EP3329110B1 - Hydrostirling-maschine - Google Patents

Hydrostirling-maschine Download PDF

Info

Publication number
EP3329110B1
EP3329110B1 EP16744703.6A EP16744703A EP3329110B1 EP 3329110 B1 EP3329110 B1 EP 3329110B1 EP 16744703 A EP16744703 A EP 16744703A EP 3329110 B1 EP3329110 B1 EP 3329110B1
Authority
EP
European Patent Office
Prior art keywords
hydro
unit
stirling
working fluid
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16744703.6A
Other languages
German (de)
French (fr)
Other versions
EP3329110A1 (en
Inventor
Volker Wöhrle
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP3329110A1 publication Critical patent/EP3329110A1/en
Application granted granted Critical
Publication of EP3329110B1 publication Critical patent/EP3329110B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • F02G1/0435Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines the engine being of the free piston type

Definitions

  • the invention relates to a hydrostirling machine according to the preamble of claim 1.
  • a “classic" Stirling engine has at least one cylinder filled with gas, for example air, an axially displaceable piston (also called a regenerator) held in this cylinder and a so-called working piston, which is likewise held axially movable in this cylinder.
  • gas for example air
  • an axially displaceable piston also called a regenerator
  • working piston which is likewise held axially movable in this cylinder.
  • displacement piston and piston are coupled together via a crankshaft, so that they perform an opposite movement, the phase angle is normally 180 degrees.
  • working pistons and displacers may also be arranged in separate but interconnected cylinders.
  • hydrostirling machine with a hydraulic motor and two hydrostirling units.
  • Each hydrostirling unit here has a cylinder and a displacer axially movable in this cylinder.
  • the axial position of the displacer is actively controlled.
  • the working piston is replaced by an incompressible fluid which flows back and forth between the cylinders of the hydrostirling units, thereby driving the hydraulic motor serving as the energy converter unit.
  • the hydrostirling machine shown has the advantage over "classic" Stirling engines with working piston that the working piston is replaced by a liquid, so that no sealing problems on the working piston occur at this point, and that the machine can basically run slower.
  • the present object of the invention to improve a generic hydro-Stirling engine.
  • the energy converter unit is designed as a turbine unit with a turbine tank and a turbine wheel arranged in this turbine tank, in particular a Pelton turbine wheel.
  • the working fluid circuit has a plurality of lines, wherein in each case at least one working fluid line between a hydraulic Stirling unit and the turbine unit extend such that working fluid, which flows from a Hydrostirling unit to the turbine unit, first meets the turbine wheel and then into a range of Turbine tank falls below the turbine wheel.
  • the working fluid circuit has at least two working fluid return lines, wherein in each case at least one working fluid return line connects the turbine container with a hydrostirling unit.
  • the serving as an energy converter turbine wheel can always rotate in the same direction, which is very advantageous for driving a power generator.
  • the two hydrostirling units are hydraulically decoupled. This has the advantage that they are not coupled exactly phase-locked.
  • the high efficiency of a Pelton turbine can be used over a wide load range.
  • the displacement pistons are each part of a displacer piston unit which, except the displacer piston, has a cylinder jacket extending downwards from the displacer piston whose outer surface is substantially flush with the outer surface of the displacer piston, having.
  • each displacement piston is preferably connected to a buoyancy body.
  • FIG. 1 a first embodiment of the invention Hydrostirling machine described, the illustration is schematic and without details.
  • the hydrostirling machine has three main elements, namely two similar hydrostirling units (first hydrostirling unit 10 and second hydrostirling unit 20), and a turbine unit 30, on.
  • the hydrostirling units 10, 20 are, as mentioned, constructed identically and each have a container 11, 21, a heating head 12, 22 for heating the respective upper part of a container 11, 21, a displacer 13, 23 and a lifting device 16, 26 for lifting the respective displacement piston 13, 23. On a specific embodiment of the lifting devices 16, 26 will be discussed later.
  • the lateral surfaces of the containers 11, 21 are each preferably constructed in two parts (in FIG. 1 not shown), so that a thermal separation of the upper, hot end, from the lower, cold region of the container takes place.
  • Each displacer piston 13, 23 has an annular insulation 13a, 23a and a regenerator 13b, 23b enclosed by this insulation 13a, 23a and at least partially gas-permeable.
  • the insulation 13a, 23a is flush with the regenerator 13b, 23b at the top but extends beyond its lower end (only in Figs FIGS. 2 to 4 ) Shown.
  • the regenerators 13b, 23b may be made of wire mesh, for example.
  • For sealing in each case extends a hollow cylinder open at the bottom, that is, a cylinder jacket 14, 24 from the outer edge of the displacer piston 13, 23.
  • About bolts 91, 111, the lower edge of the cylinder jacket 14, 24 is connected to a buoyant body 90, 110. This will be later again with reference to the FIGS. 2 to 4 discussed in more detail.
  • Displacement piston, cylinder jacket and buoyancy each form a displacement piston unit.
  • a turbine unit 30 is provided, via which the two hydrostirling units 10, 20 are connected to one another, which will be discussed in more detail later.
  • the turbine unit 30 has a pressure vessel, referred to as a turbine tank 32, inside which a turbine wheel 34, which is preferably the turbine wheel of a Pelton turbine, is disposed.
  • the turbine wheel 34 is connected by means of a guided through a pressure-tight bearing through the container wall of the turbine tank 32 shaft or by means of a magnetic coupling with a generator 36 for generating electricity.
  • the generator 36 downstream electric units are not shown, since they are not relevant to the present invention.
  • the hydrostirling machine As a rule, it is preferable to operate the hydrostirling machine under increased admission pressure of, for example, 10 to 50 bar, for which purpose a compressor or compressed gas cylinder 40 is provided, which is connected to the interior of the turbine tank 32 by a compressed gas line 42.
  • the turbine tank 32 forms, as do the lower portions of the tanks 11, 21, the cold end of the hydrostirling engine. This is symbolized by the indicated cooling fins.
  • the hydraulic fluid circuit of the hydrostirling machine has the following components: Each of the two hydrostirling units 10, 20 is connected to the turbine unit 30 by means of a working fluid line 50, 60, which in each case in the region of the bottom of the container 11, 21 of the respective Hydrostirling- Unit begins and ends in a directed to the turbine wheel 34, controllable nozzle 56, 66 ends. Each of these working fluid line 50, 60 further includes a check valve 52, 62. These working fluid lines serve to ensure that working fluid, which preferably consists of water or predominantly of water, can flow from the respective container 11, 21 of a hydrostirling unit 10, 20 to the turbine unit 30 in order to drive the turbine wheel 34 there under pressure-to-speed conversion ,
  • each container 11, 21 of a hydraulic Stirling unit is connected by means of a working fluid return line 70, 74 with the turbine tank 32, in which in each case a driven in both directions pump 73, 76 is arranged.
  • These working fluid return lines 70, 74 each extend from the container bottom to the container bottom (or near the container bottom) and each have a check valve 72, 78.
  • the working fluid is preferably water.
  • FIG. 2 a concrete preferred embodiment of a lifting device described, wherein for linguistic simplification only one lifting device, namely the lifting device of the first Hydrostirling unit 10 will be described.
  • the lifting device of the second hydrostirling unit 20 is constructed exactly the same.
  • the particular advantage of the lifting device now described is that it takes on a further function, namely the supply of working fluid flowing back from the turbine unit into the container of the hydrostirling unit, such that a good heat transfer between working fluid and working gas takes place.
  • a buoyancy body 90 for example in the form of a hollow ball, which is connected via connecting elements, such as bolts 91 with the cylinder jacket 14.
  • the hollow body has a completely sheathed through hole through which a static riser 92 extends, the lower end is rigidly and tightly connected to the container 11 and into which the first working fluid return line 70 opens.
  • At least one bearing for example in the form of a ball bearing, is provided. Marked in the FIG. 2 two such bearings 96.
  • a movable riser 94 is mounted axially movable in the manner of a piston.
  • the displacer 13 carries on its underside a deflector 98th
  • a backflow check valve for example in the form of a preloaded ball valve, through which working fluid can pass from the static riser 92 into the movable riser 94 when a predetermined differential pressure is exceeded.
  • the outer wall of the movable riser pipe 94 carries piston sealing rings, which are shown symbolically. The piston seals are completely within the working fluid circuit. These details are in FIG. 2a symbolically represented.
  • the upper end of the movable riser 94 has an upward opening 95. In the illustrated embodiment, the movable riser at the top is completely open, which is not mandatory.
  • the buoyancy of the buoyant body 90 with respect to the working fluid is such that the lower surface of the regenerator 13b is floating on the working fluid (as in FIG FIG. 3 shown), wherein a lower portion of the insulation 13a is immersed in the working fluid.
  • the passive state that is, when no water flows through the riser pipes, this turns into FIG. 3 Shown one. If water returning from the turbine unit 30 then flows through the static riser 92, the return flow check valve opens, working fluid flows through the riser tubes, exits from the opening 95 at the upper end of the moveable riser and thus pushes the displacer upwards.
  • the required working fluid pressure is provided predominantly by the turbine unit, however, it is additionally provided in both directions a drivable pump 73 in the working fluid return line ( Fig. 1 ).
  • FIG. 5 shows the starting point of a cycle, whereby the starting time of a cycle can of course be determined arbitrarily.
  • FIG. 5a shows the pV diagram for FIG. 5 , wherein the states of the working gases of the two Hydrostirling units 10, 20 are shown.
  • the displacer 13 of the first Hydrostirling unit 10 is in its top dead center, where it can abut the better heat transfer to the upper container wall.
  • the container 11 has its maximum working fluid level and thus its minimum gas volume. The gas is located between the surface of the working fluid and the underside of the displacer 13, so it is relatively cold.
  • the pressure in the container 11 of the first Hydrostirling unit 10 is the form, ie 12 bar.
  • the working fluid level in the turbine tank 32 is maximum and the pressure in the turbine tank is also the form, ie 12 bar.
  • the instantaneous gas volume in the turbine tank corresponds to the gas volume in the tank 11 of the first hydrostirling unit 10.
  • the working fluid level of the second hydrostirling unit 20 is minimal and the underside of the displacer 23 rests on the surface of the working fluid. Also in the container 21 of the second Hydrostirling unit 20 prevails the form, ie 12 bar, the working gas is relatively hot.
  • the first pump 73 is briefly driven in the return direction, so that the first displacer 13 is lowered until it hits the surface of the working fluid.
  • the relatively cold gas flows through the regenerator 13b of the displacer 13, wherein it is heated.
  • the gas is isochoric compressed, in the illustrated embodiment to about 33 bar.
  • the state of the second hydrostirling unit 20 does not change here.
  • the second pump 76 is driven at a short open check valve 78 and thus the displacer 23 of the second Hydrostirling unit 20 is raised.
  • the hot gas flows through the regenerator, cools and is thus isochorically decompressed, in the embodiment shown to about 4.3 bar.
  • the check valve 52 of the first working fluid line 50, the check valve 78 of the second working fluid return line 74 and the control nozzle 56 is opened, so that a pressure equalization between the container 11 of the first Hydrostirling unit 10, the turbine tank 30 and the container 21 of the second Stirling unit 20 can take place.
  • the hot gas in the container 11 expands substantially isothermally and forces the working fluid out of the container 11.
  • the displacer continues to float on the working fluid.
  • Working fluid flows from the container 11 of the first Hydrostirling unit 10 through the first working fluid line 50, impinges on the turbine wheel 34 and thus enters the turbine tank 32.
  • the control nozzle 56 is in this case only partially open and opens with increasing pressure equalization more and more. Here, work is done so that the generator 36 generates electrical energy.
  • FIG. 10 shows a second embodiment of the invention in a representation corresponding to Figure 1 representations.
  • the hydrostirling machine of the second embodiment is constructed like the hydrostirling machine of the first embodiment, but the two hydrostirling units 10 and 20 additionally have a steam generating unit 17, 27, each consisting of a steam generator 17b, 27b, a reservoir 17c, 27c and a return 17d, 27d exists.
  • the steam generators receive their heat entirely or predominantly from the outer wall of the container below the separation point between the hot and cold part of the container and thus contribute to the desired cooling.
  • the generated steam is - preferably as superheated steam (for which an unillustrated additional superheater may be provided) - injected into the turbine tank (reference numeral 100).
  • FIG. 11 shows a fourth embodiment in one of FIG. 1 corresponding representation. No steam injection is shown, but it may be present.
  • bypass lines 71, 75 are provided, which the turbine tank 32 and the containers 11, 21 of the hydrostirling units 20, 30, bypassing the pump 73, 76 and the Connect lifting equipment together.
  • a check valve is provided in each bypass line.
  • FIGS. 5 to 11 the lifting devices are not shown in detail, but it is preferable that these as with respect to the FIGS. 2 to 4 are formed described. In principle, however, it is also conceivable to use lifting devices which are independent of the working fluid circuit.
  • the FIG. 12 shows one way in which the thermal separation between the upper tank area and the lower tank area during the phase in which the displacer 13 is in its upper end position, can be improved.
  • the inner wall of the shell of the container 11 has a downwardly facing step and the cylinder jacket 14 a stop.
  • a, preferably carried by the stage, seal 11c may be provided.
  • the step is preferably formed by the container 11 consisting of an upper container part 11a and a lower container part 11b flanged to the upper container part 11a, the upper container part 11a having a smaller inner diameter than the lower container part.
  • the stop of the cylinder jacket 14 is preferably formed as a bead 14a.
  • Step and stop are arranged so that the stop abuts the step or the seal 14a when the displacer piston 13 is in its upper end position (see, for example FIG. 10 ). This ensures that no cold water in the gap between the cylinder jacket 14 and the inside of the upper container part 11a can rise to the top, when the Displacer is in its upper end position, whereby the thermal decoupling is improved.
  • the described measure can be provided in both hydrostirling units 10, 20.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Description

