EP3329550B1 - Transceiver device and associated antenna - Google Patents
Transceiver device and associated antenna Download PDFInfo
- Publication number
- EP3329550B1 EP3329550B1 EP16744792.9A EP16744792A EP3329550B1 EP 3329550 B1 EP3329550 B1 EP 3329550B1 EP 16744792 A EP16744792 A EP 16744792A EP 3329550 B1 EP3329550 B1 EP 3329550B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- transceiver
- modules
- radiating element
- transmission
- excitation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000005540 biological transmission Effects 0.000 claims description 81
- 230000005284 excitation Effects 0.000 claims description 40
- 230000010363 phase shift Effects 0.000 claims description 10
- 238000005516 engineering process Methods 0.000 claims description 8
- 230000008878 coupling Effects 0.000 claims description 7
- 238000010168 coupling process Methods 0.000 claims description 7
- 238000005859 coupling reaction Methods 0.000 claims description 7
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 claims description 4
- 239000000758 substrate Substances 0.000 claims description 2
- 230000003321 amplification Effects 0.000 claims 2
- 238000003199 nucleic acid amplification method Methods 0.000 claims 2
- 230000010287 polarization Effects 0.000 description 8
- 230000005855 radiation Effects 0.000 description 6
- 239000011810 insulating material Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/0407—Substantially flat resonant element parallel to ground plane, e.g. patch antenna
- H01Q9/0428—Substantially flat resonant element parallel to ground plane, e.g. patch antenna radiating a circular polarised wave
- H01Q9/0435—Substantially flat resonant element parallel to ground plane, e.g. patch antenna radiating a circular polarised wave using two feed points
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q23/00—Antennas with active circuits or circuit elements integrated within them or attached to them
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/0407—Substantially flat resonant element parallel to ground plane, e.g. patch antenna
- H01Q9/045—Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means
- H01Q9/0457—Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means electromagnetically coupled to the feed line
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/0407—Substantially flat resonant element parallel to ground plane, e.g. patch antenna
- H01Q9/0478—Substantially flat resonant element parallel to ground plane, e.g. patch antenna with means for suppressing spurious modes, e.g. cross polarisation
Definitions
- the present invention relates to that of transmission / reception devices for antennas, in particular transmission / reception devices suitable for operating in the microwave domain and with power levels compatible with radar or electronic warfare applications.
- a radar antenna consists of a matrix of transmission / reception means (or elementary antennas) comprising substantially planar radiating elements. Each radiating element is associated with a transmission / reception module (or T / R module for "transmission / reception module" in English).
- the transmission / reception module is arranged in the volume located just behind the transmission / reception means.
- the transmission / reception module amplifies an excitation signal, preferably microwave, received from a remote signal generation electronics and applies the amplified excitation signal to the transmission / reception means.
- the transmission / reception module amplifies a reception signal received from the transmission / reception means and transmits the amplified reception signal to a remote acquisition electronics.
- the association of a transmission / reception means and a transmission / reception module is referred to as a transmission / reception device.
- the accessible powers are limited by the properties of the technologies implemented for the realization of the transmission / reception module.
- the MMIC technologies for "Monolithic Microwave Integrated Circuit” in English, or monolithic microwave integrated circuit) conventionally implemented are characterized by maximum acceptable powers, beyond which it would be desirable to be able to work for the applications mentioned above.
- the document US 2012/188917 A1 discloses a transmission / reception device comprising an antenna 411 having the shape of a disc.
- the device comprises several transmit / receive modules respectively coupled to the antenna via baluns, each balun being coupled to the antenna by a pair of lines, the ends of which are connected to excitation points diametrically. opposed to each other.
- the document US 6009314 A discloses an antenna switch for selectively connecting a pair of differential output signals from an output power amplifier to an unbalanced signal from an antenna when transmitting and selectively connecting an input differential pair of signals from a low noise input amplifier to the unbalanced antenna signal when receiving.
- the document US 2014/292595 A1 discloses an antenna device comprising a radiation patch in the form of a flat plate, a first feed point configured in a side region of the radiation patch, and a second feed point configured in another lateral region of the radiation patch.
- the first feed point and the second feed point are the same distance from a virtual ground plane formed on the radiation patch, out-of-phase feed is provided to the first feed point and the second feed point to form a side radiation pattern, and phase power is supplied to the first feed point and the second feed point to form an end light radiation pattern.
- the object of the invention is therefore to remedy this problem.
- the subject of the invention is a transmission / reception device and an antenna comprising a plurality of such transmission / reception devices according to the appended claims.
- the invention uses two transmit / receive modules coupled to two polarization ports, in quadrature with one another, of the same flat radiating element, each of the modules operating at a power nominal compatible with the maximum power acceptable by the technology used to manufacture it.
- the incident total wave is broken down into two elementary waves, transmitted to each of the transmission / reception modules.
- An elementary wave has a power twice lower (-3 dB) than the power of the incident total wave.
- the attached figure schematically represents a transmission / reception device 10, which comprises a transmission / reception means 12 and an electronic circuit 13, integrating a first transmission / reception module 14 and a second transmission / reception module 16
- the first and second modules 14 and 16 are respectively connected to the transmission / reception means 12 by a pair of supply lines, 31, 32 and 33, 34 respectively.
- the transmission / reception means 12 shown schematically in top view in the figure, is known by the term “patch” antenna. It comprises a radiating element 22, substantially planar, disposed above a layer forming a ground plane, a gap being formed between the radiating element and the layer forming a ground plane. This gap is for example made up of an insulating material or of a dielectric material.
- the radiating element 22 is a plate made of a conductive material. It has for example a square shape.
- the radiating element 22 comprises, in addition to an excitation plate, other metal plates which are superimposed on the excitation plate. Whatever the geometry of the radiating element 22 (square, disc, etc.), it is possible to define a central point C.
- the plane of the radiating element 22 is defined by two directions D1 and D2, mutually orthogonal: the first direction D1 connects the midpoints of two opposite sides of the square formed by the radiating element 22; the second direction D2 connects the midpoints of the two other opposite sides of the square formed by the radiating element 22.
- the excitation of the radiating element is carried out by coupling with the end of a supply line.
- This coupling is for example carried out by electrically connecting the end of the supply line to an excitation point of the radiating element.
- the excitation current flows to the radiating element, through the insulating material placed between the radiating element and the layer forming the ground plane, for example by means of 'a metallized via making it possible to connect the end of the conductive supply line to a pin located at the rear of the radiating element, to the right of the point to be excited.
