EP3334993B1 - Éléments d'acheminement d'un flux dans un conduit - Google Patents

Éléments d'acheminement d'un flux dans un conduit Download PDF

Info

Publication number
EP3334993B1
EP3334993B1 EP16760396.8A EP16760396A EP3334993B1 EP 3334993 B1 EP3334993 B1 EP 3334993B1 EP 16760396 A EP16760396 A EP 16760396A EP 3334993 B1 EP3334993 B1 EP 3334993B1
Authority
EP
European Patent Office
Prior art keywords
channel
flow
partial
flow guide
shaped element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16760396.8A
Other languages
German (de)
English (en)
Other versions
EP3334993A1 (fr
Inventor
Edgar Hansjosten
Walther Benzinger
Andreas Hensel
Achim Wenka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Karlsruher Institut fuer Technologie KIT
Original Assignee
Karlsruher Institut fuer Technologie KIT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Karlsruher Institut fuer Technologie KIT filed Critical Karlsruher Institut fuer Technologie KIT
Publication of EP3334993A1 publication Critical patent/EP3334993A1/fr
Application granted granted Critical
Publication of EP3334993B1 publication Critical patent/EP3334993B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/08Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by varying the cross-section of the flow channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/12Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by creating turbulence, e.g. by stirring, by increasing the force of circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F7/00Elements not covered by group F28F1/00, F28F3/00 or F28F5/00
    • F28F7/02Blocks traversed by passages for heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2210/00Heat exchange conduits
    • F28F2210/02Heat exchange conduits with particular branching, e.g. fractal conduit arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2260/00Heat exchangers or heat exchange elements having special size, e.g. microstructures
    • F28F2260/02Heat exchangers or heat exchange elements having special size, e.g. microstructures having microchannels