Technisches Gebiet der ErfindungTechnical field of the invention

Die Erfindung betrifft eine Hydrostirling-Maschine nach dem Oberbegriff des Anspruchs 1.The invention relates to a hydrostirling machine according to the preamble of claim 1.

Stirlingmotoren sind seit langer Zeit bekannt und haben trotz ihrer grundsätzlichen Einfachheit und trotz des theoretisch hohen erzielbaren Wirkungsgrades bisher kaum Eingang in die Praxis gefunden.Stirling engines have been known for a long time and, despite their fundamental simplicity and despite the theoretically high achievable efficiency, have so far barely found their way into practice.

Ein "klassischer" Stirlingmotor weist wenigstens einen mit Gas, beispielsweise Luft, gefüllten Zylinder, einen axialbeweglich in diesen Zylinder gehaltenen Verdrängerkolben (auch Regenerator genannt) sowie einen ebenfalls axialbeweglich in diesen Zylinder gehaltenen sogenannten Arbeitskolben auf. Hierbei sind Verdrängerkolben und Arbeitskolben über eine Kurbelwelle miteinander gekoppelt, so dass sie eine gegenläufige Bewegung durchführen, wobei der Phasenwinkel normalerweise 180 Grad beträgt. In anderen Ausführungsformen des Stirlingmotores können Arbeitskolben und Verdrängerkolben auch in getrennten, jedoch miteinander verbundenen Zylindern angeordnet sein.A "classic" Stirling engine has at least one cylinder filled with gas, for example air, an axially displaceable piston (also called a regenerator) held in this cylinder and a so-called working piston, which is likewise held axially movable in this cylinder. Here, displacement piston and piston are coupled together via a crankshaft, so that they perform an opposite movement, the phase angle is normally 180 degrees. In other embodiments of the Stirling engine, working pistons and displacers may also be arranged in separate but interconnected cylinders.

Solche mechanischen Stirlingmotoren laufen in der Regel relativ schnell, worin auch die Probleme begründet liegen, welche ihren Durchbruch in der Praxis bislang verhindert haben: durch die relativ schnellen Bewegungen weicht der tatsächliche Stirlingprozess vom theoretisch erreichbaren Stirlingprozess relativ stark ab, was natürlich zu einer Verschlechterung des theoretisch erreichbaren Wirkungsgrades führt. Weiterhin unterliegt insbesondere der Arbeitskolben einem hohen Dichtungsverschleiss, was bisherige mechanische Stirlingmotoren sehr wartungsaufwendig macht beziehungsweise ihre Lebensdauer stark herabsetzt.Such mechanical Stirling engines usually run relatively quickly, which also causes the problems that have hitherto prevented their breakthrough in practice: due to the relatively fast movements, the actual Stirling process deviates relatively strongly from the theoretically achievable Stirling process, which naturally leads to a deterioration of the Stirling process theoretically achievable efficiency leads. Furthermore, in particular, the working piston is subject to a high seal wear, which makes existing mechanical Stirling engines very expensive to maintain or greatly reduces their service life.