- this coupling is produced by a slot made in the layer forming the ground plane.
- the end of the feed line is arranged so as to overlap this slot from below, the radiating element being located above the layer forming the ground plane.
- the point of excitation of the radiating element is then located substantially opposite the center of the slot.
- the slots in the layer forming the ground plane being represented schematically by dotted lines.
- the first and second transmission / reception modules 14 and 16 are identical to each other. They are arranged between, on the one hand, an electronic microwave signal generation and a remote acquisition electronics (not shown in the figure), and, on the other hand, the transmission / reception means 12.
- each module Downstream side, that is to say on the side of the transmission / reception means, each module is connected directly to the transmission / reception means 12 by a pair of supply lines and is therefore specific, in transmission, to applying a differential excitation signal and, on reception, acquiring a differential reception signal.
- a module transmission / reception already operating on differential signals, the fact of connecting it to a load in a differential way avoids having to interpose a component, such as a balun (for "balanced unbalanced transformer") to switch from a differential signal to a common mode signal.
- balun for "balanced unbalanced transformer”
- the first module 14 is therefore coupled to the transmission / reception means 12 by the supply lines 31 and 32, the free ends of which are respectively coupled to two excitation points P1 and P2 of the radiating element 22.
- the points P1 and P2 are arranged along the first direction D1, symmetrically on either side of the central point C of the radiating element 22.
- the second transmission / reception module 16 is coupled to the transmission / reception means 12 by the supply lines 33 and 34, the free ends of which are respectively coupled to two excitation points P3 and P4 of the radiating element 22.
- the points P3 and P4 are arranged along the second direction D2, symmetrically on either side of the central point C.
- the distance between two excitation points P1 and P2 or P3 and P4 is chosen so as to adjust the impedance of the load that constitutes the transmission / reception means 12 connected to the terminals of the corresponding transmission / reception module, 14 or 16.
- the distance between the excitation points P1 and P2 and that between the points P3 and P4 is identical so that the two modules are connected to a load of the same impedance.
- This distance is preferably chosen so that the impedance of the transmission / reception means 12 is equal to 50 Ohms.
- the possibility of choosing the impedance implies that it is not necessary to add to the device 10 a component to adapt, by impedance transformation, the impedance between the transmission / reception modules 14 and 16, of on the one hand, and the transmission / reception means 12, on the other hand. This contributes to improving the power efficiency of the device 10, all of the power at the output of a transmission / reception module being applied to the transmission / reception means.
- a transmission / reception module 14, and 16 comprises various conventional functionalities, known to those skilled in the art.
- a transmission / reception module thus comprises a transmission channel 110 and a reception channel 120.
- an excitation signal S E applied by the electronics for generating a microwave signal at the input of circuit 13 is divided, by a distributor 210, into a first excitation signal applied at the input of the channel.
- the first and second excitation signals are identical to each other, possibly except for a relative phase ⁇ .
- the transmission channel 110 comprises means for amplifying the excitation signal S E , in particular a preamplifier 114 and a high power amplifier 116 in radar and electronic warfare applications.
- the first and second excitation signals are respectively transmitted to the transmission / reception means 12.
- first and second reception signals are applied by the transmission / reception means 12 at the input of the reception channel 120 of the first and second transmission modules 14 and 16, respectively.
- the reception channel 120 comprises protection means, such as a limiter 118, and an amplifier means, such as a low noise amplifier 119.
- the first and second amplified reception signals are summed by an adder 220 of circuit 13, before the resulting reception signal is transmitted to the remote acquisition electronics.
- the first module 14 comprises a switch controlled 124 by a control signal S C so as to switch the first module 14 either into a transmission operating mode, by connecting the transmission channel 110 to the supply lines 31 and 32, or in receive mode, by connecting the receive channel 120 to the supply lines 31 and 32.
- the second module 16 comprises a switch 126 controlled by a control signal S C so as to switch the second module 16 either into a transmission operating mode, by connecting the transmission channel 110 to the supply lines 33 and 34, or in receive mode, by connecting the receive channel 120 to the supply lines 33 and 34.
- the control signal S C applied to the controlled switch 124 of the first module 14 is also the control signal S C applied to the controlled switch 126 of the second module 16, so that the first and second modules are synchronized in their mode of operation.
- each transmission / reception module integrates a phase shifting means controlled by a phase shift signal S ⁇ .
- the first module 14 comprises a first phase shifting means 134 and the second module 16 comprises a second phase shifting means.
- phase shift 136 Each phase shift means comprises for example an attenuator 131 and a phase shifter 132.
- the phase shift means 134 and 136 of the first and second modules 12 and 16 are controlled by the same phase shift signal S ⁇ , so that the first and second modules 14 and 16 operate each time instant by introducing the same phase shift either on the excitation signals S E of the radiating element 22, or on the reception signals S R coming from the radiating element 22.
- the transmission / reception device 10 comprises an adjustment means 140 making it possible to introduce a relative phase ⁇ between the first and second excitation signals respectively applied at the input of the transmission path 110 of each of the modules d. 'transmission / reception 14 and 16. Consequently, the elementary waves respectively excited by the first and second modules 14 and 16 will be out of phase with one another.
- the adjustment means 140 adjusts the value of the relative phase ⁇ to be introduced as a function of an adjustment signal S ⁇ received from the remote electronics.
- control signals S C , phase shift S ⁇ and adjustment signals S ⁇ are emitted by the remote electronics and applied to input terminals of circuit 13.
- the first and second transmission / reception modules 14 and 16 are produced in MMIC technology.
- SiGe technology is used, but GaAn technology could equally well be used.
- the first and second transmission / reception modules 14 and 16 are produced on the same substrate so as to constitute a single circuit 13. This variant has a reduced size facilitating the integration of the circuit 13 at the rear of the transmission / reception means 12.
- the power of the emitted or received electromagnetic waves may be greater than the nominal operating power of each module, both in transmission and in reception.
- the power emitted is twice the nominal power. This is particularly advantageous when the nominal power is close to the maximum power authorized by the technology implemented for the production of the transmission / reception modules.
- the power remains below the maximum power, the device makes it possible to transmit waves at a higher power.
- the fact of distributing the power of the incident wave between the two transmission / reception modules allows the device to be more robust vis-à-vis external attacks, such as illumination of the antenna by a device carrying out an intentional or unintentional interference.