Definitions

  • the present invention relates to a flow channel provided with flow guide.
  • WO 2011/115883 A2 describes a device according to the preamble of patent claim 1.
  • Object of the present invention is accordingly, flow guides in one Channel to be designed so that a defined guidance of the volume flow is achieved and at the same time the required heat and / or mass transfer z. B. is ensured by diffusion.
  • the invention relates to a device for achieving a defined guidance of a volume flow of a fluid through a flow channel, in which microchannel-structured (microstructured) flow guide elements for dividing the volume flow and the defined guidance of the resulting partial flows of fluids are arranged.
  • exchange processes can take place both with the channel wall and between the part streams.
  • the contact distance with the pipe wall and between the individual streams is specified.
  • the contact distance can be changed depending on the process and thus the process can be influenced.
  • the channel flow is accordingly not only deflected locally, but it is guaranteed a defined flow guidance in the channel.
  • microstructured flow guide elements are present in the flow channel.
  • Flow directors are thin-walled components that are installed in a flow channel (e.g., a pipe).
  • the task of the flow guide is to make the flow guide in a channel so that a fluid flow divided into partial streams and these streams are alternately guided to the wall of the flow channel.
  • exchange processes can take place with the duct wall and / or between partial flows.
  • the flow guide elements are constructed from basic elements.
  • the result is that the subject of the invention are not mixing elements, but flow guide elements in a flow channel.
  • the goal is the subdivision of a channel flow in defined guided partial flows, with a targeted heat exchange of all guided partial flows to take place on the wall.
  • a fluid flow flowing into the flow channel is subdivided into partial flows. If a flow-guiding element is constructed from only one basic-form element, two partial flows are generated. If the flow guide element has been constructed from a plurality of basic form elements, their arrangement determines the number of partial flows.
  • microstructured flow guide elements are with the so-called. 3D printing technology produced. That is, with the aid of 3D printing technology, it is possible to construct complex molding surfaces (free-form surfaces.)
  • the microstructured flow-guiding elements have a circular, annular, elliptical or rectangular cross-section.
  • the channel height of the microstructured flow guide elements is 0.1-100 mm, preferably 0.1-5 mm.
  • the width of the micro-channel structured flow guide is to settle.
  • the length of the microstructured flow guide elements is 3 - 300 mm, preferably 5 - 50 mm
  • the wall thickness of the microchannel-structured flow guide elements is 0.01-0.5 mm, preferably 0.1-0.3 mm.
  • the flow guide elements are inserted into the flow channel in such a way that they occupy about 5 to 50%, preferably 5 to 30%, of the channel-shaped element (flow channel).
  • microstructured flow guide elements according to the invention can also comprise or consist of a catalytically active material.
  • the flow guide elements are provided with catalytically active material, a corrosion protection or an antifouling layer or are subjected to any desired combinations of the layers mentioned. It is also possible that the flow guide elements consist of the materials mentioned.
  • microchannel-structured flow guide may contain or consist of metal, ceramics or plastics, or have any combinations of these substances or consist of these.
  • volume flow of a fluid can be divided in any way. From two to infinity, any partial flows are conceivable. For example, four or six partial streams may be provided.
  • the flow guide By the flow guide a guide (defined flow guidance) of the partial flows is achieved.
  • the construction is carried out so that the partial flows are alternately brought into contact with the inner wall of the channel-shaped element (wall of the flow channel) and with the other partial flows.
  • the heat exchange with the wall of the flow channel is improved as follows by the flow guide elements installed in the flow channel: A partial flow is guided to the wall of the flow channel.
  • a heat exchange between the fluid and the wall of the flow channel takes place.
  • the resulting heat flow between the fluid and the wall of the flow channel results in heat transport through the fluid layer.
  • the thermal conductivity of the fluid limits the heat transfer.
  • a partial stream is led away from the wall of the flow channel after a contact zone corresponding to the length of a flow-guiding element and during the residence time in the interior of the flow channel a temperature compensation takes place in the partial stream. After flowing through the temperature compensation section of the partial flow is guided back to the wall of the flow channel.
  • the flow guide elements are manufactured with different microchannel shapes, ie constructed from basic shaped elements. This makes it possible that the partial flows can be performed arbitrarily in the channel-shaped element.
  • the microchannel-structured flow guide are permanently installed. This ensures that permanent contact with the duct wall or the other partial flows is guaranteed on defined areas. This can be targeted to achieve a heat or mass transfer. As a result, a controlled reaction and / or process management is included simultaneous Rothtemper réelle within the microstructured flow guide possible.
  • the invention will be described in more detail below on the basis of exemplary embodiments:
  • the pipe flow is divided into four partial streams for improving the heat transfer between the wall of the channel-shaped element and material flow.
  • the channel-shaped element are in the example according to Fig. 1 two Flow guide 7.8 installed.
  • the wall structures of the flow guide elements 7, 8 carry the partial flows 1, 2, 3 and 4.
  • Partial flow 2 penetrates partial flow 1 and is directed to the tube wall 10 of the channel-shaped element.
  • the flow guide elements have no wall at the contact surface between partial flow 2 and partial flow 3. This means that the partial streams can exchange material.
  • a heat exchange takes place.
  • the partial flow 1 is guided by the wall 10 of the channel-shaped element in the direction of the center of the channel-shaped element.
  • a corresponding exchange takes place in the partial streams 3 and 4.
  • the corresponding exchange process is repeated in the second microchannel structured flow guide 8.
  • the wavelength for a replacement cycle corresponds to the length of two flow lines. This can be chosen as a design parameter depending on the viscosity of the material flow.
  • the microstructured flow element was made of metal using 3D printing technology.
  • the volume consumption by the internals is in the example according to FIG. 1 8th % of the internal volume of the channel-shaped element.
