U (s), that is to say here to the output response of the block 30 without disturbance.
  • a real position Y (s) of the actuator 1 is observed in response to the command U (s).
  • the summator 7 and the variable D (s) are represented here for purposes of theoretical understanding.
  • the actuator 1 thus has the output of the transfer function block G (s) e ⁇ ds a position Y (s) in response to the command U (s), this position Y (s) being the position that it is desired to slave to a position setpoint value R (s).
  • the position control U (s) is developed as an output of a first adder 31 having two subtracting inputs "-" and two summing inputs "+".
  • the subtractor inputs of the first adder 31 are produced by a Regulator of the Proportional Derivative type, commonly referred to by the acronym "PD regulator".
  • PD regulator is formed of a proportional action loop, performing a gain amplification operation kjD;
  • the proportional action loop and the derivative action loop respectively provide a first and a second loop 32, 33 of feedback between the output of the block 30, that is to say the position Y (s), and a subtractor input "-" of the first adder 31.
  • a third feedback loop 34 is also provided by the controller between the position Y (s) and a subtracting input "-" of a second adder 35.
  • the second adder 35 further comprises, for summing input "+", the position setpoint value R (s), this value being determined by the motor vehicle computer, as a function, for example, of parameters measured in the loop. air.
  • This position setpoint value R (s) corresponds to the setpoint value at which it is desired to control the position Y (s) of the actuator 1.
  • the position reference value R (s) is also used as input of a gain amplifier loop kf_ whose output is connected to a summing input "+" of the first adder 31.
  • the output of the second adder 35 serves as input to a loop 37 with integral action, performing an operation integration, symbolized by the block "I”, sometimes also symbolized by a block "1 / s", associated with a gain k [.
  • the output of this integrally acting loop 37 is connected to a summing input "+" of the first adder 31.
  • the first adder 31 determines the control in position U (s) to be applied to the actuator 1.
  • the gains kf, k [, k £ and kd_ are static values currently determined with respect to the transfer function G (s), previously known, for example via the application of a pole placement method. These parameters are, by way of example, determined by simulation via a development tool of the motor vehicle computer and / or adjusted experimentally at the computer, for example as a function of the course of a series of tests intended to validate the computer. specifications of the vehicle. These gains are here preconfigured.
  • the device 300 for controlling the position of an actuator Icomprets in particular: feedback loops 32, 33 on the position Y (s) of the actuator 1, performed by a regulator of Proportional Derivative type;
  • PD-I acronym for "Proportional Derivative - Integral”
  • PID Anacronym Integral Derivative
  • Such a structure differs from common PID (Acronym Integral Derivative) controllers, in that only the integral term lies on the error of position e (s), while the proportional and derivative actions are indexed only on the position Y (s) of the actuator 1. This has the advantage of being able to decouple the performance of tracking setpoint and the performance of rejection of disturbances.
  • a servocontrol structure is realized in motor vehicle computers for the position control of the actuators 1.
  • the position control device 300 of FIG. 3 comprises here for transfer function:
  • a delay compensator such as a Smith predictor 40 shown in Figure 4.
  • the predictor 40 of Smith is realized in the following manner.
  • the position control U (s) at the output of the first adder 31 is used as the summing input "+" of a third adder 41 and as input of a block 42 of pure transfer function delay e ⁇ ds , the output of this delay block being used as the subtracting input "-" of the third adder 41.
  • the block 42 use of pure delay implies that the delay d. is known. This is in practice estimated by applying to the actuator 1 a step-type input and observing its output. It can be calibrated more finely when setting the position controller 4.
  • the third adder 41 then calculates its output from its summing input "+” and its subtracting input "-”. This output is connected as input to a transfer function correcting block C (s) .G (s) whose output is used as a subtractor input "-" of the first adder 31.
  • C (s) here denotes a function parameterizable transfer specific to the block 43 corrector.
  • the presence of the Smith predictor 40 makes it possible to extract the pure delay e ⁇ ds from the feedback loop 34 between Y (s) and R (s), that is to say of the closed loop.
  • the transfer function of this system is therefore equal to a closed-loop response H (s) of the actuator 1, shifted in time by a pure delay d_.
  • the position Y (s) of the actuator 1 will therefore be followed by a tracking of the position setpoint R (s) close to FIG. 2a, with a simple offset temporal and no longer oscillations on the position Y (s) of the actuator 1.
  • the pure delay d. has not disappeared, but becomes less detrimental to the position control of the actuator 1.
  • the use of a predictor 40 Smith is therefore effective for the position control of the actuator 1.
  • this predictor 40 requires a fine and complex adjustment of all the parameters of the transfer function H (s).
  • the transfer function G (s) of the actuator 1 is then approximated by a first-order system:
  • the variables k and ri are respectively a static gain and a time constant associated with the first order system, these values also being specific to the transfer function G (s) of the actuator 1.
  • the variables k and he are easily deductible from the actuator 1. These variables are for example determined by simulation via an approximation of the transfer function G (s), or experimentally, by observing the response of the actuator 1 to a step applied at the input of it.
  • T (s) k ⁇ 2S + 1 ⁇ ; we note that it is then enough to set the time constant ⁇ 2 to the value to approximate the product C (s) .G (s).
  • the transfer function T (s) is k- the product of a gain integrator k1 (term, a high-pass filter of time constant ⁇ 2 having the function of transfer ⁇ and the static gain k of the actuator 1.
  • control device 300 which is associated with a pure delay compensator 50 is implemented in the following manner.
  • the position control U (s) at the output of the first adder 31 is used as the summing input "+" of a third adder 41 and as input of a block 42 of pure transfer function delay e ⁇ ds , the output of this delay block being used as the subtracting input "-" of the third adder 41.
  • the third adder 41 then calculates its output from its summing input "+” and its subtracting input "-”. This output is connected as input to a high-pass filter 51.
  • the output of the high-pass filter 51 is connected to a gain amplifier 52 k, where k. is the static gain k. (predetermined) of the actuator 1.
  • the high-pass filter 51 and the amplifier 52 are therefore sized from the first-order system approximating the transfer function G (s) of the actuator 1.
  • the output of the amplifier 52 then corresponds to a delay compensation term P (s). This output is used as the subtracting input "-" for the second adder 35.
  • the variables kjD and k are preconfigured during the realization of the servo system.
  • the static gain k and the time constant II are predetermined variables of a first-order system approximating the transfer function G (s) of the actuator 1.
  • the compensator 50 of pure delay the only remaining magnitude to be calibrated is the variable r2 of the high-pass filter 51.
  • This calibration is easily performed by calibrating ⁇ 2 to the value -.
  • the realization of this compensator 50 of pure delay is therefore very fast, easy to implement, and does not imply complexity in terms of computing load.
  • the calibration of actuator position servo systems are simplified, which allows to gain time during their development.
  • the embodiments described above are applicable to any actuator 1 of the air loop of a motor vehicle, for example to a valve / valve for the recirculation of the exhaust gas, or to an air intake butterfly of a turbocharger.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Feedback Control In General (AREA)
  • Control Of Position Or Direction (AREA)

Abstract

A servo system for controlling the position Y(s) of an actuator to a position setpoint R(s) in a motor vehicle, the actuator having a predefined transfer function G(s) associated with a pure delay d, said system being implemented via a position control U(s) input to the transfer function, the position of the actuator corresponding to the response of the actuator to the position control, said system comprising a pure delay compensator (50) in which the position control is used as a summing input of an adder (41) and as an input of a pure delay block (42), the output of the pure delay block being used as a subtracting input of the adder, the input of a high-pass filter (51) being connected to the output of the adder, the input of an amplifier (52) being connected to the output of the high-pass filter.