- each radiating element is able to individually generate a polarized total wave.
- the place of emission of the polarized total wave coincides with the central point C of the radiating element.
- the power efficiency of the device according to the invention is optimized, in particular by the possibility of directly connecting the transmission / reception modules to the transmission / reception means. The losses are therefore reduced.
- Such a device can be used alone or in combination with other identical devices in an antenna.
- the device being particularly compact, it can be integrated into an array antenna, preferably with electronic scanning, for example used for on-board radar applications or for electronic warfare applications on the ground. It is then suitable for operating in the microwave range, between 3 and 30 GHz, and with high power.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
Description
La présente invention a pour domaine celui des dispositifs d'émission/réception pour antennes, en particulier les dispositifs d'émission/réception propres à fonctionner dans le domaine hyperfréquence et avec des niveaux de puissance compatibles des applications radars ou de guerres électroniques.The present invention relates to that of transmission / reception devices for antennas, in particular transmission / reception devices suitable for operating in the microwave domain and with power levels compatible with radar or electronic warfare applications.
De manière connue en soi, une antenne radar est constituée d'une matrice de moyens d'émission/réception (ou antennes élémentaires) comportant des éléments rayonnants sensiblement plans. Chaque élément rayonnant est associé à un module d'émission/réception (ou T/R module pour « transmission/réception module » en anglais). Le module d'émission/réception est disposé dans le volume situé juste à l'arrière du moyen d'émission/réception. En émission, le module d'émission/réception amplifie un signal d'excitation, de préférence hyperfréquence, reçu d'une électronique de génération de signal déportée et applique le signal d'excitation amplifié au moyen d'émission/réception. En réception, le module d'émission/réception amplifie un signal de réception reçu du moyen d'émission/réception et transmet le signal de réception amplifié à une électronique d'acquisition déportée.In a manner known per se, a radar antenna consists of a matrix of transmission / reception means (or elementary antennas) comprising substantially planar radiating elements. Each radiating element is associated with a transmission / reception module (or T / R module for "transmission / reception module" in English). The transmission / reception module is arranged in the volume located just behind the transmission / reception means. In transmission, the transmission / reception module amplifies an excitation signal, preferably microwave, received from a remote signal generation electronics and applies the amplified excitation signal to the transmission / reception means. On reception, the transmission / reception module amplifies a reception signal received from the transmission / reception means and transmits the amplified reception signal to a remote acquisition electronics.
Dans le présent document, l'association d'un moyen d'émission/réception et d'un module d'émission/réception est dénommé dispositif d'émission/réception.In the present document, the association of a transmission / reception means and a transmission / reception module is referred to as a transmission / reception device.
Dans les applications radars ou de guerres électroniques, il y a un besoin pour travailler avec des puissances importantes, aussi bien en émission qu'en réception.In radar or electronic warfare applications, there is a need to work with high powers, both in transmission and in reception.
Cependant, les puissances accessibles sont limitées par les propriétés des technologies mises en œuvre pour la réalisation du module d'émission/réception. Les technologies MMIC (pour « Monolithic Microwave Integrated Circuit » an anglais, ou circuit intégré monolithique hyperfréquence) classiquement mises en œuvre sont caractérisées par des puissances maximales acceptables, au-delà desquelles il serait souhaitable de pouvoir travailler pour les applications mentionnées ci-dessus.However, the accessible powers are limited by the properties of the technologies implemented for the realization of the transmission / reception module. The MMIC technologies (for "Monolithic Microwave Integrated Circuit" in English, or monolithic microwave integrated circuit) conventionally implemented are characterized by maximum acceptable powers, beyond which it would be desirable to be able to work for the applications mentioned above.
Par ailleurs, le document
Le document
L'invention a donc pour but de palier à ce problème.The object of the invention is therefore to remedy this problem.
L'invention a pour objet un dispositif d'émission/réception et une antenne comportant une pluralité de tels dispositifs d'émission/réception selon les revendications annexées.The subject of the invention is a transmission / reception device and an antenna comprising a plurality of such transmission / reception devices according to the appended claims.
Pour fonctionner avec des puissances élevées, l'invention utilise deux modules d'émission/réception couplés à deux accès de polarisation, en quadrature l'un de l'autre, d'un même élément rayonnant plan, chacun des modules fonctionnant à une puissance nominale compatible avec la puissance maximale acceptable par la technologie mise en oeuvre pour le fabriquer.To operate with high powers, the invention uses two transmit / receive modules coupled to two polarization ports, in quadrature with one another, of the same flat radiating element, each of the modules operating at a power nominal compatible with the maximum power acceptable by the technology used to manufacture it.
En émission, la recombinaison dans l'espace de la paire d'ondes élémentaires émises par l'élément rayonnant, chaque onde élémentaire étant excitée indépendamment l'une de l'autre par chacun des modules d'émission/réception, conduit à une onde totale dont la puissance est deux fois plus importante (+3 dB) que la puissance de chaque onde élémentaire.In transmission, the recombination in space of the pair of elementary waves emitted by the radiating element, each elementary wave being excited independently of one another by each of the transmission / reception modules, leads to a wave total whose power is twice as important (+3 dB) as the power of each elementary wave.
En réception, l'onde totale incidente est décomposée en deux ondes élémentaires, transmises vers chacun des modules d'émission/réception. Une onde élémentaire possède une puissance deux fois plus faible (-3 dB) que la puissance de l'onde totale incidente.On reception, the incident total wave is broken down into two elementary waves, transmitted to each of the transmission / reception modules. An elementary wave has a power twice lower (-3 dB) than the power of the incident total wave.
L'invention et ses avantages seront mieux compris à la lecture de la description détaillée qui va suivre d'un mode de réalisation particulier, donnée uniquement à titre d'exemple non limitatif, cette description étant faite en se référant au dessin annexé, qui représente schématiquement un dispositif d'émission/réception selon l'invention.The invention and its advantages will be better understood on reading the detailed description which follows of a particular embodiment, given solely by way of non-limiting example, this description being given with reference to the appended drawing, which represents schematically a transmission / reception device according to the invention.