Stand der TechnikState of the art

Aus der gattungsbildenden DE 10 2006 028 561 B3 ist eine sogenannte Hydrostirling-Maschine mit einem Hydraulikmotor und zwei Hydrostirling-Einheiten bekannt geworden. Jede Hydrostirling-Einheit weist hierbei einen Zylinder und einen in diesem Zylinder axialbeweglichen Verdrängerkolben auf. Hierbei wird die Axialposition der Verdrängerkolben aktiv gesteuert. Bei der dort beschriebenen Hydrostirling-Maschine ist der Arbeitskolben durch eine inkompressible Flüssigkeit ersetzt, welche zwischen den Zylindern der Hydrostirling-Einheiten hin und her fließt und hierbei den als Energiewandler-Einheit dienenden Hydraulikmotor antreibt. Die gezeigte Hydrostirling-Maschine hat gegenüber "klassischen" Stirlingmotoren mit Arbeitskolben den Vorteil, dass der Arbeitskolben durch eine Flüssigkeit ersetzt ist, so dass an dieser Stelle keine Dichtungsprobleme am Arbeitskolben auftreten, und dass die Maschine grundsätzlich langsamer laufen kann.From the generic DE 10 2006 028 561 B3 has become known as a so-called hydrostirling machine with a hydraulic motor and two hydrostirling units. Each hydrostirling unit here has a cylinder and a displacer axially movable in this cylinder. Here, the axial position of the displacer is actively controlled. In the hydrostirling machine described there, the working piston is replaced by an incompressible fluid which flows back and forth between the cylinders of the hydrostirling units, thereby driving the hydraulic motor serving as the energy converter unit. The hydrostirling machine shown has the advantage over "classic" Stirling engines with working piston that the working piston is replaced by a liquid, so that no sealing problems on the working piston occur at this point, and that the machine can basically run slower.

Ein Nachteil der in der DE 10 2006 028 561 B1 beschriebenen Maschine liegt darin, dass der Hydraulikmotor zwischen zwei Halbtakten die Richtung wechseln muss.A disadvantage of in the DE 10 2006 028 561 B1 described machine is that the hydraulic motor between two half-cycles must change direction.

Gegenstand der ErfindungSubject of the invention

Hiervon ausgehend stellt sich die vorliegende Aufgabe der Erfindung, eine gattungsgemäße Hydro-Stirling-Maschine zu verbessern.On this basis, the present object of the invention to improve a generic hydro-Stirling engine.

Diese Aufgabe wird durch eine Hydro-Stirling-Maschine mit den Merkmalen des Anspruchs 1 gelöst.This object is achieved by a hydro-Stirling machine with the features of claim 1.

Erfindungsgemäß ist die Energiewandler-Einheit als Turbineneinheit mit einem Turbinenbehälter und einem in diesem Turbinenbehälter angeordneten Turbinenrad, insbesondere einem Pelton-Turbinenrad, ausgebildet. Der Einsatz einer anderen Gleichdruck-Turbine wäre jedoch ebenfalls möglich. Der Arbeitsflüssigkeits-Kreislauf weist mehrere Leitungen auf, wobei sich jeweils wenigstens eine Arbeitsflüssigkeitsleitung zwischen einer Hydrostirling-Einheit und der Turbineneinheit derart erstrecken, dass Arbeitsflüssigkeit, welche von einer Hydrostirling-Einheit zur Turbineneinheit fließt, zunächst auf das Turbinenrad trifft und dann in einen Bereich des Turbinenbehälters unterhalb des Turbinenrades fällt. Weiterhin weist der Arbeitsflüssigkeits-Kreislauf wenigstens zwei Arbeitsflüssigkeitsrückleitungen auf, wobei jeweils wenigstens eine Arbeitsflüssigkeitsrückleitung den Turbinenbehälter mit einer Hydrostirling-Einheit verbindet.According to the invention, the energy converter unit is designed as a turbine unit with a turbine tank and a turbine wheel arranged in this turbine tank, in particular a Pelton turbine wheel. The use However, another constant pressure turbine would also be possible. The working fluid circuit has a plurality of lines, wherein in each case at least one working fluid line between a hydraulic Stirling unit and the turbine unit extend such that working fluid, which flows from a Hydrostirling unit to the turbine unit, first meets the turbine wheel and then into a range of Turbine tank falls below the turbine wheel. Furthermore, the working fluid circuit has at least two working fluid return lines, wherein in each case at least one working fluid return line connects the turbine container with a hydrostirling unit.

Hierdurch ist es möglich, dass sich das als Energiewandler dienende Turbinenrad immer in dieselbe Richtung drehen kann, was zum Antrieb eines Stromgenerators sehr vorteilhaft ist. Weiterhin sind die beiden Hydrostirling-Einheiten hydraulisch entkoppelt. Dies hat den Vorteil, dass sie nicht exakt phasenstarr gekoppelt sind. Zum anderen kann der hohe Wirkungsgrad einer Pelton-Turbine über einen weiten Lastbereich genutzt werden.This makes it possible that the serving as an energy converter turbine wheel can always rotate in the same direction, which is very advantageous for driving a power generator. Furthermore, the two hydrostirling units are hydraulically decoupled. This has the advantage that they are not coupled exactly phase-locked. On the other hand, the high efficiency of a Pelton turbine can be used over a wide load range.

Um auf eine einfache, wartungsfreie und reibungsfreie Art eine Abdichtung zwischen Verdrängerkolben und Behälterinnenwand zu erreichen, sind die Verdrängerkolben jeweils Teil einer Verdrängerkolbeneinheit, welche außer dem Verdrängerkolben einen sich vom Verdrängerkolben nach unten erstreckenden Zylindermantel, dessen Außenfläche im Wesentlichen mit der Außenfläche des Verdrängerkolbens fluchtet, aufweist.In order to achieve a seal between displacer piston and container inner wall in a simple, maintenance-free and friction-free manner, the displacement pistons are each part of a displacer piston unit which, except the displacer piston, has a cylinder jacket extending downwards from the displacer piston whose outer surface is substantially flush with the outer surface of the displacer piston, having.

Um die Steuerung der Verdrängerkolben zu vereinfachen, sind sie vorzugsweise so dimensioniert, dass sie schwimmen. Hierdurch ist lediglich eine Steuerung, keine Regelung notwendig. Die Schwimmfähigkeit kann insbesondere dadurch erreicht werden, dass jeder Verdrängerkolben mit einem Auftriebskörper verbunden ist.To simplify the control of the displacers, they are preferably dimensioned to float. As a result, only one control, no control is necessary. The buoyancy can be achieved in particular by connecting each displacement piston to a buoyancy body.

Vorteilhafte Ausführungsformen der Erfindung ergeben sich aus den Unteransprüchen.Advantageous embodiments of the invention will become apparent from the dependent claims.

Die Erfindung wird nun anhand von Ausführungsbeispielen mit Bezug auf die Figuren näher beschrieben. Hierbei zeigen:The invention will now be described in more detail by means of embodiments with reference to the figures. Hereby show:

Kurzbeschreibung der FigurenBrief description of the figures

Figur 1FIG. 1
Eine schematische Darstellung einer ersten Ausführungsform der erfindungsgemäßen Hydrostirling-Maschine, wobei die Behälter noch nicht mit Arbeitsflüssigkeit gefüllt sind,A schematic representation of a first embodiment of the hydrostirling machine according to the invention, wherein the containers are not yet filled with working fluid,
Figur 2FIG. 2
eine detailliertere Darstellung der ersten Hydrostirling-Einheit,a more detailed representation of the first hydrostirling unit,
Figur 2aFIG. 2a
das Detail D aus Figur 2.the detail D off FIG. 2 ,
Figur 3FIG. 3
das in Figur 2 Gezeigte in einem Arbeitszustand, wobei der Verdrängerkolben abgesenkt ist,this in FIG. 2 Shown in a working state, wherein the displacer is lowered,
Figur 4FIG. 4
das in Figur 3 Gezeigte, wobei der Arbeitskolben angehoben ist,this in FIG. 3 Shown, with the working piston raised,
Figur 5FIG. 5
die Hydrostirling-Maschine aus Figur 1 in einem ersten Arbeitszustand,the hydrostirling machine FIG. 1 in a first working condition,
Figur 5aFIG. 5a
ein p-V-Diagramm, in welchem die der Figur 2 entsprechenden Zustände der beiden Hydrostirling-Einheiten eingezeichnet sind,a pV diagram in which the the FIG. 2 corresponding states of the two hydrostirling units are shown,
Figur 6FIG. 6
das in Figur 5 Gezeigte in einem nachfolgenden Arbeitszustand,this in FIG. 5 Shown in a subsequent working condition,
Figur 6aFIG. 6a
das p-V-Diagramm mit entsprechend Figur 6 eingezeichneten Zuständen der Hydrostirling-Einheiten,the pV diagram with accordingly FIG. 6 marked states of the hydrostirling units,
Figur 7FIG. 7
das in Figur 6 Gezeigte in einem nachfolgenden Arbeitszustand,this in FIG. 6 Shown in a subsequent working condition,
Figur 7aFigure 7a
das p-V-Diagramm mit entsprechend Figur 7 eingezeichneten Zuständen der Hydrostirling-Einheiten,the pV diagram with accordingly FIG. 7 marked states of the hydrostirling units,
Figur 8FIG. 8
das in Figur 7 Gezeigte in einem nachfolgenden Arbeitszustand,this in FIG. 7 Shown in a subsequent working condition,
Figur 8aFIG. 8a
das p-V-Diagramm mit entsprechend Figur 8 eingezeichneten Zuständen der Hydrostirling-Einheiten,the pV diagram with accordingly FIG. 8 marked states of the hydrostirling units,
Figur 9FIG. 9
Das in Figur 8 Gezeigte in einem nachfolgenden Arbeitszustand,This in FIG. 8 Shown in a subsequent working condition,
Figur 9aFIG. 9a
das p-V-Diagramm mit entsprechend Figur 9 eingezeichneten Zuständen der Hydrostirling-Einheiten,the pV diagram with accordingly FIG. 9 marked states of the hydrostirling units,
Figur 10FIG. 10
eine zweite Ausführungsform in einer der Figur 1 entsprechenden Darstellung,a second embodiment in one of FIG. 1 appropriate representation,
Figur 10aFIG. 10a
das p-V-Diagramm mit entsprechend Figur 10 eingezeichneten Zuständen der Hydrostirling-Einheiten,the pV diagram with accordingly FIG. 10 marked states of the hydrostirling units,
Figur 11FIG. 11
eine dritte Ausführungsform in einer der Figur 1 entsprechenden Darstellung unda third embodiment in one of FIG. 1 corresponding representation and
Figur 12FIG. 12
einen Teil einer Hydrostirling-Einheit mit einer verbesserten thermischen Trennung.a part of a hydrostirling unit with improved thermal separation.
Detaillierte Beschreibung bevorzugter AusführungsbeispieleDetailed description of preferred embodiments

Zunächst wird mit Figur 1 ein erstes Ausführungsbeispiel der erfindungsgemäßen Hydrostirling-Maschine beschrieben, wobei die Darstellung schematisch und ohne Details ist.First, with FIG. 1 a first embodiment of the invention Hydrostirling machine described, the illustration is schematic and without details.

Die Hydrostirling-Maschine weist drei Hauptelemente, nämlich zwei gleichartige Hydrostirling-Einheiten (erste Hydrostirling-Einheit 10 und zweite Hydrostirling-Einheit 20), sowie eine Turbineneinheit 30, auf. Die Hydrostirling-Einheiten 10, 20 sind, wie erwähnt, gleichartig aufgebaut und weisen jeweils einen Behälter 11, 21, einen Heizkopf 12, 22 zum Beheizen des jeweils oberen Teils eines Behälters 11, 21, einen Verdrängerkolben 13, 23 sowie eine Hebeeinrichtung 16, 26 zum Anheben des jeweiligen Verdrängerkolbens 13, 23 auf. Auf eine konkrete Ausgestaltung der Hebeeinrichtungen 16, 26 wird später eingegangen. Die Mantelflächen der Behälter 11, 21 sind jeweils vorzugsweise zweiteilig aufgebaut (in Figur 1 nicht dargestellt), so dass eine thermische Trennung des oberen, heißen Endes, vom unteren, kalten Bereich des Behälters erfolgt.The hydrostirling machine has three main elements, namely two similar hydrostirling units (first hydrostirling unit 10 and second hydrostirling unit 20), and a turbine unit 30, on. The hydrostirling units 10, 20 are, as mentioned, constructed identically and each have a container 11, 21, a heating head 12, 22 for heating the respective upper part of a container 11, 21, a displacer 13, 23 and a lifting device 16, 26 for lifting the respective displacement piston 13, 23. On a specific embodiment of the lifting devices 16, 26 will be discussed later. The lateral surfaces of the containers 11, 21 are each preferably constructed in two parts (in FIG. 1 not shown), so that a thermal separation of the upper, hot end, from the lower, cold region of the container takes place.

Jeder Verdrängerkolben 13, 23 weist eine ringförmige Isolierung 13a, 23a sowie einen von dieser Isolierung 13a, 23a umschlossenen, zumindest abschnittsweise gasdurchlässigen Regenerator 13b, 23b auf. Hierbei ist es bevorzugt, dass die Isolierung 13a, 23a oben bündig mit dem Regenerator 13b, 23b ist, sich jedoch über sein unteres Ende hinaus erstreckt (nur in den Figuren 2 bis 4 dargestellt). Die Regeneratoren 13b, 23b können beispielsweise aus Drahtgewebe bestehen. Zur Abdichtung erstreckt sich jeweils ein unten offener Hohlzylinder, also ein Zylindermantel 14, 24 vom äußeren Rand des Verdrängerkolbens 13, 23. Über Bolzen 91, 111 ist jeweils der untere Rand des Zylindermantels 14, 24 mit einem Auftriebskörper 90, 110 verbunden. Hierauf wird später nochmals mit Bezug auf die Figuren 2 bis 4 näher eingegangen. Verdrängerkolben, Zylindermantel und Auftriebskörper bilden jeweils eine Verdrängerkolbeneinheit.Each displacer piston 13, 23 has an annular insulation 13a, 23a and a regenerator 13b, 23b enclosed by this insulation 13a, 23a and at least partially gas-permeable. Here, it is preferable that the insulation 13a, 23a is flush with the regenerator 13b, 23b at the top but extends beyond its lower end (only in Figs FIGS. 2 to 4 ) Shown. The regenerators 13b, 23b may be made of wire mesh, for example. For sealing in each case extends a hollow cylinder open at the bottom, that is, a cylinder jacket 14, 24 from the outer edge of the displacer piston 13, 23. About bolts 91, 111, the lower edge of the cylinder jacket 14, 24 is connected to a buoyant body 90, 110. This will be later again with reference to the FIGS. 2 to 4 discussed in more detail. Displacement piston, cylinder jacket and buoyancy each form a displacement piston unit.

Es ist eine Turbineneinheit 30 vorgesehen, über welche die beiden Hydrostirling-Einheiten 10, 20 miteinander verbunden sind, worauf später genauer eingegangen wird. Die Turbineneinheit 30 weist einen Druckbehälter, welcher als Turbinenbehälter 32 bezeichnet wird, auf, in dessen Innerem ein Turbinenrad 34, welches vorzugsweise das Turbinenrad einer Peltonturbine ist, angeordnet ist. Das Turbinenrad 34 ist mittels einer über ein druckdichtes Lager durch die Behälterwand des Turbinenbehälters 32 geführten Welle oder eine mittels einer Magnetkupplung mit einem Generator 36 zur Stromerzeugung verbunden. Die dem Generator 36 nachgeschalteten elektrischen Aggregate sind nicht dargestellt, da sie für die vorliegende Erfindung nicht von Bedeutung sind.A turbine unit 30 is provided, via which the two hydrostirling units 10, 20 are connected to one another, which will be discussed in more detail later. The turbine unit 30 has a pressure vessel, referred to as a turbine tank 32, inside which a turbine wheel 34, which is preferably the turbine wheel of a Pelton turbine, is disposed. The turbine wheel 34 is connected by means of a guided through a pressure-tight bearing through the container wall of the turbine tank 32 shaft or by means of a magnetic coupling with a generator 36 for generating electricity. The generator 36 downstream electric units are not shown, since they are not relevant to the present invention.

In der Regel ist es zu bevorzugen, die Hydrostirling-Maschine unter erhöhtem Vordruck von beispielsweise 10 bis 50 bar zu betreiben, wozu ein Kompressor oder eine Druckgasflasche 40 vorgesehen ist, welcher mit einer Druckgasleitung 42 mit dem Inneren des Turbinenbehälters 32 verbunden ist. Der Turbinenbehälter 32 bildet, ebenso wie die unteren Abschnitte der Behälter 11, 21, das kalte Ende der Hydrostirling-Maschine. Dies ist durch die angedeuteten Kühlrippen symbolisiert.As a rule, it is preferable to operate the hydrostirling machine under increased admission pressure of, for example, 10 to 50 bar, for which purpose a compressor or compressed gas cylinder 40 is provided, which is connected to the interior of the turbine tank 32 by a compressed gas line 42. The turbine tank 32 forms, as do the lower portions of the tanks 11, 21, the cold end of the hydrostirling engine. This is symbolized by the indicated cooling fins.