  • the distribution of the volume flows in the channel-shaped element 9 takes place according to Figures 2 and 3 in 18 sub-streams. This makes it possible to optimize the process control of a heterogeneous gas phase reaction and tempering via the wall 10 of the channel-shaped Reach element 9.
  • a channel-shaped element 9 three micro-channel structured flow guide elements are inserted.
  • the volume flow is subdivided into six sub-levels in the first element. In each part level, the volume flow is again divided into three partial flows, so that a total of 18 partial flows arise.
  • FIG. 3 shows the course of the partial flows per part level (1.1, 2.1, 3.1, 4.1, 5.1, 6.1) over a distance of 3 Strömungsleitelement lengths. From the figure it can be seen that the flow guide elements are subdivided into six sub-levels, the sub-streams are systematically guided from part level to part level. Each partial flow is once guided to the wall of the flow channel, as is out FIG. 3 is apparent. That is, each microstructured flow guide can once perform a heat exchange on the wall of the flow channel. After a distance of six installation element lengths, the partial flows have again reached the starting position, ie an exchange cycle has been run through.
  • the microstructured Strömungsleitelementformen and lengths are chosen so that the components are safe to coat with a catalytically active material, or consist of catalytic material.
  • FIGS. 4 and 5 a circular, channel-shaped element is shown.
  • FIG. 4 is shown in cross-section of the channel-shaped element, as in the individual circularly arranged sub-levels of the elements 7, 12-14, the sub-streams are arranged with the micro-channel structured flow guide elements.
  • FIG. 4 It can be seen that three sub-streams are defined per sub-level.
  • part levels 12, 13 and 14 are constructed as internals, between which the partial flows are exchanged radially. Again, it is ensured that in each case a partial flow is passed at least once to the channel wall and gets into contact with other partial streams, so that here a mass transfer can take place.
  • FIG. 6 consists of a flow guide 7,8 in the simplest form of exactly one basic form element 19 and can be installed in a flow channel 15 with a rectangular cross-section.
  • the geometric shape is constructed such that the fluid stream divided into partial flows flows through a flow guide element 7, 8 with minimal pressure loss.
  • the fluid stream 16 can be divided into partial streams 1, 2.
  • the channel cross section 17 is divided by the flow guide 7.8 into two partial streams 1 and 2.
  • FIG. 8 An exchange of the partial flows takes place.
  • the partial flow 1 is divided by the flow guide 7,8 again in the partial streams 2.1 and 2.2.
  • FIG. 9 is the contact surface 18 of two partial streams 2.1 and 2.2 shown.
  • the partial flows 2.1 and 2.2 are brought together again after flowing around partial flow 1.
  • a heat exchange and / or mass transfer (eg by diffusion) is possible.
  • FIG. 10 the arrangement of the basic form elements 19 is shown. By parallel connection in the direction of the X-coordinate axis, the number of partial streams 1 - 6 is increased.
  • a flow element composed of three parallel basic form elements divides a fluid flow 16 into six partial flows 1-6.
  • FIG. 11 is a series connection in the direction of the Z coordinate axis represents.
  • the flow guide elements 7, 8 are arranged one behind the other in the flow direction.
  • the partial streams 1 and 2 are conducted separately through the channel.
  • the partial flow 1 is guided through a flow cross section 17a.
  • the partial flow 2 is guided through a flow cross section 17b.
  • FIG. 12 shows the arrangement of the basic form elements 19 and flow guide elements 7,8.
  • the parallel connection of basic shaped elements 19 in the direction of the Y-coordinate axis the number of partial flows is increased to 1 - 3 and by an additional series connection of the flow guide 7.8, the partial streams 1-3 are alternately guided to the channel wall.
  • a flow guide element 7, 8, constructed from two basic shaped elements 19 connected in parallel divides a fluid flow into three partial flows 1, 2, 3.
  • the flow guide elements are constructed from basic shaped elements.
  • the geometric shape is designed so that fluid flows with a minimum pressure loss through a flow guide 7.8.
  • a flow guide element 7, 8 can be constructed from one or more basic form elements 19 connected in parallel.
  • flow guide elements 7,8 are arranged in a channel.
  • the flow guidance of the partial flows takes place with parallel and series connection.
  • the flow guide element 7, 8 is constructed from two basic form elements 19 which are connected in parallel in the direction of the y-coordinate axis.
  • the three flow guide elements 7, 8 are connected in series (z-direction).
  • the partial flow 3 is guided in the first and second flow guide of partial flow 3 via the position 20 to position 21.
  • the partial flow 3 is guided again from position 20 to position 22.
  • the flow guide is marked with the numbers 7,8.
  • FIG. 14 there is a parallel circuit of transformed basic form elements 19 in the radial and circumferential direction in a tube with the tube wall 10 in a channel-shaped element 9.
  • two curved basic shape element 19 are in radial Direction or three curved Grundformeiemente 19 in the circumferential direction.
  • the number of parallel connected basic form elements 19 the number of partial streams 1 - 6 is defined.
  • the circular flow-guiding element 7, 8 divides the fluid flow into a circular ring 23. Below this follows a circular ring 24 and an inner circle 25.
  • a flow-guiding element 7, 8 can be constructed from 2 basic elements which are curved in the radial direction and 3 in the circumferential direction.
  • the channel cross section is divided by the flow guide 7.8 in circular or Kreisringteilstromquerites.
  • the entering into the channel-shaped element 9 fluid flow 16 is divided by the first flow guide in 9 sub-streams.
  • position 1 in the circular ring are the partial flows 20.
  • position 2 in the circular ring the partial streams 21 and in position 3, the partial streams 22 are arranged in the inner circle.
  • FIG. 16 represents a further variation of the function of the flow guide in a circular, channel-shaped element 9.
  • the flow guide is made up of 2 x 3 curved basic form elements 19.
  • the channel cross-section (cross-section of the channel-shaped element 9) is subdivided by the flow guide into a circular or circular ring partial flow cross section.
  • the entering into the channel fluid flow 16 is divided by the first flow in nine part streams.
  • the partial flows 20 are shown in the outer annulus.
  • the partial streams 21 are present in the inner circular ring.
  • the partial streams 22 are present in the inner circle.
  • FIG. 17 shows a test setup for the measurement of thermal efficiency.
  • the temperatures are marked with T.
  • Measured is T 10 of the influent fluid 1 and the temperature T 11 of the outflowing fluid 1.
  • the fluid 2 is measured at the temperature T 20 and the temperature T 21 shows the fluid 2.
  • the fluid 1 has the numeral 26, and the fluid 2 is the numeral 27.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Claims (11)