La figure annexée représente schématiquement un dispositif d'émission/réception 10, qui comporte un moyen d'émission/réception 12 et un circuit électronique 13, intégrant un premier module d'émission/réception 14 et un second module d'émission/réception 16. Les premier et second modules 14 et 16 sont respectivement connectés au moyen d'émission/réception 12 par une paire de lignes d'alimentation, 31, 32 et 33, 34 respectivement.The attached figure schematically represents a transmission /
Le moyen d'émission/réception 12, représenté schématiquement en vue de dessus sur la figure, est connu sous le terme d'antenne « patch ». Il comporte un élément rayonnant 22, sensiblement plan, disposé au-dessus d'une couche formant plan de masse, un intervalle étant ménagé entre l'élément rayonnant et la couche formant plan de masse. Cet intervalle est par exemple constitué d'un matériau isolant ou d'un matériau diélectrique. De préférence, l'élément rayonnant 22 est une plaque en un matériau conducteur. Il présente par exemple une forme carrée. En variante, l'élément rayonnant 22 comporte, en plus d'une plaque d'excitation, d'autres plaques métalliques qui sont superposées à la plaque d'excitation. Quelle que soit la géométrie de l'élément rayonnant 22 (carré, disque, etc.), il est possible d'y définir un point central C.The transmission / reception means 12, shown schematically in top view in the figure, is known by the term “patch” antenna. It comprises a
Le plan de l'élément rayonnant 22 est défini par deux directions D1 et D2, orthogonales entre elles : la première direction D1 relie les milieux de deux côtés opposés du carré formé par l'élément rayonnant 22 ; la seconde direction D2 relie les milieux des deux autres côtés opposés du carré formé par l'élément rayonnant 22.The plane of the
De manière générale, l'excitation de l'élément rayonnant s'effectue par couplage avec l'extrémité d'une ligne d'alimentation.In general, the excitation of the radiating element is carried out by coupling with the end of a supply line.
Ce couplage est par exemple réalisé en connectant électriquement l'extrémité de la ligne d'alimentation à un point d'excitation de l'élément rayonnant. Par exemple, à l'extrémité de la ligne d'alimentation, le courant d'excitation circule vers l'élément rayonnant, à travers le matériau isolant placé entre l'élément rayonnant et la couche formant plan de masse, par exemple au moyen d'un via métallisé permettant de connecter l'extrémité de la ligne d'alimentation conductrice à un picot situé à l'arrière de l'élément rayonnant, au droit du point à exciter.This coupling is for example carried out by electrically connecting the end of the supply line to an excitation point of the radiating element. For example, at the end of the supply line, the excitation current flows to the radiating element, through the insulating material placed between the radiating element and the layer forming the ground plane, for example by means of 'a metallized via making it possible to connect the end of the conductive supply line to a pin located at the rear of the radiating element, to the right of the point to be excited.
En variante, ce couplage est réalisé par une fente ménagée dans la couche formant plan de masse. L'extrémité de la ligne d'alimentation est disposée de manière à chevaucher cette fente par au-dessous, l'élément rayonnant étant situé au-dessus de la couche formant plan de masse. Le point d'excitation de l'élément rayonnant est alors situé sensiblement en vis-à-vis du centre de la fente. Sur la figure annexée, c'est un tel couplage qui est mis en œuvre, les fentes dans la couche formant plan de masse étant représentées schématiquement par des pointillés.As a variant, this coupling is produced by a slot made in the layer forming the ground plane. The end of the feed line is arranged so as to overlap this slot from below, the radiating element being located above the layer forming the ground plane. The point of excitation of the radiating element is then located substantially opposite the center of the slot. In the attached figure, it is such a coupling which is implemented, the slots in the layer forming the ground plane being represented schematically by dotted lines.
D'autres variantes de couplage permettant l'excitation d'une antenne planaire sont connues : ainsi l'excitation peut être effectuée sur le plan même de l'élément rayonnant plan, ou « patch », en l'attaquant directement par une ligne imprimée microruban ou « microstrip », connectée au bord du « patch » ; Ainsi encore, l'excitation peut être effectuée par couplage par proximité à une ligne « microstrip » imprimée à un niveau situé entre le « patch » et la couche formant plan de masse.Other variants of coupling allowing the excitation of a planar antenna are known: thus the excitation can be carried out on the same plane of the flat radiating element, or "patch", by attacking it directly by a printed line. microstrip or “microstrip”, connected to the edge of the “patch”; Thus again, the excitation can be carried out by coupling by proximity to a “microstrip” line printed at a level situated between the “patch” and the layer forming the ground plane.
Les premier et second modules d'émission/réception 14 et 16 sont identiques entre eux. Ils sont disposés entre, d'une part, une électronique de génération de signal hyperfréquence et une électronique d'acquisition, déportées (non représentées sur la figure), et, d'autre part, le moyen d'émission/réception 12.The first and second transmission /
Côté aval, c'est-à-dire du côté du moyen d'émission/réception, chaque module est connecté directement au moyen d'émission/réception 12 par une paire de ligne d'alimentation et est donc propre, en émission, à appliquer un signal d'excitation différentiel et, en réception, à acquérir un signal de réception différentiel. Un module d'émission/réception opérant déjà sur des signaux différentiels, le fait de le connecter à une charge de manière différentielle évite d'avoir à interposer un composant, tel qu'un balun (pour « balanced unbalanced transformer ») pour passer d'un signal différentiel à un signal en mode commun. Or un tel composant intermédiaire dégrade le rendement en puissance. Le rendement en puissance du dispositif 10 est donc amélioré.Downstream side, that is to say on the side of the transmission / reception means, each module is connected directly to the transmission / reception means 12 by a pair of supply lines and is therefore specific, in transmission, to applying a differential excitation signal and, on reception, acquiring a differential reception signal. A module transmission / reception already operating on differential signals, the fact of connecting it to a load in a differential way avoids having to interpose a component, such as a balun (for "balanced unbalanced transformer") to switch from a differential signal to a common mode signal. However, such an intermediate component degrades the power efficiency. The power efficiency of the
Le premier module 14 est donc couplé au moyen d'émission/réception 12 par les lignes d'alimentation 31 et 32, dont les extrémités libres sont respectivement couplées à deux points d'excitation P1 et P2 de l'élément rayonnant 22. Les points P1 et P2 sont disposés le long de la première direction D1, symétriquement de part et d'autre du point central C de l'élément rayonnant 22.The
De manière similaire, le second module d'émission/réception 16 est couplé au moyen d'émission/réception 12 par les lignes d'alimentation 33 et 34, dont les extrémités libres sont respectivement couplées à deux points d'excitation P3 et P4 de l'élément rayonnant 22. Les points P3 et P4 sont disposés le long de la seconde direction D2, symétriquement de part et d'autre du point central C.Similarly, the second transmission /