Der Arbeitsflüssigkeits-Kreislauf der Hydrostirling-Maschine weist folgende Bestandteile auf: Jede der beiden Hydrostirling-Einheiten 10, 20 ist mit der Turbineneinheit 30 mittels einer Arbeitsflüssigkeitsleitung 50, 60 verbunden, welche jeweils im Bereich des Bodens des Behälters 11, 21 der jeweiligen Hydrostirling-Einheit beginnt und in einer auf das Turbinenrad 34 gerichteten, regelbaren Düse 56, 66 endet. Jede dieser Arbeitsflüssigkeitsleitung 50, 60 weist weiterhin ein Sperrventil 52, 62 auf. Diese Arbeitsflüssigkeitsleitungen dienen dazu, dass Arbeitsflüssigkeit, welche vorzugsweise aus Wasser oder überwiegend aus Wasser besteht, von dem jeweiligen Behälter 11, 21 einer Hydrostirling-Einheit 10, 20 zur Turbineneinheit 30 strömen kann, um dort unter Wandlung von Druck in Geschwindigkeit das Turbinenrad 34 anzutreiben.The hydraulic fluid circuit of the hydrostirling machine has the following components: Each of the two hydrostirling units 10, 20 is connected to the turbine unit 30 by means of a working fluid line 50, 60, which in each case in the region of the bottom of the container 11, 21 of the respective Hydrostirling- Unit begins and ends in a directed to the turbine wheel 34, controllable nozzle 56, 66 ends. Each of these working fluid line 50, 60 further includes a check valve 52, 62. These working fluid lines serve to ensure that working fluid, which preferably consists of water or predominantly of water, can flow from the respective container 11, 21 of a hydrostirling unit 10, 20 to the turbine unit 30 in order to drive the turbine wheel 34 there under pressure-to-speed conversion ,

Weiterhin ist jeder Behälter 11, 21 einer Hydrostirling-Einheit mittels einer Arbeitsflüssigkeitsrückleitung 70, 74 mit dem Turbinenbehälter 32 verbunden, in welcher jeweils eine in beide Richtungen antreibbare Pumpe 73, 76 angeordnet ist. Diese Arbeitsflüssigkeitsrückleitungen 70, 74 erstrecken sich jeweils von Behälterboden zu Behälterboden (oder nahe des Behälterbodens) und weisen jeweils ein Sperrventil 72, 78 auf.Furthermore, each container 11, 21 of a hydraulic Stirling unit is connected by means of a working fluid return line 70, 74 with the turbine tank 32, in which in each case a driven in both directions pump 73, 76 is arranged. These working fluid return lines 70, 74 each extend from the container bottom to the container bottom (or near the container bottom) and each have a check valve 72, 78.

Ein Austausch von Arbeitsgas, beispielsweise Stickstoff, zwischen den Behältern findet nicht, oder nur über Lösung des Arbeitsgases in der Arbeitsflüssigkeit statt, so dass die Gasmenge in jedem Zylinder über die Zeit konstant ist. Die Arbeitsflüssigkeit ist vorzugsweise Wasser.An exchange of working gas, such as nitrogen, between the containers does not take place, or only via solution of the working gas in the working fluid, so that the amount of gas in each cylinder is constant over time. The working fluid is preferably water.

Es ist zu bevorzugen, dass - wie auch dargestellt - sämtliche Behälter denselben Durchmesser aufweisen.It is preferable that - as shown - all containers have the same diameter.

Nun wird nun mit Bezug auf die Figur 2 ein konkretes bevorzugtes Ausführungsbeispiel einer Hebeeinrichtung beschrieben, wobei zur sprachlichen Vereinfachung nur eine Hebeeinrichtung, nämlich die Hebeeinrichtung der ersten Hydrostirling-Einheit 10 beschrieben wird. Die Hebeeinrichtung der zweiten Hydrostirling-Einheit 20 ist vorzugsweise natürlich genau gleich aufgebaut. Der besondere Vorteil der nun beschriebenen Hebeeinrichtung ist, dass sie eine weitere Funktion übernimmt, nämlich das Zuführen von aus der Turbineneinheit rückströmender Arbeitsflüssigkeit in den Behälter der Hydrostirling-Einheit, derart, dass ein guter Wärmeübergang zwischen Arbeitsflüssigkeit und Arbeitsgas stattfindet.Well, now with respect to the FIG. 2 a concrete preferred embodiment of a lifting device described, wherein for linguistic simplification only one lifting device, namely the lifting device of the first Hydrostirling unit 10 will be described. Of course, the lifting device of the second hydrostirling unit 20 is constructed exactly the same. The particular advantage of the lifting device now described is that it takes on a further function, namely the supply of working fluid flowing back from the turbine unit into the container of the hydrostirling unit, such that a good heat transfer between working fluid and working gas takes place.

Es ist, wie bereits erwähnt, ein Auftriebskörper 90, beispielsweise in Form einer Hohlkugel vorgesehen, welche über Verbindungselemente, wie beispielsweise Bolzen 91 mit dem Zylindermantel 14 verbunden ist. Der Hohlkörper weist ein vollständig ummanteltes Durchgangsloch auf, durch welches sich ein statisches Steigrohr 92 erstreckt, dessen unteres Ende starr und dicht mit dem Behälter 11 verbunden ist und in welches die erste Arbeitsflüssigkeitsrückleitung 70 mündet. Zwischen dem statischen Steigrohr 92 und der Wandung des Loches ist wenigstens ein Lager, beispielsweise in Form eines Kugellagers, vorgesehen. Eingezeichnet sind in der Figur 2 zwei solcher Lager 96. Im Inneren des statischen Steigrohres 92 ist ein bewegliches Steigrohr 94 nach Art eines Kolbens axial beweglich gelagert. Weiterhin trägt der Verdrängerkolben 13 an seiner Unterseite einen Deflektor 98.It is, as already mentioned, a buoyancy body 90, for example in the form of a hollow ball, which is connected via connecting elements, such as bolts 91 with the cylinder jacket 14. The hollow body has a completely sheathed through hole through which a static riser 92 extends, the lower end is rigidly and tightly connected to the container 11 and into which the first working fluid return line 70 opens. Between the static riser 92 and the wall of the hole at least one bearing, for example in the form of a ball bearing, is provided. Marked in the FIG. 2 two such bearings 96. In the interior of the static riser 92, a movable riser 94 is mounted axially movable in the manner of a piston. Furthermore, the displacer 13 carries on its underside a deflector 98th

Am unteren Ende des beweglichen Steigrohres 94 ist ein Rückfluss-Sperrventil, beispielsweise in Form eines vorgespannten Kugelventils vorgesehen, durch welches Arbeitsflüssigkeit bei Überschreiten eines vorbestimmten Differenzdrucks vom statischen Steigrohr 92 in das bewegliche Steigrohr 94 gelangen kann. Im Bereich des unteren Endes trägt die Außenwandung des beweglichen Steigrohrs 94 Kolbendichtungsringe, welche symbolisch dargestellt sind. Die Kolbendichtungsringe befinden sich vollständig innerhalb des Arbeitsflüssigkeitskreislaufs. Diese Details sind in Figur 2a symbolisch dargestellt. Das obere Ende des beweglichen Steigrohres 94 weist eine nach oben gerichtete Öffnung 95 auf. Im gezeigten Ausführungsbeispiel ist das bewegliche Steigrohr am oberen Ende vollständig offen, was jedoch nicht zwingend ist.At the lower end of the movable riser 94, a backflow check valve, for example in the form of a preloaded ball valve, through which working fluid can pass from the static riser 92 into the movable riser 94 when a predetermined differential pressure is exceeded. In the region of the lower end, the outer wall of the movable riser pipe 94 carries piston sealing rings, which are shown symbolically. The piston seals are completely within the working fluid circuit. These details are in FIG. 2a symbolically represented. The upper end of the movable riser 94 has an upward opening 95. In the illustrated embodiment, the movable riser at the top is completely open, which is not mandatory.