Description

SYSTEME D'ASSERVISSEMENT DE LA POSITION D'UN ACTIONNEUR ACTUATOR POSITION ASSISTING SYSTEM
DANS UN VEHICULE AUTOMOBILE IN A MOTOR VEHICLE
[0001] L'invention concerne les systèmes d'asservissement de position d'actionneurs équipant un véhicule automobile. Plus particulièrement, l'invention a trait à la compensation des retards purs présents dans ces systèmes d'asservissement de position. The invention relates to actuator position servo systems equipping a motor vehicle. More particularly, the invention relates to the compensation of pure delays present in these position control systems.
[0002] L'optimisation continue des groupes motopropulseurs, notamment en vue de respecter les différentes normes antipollution et d'améliorer le rendement de ces groupes, conduit à une utilisation toujours plus importante d'actionneurs dans les véhicules automobiles. A titre d'exemples d'actionneurs, on peut citer des actionneurs présents dans la boucle d'air d'un véhicule automobile tel qu'une vanne/soupape de recirculation des gaz d'échappement, couramment désignée sous l'appellation vanne EGR, ou encore un papillon d'admission d'air d'un turbocompresseur. Continuous optimization of powertrains, especially to meet the different pollution standards and improve the performance of these groups, leads to an ever greater use of actuators in motor vehicles. Examples of actuators include actuators present in the air loop of a motor vehicle such as a valve / exhaust gas recirculation valve, commonly referred to as the EGR valve, or an air intake butterfly of a turbocharger.
[0003] De tels actionneurs sont couramment pilotés par un calculateur d'un véhicule automobile, via le suivi d'une valeur de consigne variable. La figure 1 illustre, à titre d'exemple, l'architecture globale d'un système 100 d'asservissement de position d'un actionneur 1, mise en œuvre dans le calculateur d'un véhicule automobile. Cette architecture comprend un superviseur 2 en charge d'ordonner (flèches pointillées) les tâches suivantes :  Such actuators are commonly controlled by a computer of a motor vehicle, via the monitoring of a variable setpoint. FIG. 1 illustrates, by way of example, the overall architecture of a system 100 for controlling the position of an actuator 1, implemented in the computer of a motor vehicle. This architecture includes a supervisor 2 in charge of ordering (dashed arrows) the following tasks:
une tâche dédiée à l'acquisition de la position de l'actionneur 1, réalisée par une chaîne 3 d'acquisition ;  a task dedicated to the acquisition of the position of the actuator 1, performed by an acquisition chain 3;
une tâche allouée à une commande de l'asservissement en position de l'actionneur 1, réalisée en fonction de la position de l'actionneur 1 acquise par la chaîne 3 de traitement. Cette tâche de commande est réalisée par un régulateur 4 de position, implémentant une loi de commande de l'actionneur 1 ;  a task allocated to a control of the position control of the actuator 1, performed according to the position of the actuator 1 acquired by the processing chain 3. This control task is performed by a position controller 4, implementing a control law of the actuator 1;
une tâche de pilotage en puissance électrique de l'actionneur 1, élaborée par une chaîne 5 de traitement, réalisée en fonction de la commande de l'asservissement en position de l'actionneur 1 précédemment établie. Suite à cette tâche de pilotage, à partir d'une mesure, une information relative à la position de l'actionneur 1 est alors retournée à la chaîne 3 d'acquisition (flèche 101). [0004] La figure 2a illustre les performances d'asservissement en position d'un actionneur 1 de la boucle d'air d'un véhicule automobile pour un système parfait, c'est-à-dire ne présentant pas de retard pur. Sur cette figure sont illustrées deux courbes : a task of electrical power control of the actuator 1, developed by a processing chain 5, performed according to the control of the servo in position of the actuator 1 previously established. Following this control task, from a measurement, information relating to the position of the actuator 1 is then returned to the acquisition chain 3 (arrow 101). [0004] FIG. 2a illustrates the servo-positioning performance of an actuator 1 of the air loop of a motor vehicle for a perfect system, that is to say having no pure delay. In this figure are illustrated two curves:
- la courbe 201 en traits pointillés épais illustre en ordonnée, en pourcentage, une consigne de position pour un actionneur 1, en fonction d'un temps en secondes représenté en abscisse ; the curve 201 in thick dashed lines shows in ordinate, in percentage, a position setpoint for an actuator 1, as a function of a time in seconds represented on the abscissa;
la courbe 202 en traits pleins fins illustre en ordonnée, à la même échelle de pourcentage, la position de l'actionneur 1 en fonction du même temps en secondes représenté en abscisse.  the curve 202 in fine solid lines illustrates in the ordinate, at the same percentage scale, the position of the actuator 1 as a function of the same time in seconds represented on the abscissa.
[0005] On remarque sur cette figure 2a que la position de l'actionneur 1 suit la valeur de consigne de position sans dépassement excédant les 5% et présente un temps de réponse en suivi de consigne performant.  Note in this Figure 2a that the position of the actuator 1 follows the position of the set value without exceeding exceeding 5% and has a response time tracking performance setpoint.
[0006] En pratique, une telle courbe est difficilement observable, du fait de l'existence d'un retard pur existant dans le système 100 d'asservissement. A titre d'exemple, en référence à la figure 1, on peut imputer ce retard pur aux cumuls de différents retards tels : In practice, such a curve is difficult to observe, because of the existence of a pure delay existing in the system 100 servo. By way of example, with reference to FIG. 1, this pure delay can be attributed to accumulations of different delays such as:
les retards relatifs au superviseur 2 et à l'ordre d'exécution des tâches ;  delays relating to supervisor 2 and the order of execution of tasks;
les retards générés par la chaîne 3 d'acquisition et de traitement 5 ;  the delays generated by the acquisition and processing chain 3;
les retards intrinsèques au système 100 d'asservissement de position de l'actionneur 1.  the delays intrinsic to the position control system 100 of the actuator 1.
- Eventuellement des retards intrinsèques au système lui-même. - Possibly intrinsic delays to the system itself.
[0007] Ainsi, à l'opposé de la figure 2a, il est fréquent en l'absence de compensation de ce retard pur, d'observer les courbes représentées sur la figure 2b. Sur cette figure sont illustrées deux courbes :  Thus, in contrast to Figure 2a, it is common in the absence of compensation for this pure delay, to observe the curves shown in Figure 2b. In this figure are illustrated two curves:
la courbe 203 en traits pointillés épais illustre en ordonnée, en pourcentage, une consigne de position pour l'actionneur 1, en fonction d'un temps en secondes représenté en abscisse ;  the curve 203 in thick dashed lines illustrates in ordinate, in percentage, a position setpoint for the actuator 1, as a function of a time in seconds represented on the abscissa;
la courbe 204 en trait plein fin illustre en ordonnée, à la même échelle de pourcentage, la position de l'actionneur 1 en fonction du même temps en secondes représenté en abscisse.  the curve 204 in full-line shows in ordinate, at the same scale of percentage, the position of the actuator 1 according to the same time in seconds represented in abscissa.
[0008] On observe, sur cette figure 2b, une dégradation des performances comparé à la figure 2a, notamment la présence d'oscillations autour de la valeur de consigne de position. En effet, l'absence de compensation du retard pur, pousse le régulateur 4 de position à dégrader significativement le temps de réponse en boucle fermée de l'actionneur 1, en vue de conserver des valeurs de dépassement acceptables de la de consigne de position, typiquement inférieures à 5%. FIG. 2b shows a performance degradation compared with FIG. 2a, in particular the presence oscillations around the position set point. In fact, the absence of compensation for the pure delay causes the position controller 4 to significantly degrade the closed loop response time of the actuator 1, in order to maintain acceptable overshoot values of the position setpoint, typically less than 5%.
[0009] Un autre désavantage de l'absence de compensation de retard pur, vient du fait que la consigne de position déterminée par le calculateur, est issue d'une régulation globale de débit d'air ou de pression de suralimentation dans la boucle d'air. La dégradation du temps de réponse de l'actionneur 1 impacte alors la réponse en couple du moteur du véhicule. On peut alors constater des oscillations de pression, de suralimentation, de débit d'air, ou encore des trous de couple. Une telle situation a donc un fort impact sur la dégradation de l'agrément de conduite. Par ailleurs, d'un point de vue mécanique, l'occurrence d'oscillations au niveau des actionneurs 1 peut rapidement endommager ces derniers. Leurs durées de vie s'en donc voit diminuée.  Another disadvantage of the absence of pure delay compensation, comes from the fact that the position setpoint determined by the computer is derived from an overall regulation of air flow or boost pressure in the control loop. 'air. The degradation of the response time of the actuator 1 then impacts the torque response of the vehicle engine. We can then see oscillations of pressure, supercharging, air flow, or even torque holes. Such a situation therefore has a strong impact on the degradation of driving pleasure. Moreover, from a mechanical point of view, the occurrence of oscillations at the level of the actuators 1 can quickly damage them. Their lifetimes are therefore diminished.
[0010] Pour parer à ces problèmes, une solution connue dans le domaine général de l'automatique, consiste à ajouter à un système 100 d'asservissement, tel celui illustré sur la figure 1, un prédicteur 6 de retard. Ce dernier a pour tâche de corriger la commande élaborée par le régulateur 4 de position, afin d'atténuer l'impact du retard pur sur la qualité de l'asservissement en position de l'actionneur 1. Pour ce faire, le prédicteur 6 de retard prend pour entrées, les entrées 102 et sorties 103 du régulateur 4, et élabore une compensation 104 du retard pur, qu'il retourne au régulateur 4 de position. To overcome these problems, a known solution in the general field of automatic, is to add to a system 100 servo, such as that shown in Figure 1, a predictor 6 delay. The latter has the task of correcting the command developed by the position controller 4, in order to mitigate the impact of the pure delay on the quality of the servocontrol in the position of the actuator 1. To do this, the predictor 6 of delay takes as inputs, the inputs 102 and outputs 103 of the regulator 4, and develops a compensation 104 of the pure delay, it returns to the regulator 4 position.