La distance entre deux points d'excitation P1 et P2 ou P3 et P4 est choisie de manière à ajuster l'impédance de la charge que constitue le moyen d'émission/réception 12 connecté aux bornes du module d'émission/réception correspondant, 14 ou 16. Avantageusement, la distance entre les points d'excitation P1 et P2 et celle entre les points P3 et P4 est identique pour que les deux modules soient connectés à une charge de même impédance. Cette distance est de préférence choisie pour que l'impédance du moyen d'émission/réception 12 soit égale à 50 Ohms. La possibilité de choisir l'impédance implique qu'il n'est pas nécessaire d'ajouter au dispositif 10 un composant pour adapter, par transformation d'impédance, l'impédance entre les modules d'émission/réception 14 et 16, d'une part, et le moyen d'émission/réception 12, d'autre part. Ceci participe à l'amélioration du rendement en puissance du dispositif 10, l'intégralité de la puissance en sortie d'un module d'émission/réception étant appliqué au moyen d'émission/réception.The distance between two excitation points P1 and P2 or P3 and P4 is chosen so as to adjust the impedance of the load that constitutes the transmission / reception means 12 connected to the terminals of the corresponding transmission / reception module, 14 or 16. Advantageously, the distance between the excitation points P1 and P2 and that between the points P3 and P4 is identical so that the two modules are connected to a load of the same impedance. This distance is preferably chosen so that the impedance of the transmission / reception means 12 is equal to 50 Ohms. The possibility of choosing the impedance implies that it is not necessary to add to the device 10 a component to adapt, by impedance transformation, the impedance between the transmission /
Un module d'émission/réception 14, et 16, comporte différentes fonctionnalités classiques, connues de l'homme du métier.A transmission /
Un module d'émission/réception comporte ainsi une voie d'émission 110 et une voie de réception 120.A transmission / reception module thus comprises a
En émission, un signal d'excitation SE appliqué par l'électronique de génération d'un signal hyperfréquence en entrée du circuit 13 est divisé, par un répartiteur 210, en un premier signal d'excitation appliqué en entrée de la voie d'émission 110 du premier module 14 et un second signal d'excitation appliqué en entrée de la voie d'émission 110 du second module 16. Les premier et second signaux d'excitation sont identiques entre eux, éventuellement à une phase relative θ près.In transmission, an excitation signal S E applied by the electronics for generating a microwave signal at the input of
La voie d'émission 110 comporte des moyens d'amplification du signal d'excitation SE, en particulier un préamplificateur 114 et un amplificateur haute puissance 116 dans les applications radars et de guerre électronique.The
Les premier et second signaux d'excitation sont respectivement transmis au moyen d'émission/réception 12.The first and second excitation signals are respectively transmitted to the transmission / reception means 12.
En réception, des premier et second signaux de réception, identiques entre eux, éventuellement à une phase relative θ près, sont appliqués par le moyen d'émission/réception 12 en entrée de la voie de réception 120 des premier et second modules d'émission 14 et 16, respectivement.In reception, first and second reception signals, identical to each other, possibly up to a relative phase θ, are applied by the transmission / reception means 12 at the input of the
La voie de réception 120 comporte des moyens de protection, tels qu'un limiteur 118, et un moyen d'amplificateur, tels qu'un amplificateur faible bruit 119.The
Les premier et second signaux de réception amplifiés sont sommés par un sommateur 220 du circuit 13, avant que le signal de réception résultant soit transmis vers l'électronique d'acquisition déportée.The first and second amplified reception signals are summed by an
Le premier module 14 comporte un interrupteur commandé 124 par un signal de commande SC de manière à basculer le premier module 14 soit dans un mode de fonctionnement en émission, en connectant la voie d'émission 110 aux lignes d'alimentation 31 et 32, ou en mode de réception, en connectant la voie de réception 120 aux lignes d'alimentation 31 et 32.The
Le second module 16 comporte un interrupteur commandé 126 par un signal de commande SC de manière à basculer le second module 16 soit dans un mode de fonctionnement en émission, en connectant la voie d'émission 110 aux lignes d'alimentation 33 et 34, ou en mode de réception, en connectant la voie de réception 120 aux lignes d'alimentation 33 et 34.The
Le signal de commande SC appliqué à l'interrupteur commandé 124 du premier module 14 est également le signal de commande SC appliqué à l'interrupteur commandé 126 du second module 16, de manière à ce que les premier et second modules soient synchronisés dans leur mode de fonctionnement.The control signal S C applied to the controlled
Si le dispositif 10 est destiné à être intégré dans une antenne active, dans laquelle l'onde émise par un élément rayonnant est déphasée par rapport aux ondes émises par les éléments rayonnants voisins, ceci afin d'orienter le plan d'onde et de dépointer l'antenne, chaque module d'émission/réception intègre un moyen de déphasage commandé par un signal de déphasage Sϕ. Ainsi, le premier module 14 comporte un premier moyen de déphasage 134 et le second module 16 comporte un second moyen de déphasage 136. Chaque moyen de déphasage comporte par exemple un atténuateur 131 et un déphaseur 132.If the
Dans le dispositif selon l'invention, les moyens de déphasage 134 et 136 des premier et second modules 12 et 16 sont commandés par un même signal de déphasage Sϕ, de manière à ce que les premier et second modules 14 et 16 fonctionnent à chaque instant en introduisant un même déphasage soit sur les signaux d'excitation SE de l'élément rayonnant 22, soit sur les signaux de réception SR provenant de l'élément rayonnant 22.In the device according to the invention, the phase shift means 134 and 136 of the first and
Avantageusement, le dispositif d'émission/réception 10 comporte un moyen d'ajustement 140 permettant d'introduire une phase relative θ entre les premier et second signaux d'excitation respectivement appliqués en entrée de la voie d'émission 110 de chacun des modules d'émission/réception 14 et 16. Par conséquent, les ondes élémentaires respectivement excitées par les premier et second modules 14 et 16 seront déphasés l'un par rapport à l'autre. Par recombinaison dans l'air de cette paire d'ondes élémentaires, il est alors possible de générer une onde totale polarisée soit selon une direction verticale V, lorsqu'une phase relative de 0° est appliquée entre les premier et second signaux d'excitation ; selon une direction horizontale H, lorsqu'une phase relative de 180° est appliquée ; une polarisation circulaire gauche, lorsqu'une phase relative de +90° est appliquée ; et une polarisation circulaire droite, lorsque la phase relative est de -90°. Le moyen d'ajustement 140 ajuste la valeur de la phase relative θ à introduire en fonction d'un signal d'ajustement Sθ reçu de l'électronique déportée.Advantageously, the transmission /
Les signaux de commande SC, de déphasage Sϕ et d'ajustement Sθ sont émis par l'électronique déportée et appliqués sur des bornes d'entrée du circuit 13.The control signals S C , phase shift S ϕ and adjustment signals S θ are emitted by the remote electronics and applied to input terminals of
Les premier et second modules d'émission/réception 14 et 16 sont réalisés en technologie MMIC. De préférence, une technologie SiGe est utilisée, mais une technologie GaAn pourrait tout aussi bien être utilisée. De manière avantageuse, comme illustré sur la figure, les premier et second modules d'émission/réception 14 et 16 sont réalisés sur un même substrat de manière à constituer un circuit 13 unique. Cette variante présente un encombrement réduit facilitant l'intégration du circuit 13 à l'arrière du moyen d'émission/réception 12.The first and second transmission /
L'homme du métier constatera que le présent dispositif d'émission/réception présente de nombreux avantages.Those skilled in the art will find that the present transmission / reception device has many advantages.