Die Funktionsweise der Hebeeinrichtung 16 wird nun mit Bezug auf die Figuren 3 und 4 näher erläutert. Der Auftrieb des Auftriebskörpers 90 ist in Bezug auf die Arbeitsflüssigkeit (in der Regel Wasser) so bemessen, dass die untere Fläche des Regenerators 13b gerade auf der Arbeitsflüssigkeit schwimmt (wie in Figur 3 dargestellt), wobei ein unterer Abschnitt der Isolierung 13a in die Arbeitsflüssigkeit eintaucht. Im passiven Zustand, das heißt, wenn kein Wasser durch die Steigrohre strömt, stellt sich somit das in Figur 3 Gezeigte ein. Strömt nun von der Turbineneinheit 30 rücklaufendes Wasser durch das statische Steigrohr 92 so öffnet sich das Rückfluss-Sperrventil, Arbeitsflüssigkeit strömt durch die Steigrohre, tritt am oberen Ende des beweglichen Steigrohres aus der Öffnung 95 aus und drückt so den Verdrängerkolben nach oben. Da Arbeitsflüssigkeit nur zwischen dem oberen Ende des beweglichen Steigrohres und dem Deflektor austreten kann, entweicht Arbeitsflüssigkeit an dieser Stelle in Form eines Films (hydrodynamisches Paradoxon). Dies ist in Figur 4 dargestellt. Damit das bewegliche Steigrohr 94 bei absinkendem Verdrängerkolben in das statische Steigrohr 92 einsinken kann, darf der Deflektor 98 das obere Ende des beweglichen Steigrohres (das heißt die Öffnung 95) nicht dicht verschließen.The operation of the lifting device 16 will now be described with reference to Figures 3 and 4 explained in more detail. The buoyancy of the buoyant body 90 with respect to the working fluid (typically water) is such that the lower surface of the regenerator 13b is floating on the working fluid (as in FIG FIG. 3 shown), wherein a lower portion of the insulation 13a is immersed in the working fluid. In the passive state, that is, when no water flows through the riser pipes, this turns into FIG. 3 Shown one. If water returning from the turbine unit 30 then flows through the static riser 92, the return flow check valve opens, working fluid flows through the riser tubes, exits from the opening 95 at the upper end of the moveable riser and thus pushes the displacer upwards. Since working fluid can escape only between the upper end of the movable riser and the deflector, escapes working fluid at this point in the form of a film (hydrodynamic paradox). This is in FIG. 4 shown. In order for the movable riser 94 to sink into the static riser 92 when the displacer piston is descending, the deflector 98 must not tightly close the upper end of the moveable riser (ie the opening 95).

Der benötigte Arbeitsflüssigkeitsdruck wird überwiegend von der Turbineneinheit zur Verfügung gestellt, es ist jedoch zusätzlich eine in beide Richtungen antreibbare Pumpe 73 in der Arbeitsflüssigkeitsrückleitung vorgesehen (Fig. 1).The required working fluid pressure is provided predominantly by the turbine unit, however, it is additionally provided in both directions a drivable pump 73 in the working fluid return line ( Fig. 1 ).

Der Betrieb der eben beschriebenen Maschine wird nun anhand eines halben Zyklus mit Bezug auf die Figuren 5 bis 9a näher beschrieben, wobei beim beschriebenen Ausführungsbeispiel ein Vordruck von 12 bar herrscht. Die Figur 5 zeigt den Startpunkt eines Zyklus, wobei der Startzeitpunkt bei einem Kreisprozess natürlich willkürlich festlegbar ist. Die Figur 5a zeigt das p-V-Diagramm zur Figur 5, wobei die Zustände der Arbeitsgase der beiden Hydrostirling-Einheiten 10, 20 eingezeichnet sind. Zum (wie gesagt beliebigen) Startzeitpunkt des Zyklus befindet sich der Verdrängerkolben 13 der ersten Hydrostirling-Einheit 10 in seinem oberen Totpunkt, wobei er zur besseren Wärmeübertragung an der oberen Behälterwandung anliegen kann. Weiterhin hat der Behälter 11 seinen maximalen Arbeitsflüssigkeits-Füllstand und somit sein minimales Gasvolumen. Das Gas befindet sich zwischen der Oberfläche der Arbeitsflüssigkeit und der Unterseite des Verdrängerkolbens 13, ist also relativ kalt. Der Druck im Behälter 11 der ersten Hydrostirling-Einheit 10 ist der Vordruck, also 12 bar.The operation of the machine just described will now be described with reference to a half cycle with respect to FIG FIGS. 5 to 9a described in more detail, wherein in the described embodiment, a pre-pressure of 12 bar prevails. The FIG. 5 shows the starting point of a cycle, whereby the starting time of a cycle can of course be determined arbitrarily. The FIG. 5a shows the pV diagram for FIG. 5 , wherein the states of the working gases of the two Hydrostirling units 10, 20 are shown. For (as already mentioned arbitrary) start time of the cycle, the displacer 13 of the first Hydrostirling unit 10 is in its top dead center, where it can abut the better heat transfer to the upper container wall. Furthermore, the container 11 has its maximum working fluid level and thus its minimum gas volume. The gas is located between the surface of the working fluid and the underside of the displacer 13, so it is relatively cold. The pressure in the container 11 of the first Hydrostirling unit 10 is the form, ie 12 bar.

Der Arbeitsflüssigkeitspegel im Turbinenbehälter 32 ist maximal und der Druck im Turbinenbehälter ist ebenfalls der Vordruck, also 12 bar. Das momentane Gasvolumen im Turbinenbehälter entspricht dem Gasvolumen im Behälter 11 der ersten Hydrostirling-Einheit 10.The working fluid level in the turbine tank 32 is maximum and the pressure in the turbine tank is also the form, ie 12 bar. The instantaneous gas volume in the turbine tank corresponds to the gas volume in the tank 11 of the first hydrostirling unit 10.

Der Arbeitsflüssigkeits-Pegel der zweiten Hydrostirling-Einheit 20 ist minimal und die Unterseite des Verdrängerkolbens 23 liegt auf der Oberfläche der Arbeitsflüssigkeit auf. Auch im Behälter 21 der zweiten Hydrostirling-Einheit 20 herrscht der Vordruck, also 12 bar, das Arbeitsgas ist relativ heiß.The working fluid level of the second hydrostirling unit 20 is minimal and the underside of the displacer 23 rests on the surface of the working fluid. Also in the container 21 of the second Hydrostirling unit 20 prevails the form, ie 12 bar, the working gas is relatively hot.

Nun wird, wie in Figur 6 gezeigt, die erste Pumpe 73 kurz in Rücklaufrichtung angetrieben, so dass der erste Verdrängerkolben 13 abgesenkt wird, bis er auf die Oberfläche der Arbeitsflüssigkeit trifft. Hierbei durchströmt das relativ kalte Gas den Regenerator 13b des Verdrängerkolbens 13, wobei dieses erhitzt wird. Hierdurch wird das Gas isochor komprimiert, im gezeigten Ausführungsbeispiel auf ca. 33 bar. Der Zustand der zweiten Hydrostirling-Einheit 20 ändert sich hierbei nicht.Now, as in FIG. 6 shown, the first pump 73 is briefly driven in the return direction, so that the first displacer 13 is lowered until it hits the surface of the working fluid. Here, the relatively cold gas flows through the regenerator 13b of the displacer 13, wherein it is heated. As a result, the gas is isochoric compressed, in the illustrated embodiment to about 33 bar. The state of the second hydrostirling unit 20 does not change here.

Nun wird, wie in Figur 7 gezeigt, die zweite Pumpe 76 bei kurz geöffnetem Sperrventil 78 angetrieben und somit der Verdrängerkolben 23 der zweiten Hydrostirling-Einheit 20 angehoben. Hierdurch fließt das heiße Gas durch den Regenerator, kühlt ab und wird somit isochor dekomprimiert, im gezeigten Ausführungsbeispiel auf ca. 4,3 bar.Now, as in FIG. 7 shown, the second pump 76 is driven at a short open check valve 78 and thus the displacer 23 of the second Hydrostirling unit 20 is raised. As a result, the hot gas flows through the regenerator, cools and is thus isochorically decompressed, in the embodiment shown to about 4.3 bar.

Als nächstes wird das Sperrventil 78 wieder geöffnet, so dass Arbeitsflüssigkeit vom Turbinenbehälter 30 in den Behälter 21 der zweiten Hydrostirling-Einheit fließt und hierbei ein Druckausgleich zwischen dem Turbinenbehälter und dem Behälter 21 der ersten Hydrostirling-Einheit stattfindet (Fig. 8). Im beschriebenen Ausführungsbeispiel herrscht nach Abschluss des Druckausgleichs im Turbinenbehälter 30 und im Behälter 21 ein Druck von ca. 8 bar. Das Arbeitsgasvolumen in diesen beiden Behältern ist jetzt gleich. Der Turbinenbehälter 30 hat seinen minimalen Arbeitsflüssigkeits-Pegel und seinen minimalen Druck erreicht. Somit herrscht der maximale Druckunterschied zwischen dem ersten Stirling-Behälter 10 und dem Turbinen-Behälter 30. Dieser Zustand ist in Figur 8 gezeigt.Next, the check valve 78 is opened again, so that working fluid from the turbine tank 30 flows into the tank 21 of the second hydrostirling unit and in this case a pressure equalization takes place between the turbine tank and the tank 21 of the first hydrostirling unit ( Fig. 8 ). In the described embodiment prevails after completion of the pressure equalization in the turbine tank 30 and in the container 21, a pressure of about 8 bar. The working gas volume in these two containers is now the same. The turbine tank 30 has reached its minimum working fluid level and minimum pressure. Thus, there is the maximum pressure difference between the first stirling tank 10 and the turbine tank 30. This condition is in FIG. 8 shown.