  1. Dispositif pour obtenir une guidage definie d'un circuit de volume d'un fluide par un élément en forme de canal, en ce que dans l'élément en forme de canal des éléments de guidage de circuit en structure microcanal sont arrangés pour la division du circuit et la guidage des circuits partiels résultants des fluides, caractérisé en ce que la construction est arrangée de telle sorte que les circuits partiels sont guidés d'une telle manière qu'ils sont mis en contact alternativement avec la paroi intérieure des éléments en forme de canal et avec les autres circuits partiels.
  2. Dispositif selon la revendication1, caractérisé en ce e que dans l'élément en forme de canal pour la guidage des circuits partiels, au moins un élément de guidage de circuit en structure de microcanal est arrangé.
  3. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que les microcannaux des éléments de guidage des circuits sont formés aux définies surfaces de contact des circuits partiels sans paroi pour replacement des circuits partiels.
  4. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que la section transversale de l'élément en structure de canal est formée en forme circulaire, anneau-circulaire, elliptiquement ou rectangulaire.
  5. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que les éléments de guidage de circuits ont un matériau catalytiquement actif ou sont composés de celui-ci.
  6. Dispositif selon la revendication 5, caractérisé en ce e que des éléments de guidage de circuits en forme de microcanal sont munis d'un matériau catalytiquement actif, protection contre la corrosion ou avec une couche antifouling ou sont appliqués avec diverses combinaisons des couches mentionnées, ou qui ont des matériaux mentionnés ou sont composés de ceux-ci ou ont toutes les combinaisons possibles du matériau mentionné ou sont composé de ceux-ci.
  7. Procédé pour obtenir la guidage definie d'un circuit de volume d'un fluide par un élément en forme de canal, caractérisé en ce que
    - le fluide coule dans l'élément en forme de canal
    - le fluide est divisé en des circuits partiels, en préférence laminaires
    - la division est obtenue par des éléments de guidage de circuits en structure de microcanal, que sont présents dans l'élément en forme de canal
    - les circuits partiels sont guidés dans une manière definie par les éléments de guidage de circuits en structure microcanal
    - les circuits partiels sont guidés d'une telle manière qu'ils sont mis en contact avec la paroi intérieure de l'élement en forme de canal et l'un avec l'autre , et les circuits partiels sont mis en contact alternativement avec la paroi intérieure de l'élément en forme de canal et avec les autres circuits partiels.
  8. Procédé selon la revendication 7, caractérisé en ce que les circuits partiels sonte guidés d'une telle manière qu'ils sont mis en contact alternativement avec la paroi intérieure de l'élément en forme de canal et avec les autres circuits partiels.
  9. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que chaque circuit partiel est guidé au moins une fois à la paroi intérieure de l'élément en forme de canal.
  10. Utilisation selon l'une quelconque des revendications 1 - 6 pour obtenir un échange de chaleur avec la paroi intérieure d'un élément en forme de canal ou les autres circuits partiels, et/ou pour obtenir un transfert de mass avec les autres circuits partiels.
  11. Utilisation selon l'une quelconque des revendications 1 - 6 pour obtenir une réaction controllée et/ou un procès de contrôle dans les éléments de guidage de circuits en structure microcanal et/ou le procès de côntrole de la température à la paroi intérieure de l'élément en forme de canal.
EP16760396.8A 2015-08-14 2016-08-12 Éléments d'acheminement d'un flux dans un conduit Active EP3334993B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015113432.2A DE102015113432A1 (de) 2015-08-14 2015-08-14 Strömungsleitelemente in einem Kanal
PCT/EP2016/069214 WO2017029211A1 (fr) 2015-08-14 2016-08-12 Éléments d'acheminement d'un flux dans un conduit