Le fait d'exciter l'élément rayonnant par deux signaux d'excitation appliqués à des paires de points d'excitation situés en quadrature l'une de l'autre permet de symétriser le diagramme d'émission/réception de l'antenne.The fact of exciting the radiating element by two excitation signals applied to pairs of excitation points located in quadrature with one another makes it possible to symmetrize the transmission / reception pattern of the antenna.
Comme indiqué précédemment, la puissance des ondes électromagnétiques émises ou reçues peut être supérieure à la puissance nominale de fonctionnement de chaque module, aussi bien en émission qu'en réception. La puissance émise est deux fois plus importante que la puissance nominale. Ceci est particulièrement avantageux lorsque la puissance nominale est proche de la puissance maximale autorisée par la technologie mise en œuvre pour la réalisation des modules d'émission/réception. Bien qu'au niveau de chaque module d'émission/réception, la puissance reste au-dessous de la puissance maximale, le dispositif permet d'émettre des ondes à une puissance supérieure.As indicated above, the power of the emitted or received electromagnetic waves may be greater than the nominal operating power of each module, both in transmission and in reception. The power emitted is twice the nominal power. This is particularly advantageous when the nominal power is close to the maximum power authorized by the technology implemented for the production of the transmission / reception modules. Although at the level of each transmission / reception module, the power remains below the maximum power, the device makes it possible to transmit waves at a higher power.
En réception, le fait de répartir la puissance de l'onde incidente entre les deux modules d'émission/réception permet au dispositif d'être plus robuste vis-à-vis des agressions extérieures, telles qu'une illumination de l'antenne par un dispositif réalisant un brouillage intentionnel ou non.In reception, the fact of distributing the power of the incident wave between the two transmission / reception modules allows the device to be more robust vis-à-vis external attacks, such as illumination of the antenna by a device carrying out an intentional or unintentional interference.
Avec les antennes de l'état de la technique, il est également possible d'émettre une onde totale polarisée. Seulement cette onde totale est réalisée par la combinaison de deux ondes élémentaires en polarisation linéaire émises selon des directions orthogonales par deux éléments rayonnants voisins. Un commutateur de sélection de polarisation est interposé entre le module d'émission/réception et l'élément rayonnant pour choisir la direction dans laquelle l'élément considéré doit être excité. Les commutateurs de sélection de polarisation de deux moyens d'émission/réception voisins sont commandés de manière adaptée pour que les deux ondes élémentaires se combinent pour obtenir une onde totale ayant la polarisation recherchée. Au contraire, dans la présente invention, chaque élément rayonnant est propre à générer individuellement une onde totale polarisée. Le lieu d'émission de l'onde totale polarisée coïncide avec le point central C de l'élément rayonnant. De plus, le fait d'éviter l'utilisation d'un composant supplémentaire tel qu'un commutateur de sélection de polarisation améliore encore le rendement du dispositif selon l'invention.With the antennas of the state of the art, it is also possible to emit a polarized total wave. Only this total wave is produced by the combination of two elementary waves in linear polarization emitted in orthogonal directions by two neighboring radiating elements. A polarization selection switch is interposed between the transmission / reception module and the radiating element to choose the direction in which the element considered must be excited. The polarization selection switches of two neighboring transmission / reception means are controlled in a suitable manner so that the two elementary waves combine to obtain a total wave having the desired polarization. On the contrary, in the present invention, each radiating element is able to individually generate a polarized total wave. The place of emission of the polarized total wave coincides with the central point C of the radiating element. In addition, the fact of avoiding the use of an additional component such as a polarization selection switch further improves the efficiency of the device according to the invention.
Comme indiqué précédemment, le rendement en puissance du dispositif selon l'invention est optimisé, notamment par la possibilité de connecter directement les modules d'émission/réception au moyen d'émission/réception. Les pertes sont donc réduites.As indicated above, the power efficiency of the device according to the invention is optimized, in particular by the possibility of directly connecting the transmission / reception modules to the transmission / reception means. The losses are therefore reduced.
En conséquence, pour un Radar, la portée de celui-ci est améliorée pour les deux raisons suivantes :
- possibilité d'émettre deux fois plus de puissance, comme vu précédemment
- meilleur rendement à l'émission et à la réception.
- possibility of emitting twice as much power, as seen previously
- better output and reception.
En outre, du fait des pertes réduites, l'échauffement de l'antenne est réduit.In addition, due to the reduced losses, the heating of the antenna is reduced.
Un tel dispositif peut être utilisé seul ou en combinaison avec d'autres dispositifs identiques dans une antenne.Such a device can be used alone or in combination with other identical devices in an antenna.
Le dispositif étant particulièrement compact, il peut être intégré dans une antenne réseau, de préférence à balayage électronique, par exemple utilisée pour des applications de radars embarqués ou pour des applications de guerre électronique au sol. Il est alors adapté pour fonctionner dans le domaine des hyperfréquences, entre 3 et 30 GHz, et avec une puissance élevée.The device being particularly compact, it can be integrated into an array antenna, preferably with electronic scanning, for example used for on-board radar applications or for electronic warfare applications on the ground. It is then suitable for operating in the microwave range, between 3 and 30 GHz, and with high power.