Nun wird das Sperrventil 52 der ersten Arbeitsflüssigkeitsleitung 50, das Sperrventil 78 der zweiten Arbeitsflüssigkeits-Rückleitung 74 und auch die Regeldüse 56 geöffnet, so dass ein Druckausgleich zwischen dem Behälter 11 der ersten Hydrostirling-Einheit 10, dem Turbinenbehälter 30 und dem Behälter 21 der zweiten Stirling-Einheit 20 stattfinden kann. Das heiße Gas im Behälter 11 expandiert im Wesentlichen isotherm und drückt die Arbeitsflüssigkeit aus dem Behälter 11. Der Verdrängerkolben schwimmt hierbei weiter auf der Arbeitsflüssigkeit. Arbeitsflüssigkeit strömt vom Behälter 11 der ersten Hydrostirling-Einheit 10 durch die erste Arbeitsflüssigkeitsleitung 50, trifft auf das Turbinenrad 34 und gelangt somit in den Turbinenbehälter 32. Die Regeldüse 56 ist hierbei zu Beginn nur teilweise geöffnet und öffnet bei zunehmendem Druckausgleich immer mehr. Hierbei wird Arbeit geleistet, so dass der Generator 36 elektrische Energie erzeugt. Durch das geöffnete Absperrventil 76 der zweiten Arbeitsflüssigkeits-Rückleitung 74 steigt nicht nur der Arbeitsflüssigkeits-Pegel im Turbinenbehälter 30 sondern auch im Behälter 21 der zweiten Hydrostirling-Einheit 20, bis der Zustand der Figur 9 erreicht ist, in welchem die beiden Hydrostirling-Einheiten Ihre Zustände gegenüber Figur 5 getauscht haben. Nun beginnt der zweite Halb-Zyklus mit der isochoren Kompression im Behälter 21 der zweiten Hydrostirling-Einheit.Now the check valve 52 of the first working fluid line 50, the check valve 78 of the second working fluid return line 74 and the control nozzle 56 is opened, so that a pressure equalization between the container 11 of the first Hydrostirling unit 10, the turbine tank 30 and the container 21 of the second Stirling unit 20 can take place. The hot gas in the container 11 expands substantially isothermally and forces the working fluid out of the container 11. The displacer continues to float on the working fluid. Working fluid flows from the container 11 of the first Hydrostirling unit 10 through the first working fluid line 50, impinges on the turbine wheel 34 and thus enters the turbine tank 32. The control nozzle 56 is in this case only partially open and opens with increasing pressure equalization more and more. Here, work is done so that the generator 36 generates electrical energy. By the open shut-off valve 76 of the second working fluid return line 74 not only increases the working fluid level in the turbine tank 30 but also in the container 21 of the second Hydrostirling unit 20 until the state of FIG. 9 is reached, in which the two hydrostirling units opposite to your states FIG. 5 have exchanged. Now begins the second half-cycle with the isochoric compression in the container 21 of the second hydrostirling unit.

Die Figur 10 zeigt ein zweites Ausführungsbeispiel der Erfindung in einer der Figur 1 entsprechenden Darstellungen. Grundsätzlich ist die Hydrostirling-Maschine des zweiten Ausführungsbeispiels aufgebaut wie die Hydrostirling-Maschine des ersten Ausführungsbeispiels, die beiden Hydrostirling-Einheiten 10 und 20 verfügen jedoch zusätzlich über eine Dampferzeugungseinheit 17, 27, welche jeweils aus einem Dampferzeuger 17b, 27b, einen Reservoir 17c, 27c und einen Rücklauf 17d, 27d besteht. Die Dampferzeuger erhalten ihre Wärme ganz oder überwiegend von der äußeren Wandung des Behälters unterhalb der Trennstelle zwischen heißem und kaltem Teil des Behälters und tragen somit zur gewünschten Kühlung bei. Der erzeugte Dampf wird - vorzugsweise als überhitzter Dampf (wozu ein nicht dargestellter zusätzlicher Überhitzer vorgesehen sein kann) - in den Turbinenbehälter eingespritzt (Bezugszeichen 100). In diesem Fall wird anstatt eines Druckausgleiches zwischen dem Turbinenbehälter und dem Behälter der zweiten Hydrostirling-Einheit der Turbinenbehälter derart mit Dampf ausgepresst, dass der In Figur 10 gezeigte Zustand statt des in Figur 8 gezeigten Zustandes erreicht wird. Strömt dann kaltes Wasser von der ersten Hydrostirling-Einheit in den Turbinenbehälter, so kondensiert der überhitzte Wasserdampf sofort aus und es steht ein noch erhöhtes Druckgefälle zur Verfügung.The FIG. 10 shows a second embodiment of the invention in a representation corresponding to Figure 1 representations. Basically, the hydrostirling machine of the second embodiment is constructed like the hydrostirling machine of the first embodiment, but the two hydrostirling units 10 and 20 additionally have a steam generating unit 17, 27, each consisting of a steam generator 17b, 27b, a reservoir 17c, 27c and a return 17d, 27d exists. The steam generators receive their heat entirely or predominantly from the outer wall of the container below the separation point between the hot and cold part of the container and thus contribute to the desired cooling. The generated steam is - preferably as superheated steam (for which an unillustrated additional superheater may be provided) - injected into the turbine tank (reference numeral 100). In this case, instead of a pressure equalization between the turbine tank and the tank of the second hydrostirling unit, the turbine tank is pressed with steam such that the In FIG. 10 shown state instead of in FIG. 8 shown state is achieved. If cold water then flows from the first hydrostirling unit into the turbine tank, the superheated steam condenses immediately and an even higher pressure gradient is available.

Um zu erreichen, dass die Arbeitsflüssigkeitsmenge, das heißt hier Wassermenge, in der Hydrostirling-Maschine konstant bleibt, muss über den Rücklauf 17d kontinuierlich oder in gewissen zeitlichen Abständen Wasser entnommen werden. Da die Menge an eingespritztem überhitztem Wasserdampf sehr klein sein kann, ist es ausreichend, in gewissen zeitlichen Abständen Wasser zu entnehmen.In order to ensure that the working fluid quantity, that is to say the amount of water in the hydrostirling machine, remains constant, water must be withdrawn continuously or at intervals over the return line 17d. Since the amount of injected superheated steam can be very small, it is sufficient to remove water at certain intervals.

Die Figur 11 zeigt ein viertes Ausführungsbeispiel in einer der Figur 1 entsprechenden Darstellung. Es ist keine Dampfeinspritzungen dargestellt, diese kann jedoch zusätzlich vorhanden sein.The FIG. 11 shows a fourth embodiment in one of FIG. 1 corresponding representation. No steam injection is shown, but it may be present.

Der Unterschied zu den bisher gezeigten Ausführungsbeispielen besteht darin, dass zusätzlich zu den Arbeitsflüssigkeitsrückleitungen 70, 74 Bypass-Leitungen 71, 75 vorgesehen sind, welche den Turbinenbehälter 32 und die Behälter 11, 21 der Hydrostirling-Einheiten 20, 30 unter Umgehung der Pumpen 73, 76 und der Hebeeinrichtungen miteinander verbinden. In jeder Bypass-Leitung ist ein Sperrventil vorgesehen. Man könnte diese Bypass-Leitungen auch als zweite Arbeitsflüssigkeitsrückleitungen bezeichnen. Solange die Maschine mit geringer Frequenz (beispielsweise ein Zyklus pro Minute) und somit mit maximalem Wirkungsgrad betrieben wird, können die Bypass-Leitungen in der Regel funktionslos bleiben. Soll jedoch die Maschine mit höherer Leistung und somit mit größerem Durchsatz an Arbeitsflüssigkeit betrieben werden, so kann es sinnvoll sein, dass ein Teil der vom Turbinenbehälter 32 in den jeweiligen Behälter 11, 21 der betreffenden Hydrostirling-Einheit 10, 20 rücklaufenden Arbeitsflüssigkeit die Pumpe und die Hebeeinrichtung umgeht. Hierfür dienen die Bypass-Leitungen 71, 75.The difference from the embodiments shown so far is that in addition to the working fluid return lines 70, 74 bypass lines 71, 75 are provided, which the turbine tank 32 and the containers 11, 21 of the hydrostirling units 20, 30, bypassing the pump 73, 76 and the Connect lifting equipment together. In each bypass line, a check valve is provided. One could also call these bypass lines as second working fluid return lines. As long as the machine is operated at a low frequency (for example, one cycle per minute) and thus at maximum efficiency, the bypass lines can usually remain inoperative. However, if the machine with higher power and thus with a larger throughput of working fluid to be operated, it may be useful that a portion of the turbine container 32 in the respective container 11, 21 of the respective Hydrostirling unit 10, 20 returning working fluid to the pump and the lifting device bypasses. This is the purpose of the bypass lines 71, 75.