[0011] Diverses solutions sont connues pour réaliser un prédicteur de retard dans un système d'asservissement. A titre exemple, le document FR2749613 décrit un système de régulation de la richesse du mélange air-carburant dans un moteur à combustion interne, ce système comprenant un dispositif de régulation réalisé sous la forme d'un prédicteur de Smith. La structure du prédicteur de Smith décrite dans ce document s'avère, cependant particulièrement complexe à mettre en œuvre, et demeure coûteuse en termes de charge de calcul induite. Notamment, la mise en œuvre d'une telle solution implique un réglage particulièrement complexe d'un ensemble de paramètres au niveau du calculateur embarqué dans le véhicule, un tel réglage étant coûteux en temps de réalisation. Plus généralement, les prédicteurs de retards existants ne sont, en l'état, pas adaptés à la commande en position pour des actionneurs équipant un véhicule automobile. Various solutions are known for producing a delay predictor in a servo system. For example, the document FR2749613 describes a system for regulating the richness of the air-fuel mixture in an internal combustion engine, this system comprising a control device produced in the form of a Smith predictor. The structure of the Smith predictor described in this document proves, however, particularly complex to implement, and remains expensive in terms of computational load induced. In particular, the implementation of such a solution involves a particularly complex adjustment of a set of parameters at the on-board computer in the vehicle, such a setting being expensive in time of realization. More generally, the predictors of existing delays are, in the state, not adapted to the position control for actuators equipping a motor vehicle.
[0012] Un objet de la présente invention est de parer à l'ensemble des inconvénients précités. An object of the present invention is to overcome all the aforementioned drawbacks.
[0013] Un deuxième objet de la présente invention est de proposer un dispositif de compensation de retard pur, pour un système d'asservissement de position d'actionneurs équipant un véhicule automobile.  A second object of the present invention is to provide a pure delay compensation device for an actuator position servo system fitted to a motor vehicle.
[0014] Un troisième objet de la présente invention est de minimiser la complexité de mise en œuvre d'un dispositif de compensation de retard pur, pour un système d'asservissement de position d'actionneurs dans un véhicule automobile. A third object of the present invention is to minimize the complexity of implementation of a pure delay compensation device, for an actuator position servo system in a motor vehicle.
[0015] Un quatrième objet de la présente invention est de piloter de manière optimale la position des actionneurs dans un véhicule automobile.  A fourth object of the present invention is to optimally control the position of the actuators in a motor vehicle.
[0016] Ainsi, il est proposé, selon un premier aspect, un système d'asservissement de la position Y(s) d'un actionneur à une consigne de position R(s) dans un véhicule automobile, l'actionneur présentant une fonction de transfert G(s) prédéterminée associée à un retard pur e~ds, s étant la variable de Laplace, d représentant le retard pur, ce système étant réalisé via : Thus, it is proposed, in a first aspect, a servo system of the position Y (s) of an actuator to a position setpoint R (s) in a motor vehicle, the actuator having a function predetermined transfer G (s) associated with a pure delay e ~ ds , s being the Laplace variable, d representing the pure delay, this system being realized via:
une commande de position U(s) en entrée de la fonction de transfert G(s), la position Y(s) de l'actionneur correspondant à la réponse de l'actionneur à la commande de position U(s) ;  a position control U (s) at the input of the transfer function G (s), the position Y (s) of the actuator corresponding to the response of the actuator to the position control U (s);
la commande de position U(s) étant élaborée à l'aide d'un régulateur de type Proportionnel Dérivé, formé d'une boucle à action Proportionnelle et d'une boucle à action Dérivée, réalisées respectivement par une première et une deuxième boucle de rétroaction entre la position Y(s) et des entrées soustractrices d'un premier additionneur, le régulateur réalisant une troisième boucle de rétroaction entre la position Y(s) et une entrée soustractrice d'un deuxième additionneur, le deuxième additionneur ayant pour entrée sommatrice la consigne de position R(s) ; la consigne de position R(s) étant aussi utilisée comme entrée d'une boucle amplificatrice dont la sortie est connectée une entrée sommatrice du premier additionneur ; the position control U (s) being elaborated using a Proportional Derivative type regulator, formed by a Proportional action loop and a Derivative action loop, made respectively by a first and a second loop of feedback between the Y (s) position and subtractor inputs of a first adder, the controller performing a third feedback loop between the Y (s) position and a subtractor input of a second adder, the second adder having as summing input the position setpoint R (s); the position setpoint R (s) also being used as input of an amplifying loop whose output is connected to an summing input of the first adder;
la sortie du deuxième additionneur étant utilisée comme entrée d'une boucle à action Intégrale dont la sortie est connectée à une entrée sommatrice du premier additionneur, de sorte que le premier additionneur calcule en sa sortie la position U(s) en fonction de ses entrées sommatrices et soustractrices ;  the output of the second adder being used as an input of an integral action loop whose output is connected to an summing input of the first adder, so that the first adder calculates at its output the position U (s) according to its inputs summators and subtractors;
ce système comprenant un compensateur de retard pur dans lequel : - la commande de position U(s) est utilisée comme première entrée sommatrice d'un troisième additionneur et comme entrée d'un bloc de retard pur de fonction de transfert e~ds, la sortie de ce bloc de retard pur étant utilisé comme entrée soustractrice du troisième additionneur, de sorte que le troisième additionneur calcule sa sortie à partir de son entrée sommatrice et de son entrée soustractrice ; this system comprising a pure delay compensator in which: the position control U (s) is used as the first summing input of a third adder and as input of a pure delay block of transfer function e ~ ds , the the output of this pure delay block being used as the subtractor input of the third adder, so that the third adder calculates its output from its summing input and its subtractor input;
l'entrée d'un filtre passe-haut est connectée à la sortie du troisième additionneur ;  the input of a high-pass filter is connected to the output of the third adder;
l'entrée d'un amplificateur est connectée à la sortie du filtre passe- haut ;  the input of an amplifier is connected to the output of the high-pass filter;
la sortie de l'amplificateur correspond à un terme de compensation de retard P(s), cette sortie étant utilisée comme entrée soustractrice par le deuxième additionneur.  the output of the amplifier corresponds to a delay compensation term P (s), this output being used as a subtracting input by the second adder.
[0017] Avantageusement, dans ce système d'asservissement, le filtre passe-haut et l'amplificateur sont dimensionnés à partir d'un système du premier ordre approximant la fonction de transfert G(s) de l'actionneur, ce système présentant un gain statique k et une constante de temps τΐ.  Advantageously, in this servo system, the high-pass filter and the amplifier are sized from a first-order system approximating the transfer function G (s) of the actuator, this system having a static gain k and a time constant τΐ.
[0018] Avantageusement, dans ce système d'asservissement, l'amplificateur a pour gain, le gain statique k..  Advantageously, in this servo system, the amplifier has for gain, the static gain k.
[0019] Avantageusement, dans ce système d'asservissement, le filtre passe-haut a pour fonction de transfert . où τ2 est une constante de temps paramétrable.  Advantageously, in this servo system, the high-pass filter has the function of transfer. where τ2 is a parameterizable time constant.
[0020] Avantageusement, dans ce système d'asservissement, la boucle à action Proportionnelle est associée à un gain k£, la boucle à action Intégrale est associée à un gain k[, la constante de temps τ2 étant calibrée de sorte que τ2 =-R. Advantageously, in this servo system, the Proportional action loop is associated with a gain k £, the loop to Integral action is associated with a gain k [, the time constant τ2 being calibrated so that τ2 = - R.
[0021] Avantageusement, dans ce système d'asservissement, l'actionneur est un actionneur de la boucle d'air d'un véhicule automobile.  Advantageously, in this servo system, the actuator is an actuator of the air loop of a motor vehicle.
[0022] Il est proposé, selon un deuxième aspect, un calculateur de véhicule automobile implémentant un système d'asservissement de la position d'un actionneur, réalisé comme décrit ci-dessus.  It is proposed, in a second aspect, a motor vehicle computer implementing an actuator position control system, performed as described above.
[0023] Il est proposé, selon un troisième aspect, un véhicule automobile comprenant le calculateur décrit ci-dessus. It is proposed, in a third aspect, a motor vehicle comprising the computer described above.
[0024] D'autres objets et avantages de l'invention apparaîtront à la lumière de la description d'un mode de réalisation, faite ci-après en référence aux dessins annexés dans lesquels :  Other objects and advantages of the invention will appear in the light of the description of an embodiment, given below with reference to the accompanying drawings in which:
la figure 1 illustre l'architecture globale d'un système d'asservissement de position d'un actionneur mis en œuvre dans un calculateur équipant un véhicule automobile ;  FIG. 1 illustrates the overall architecture of a position servo-control system of an actuator implemented in a computer equipping a motor vehicle;
les figures 2a et 2b illustrent les variations temporelles de la position d'un actionneur, respectivement pour un système d'asservissement parfait et réel, vis-à-vis d'une consigne de position ;  FIGS. 2a and 2b illustrate the temporal variations of the position of an actuator, respectively for a perfect and real servo-control system, with respect to a position command;
la figure 3 illustre un dispositif d'asservissement en position d'un actionneur ;  FIG. 3 illustrates a device for controlling the position of an actuator;
la figure 4 illustre un système d'asservissement en position d'un actionneur comprenant un prédicteur de Smith ;  Figure 4 illustrates a position servo system of an actuator including a Smith predictor;
- la figure 5 illustre un système d'asservissement en position d'un actionneur comprenant un compensateur de retard pur selon un mode de réalisation. FIG. 5 illustrates a system for controlling the position of an actuator comprising a pure delay compensator according to one embodiment.
[0025] Sur la figure 3 est représenté un dispositif 300 d'asservissement de position d'un actionneur 1, ce dispositif 300 présentant un retard pur d_. L'actionneur 1 est, à titre d'exemple, un actionneur de la boucle d'air d'un véhicule automobile, telle une vanne/une soupape d'un système de recirculation des gaz d'échappement, ou encore un papillon d'admission d'un turbocompresseur. Le dispositif 300 d'asservissement est ici représenté dans le domaine de Laplace et peut être mis en œuvre dans un régulateur 4 de position, tel celui illustré sur la figure 1. [0026] Comme exposé dans la partie introductive, le régulateur 4 de position est configuré pour implémenter une loi de commande de la position de l'actionneur 1. Pour ce faire, le comportement de l'actionneur 1 dans le dispositif 300 d'asservissement est modélisé par une fonction de transfert G(s) dans le domaine de Laplace, s étant la variable de Laplace. In Figure 3 is shown a position control device 300 of an actuator 1, the device 300 having a pure delay d_. The actuator 1 is, for example, an actuator of the air loop of a motor vehicle, such as a valve / a valve of an exhaust gas recirculation system, or a throttle valve. admission of a turbocharger. The servo-control device 300 is here represented in the Laplace domain and can be implemented in a position controller 4, such as that illustrated in FIG. As explained in the introductory part, the position controller 4 is configured to implement a control law of the position of the actuator 1. To do this, the behavior of the actuator 1 in the control device 300 is modeled by a transfer function G (s) in the Laplace domain, where s is the Laplace variable.
[0027] La fonction de transfert G(s) peut être obtenue de différentes manières, par exemple communiquée directement par un modèle fourni par le constructeur de l'actionneur 1, modélisée via un outil de simulation approprié (ex : Simulink®), ou encore obtenue de manière expérimentale en appliquant à l'actionneur 1 une entrée de type échelon et en observant sa réponse en sortie.  The transfer function G (s) can be obtained in different ways, for example communicated directly by a model provided by the manufacturer of the actuator 1, modeled via an appropriate simulation tool (eg Simulink®), or still obtained experimentally by applying to the actuator 1 a step-type input and observing its output response.
[0028] Le retard pur d. associé à l'actionneur 1 est quant à lui représenté par le terme e~ds dans le domaine de Laplace. The pure delay d. associated with the actuator 1 is meanwhile represented by the term e ~ ds in the Laplace domain.
[0029] Ainsi, sur la figure 3, l'actionneur 1 et son retard pur sont modélisés par un bloc 30 de fonction de transfert G(s) e~ds, recevant pour entrée une commande de position U(s) à destination de l'actionneur 1. Thus, in FIG. 3, the actuator 1 and its pure delay are modeled by a transfer function block 30 G (s) e ~ ds , receiving for input a position command U (s) destined for the actuator 1.
[0030] En pratique, la position réelle de l'actionneur 1, suite à la réception de la commande de position U(s), correspond à une réponse idéale de l'actionneur 1, à laquelle vient s'ajouter une perturbation sur sa position. La réponse idéale de l'actionneur 1, suite à la réception de la commande de position U(s), correspond à l'application de la fonction de transfert G(s) e~ds, dont la réponse est obtenue en sortie du bloc 30. La perturbation en position résulte, quant à elle, notamment des efforts aérauliques s'appliquant sur l'actionneur 1, par exemple des variations de pression lors de son déplacement. In practice, the actual position of the actuator 1, following receipt of the position control U (s), corresponds to an ideal response of the actuator 1, to which is added a disturbance on its position. The ideal response of the actuator 1, following receipt of the position command U (s), corresponds to the application of the transfer function G (s) e ~ ds , whose response is obtained at the output of the block 30. The disturbance in position results, in turn, in particular aeraulic forces applying to the actuator 1, for example pressure variations during its movement.
[0031] La perturbation sur la position de l'actionneur 1 est représentée sur la figure 3 par la fonction D(s) en entrée d'un sommateur 7, l'autre entrée de ce sommateur 7 correspondant à la réponse idéale de l'actionneur 1 suite la commande U(s), c'est-à-dire ici à la réponse en sortie du bloc 30 sans perturbation. Ainsi, on observe en sortie du sommateur 7, une position réelle Y(s) de l'actionneur 1 en réponse à la commande U(s). On notera ici que le sommateur 7 et la variable D(s) sont ici représentés à des fins de compréhension théorique. En pratique, et dans la suite de ce document, on considère la position Y(s) de l'actionneur 1 en tant que sortie « réelle » du bloc 30 de fonction de transfert G(s) e~ds, c'est-à-dire en tant que position de l'actionneur 1 comprenant d'éventuelles perturbations extérieures. The disturbance on the position of the actuator 1 is represented in FIG. 3 by the function D (s) at the input of an adder 7, the other input of this adder 7 corresponding to the ideal response of the actuator 1 following the command U (s), that is to say here to the output response of the block 30 without disturbance. Thus, at the output of the adder 7, a real position Y (s) of the actuator 1 is observed in response to the command U (s). It will be noted here that the summator 7 and the variable D (s) are represented here for purposes of theoretical understanding. In practice, and in the remainder of this document, we consider the position Y (s) of the actuator 1 as the "real" output of the transfer function block 30 G (s) e ~ ds , that is to say as the position of the actuator 1 comprising possible external disturbances.
[0032] L'actionneur 1 présente donc en sortie du bloc 30 de fonction de transfert G(s) e~ds une position Y(s) en réponse à la commande U(s), cette position Y(s) étant la position que l'on souhaite asservir à une valeur de consigne de position R(s). The actuator 1 thus has the output of the transfer function block G (s) e ~ ds a position Y (s) in response to the command U (s), this position Y (s) being the position that it is desired to slave to a position setpoint value R (s).
[0033] La commande de position U(s) est élaborée en tant que sortie d'un premier additionneur 31 comportant deux entrées soustractrices « - » et deux entrées sommatrices « + ». Les entrées soustractrices du premier additionneur 31 sont réalisées par un régulateur de type Proportionnel Dérivé, couramment désigné sous l'acronyme « régulateur PD ». Comme son nom l'indique, ce régulateur est formé d'une boucle à action Proportionnelle, réalisant une opération d'amplification de gain kjD ;  The position control U (s) is developed as an output of a first adder 31 having two subtracting inputs "-" and two summing inputs "+". The subtractor inputs of the first adder 31 are produced by a Regulator of the Proportional Derivative type, commonly referred to by the acronym "PD regulator". As its name suggests, this regulator is formed of a proportional action loop, performing a gain amplification operation kjD;
d'une boucle à action Dérivée, réalisant une opération de dérivation, symbolisée par le bloc «→>> parfois aussi symbolisée par un bloc «s », associée à un gain kd_. a Derivative action loop, performing a derivation operation, symbolized by the block "→ >> sometimes also symbolized by a block" s ", associated with a gain kd_.
[0034] La boucle à action Proportionnelle et la boucle à action Dérivée réalisent respectivement une première et une deuxième boucle 32, 33 de rétroaction entre la sortie du bloc 30, c'est-à-dire la position Y(s), et une entrée soustractrice « - » du premier additionneur 31. The proportional action loop and the derivative action loop respectively provide a first and a second loop 32, 33 of feedback between the output of the block 30, that is to say the position Y (s), and a subtractor input "-" of the first adder 31.
[0035] Une troisième boucle 34 de rétroaction est par ailleurs réalisée par le régulateur entre la position Y(s) et un entrée soustractrice « - » d'un deuxième additionneur 35. A third feedback loop 34 is also provided by the controller between the position Y (s) and a subtracting input "-" of a second adder 35.
[0036] Le deuxième additionneur 35 comprend, en outre, pour entrée sommatrice « + » la valeur de consigne de position R(s), cette valeur étant déterminée par le calculateur du véhicule automobile, en fonction par exemple de paramètres mesurés dans la boucle d'air. Cette valeur de consigne de position R(s) correspond à la valeur de consigne à laquelle l'on souhaite asservir la position Y(s) de l'actionneur 1. Ainsi, la sortie du deuxième additionneur 35 correspond à la différence entre la consigne de position R(s) (sur l'entrée sommatrice « + ») et la position Y(s) de l'actionneur (sur l'entrée soustractrice « - »), c'est-à- dire à une erreur de position e(s) de l'actionneur 1, où e(s) = R(s)-Y(s). [0037] La valeur de consigne de position R(s) est aussi utilisée comme entrée d'une boucle 36 amplificatrice de gain kf_, dont la sortie est connectée à une entrée sommatrice « + » du premier additionneur 31. The second adder 35 further comprises, for summing input "+", the position setpoint value R (s), this value being determined by the motor vehicle computer, as a function, for example, of parameters measured in the loop. air. This position setpoint value R (s) corresponds to the setpoint value at which it is desired to control the position Y (s) of the actuator 1. Thus, the output of the second adder 35 corresponds to the difference between the setpoint of position R (s) (on the summing input "+") and the position Y (s) of the actuator (on the subtracting input "-"), that is to say to a position error e (s) of the actuator 1, where e (s) = R (s) -Y (s). The position reference value R (s) is also used as input of a gain amplifier loop kf_ whose output is connected to a summing input "+" of the first adder 31.