Claims (11)
- Transceiver device (10), associating first and second transceiver modules (14, 16) with a transceiver means (12) comprising a radiating element (22) substantially planar and having a central point (C), the transceiver means (12) being a patch antenna,
each transceiver module being a transceiver module coupled to the transceiver means so as to excite a pair of excitation points (P1, P2; P3, P4) of the radiating element, the excitation points of one pair being arranged symmetrically with respect to the central point of the radiating element,
the first and second transceiver modules being configured to excite respectively a first pair of excitation points arranged in a first direction (D1) of the radiating element, while a second pair of excitation points is arranged in a second direction (D2) of the radiating element, the first and second directions being mutually orthogonal,
characterized in that the first and second transceiver modules (14, 16) are realized in a MMIC technology, on the same substrate so as to constitute a unique circuit (13), said circuit (13) being integrated at the rear of the transceiver means (12) of said transceiver device,
and in that the first and second transceiver modules (14, 16) respectively comprise a controlled switch (124, 126) allowing alternation of the mode of operation of the module in transmission and reception, a common control signal (Sc) being applied to the controlled switches of the first and second transceiver modules (14, 16),
and in that each of the first and second transceiver modules (14, 16) is coupled directly to the transceiver means by a pair of power supply lines (31, 32; 33, 34), a free end of each line is coupled to an excitation point of the radiating element. - Transceiver device according to claim 1, wherein the first and second transceiver modules (14, 16) are coupled to the transceiver means (12) so that the transceiver means constitutes, for each of the first and second transceiver modules, a load of the same impedance.
- Transceiver device according to any one of the claims 1 to 2, wherein the coupling between the free end of one power supply line and one excitation point of the radiating element is realized by a slot provided in a ground plane layer of the transceiver means, the end of the power supply line being arranged to overlap said slot from below, the radiating element being located above the ground plane layer, the excitation point of the radiating element being located above the ground plane layer, the excitation point of the radiating element being then located substantially opposite a center of said slot.
- Transceiver device according to any one of the claims 1 to 3, wherein a distance between two excitation points of a pair of excitation points of the radiating element (22) is adapted according to the impedance sought for the load constituted by the transceiver means (12) for the first and second transceiver modules (14, 16).
- Transceiver device according to any one of the claims 1 to 4, wherein each transceiver module has a transmission channel (110) and a reception channel (120), the transmission channel (110) of each of the first and second transceiver modules (14, 16) comprising means for amplifying an excitation signal (SE), the reception channel (120) of each of the first and second transceiver modules (14, 16) comprising protection means and an amplification means.
- Transceiver device according to claim 5, wherein the means for amplifying are constituted by a preamplifier (114) and a high power amplifier (116), the protection means are constituted by a limiter (118), and the amplification means are constituted by a low noise amplifier (119).
- Transceiver device according to any one of the claims 1 to 6, further comprising means (140) for adjusting a relative phase (θ) between the first and second energizing signals applied by the first and second modules to the transceiver means (12).
- Transceiver device according to any one of the claims 1 to 7, wherein each of the first and second modules (14, 16) comprises a phase shift means (134, 136), and wherein a phase shift signal (Sϕ) is applied to the phase shift means of the first and second transceiver modules (14, 16).
- Antenna comprising a plurality of transceiver device, characterized in that each transceiver device is in accordance with a transceiver device (10) according to any one of claims 1 to 8.
- Antenna according to claim 9, wherein a transmission channel (110) of each of the first and second transceiver modules (14, 16) of the same transceiver device comprises means for amplifying an excitation signal (SE), preferably consisting of a preamplifier (114) and a high-power amplifier (116), and wherein a reception channel (120) of each of the first and second transceiver modules (14, 16) of the single transceiver device has protection means, preferably consisting of a limiter (118), and an amplifier means, preferably consisting of a low-noise amplifier (119).
- Antenna according to according to any one of the claims 9 to 10, wherein the first and second modules (14, 16) of the same transceiver device are located between, on the one hand, a microwave signal generation electronics of the antenna and an acquisition electronics of the antenna, and, on the one hand, the transceiver means (12) of said transceiver device, the microwave signal generation electronics and the acquisition electronics being offset from said transceiver device.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1501644A FR3039726B1 (en) | 2015-07-31 | 2015-07-31 | TRANSMITTING / RECEIVING DEVICE AND ANTENNA THEREFOR |
PCT/EP2016/068177 WO2017021307A1 (en) | 2015-07-31 | 2016-07-29 | Transceiver device and associated antenna |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3329550A1 EP3329550A1 (en) | 2018-06-06 |
EP3329550B1 true EP3329550B1 (en) | 2021-08-04 |
Family
ID=54783657
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP16744792.9A Active EP3329550B1 (en) | 2015-07-31 | 2016-07-29 | Transceiver device and associated antenna |
Country Status (5)
Country | Link |
---|---|
US (1) | US10454175B2 (en) |
EP (1) | EP3329550B1 (en) |
ES (1) | ES2890873T3 (en) |
FR (1) | FR3039726B1 (en) |
WO (1) | WO2017021307A1 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3062523B1 (en) * | 2017-02-01 | 2019-03-29 | Thales | ELEMENTARY ANTENNA WITH A PLANAR RADIANT DEVICE |
FR3077695B1 (en) * | 2018-02-06 | 2020-12-25 | Thales Sa | DEVICE AND METHOD FOR EMISSION / RECEPTION OF RADIOELECTRIC SIGNALS |
FR3089726B1 (en) | 2018-12-11 | 2020-11-13 | Thales Sa | Method of confusing the electronic signature emitted by a radar, and transmission / reception device adapted for its implementation |
FR3094797B1 (en) | 2019-04-04 | 2022-04-15 | Thales Sa | METHOD AND DEVICE FOR EMISSION-RECEPTION RADAR BY DYNAMIC CHANGE OF POLARIZATION IN PARTICULAR FOR THE IMPLEMENTATION OF INTERLACED RADAR MODES |
WO2021065573A1 (en) * | 2019-09-30 | 2021-04-08 | ポリプラスチックス株式会社 | Resin molded article having matte surface, and method for forming matte surface on resin molded article |
CN112271461B (en) * | 2020-10-27 | 2021-07-02 | 华中科技大学 | Hybrid-loading dual-polarization ground penetrating radar array antenna |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7277056B1 (en) * | 2006-09-15 | 2007-10-02 | Laird Technologies, Inc. | Stacked patch antennas |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6009314A (en) * | 1997-11-17 | 1999-12-28 | Telefonaktiebolaget L/M Ericsson | Monolithic high frequency antenna switch |