Publications (2)

Publication Number Publication Date
EP3334993A1 EP3334993A1 (fr) 2018-06-20
EP3334993B1 true EP3334993B1 (fr) 2019-11-27

Family

ID=56855412

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16760396.8A Active EP3334993B1 (fr) 2015-08-14 2016-08-12 Éléments d'acheminement d'un flux dans un conduit

Country Status (3)

Country Link
EP (1) EP3334993B1 (fr)
DE (1) DE102015113432A1 (fr)
WO (1) WO2017029211A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024036206A1 (fr) 2022-08-12 2024-02-15 Cargill, Incorporated Polycondensation de sucres en présence d'eau à l'aide d'un microréacteur

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3392906A1 (fr) * 2017-04-19 2018-10-24 Siemens Aktiengesellschaft Procédé de fabrication d'une plaque de refroidissement pour un semi-conducteur de puissance
FR3088994B1 (fr) * 2018-11-28 2020-12-25 Liebherr Aerospace Toulouse Sas Échangeur de chaleur et système de refroidissement d’un fluide comprenant un tel échangeur de chaleur

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2808854C2 (de) 1977-05-31 1986-05-28 Gebrüder Sulzer AG, 8401 Winterthur Mit Einbauten versehener Strömungskanal für ein an einem indirekten Austausch, insbesondere Wärmeaustausch, beteiligtes Medium
DE8804742U1 (de) * 1988-04-11 1988-06-09 Siemens AG, 1000 Berlin und 8000 München Kühlkörper mit eingesetztem Füllstück zur Kühlung eines elektrischen Bauelementes mit einem flüssigen Kühlmedium
DE19511693A1 (de) 1994-05-26 1995-11-30 Teves Gmbh Alfred Lenkstockschalter mit Wickelfeder
US5595712A (en) * 1994-07-25 1997-01-21 E. I. Du Pont De Nemours And Company Chemical mixing and reaction apparatus
DE19511603A1 (de) * 1995-03-30 1996-10-02 Norbert Dr Ing Schwesinger Vorrichtung zum Mischen kleiner Flüssigkeitsmengen
DE19536856C2 (de) * 1995-10-03 1997-08-21 Danfoss As Mikromischer und Mischverfahren
DE50003420D1 (de) 1999-07-07 2003-10-02 Fluitec Georg Ag Winterthur Vorrichtung für den Wärmetausch
DE10203819C2 (de) 2002-01-31 2003-04-17 Johann Stichlmair Einbauten für Packungskolonnen
DE10319367A1 (de) * 2003-04-29 2004-11-25 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Erstellung eines Hydrauliknetzwerkes für einen optimierten Wärmeübertragungs- und Stofftransport
DE10326381B4 (de) 2003-06-12 2005-09-22 Jähn, Peter Turbulenzerzeuger
JP4992201B2 (ja) * 2005-06-07 2012-08-08 富士ゼロックス株式会社 マイクロ流体制御方法、マイクロ流体素子およびその製造方法
CN102421515A (zh) * 2009-05-14 2012-04-18 株式会社日立工业设备技术 微反应器系统
WO2011115883A2 (fr) * 2010-03-15 2011-09-22 The Trustees Of Dartmouth College Géométrie d'échangeur thermique doté d'un rendement élevé
DE102010026017A1 (de) 2010-07-03 2012-01-05 SEVERIN ELEKTROGERÄTE GmbH Vorrichtung zur Zubereitung von Heißgetränken
WO2013163398A1 (fr) * 2012-04-25 2013-10-31 Flowserve Management Company Échangeur de chaleur muni d'un treillis issu de la fabrication additive
US9695106B2 (en) * 2014-02-04 2017-07-04 Sabic Global Technologies B.V. Method for producing carbonates