[0038] En outre, la sortie du deuxième additionneur 35, c'est-à-dire l'erreur de position e(s) de l'actionneur 1, sert d'entrée à une boucle 37 à action intégrale, réalisant une opération d'intégration, symbolisée par le bloc « I », parfois aussi symbolisée par un bloc «1/s », associée à un gain k[. La sortie de cette boucle 37 à action intégrale est connectée à une entrée sommatrice « + » du premier additionneur 31. Ainsi, en fonction de l'ensemble de ses entrées sommatrices « + » et soustractrices « - », le premier additionneur 31 détermine la commande en position U(s) à appliquer à l'actionneur 1. In addition, the output of the second adder 35, that is to say the position error e (s) of the actuator 1, serves as input to a loop 37 with integral action, performing an operation integration, symbolized by the block "I", sometimes also symbolized by a block "1 / s", associated with a gain k [. The output of this integrally acting loop 37 is connected to a summing input "+" of the first adder 31. Thus, as a function of all of its summing inputs "+" and subtracters "-", the first adder 31 determines the control in position U (s) to be applied to the actuator 1.
[0039] Les gains kf, k[, k£ et kd_ sont des valeurs statiques couramment déterminées par rapport à la fonction de transfert G(s), préalablement connue, par exemple via l'application d'une méthode de placement des pôles. Ces paramètres sont à titre d'exemple, déterminés par simulation via un outil de mis au point du calculateur du véhicule automobile et/ou ajustés expérimentalement au niveau du calculateur, par exemple en fonction du déroulement d'une série de tests destinés à valider le cahier des charges du véhicule. Ces gains sont donc ici préconfigurés.  The gains kf, k [, k £ and kd_ are static values currently determined with respect to the transfer function G (s), previously known, for example via the application of a pole placement method. These parameters are, by way of example, determined by simulation via a development tool of the motor vehicle computer and / or adjusted experimentally at the computer, for example as a function of the course of a series of tests intended to validate the computer. specifications of the vehicle. These gains are here preconfigured.
[0040] Comme il vient d'être décrit, on remarque que le dispositif 300 d'asservissement de position d'un actionneur Icomprend notamment : - des boucles de rétroactions 32, 33 sur la position Y(s) de l'actionneur 1, réalisées par un régulateur de type Proportionnel Dérivé ;  As just described, it will be noted that the device 300 for controlling the position of an actuator Icomprets in particular: feedback loops 32, 33 on the position Y (s) of the actuator 1, performed by a regulator of Proportional Derivative type;
une boucle 37 à action Intégrale réalisée sur l'erreur de position e(s) de l'actionneur 1, avant l'élaboration de la commande de position U(s). Du fait de cette configuration, on désigne couramment une telle boucle comme boucle anticipatrice.  a loop 37 with integral action performed on the position error e (s) of the actuator 1, before the development of the position control U (s). Because of this configuration, such a loop is commonly referred to as the anticipatory loop.
Ainsi, la structure de ce type de dispositif 300 d'asservissement de position est parfois désignée sous la dénomination PD-I (acronyme de « Proportionnel Dérivé - Intégral »). Une telle structure se distingue des régulateurs PID (acronyme de « Proportionnel Intégral Dérivé ») courants, par le fait que seul le terme intégral se situe sur l'erreur de position e(s), tandis que les actions proportionnelle et dérivée sont indexées uniquement sur la position Y(s) de l'actionneur 1. Ceci présente pour avantage de pouvoir découpler les performances en suivi de consigne et les performances en rejet de perturbations. Ainsi, une telle structure d'asservissement est réalisée dans des calculateurs de véhicules automobiles pour l'asservissement en position des actionneurs 1. Thus, the structure of this type of position control device 300 is sometimes referred to as PD-I (acronym for "Proportional Derivative - Integral"). Such a structure differs from common PID (Acronym Integral Derivative) controllers, in that only the integral term lies on the error of position e (s), while the proportional and derivative actions are indexed only on the position Y (s) of the actuator 1. This has the advantage of being able to decouple the performance of tracking setpoint and the performance of rejection of disturbances. Thus, such a servocontrol structure is realized in motor vehicle computers for the position control of the actuators 1.
[0041] Le dispositif 300 d'asservissement de position de la figure 3 comprend ici pour fonction de transfert : The position control device 300 of FIG. 3 comprises here for transfer function:
On remarque dans cette équation la présence au dénominateur du terme e~ds, correspondant au retard pur de ce dispositif 300. C'est la présence de ce terme qui est à l'origine d'oscillations (voir par exemple figure 2b) observées sur la position de l'actionneur 1 lorsque celui-ci essaye de suivre la consigne de position R(s). Note in this equation the presence at the denominator of the term e ~ ds , corresponding to the pure delay of this device 300. It is the presence of this term which is at the origin of oscillations (see for example Figure 2b) observed on the position of the actuator 1 when it tries to follow the position setpoint R (s).
[0042] Pour compenser ce retard, on ajoute alors au dispositif 300 précédemment décrit un compensateur de retard, tel un prédicteur 40 de Smith illustré en figure 4. Sur cette figure, le prédicteur 40 de Smith est de réalisé de la manière suivante. To compensate for this delay, we then add to the device 300 described above a delay compensator, such a Smith predictor 40 shown in Figure 4. In this figure, the predictor 40 of Smith is realized in the following manner.
[0043] La commande de position U(s) en sortie du premier additionneur 31 est utilisée comme entrée sommatrice « + » d'un troisième additionneur 41 et comme entrée d'un bloc 42 de retard pur de fonction de transfert e~ds, la sortie de ce bloc de retard étant utilisé comme entrée soustractrice « - » du troisième additionneur 41. L'utilisation bloc 42 de retard pur implique que le retard d. est connu. Celui-ci est en pratique estimé en appliquant sur l'actionneur 1 une entrée de type échelon et en observant sa sortie. Il peut être par la suite calibré plus finement, lors de la mise au point du régulateur 4 de position. The position control U (s) at the output of the first adder 31 is used as the summing input "+" of a third adder 41 and as input of a block 42 of pure transfer function delay e ~ ds , the output of this delay block being used as the subtracting input "-" of the third adder 41. The block 42 use of pure delay implies that the delay d. is known. This is in practice estimated by applying to the actuator 1 a step-type input and observing its output. It can be calibrated more finely when setting the position controller 4.
[0044] Le troisième additionneur 41 calcule alors sa sortie à partir de son entrée sommatrice « + » et son entrée soustractrice « - ». Cette sortie est connectée en entrée à un bloc 43 correcteur de fonction de transfert C(s).G(s) dont la sortie est utilisée comme entrée soustractrice « - » du premier additionneur 31. Le terme C(s) désigne ici une fonction de transfert paramétrable propre au bloc 43 correcteur. [0045] Avantageusement, la présence du prédicteur 40 de Smith permet d'extraire le retard pur e~ds de la boucle de rétroaction 34 entre Y(s) et R(s), c'est-à-dire de la boucle fermée de la fonction de transfertThe third adder 41 then calculates its output from its summing input "+" and its subtracting input "-". This output is connected as input to a transfer function correcting block C (s) .G (s) whose output is used as a subtractor input "-" of the first adder 31. The term C (s) here denotes a function parameterizable transfer specific to the block 43 corrector. Advantageously, the presence of the Smith predictor 40 makes it possible to extract the pure delay e ~ ds from the feedback loop 34 between Y (s) and R (s), that is to say of the closed loop. the transfer function
Y(s') J -Y (s ' ) J -
En effet, si l'on choisit pour la figure 4, C(s) = kp + - + kds , la fonction de transfert du système s'écrit alors : Indeed, if one chooses for figure 4, C (s) = k p + - + k d s, the transfer function of the system is written then:
l + G(s) /cp + +/cds l + G (s) / p + c + / c d s
On constate alors, dans cette équation, que le retard pur est à l'extérieur de la boucle d'asservissement puisque le dénominateur ne dépend plus du terme e~ds . It can be seen in this equation that the pure delay is outside the servo loop since the denominator no longer depends on the term e ~ ds .
[0046] Avantageusement, ceci permet d'éliminer les oscillations observées sur la réponse de l'actionneur 1. On remarque cependant ici que le retard pur e~ds n'a pas disparu. Si l'on note H(s) la fonction de transfert en boucle fermée sans ce retard pur telle que Advantageously, this eliminates the oscillations observed on the response of the actuator 1. However, we note here that the pure delay e ~ ds has not disappeared. If we denote H (s) the closed-loop transfer function without this pure delay such that
G s)(kf+^) Y(s) G s) (k f + ^) Y (s)
H(s) = . , il s'ensuit que ^ = H(s)e- H (s) =. it follows that ^ = H (s) e-
1+G(s)(kp+^+kds) «W 1+ G (s) (k p + ^ + k d s) "W