US6466171B1 (en) * | 2001-09-05 | 2002-10-15 | Georgia Tech Research Corporation | Microstrip antenna system and method |
US7084815B2 (en) * | 2004-03-22 | 2006-08-01 | Motorola, Inc. | Differential-fed stacked patch antenna |
US9780437B2 (en) * | 2005-06-22 | 2017-10-03 | Michael E. Knox | Antenna feed network for full duplex communication |
US9083293B2 (en) * | 2011-05-19 | 2015-07-14 | Mediatek Inc. | Signal transceiver |
KR101988382B1 (en) * | 2013-03-29 | 2019-06-12 | 삼성전자주식회사 | Antenna device and electronic device with the same |
-
2015
- 2015-07-31 FR FR1501644A patent/FR3039726B1/en not_active Expired - Fee Related
-
2016
- 2016-07-29 WO PCT/EP2016/068177 patent/WO2017021307A1/en unknown
- 2016-07-29 EP EP16744792.9A patent/EP3329550B1/en active Active
- 2016-07-29 ES ES16744792T patent/ES2890873T3/en active Active
-
2018
- 2018-01-22 US US15/876,667 patent/US10454175B2/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7277056B1 (en) * | 2006-09-15 | 2007-10-02 | Laird Technologies, Inc. | Stacked patch antennas |
Also Published As
Publication number | Publication date |
---|---|
ES2890873T3 (en) | 2022-01-24 |
US20180145413A1 (en) | 2018-05-24 |
EP3329550A1 (en) | 2018-06-06 |
WO2017021307A1 (en) | 2017-02-09 |
FR3039726A1 (en) | 2017-02-03 |
FR3039726B1 (en) | 2018-06-29 |
US10454175B2 (en) | 2019-10-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3329550B1 (en) | Transceiver device and associated antenna | |
EP3577720B1 (en) | Elementary antenna comprising a planar radiating device | |
EP2532046B1 (en) | Flat-plate scanning antenna for land mobile application, vehicle comprising such an antenna, and satellite telecommunication system comprising such a vehicle | |
EP2656438B1 (en) | Radio cell with two phase states for transmit array | |
EP0890226B1 (en) | Radio station with circularly polarised antennas | |
FR3070224A1 (en) | PLATED ANTENNA HAVING TWO DIFFERENT RADIATION MODES WITH TWO SEGREGATED WORK FREQUENCIES, DEVICE USING SUCH ANTENNA | |
EP0600799A1 (en) | An active antenna with variable polarisation synthesis | |
EP3602689B1 (en) | Electromagnetic antenna | |
FR3062524A1 (en) | ELEMENTARY ANTENNA WITH A PLANAR RADIANT DEVICE | |
FR2975537A1 (en) | RADIANT ELEMENT FOR AN ACTIVE NETWORK ANTENNA CONSISTING OF BASIC TILES | |
WO2014202498A1 (en) | Source for parabolic antenna | |
FR2968846A1 (en) | MULTIFACEAL ANTENNA SYSTEM | |
EP2962390B1 (en) | Signal amplification system | |
FR2831734A1 (en) | DEVICE FOR RECEIVING AND / OR TRANSMITTING RADIATION DIVERSITY ELECTROMAGNETIC SIGNALS | |
CA2808511C (en) | Flat antenna for a terminal operating in dual circular polarisation, airborne terminal and satellite telecommunication system featuring at least one antenna | |
FR2965980A1 (en) | ANTENNA ARRAY FOR MICROWAVE, MILLIMETRIC OR TERAHERTZ TYPE WAVE LENGTH SIGNAL TRANSMISSION / RECEPTION DEVICE | |
EP3900113B1 (en) | Elementary microstrip antenna and array antenna | |
FR2930844A1 (en) | Active electronically scanned array aerial for airborne radar application, has supply line that is prolongation of printed circuit line of transmission and reception module and contained in plane perpendicular to plane of radiating element | |
WO2019069033A1 (en) | Antenna with partially saturated dispersive ferromagnetic substrate | |
WO2012095358A1 (en) | Dual-polarization and dual-band microstrip antenna | |
EP2889955B1 (en) | Compact antenna structure for satellite telecommunication | |
EP4092831A1 (en) | Antenna with lacunary distribution network | |
FR2956250A1 (en) | Millimeter antenna for high speed short range telecommunication applications, has excitation line extended from edge of substrate parallel to symmetry axis and coupled to point of edge from metallic element closest to symmetry axis | |
FR3085550A1 (en) | COMPACT ANTENNAIRE DEVICE | |
FR2831733A1 (en) | Linearly polarized antenna system for wireless communication in closed and semi-closed environment e.g. gymnasia, includes microstrip lines that pass through symmetric tangent points of adjacent annular slots |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20180123 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20190924 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: H01Q 23/00 20060101AFI20210305BHEP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 602016061604 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: H01Q0009040000 Ipc: H01Q0023000000 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: H01Q 9/04 20060101AFI20210329BHEP |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: H01Q 23/00 20060101AFI20210415BHEP |
|
INTG | Intention to grant announced |
Effective date: 20210503 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1417951 Country of ref document: AT Kind code of ref document: T Effective date: 20210815 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602016061604 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20210804 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1417951 Country of ref document: AT Kind code of ref document: T Effective date: 20210804 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2890873 Country of ref document: ES Kind code of ref document: T3 Effective date: 20220124 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211104 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210804 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210804 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210804 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210804 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211206 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211104 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210804 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210804 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210804 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210804 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211105 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210804 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210804 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602016061604 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210804 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210804 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210804 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210804 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210804 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210804 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20220506 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210804 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210804 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20220731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220729 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220731 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220731 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230502 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220729 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20230710 Year of fee payment: 8 Ref country code: ES Payment date: 20230807 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20160729 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210804 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210804 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210804 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210804 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240712 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240729 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240725 Year of fee payment: 9 |