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024036206A1 (fr) 2022-08-12 2024-02-15 Cargill, Incorporated Polycondensation de sucres en présence d'eau à l'aide d'un microréacteur

Also Published As

Publication number Publication date
DE102015113432A1 (de) 2017-02-16
WO2017029211A1 (fr) 2017-02-23
EP3334993A1 (fr) 2018-06-20

Similar Documents

Publication Publication Date Title
DE2808854C2 (de) Mit Einbauten versehener Strömungskanal für ein an einem indirekten Austausch, insbesondere Wärmeaustausch, beteiligtes Medium
EP3334993B1 (fr) Éléments d'acheminement d'un flux dans un conduit
EP1866066B1 (fr) Système melangeur, reacteur et systéme reacteur
EP2851118B1 (fr) Dispositif de mélange et d'échange thermique et procédé pour sa fabrication
EP0947239B1 (fr) Mélangeur statique
EP1384502A1 (fr) Mélangeur, échangeur de chaleur
DE10326381B4 (de) Turbulenzerzeuger
EP2711163A1 (fr) Corps de formage tridimensionnel
EP0433222A1 (fr) Réacteur avec un corps de catalyseur pour effectuer une réaction hétérogène
EP0248222A2 (fr) Tubes de refroidissement, ainsi que le procédé et l'appareil pour leur fabrication
EP2915581B1 (fr) Mélangeur statique
EP3408014A1 (fr) Échangeur de chaleur-mélangeur de type x à cavité
EP1674150A2 (fr) Micromélangeur statique
DE112004001604B4 (de) Dreidimensionale quer angeordnete Umlenkeinrichtung als inneres Element in einem Rohr, einem Fass oder einem Turm
EP1413844A2 (fr) Canaux de contrôle de température
DE19837671A1 (de) Statischer Mischer
EP2431700B1 (fr) Micro-échangeur de chaleur à flux croisé
EP3966513A1 (fr) Échangeur de chaleur à faisceau tubulaire comportant des modules/éléments intégrés constitués de surfaces déflectrices et de barrettes de guidage
EP3822569B1 (fr) Echangeur de chaleur
DE10159985B4 (de) Mikroemulgator
DE3920123C1 (fr)
EP4089357A1 (fr) Echangeur de chaleur
DE10206708B4 (de) Mikrokanalsystem
EP2233209B1 (fr) Corps de formage
DE102011121061B4 (de) Matrix und Verfahren zu ihrer Herstellung

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180207

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190621

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1207144

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016007775

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191127

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200227

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191127

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191127

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191127

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200227

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191127

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191127

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200327

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502016007775

Country of ref document: DE

Representative=s name: MEISSNER BOLTE PATENTANWAELTE RECHTSANWAELTE P, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191127

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191127

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191127

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200419

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191127

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191127

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016007775

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191127

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191127

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20200828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191127

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191127

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200812

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200812

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191127

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191127

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191127

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230823

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230824

Year of fee payment: 8

Ref country code: AT

Payment date: 20230818

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230821

Year of fee payment: 8

Ref country code: DE

Payment date: 20230822

Year of fee payment: 8