La fonction de transfert de ce système est donc égale à une réponse H(s) en boucle fermée de l'actionneur 1, décalée dans le temps d'un retard pur d_. Suite à la réception de la commande de position U(s), on observera donc pour la position Y(s) de l'actionneur 1 un suivi de la consigne de position R(s) proche de la figure 2a, avec un simple décalage temporel et non plus des oscillations sur la position Y(s) de l'actionneur 1. Le retard pur d. n'a donc pas disparu, mais devient moins préjudiciable pour l'asservissement en position de l'actionneur 1. L'utilisation d'un prédicteur 40 de Smith s'avère donc performante pour l'asservissement en position de l'actionneur 1. Cependant, ce prédicteur 40 nécessite un réglage fin et complexe de l'ensemble des paramètres de la fonction de transfert H(s).  The transfer function of this system is therefore equal to a closed-loop response H (s) of the actuator 1, shifted in time by a pure delay d_. Following receipt of the position command U (s), the position Y (s) of the actuator 1 will therefore be followed by a tracking of the position setpoint R (s) close to FIG. 2a, with a simple offset temporal and no longer oscillations on the position Y (s) of the actuator 1. The pure delay d. has not disappeared, but becomes less detrimental to the position control of the actuator 1. The use of a predictor 40 Smith is therefore effective for the position control of the actuator 1. However, this predictor 40 requires a fine and complex adjustment of all the parameters of the transfer function H (s).
[0047] Pour parer à cet inconvénient, dans un mode de réalisation, on approxime alors la fonction de transfert G(s) de l'actionneur 1 par un système du premier ordre :  To overcome this drawback, in one embodiment, the transfer function G (s) of the actuator 1 is then approximated by a first-order system:
k.  k.
G(s) « , où k et ri sont respectivement un gain statique et une constante de temps associés au système du premier ordre, ces valeurs étant aussi propres à la fonction de transfert G(s) de l'actionneur 1. Avantageusement, les variables k et il sont aisément déductibles de l'actionneur 1. Ces variables sont par exemple déterminées par simulation via une approximation de la fonction de transfert G(s), ou expérimentalement, en observant la réponse de l'actionneur 1 à un échelon appliqué en entrée de celui-ci. G (s) ", where k and ri are respectively a static gain and a time constant associated with the first order system, these values also being specific to the transfer function G (s) of the actuator 1. Advantageously, the variables k and he are easily deductible from the actuator 1. These variables are for example determined by simulation via an approximation of the transfer function G (s), or experimentally, by observing the response of the actuator 1 to a step applied at the input of it.
[0048] On suppose, en outre, que ^« 0 : une telle approximation peut être réalisée lors du calcul des paramètres kd. et kl déterminés lors de la mis en œuvre du dispositif 300 d'asservissement de position d'actionneur 1 illustré sur la figure 3. Le produit C(s).G(s), c'est-à-dire la fonction de transfert du bloc 43 correcteur, peut alors être approximé de la sorte :  Suppose, moreover, that ^ "0: such an approximation can be performed when calculating the parameters kd. and kl determined during the implementation of the actuator position control device 300 illustrated in FIG. 3. The product C (s) .G (s), that is to say the transfer function of the block 43 corrector, can then be approximated in this way:
C(s).G(s) = ki ' k ¾ ¾ι¾(τ2 5+ι) ^ τ2 est une constante de temps paramétrable. C (s) .G (s) = k i 'k ¾ ¾ι¾ (τ 2 5 + ι) ^ τ2 is a cons t an t e e d configured time.
[0049] Si on définit une fonction de transfert T(s) telle que :  If a transfer function T (s) such as:
T(s) = k^2S+1^; on note qu'il suffit alors de paramétrer la constante de temps χ2 à la valeur pour approximer le produit C(s).G(s). T (s) = k ^ 2S + 1 ^ ; we note that it is then enough to set the time constant χ2 to the value to approximate the product C (s) .G (s).
[0050] Par ailleurs, on observe que la fonction de transfert T(s) est k- le produit d'un intégrateur de gain kl (terme ,d'un filtre passe-haut de constante de temps τ2 ayant pour fonction de transfert ^ ^. et du gain statique k de l'actionneur 1.  Furthermore, it is observed that the transfer function T (s) is k- the product of a gain integrator k1 (term, a high-pass filter of time constant τ2 having the function of transfer ^ and the static gain k of the actuator 1.
[0051] Suite à cette observation, dans un mode de réalisation représenté en figure 5, on réalise le dispositif 300 d'asservissement précédemment décrit auquel on associe à un compensateur 50 de retard pur réalisé de la manière suivante.  Following this observation, in an embodiment shown in FIG. 5, the previously described control device 300 which is associated with a pure delay compensator 50 is implemented in the following manner.
[0052] La commande de position U(s) en sortie du premier additionneur 31 est utilisée comme entrée sommatrice « + » d'un troisième additionneur 41 et comme entrée d'un bloc 42 de retard pur de fonction de transfert e~ds, la sortie de ce bloc de retard étant utilisé comme entrée soustractrice « - » du troisième additionneur 41. Le troisième additionneur 41 calcule alors sa sortie à partir de son entrée sommatrice « + » et son entrée soustractrice « - ». Cette sortie est connectée en entrée à un filtre 51 passe-haut. Avantageusement le filtre 51 passe-haut a pour fonction de transfert . où il est la constante de temps prédéterminée de l'actionneur 1 approximé par un système du premier ordre et où τ2 = -A The position control U (s) at the output of the first adder 31 is used as the summing input "+" of a third adder 41 and as input of a block 42 of pure transfer function delay e ~ ds , the output of this delay block being used as the subtracting input "-" of the third adder 41. The third adder 41 then calculates its output from its summing input "+" and its subtracting input "-". This output is connected as input to a high-pass filter 51. Advantageously, the high-pass filter 51 has the function of transfer. where he is the predetermined time constant of the actuator 1 approximated by a first order system and where τ2 = -A
[0053] La sortie du filtre 51 passe-haut est connectée à un amplificateur 52 de gain k, où k. est le gain statique k. (prédéterminé) de l'actionneur 1.  The output of the high-pass filter 51 is connected to a gain amplifier 52 k, where k. is the static gain k. (predetermined) of the actuator 1.
[0054] Le filtre 51 passe-haut et l'amplificateur 52 sont donc dimensionnés à partir du système du premier ordre approximant la fonction de transfert G(s) de l'actionneur 1.  The high-pass filter 51 and the amplifier 52 are therefore sized from the first-order system approximating the transfer function G (s) of the actuator 1.
[0055] La sortie de l'amplificateur 52 correspond alors à un terme de compensation de retard P(s). Cette sortie est utilisée comme entrée soustractrice « - » pour le deuxième additionneur 35.  The output of the amplifier 52 then corresponds to a delay compensation term P (s). This output is used as the subtracting input "-" for the second adder 35.
[0056] Avantageusement, comme exposé précédemment, les variables kjD et k[ sont préconfigurés lors de la réalisation du système d'asservissement. De même, le gain statique k et la constante de temps il sont des variables prédéterminées d'un système du premier ordre approximant la fonction de transfert G(s) de l'actionneur 1. Ainsi, pour le compensateur 50 de retard pur, la seule grandeur restante à calibrer est la variable r2 du filtre 51 passe-haut. Advantageously, as explained above, the variables kjD and k [are preconfigured during the realization of the servo system. Similarly, the static gain k and the time constant II are predetermined variables of a first-order system approximating the transfer function G (s) of the actuator 1. Thus, for the compensator 50 of pure delay, the the only remaining magnitude to be calibrated is the variable r2 of the high-pass filter 51.
[0057] Cette calibration est facilement réalisée en calibrant τ2 à la valeur --. La réalisation de ce compensateur 50 de retard pur est donc très rapide, facile à mettre en œuvre, et n'implique pas de complexité en termes de charge de calculs.  This calibration is easily performed by calibrating τ2 to the value -. The realization of this compensator 50 of pure delay is therefore very fast, easy to implement, and does not imply complexity in terms of computing load.
[0058] Avantageusement, grâce aux modes de réalisation précédemment décrits, la calibration des systèmes d'asservissement de positions d'actionneurs se voient simplifiées, ce qui permet d'obtenir un gain de temps lors de leurs mises au point.  Advantageously, thanks to the embodiments described above, the calibration of actuator position servo systems are simplified, which allows to gain time during their development.
[0059] Avantageusement, les modes de réalisation décrits ci-dessus sont applicables à tout actionneur 1 de la boucle d'air d'un véhicule automobile, par exemple à une vanne/soupape pour la recirculation des gaz d'échappement, ou encore à un papillon d'admission d'air d'un turbocompresseur.  Advantageously, the embodiments described above are applicable to any actuator 1 of the air loop of a motor vehicle, for example to a valve / valve for the recirculation of the exhaust gas, or to an air intake butterfly of a turbocharger.
[0060] Ces modes de réalisations permettent d'obtenir un meilleur contrôle des actionneurs 1 dans la boucle d'air, et ainsi de limiter des phénomènes d'oscillations dans cette boucle, tels des oscillations de pression de suralimentation, de débits d'air, ou encore de couple moteur. Les performances de régulations du système d'air s'en voient donc améliorées, ainsi que l'agrément de conduite. Par ailleurs, l'amélioration de l'asservissement en position des actionneurs 1 permet de limiter les phénomènes de micro-actionnements dus à leurs oscillations de position. Avantageusement, la durée de vie des actionneurs 1 s'en voit prolongée. De manière générale, la robustesse et la précision des systèmes d'asservissement de positions d'actionneurs 1 se voient améliorées. These embodiments make it possible to obtain better control of the actuators 1 in the air loop, and thus to limit oscillation phenomena in this loop, such as supercharging pressure oscillations, air flow rates. , or engine torque. The performance of the air system controls are seen therefore improved, as well as driving pleasure. Moreover, the improvement of the position control of the actuators 1 makes it possible to limit the phenomena of micro-actuations due to their position oscillations. Advantageously, the service life of the actuators 1 is extended. In general, the robustness and accuracy of actuator position control systems 1 are improved.

Claims

REVENDICATIONS
1. Système d'asservissement de la position Y(s) d'un actionneur1. System for controlling the position Y (s) of an actuator
(1) à une consigne de position R(s) dans un véhicule automobile, l'actionneur (1) présentant une fonction de transfert G(s) prédéterminée associée à un retard pur e~ds, s étant la variable de Laplace, d. représentant le retard pur, ce système étant réalisé via (1) at a position setpoint R (s) in a motor vehicle, the actuator (1) having a predetermined transfer function G (s) associated with a pure delay e ~ ds , s being the Laplace variable, d . representing the pure delay, this system being realized via
une commande de position U(s) en entrée de la fonction de transfert G(s), la position Y(s) de l'actionneur (1) correspondant à la réponse de l'actionneur (1) à la commande de position U(s) ; la commande de position U(s) étant élaborée à l'aide d'un régulateur de type Proportionnel Dérivé, formé d'une boucle à action Proportionnelle et d'une boucle à action Dérivée, réalisées respectivement par une première et une deuxième boucle (32,33) de rétroaction entre la position Y(s) et des entrées soustractrices d'un premier additionneur (31), le régulateur réalisant une troisième boucle (34) de rétroaction entre la position Y(s) et une entrée soustractrice d'un deuxième additionneur (35), le deuxième additionneur (35) ayant pour entrée sommatrice la consigne de position R(s) ;  a position command U (s) at the input of the transfer function G (s), the position Y (s) of the actuator (1) corresponding to the response of the actuator (1) to the position control U (s); the position control U (s) being elaborated using a Proportional Derivative type regulator, formed of a Proportional action loop and a Derivative action loop, made respectively by a first and a second loop ( 32,33) between the Y (s) position and subtracting inputs of a first adder (31), the controller realizing a third feedback loop (34) between the Y (s) position and a subtracting input of a second adder (35), the second adder (35) having as summing input the position setpoint R (s);
la consigne de position R(s) étant aussi utilisée comme entrée d'une boucle (36) amplificatrice dont la sortie est connectée une entrée sommatrice du premier additionneur (31) ;  the position setpoint R (s) also being used as input of an amplifying loop (36) whose output is connected to an summing input of the first adder (31);
la sortie du deuxième additionneur (35) étant utilisée comme une entrée d'une boucle (37) à action Intégrale dont la sortie est connectée à une entrée sommatrice du premier additionneur (31), de sorte que le premier additionneur calcule en sa sortie la position U(s) en fonction de ses entrées sommatrices et soustractrices ;  the output of the second adder (35) being used as an input of an integral-acting loop (37) whose output is connected to a summing input of the first adder (31), so that the first adder calculates at its output the position U (s) according to its summing and subtracting inputs;
ce système étant caractérisé en ce qu'il comprend un compensateurthis system being characterized in that it comprises a compensator
(50) de retard pur dans lequel (50) pure delay in which
la commande de position U(s) est utilisée comme première entrée sommatrice d'un troisième additionneur (41) et comme entrée d'un bloc (42) de retard pur de fonction de transfert e~ds, la sortie de ce bloc (42) de retard pur étant utilisé comme entrée soustractrice du troisième additionneur (41), de sorte que le troisième additionneur (41) calcule sa sortie à partir de son entrée sommatrice et de son entrée soustractrice ; the position control U (s) is used as the first summing input of a third adder (41) and as the input of a block (42) of pure transfer function delay e ~ ds , the output of this block (42 ) of pure delay being used as a subtractor input of the third adder (41), so that the third adder (41) calculates its output from its summing input and its subtracting input;
l'entrée d'un filtre (51) passe-haut est connectée à la sortie du troisième additionneur (41) ;  the input of a high-pass filter (51) is connected to the output of the third adder (41);
- l'entrée d'un amplificateur (52) est connectée à la sortie du filtre (51 ) passe-haut ; the input of an amplifier (52) is connected to the output of the high-pass filter (51);
la sortie de l'amplificateur (52) correspond à un terme de compensation de retard P(s), cette sortie étant utilisée comme entrée soustractrice par le deuxième additionneur (35).  the output of the amplifier (52) corresponds to a delay compensation term P (s), this output being used as a subtracting input by the second adder (35).
2. Système d'asservissement selon la revendication 1, dans lequel le filtre (51) passe-haut et l'amplificateur (52) sont dimensionnés à partir d'un système du premier ordre approximant la fonction de transfert G(s) de l'actionneur (1), ce système présentant un gain statique k et une constante de temps τΐ.  2. A servo control system according to claim 1, wherein the high-pass filter (51) and the amplifier (52) are sized from a first-order system approximating the transfer function G (s) of the actuator (1), this system having a static gain k and a time constant τΐ.
3. Système d'asservissement selon la revendication 2, dans lequel l'amplificateur (52) a pour gain, le gain statique k.  3. Control system according to claim 2, wherein the amplifier (52) has for gain, the static gain k.
4. Système d'asservissement selon les revendications 2 ou 3, dans lequel le filtre (51) passe-haut a pour fonction de transfert , où τ2 est une constante de temps paramétrable.  4. Servo control system according to claims 2 or 3, wherein the high-pass filter (51) has the function of transfer, where τ2 is a parameterizable time constant.
5. Système d'asservissement selon la revendication 4, dans lequel la boucle à action Proportionnelle est associée à un gain J<p_, la boucle (37) à action Intégrale est associée à un gain k[, la constante de temps χ2 étant calibrée de sorte que τ2 =-^.  5. Servo-control system according to claim 4, wherein the proportional action loop is associated with a gain J <p_, the loop (37) integral action is associated with a gain k [, the time constant χ2 being calibrated so that τ2 = - ^.
6. Système d'asservissement selon l'une quelconque des revendications précédentes, dans lequel l'actionneur (1) est un actionneur de la boucle d'air d'un véhicule automobile  6. Control system according to any one of the preceding claims, wherein the actuator (1) is an actuator of the air loop of a motor vehicle.
7. Calculateur de véhicule automobile implémentant un système d'asservissement de la position d'un actionneur, réalisé selon l'une quelconque des revendications précédentes.  7. Motor vehicle calculator implementing an actuator position servo system, made according to any one of the preceding claims.
8. Véhicule automobile comprenant le calculateur de la revendication 7.  8. Motor vehicle comprising the calculator of claim 7.
EP16744823.2A 2015-08-24 2016-07-11 Servo system for controlling the position of an actuator in a motor vehicle Active EP3341604B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1557874A FR3040504B1 (en) 2015-08-24 2015-08-24 ACTUATOR POSITION ASSISTING SYSTEM IN A MOTOR VEHICLE
PCT/FR2016/051769 WO2017032931A1 (en) 2015-08-24 2016-07-11 Servo system for controlling the position of an actuator in a motor vehicle

Publications (2)

Publication Number Publication Date
EP3341604A1 true EP3341604A1 (en) 2018-07-04
EP3341604B1 EP3341604B1 (en) 2020-03-18

Family

ID=55361582

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16744823.2A Active EP3341604B1 (en) 2015-08-24 2016-07-11 Servo system for controlling the position of an actuator in a motor vehicle

Country Status (3)

Country Link
EP (1) EP3341604B1 (en)
FR (1) FR3040504B1 (en)
WO (1) WO2017032931A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3137132A1 (en) 2022-06-27 2023-12-29 Psa Automobiles Sa METHOD FOR ADJUSTING A SERVO TO THE POSITION OF AN ACTUATOR, SUCH AS A MOTOR VEHICLE ACTUATOR

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3064852A1 (en) * 2017-04-03 2018-10-05 Peugeot Citroen Automobiles Sa CONTROL DEVICE FOR POSITIONING A ROTOR PART OF A BRUSHLESS ACTUATOR
IT202000024010A1 (en) * 2020-10-12 2022-04-12 Enrico Bruna ADJUSTING THE POSITION OF AN EXHAUST GAS RECIRCULATION (EGR) VALVE BY HYBRID CONTROL IN A DIESEL ENGINE

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2749613B1 (en) * 1996-06-11 1998-07-31 Renault WEALTH REGULATION SYSTEM IN AN INTERNAL COMBUSTION ENGINE
WO2007098780A1 (en) * 2006-02-28 2007-09-07 Bayerische Motoren Werke Aktiengesellschaft Method for regulating the fuel-air mixture in an internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3137132A1 (en) 2022-06-27 2023-12-29 Psa Automobiles Sa METHOD FOR ADJUSTING A SERVO TO THE POSITION OF AN ACTUATOR, SUCH AS A MOTOR VEHICLE ACTUATOR
WO2024003471A1 (en) 2022-06-27 2024-01-04 Stellantis Auto Sas Method for adjusting a position servo-control of an actuator, such as a motor vehicle actuator

Also Published As

Publication number Publication date
WO2017032931A1 (en) 2017-03-02
EP3341604B1 (en) 2020-03-18
FR3040504A1 (en) 2017-03-03
FR3040504B1 (en) 2017-08-25

Similar Documents

Publication Publication Date Title
EP3314337B1 (en) Method for controlling an energy equivalence factor for a hybrid motor vehicle
EP3341604B1 (en) Servo system for controlling the position of an actuator in a motor vehicle
EP2834508B1 (en) System for controlling the vanes of a variable geometry turbine with learning and linearisation
EP1651880B1 (en) Controlled adaptive device for coupling an engine and a gearbox in a motor vehicle
EP0864949B1 (en) Method for the dynamic diagnosis of an actuator
EP3228540B1 (en) Method for controlling a taxiing system
FR2944318A3 (en) Gas intake and exhaust system for internal-combustion engine of motor vehicle, has limiting units limiting volume flow at exit of turbine part relative to determined maximum volume flow
EP3580441B1 (en) Method for controlling the speed and the power of a turbine engine propeller
EP3321758B1 (en) A method of controlling an electrical taxiing system
EP3411580B1 (en) Method for resetting two pressure sensors in an air-intake line of an engine with sensor fault prevention
FR2944317A3 (en) Gas intake and exhaust system for internal combustion engine of motor vehicle, has control unit controlling valve relative to sensors measurements, where valve is arranged in outlet of exhaust of motor vehicle
FR3012524A1 (en) METHOD AND DEVICE FOR COMPENSATING THE STATIC SHIFTING OF A ACTUATOR ACTUATOR
EP3729206B1 (en) Methof of closed-loop controlling a controller with setpoint weighting
WO2024003471A1 (en) Method for adjusting a position servo-control of an actuator, such as a motor vehicle actuator
FR2920501A1 (en) Coupling unit e.g. dry clutch, controlling method for motor vehicle, involves estimating error by considering speed, engine torque, unit position and set point torque for providing torque disturbance estimation to correct set point torque
EP3808959A1 (en) Method for controlling the supercharging of air in an internal combustion engine
WO2024115846A1 (en) Control method and control device for a hybrid turbine engine
FR2944561A3 (en) Method for adjusting regulator with state parameter i.e. particle filter/nitrogen oxide trap output gas temperature, in electronic control unit of internal combustion engine of motor vehicle, involves calculating parameters of corrector
WO2018065700A2 (en) Method for maximizing an engine torque
FR2983244A1 (en) METHOD AND APPARATUS FOR CONTINUOUS ESTIMATING OF THE CYLINDER WEIGHT OF AN ENGINE
JP2018173744A (en) Controller
FR3053735A1 (en) METHOD FOR DIAGNOSING THE OPERATION OF A COMPRESSION RATE VARIATION SYSTEM OF AN INTERNAL COMBUSTION ENGINE.
WO2008031969A2 (en) Method for altering the compression ratio in a vcr engine
FR2891586A1 (en) Acceleration controlling system for e.g. car, has smith predictor to predict physical quantity for estimating resisting torque exerted by transmission chain on shaft, where torque and its estimation are independent of weight of vehicle
FR3036199A1 (en) METHOD FOR ADAPTIVE CONTROL OF A CONTROL ASSEMBLY

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180115

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F02D 11/10 20060101ALI20190924BHEP

Ipc: F02D 41/00 20060101ALI20190924BHEP

Ipc: F02D 41/14 20060101AFI20190924BHEP

INTG Intention to grant announced

Effective date: 20191011

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: DE

Ref legal event code: R084

Ref document number: 602016032064

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602016032064

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1246169

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200415

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: GB

Ref legal event code: 746

Effective date: 20200505

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200618

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200618

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200619

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200718

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: PSA AUTOMOBILES SA

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1246169

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200318

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602016032064

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

26N No opposition filed

Effective date: 20201221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200711

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602016032064

Country of ref document: DE

Owner name: STELLANTIS AUTO SAS, FR

Free format text: FORMER OWNER: PSA AUTOMOBILES S.A., POISSY, FR

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240620

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240619

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240619

Year of fee payment: 9