Abschließend sei noch darauf hingewiesen, dass in den Figuren 5 bis 11 die Hebeeinrichtungen nicht im Detail dargestellt sind, es jedoch zu bevorzugen ist, dass diese wie mit Bezug auf die Figuren 2 bis 4 beschrieben ausgebildet sind. Grundsätzlich ist es jedoch auch denkbar, Hebeeinrichtungen einzusetzen, welche vom Arbeitsflüssigkeitskreislauf unabhängig sind.Finally, it should be noted that in the FIGS. 5 to 11 the lifting devices are not shown in detail, but it is preferable that these as with respect to the FIGS. 2 to 4 are formed described. In principle, however, it is also conceivable to use lifting devices which are independent of the working fluid circuit.

Die Figur 12 zeigt eine Möglichkeit, wie die thermische Trennung zwischen oberem Behälterbereich und unterem Behälterbereich während der Phase, in welcher sich der Verdrängerkolben 13 in seiner oberen Endstellung befindet, verbessert werden kann. Hierfür weist die Innenwand des Mantels des Behälters 11 eine nach unten weisende Stufe und der Zylindermantel 14 einen Anschlag auf. Weiterhin kann eine, vorzugsweise von der Stufe getragene, Dichtung 11c vorgesehen sein. Wie dargestellt, wird die Stufe vorzugsweise dadurch erzeugt, dass der Behälter 11 aus einem oberen Behälterteil 11a und einem an den oberen Behälterteil 11a angeflanschten unteren Behälterteil 11b besteht, wobei der obere Behälterteil 11a einen kleineren Innendurchmesser als der untere Behälterteil aufweist. Der Anschlag des Zylindermantels 14 ist vorzugsweise als Sicke 14a ausgebildet. Stufe und Anschlag sind so angeordnet, dass der Anschlag an der Stufe beziehungsweise an der Dichtung 14a anliegt, wenn sich der Verdrängerkolben 13 in seiner oberen Endstellung befindet (s. beispielsweise Figur 10). Hierdurch wird erreicht, dass kein kaltes Wasser im Spalt zwischen Zylindermantel 14 und Innenseite des oberen Behälterteils 11a nach oben steigen kann, wenn sich der Verdrängerkolben in seiner oberen Endstellung befindet, wodurch die thermische Entkopplung verbessert wird. Natürlich kann die beschriebene Maßnahme bei beiden Hydrostirling-Einheiten 10, 20 vorgesehen sein.The FIG. 12 shows one way in which the thermal separation between the upper tank area and the lower tank area during the phase in which the displacer 13 is in its upper end position, can be improved. For this purpose, the inner wall of the shell of the container 11 has a downwardly facing step and the cylinder jacket 14 a stop. Furthermore, a, preferably carried by the stage, seal 11c may be provided. As illustrated, the step is preferably formed by the container 11 consisting of an upper container part 11a and a lower container part 11b flanged to the upper container part 11a, the upper container part 11a having a smaller inner diameter than the lower container part. The stop of the cylinder jacket 14 is preferably formed as a bead 14a. Step and stop are arranged so that the stop abuts the step or the seal 14a when the displacer piston 13 is in its upper end position (see, for example FIG. 10 ). This ensures that no cold water in the gap between the cylinder jacket 14 and the inside of the upper container part 11a can rise to the top, when the Displacer is in its upper end position, whereby the thermal decoupling is improved. Of course, the described measure can be provided in both hydrostirling units 10, 20.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

1010
erste Hydrostirling-Einheitfirst hydrostirling unit
1111
Behältercontainer
11a11a
oberer Behälterteilupper container part
11b11b
unterer Behälterteillower container part
11c11c
Dichtungpoetry
1212
Heizkopfheating head
1313
Verdrängerkolbendisplacer
13a13a
Isolierunginsulation
13b13b
Regeneratorregenerator
1414
Zylindermantelcylinder surface
14a14a
SickeBeading
1616
Hebeeinrichtunglifter
1717
DampferzeugungseinheitSteam generation unit
17b17b
Dampferzeugersteam generator
17c17c
Reservoirreservoir
17d17d
Rücklaufreturns
2020
zweite Hydrostirling-Einheitsecond hydrostirling unit
2121
Behältercontainer
2222
Heizkopfheating head
2323
Verdrängerkolbendisplacer
23a23a
Isolierunginsulation
23b23b
Regeneratorregenerator
2424
Zylindermantelcylinder surface
2626
Hebeeinrichtunglifter
2727
DampferzeugungseinheitSteam generating unit
27b27b
Dampferzeugersteam generator
37c37c
Reservoirreservoir
37d37d
Rücklaufreturns
3030
Turbineneinheitturbine unit
3232
Turbinenbehälterturbine container
3434
Turbinenradturbine
3636
Generatorgenerator
4040
DruckgasflaschePressure cylinder
4242
DruckgasleitungPressure gas line
5050
erste Arbeitsflüssigkeitsleitungfirst working fluid line
5252
Sperrventilcheck valve
5656
Regeldüsecontrol nozzle
6060
zweite Arbeitsflüssigkeitsleitungsecond working fluid line
6262
Sperrventilcheck valve
6666
Regeldüsecontrol nozzle
7070
erste Arbeitsflüssigkeitsrückleitungfirst working fluid return
7171
erste Bypass-Leitungfirst bypass line
7272
Sperrventilcheck valve
7373
Pumpepump
7474
zweite Arbeitsflüssigkeitsrückleitungsecond working fluid return
7575
zweite Bypass-Leitungsecond bypass line
7676
Pumpepump
7878
Sperrventilcheck valve
9090
Auftriebskörper der ersten Hydrostirling-EinheitBuoyancy of the first hydrostirling unit
9191
Bolzenbolt
9292
statisches Steigrohrstatic riser
9494
bewegliches Steigrohrmovable riser
9595
Öffnungopening
9696
Lagercamp
9898
Deflektordeflector
100100
Dampfeinspritzungsteam injection
110110
Auftriebskörper der zweiten Hydrostirling-EinheitBuoyancy of the second hydrostirling unit
111111
Bolzenbolt

Claims (15)

  1. Hydro Stirling engine comprising:
    at least two hydro Stirling units (10, 20), which in each case comprise a container (11, 21) configured as a standing cylinder, wherein for each container (11, 21) a heating device for heating an upper region or an upper end region is provided, and wherein an axially movable and controllable displacement piston unit with a displacement piston (13, 23) comprising a regenerator (13b, 23b) is arranged in the interior of each container (11, 21),
    an energy converter unit, and
    a common working fluid circuit, which has, for each hydro Stirling unit, at least one working fluid line (50, 60), which connects the hydro Stirling unit to the energy converter unit,
    characterised in
    that the energy converter unit is a turbine unit (30), which has a turbine vessel (32) and a turbine wheel (34) arranged in this turbine vessel (32),
    that the working fluid lines (50, 60) extend between the hydro Stirling units (10, 20) and the turbine unit (30) in such a way that working fluid, which flows from a hydro Stirling unit (10, 20) to the turbine unit (30), firstly impinges on the turbine wheel (34) and then falls into a region of the turbine vessel (32) below the turbine wheel (34),
    that the working fluid circuit comprises for each hydro Stirling unit (10, 20) at least one working fluid return line (70, 74), which connects the turbine unit (30) to the hydro Stirling unit (10, 20), and
    that each displacement piston unit comprises a cylinder shell (14, 24) extending downwardly from the displacement piston (13, 23), wherein the outer surface of the cylinder shell is substantially aligned with the outer surface of the displacement piston (13, 23).
  2. Hydro Stirling engine according to claim 1, characterised in that the lifting force of the displacement piston unit is in each case greater than its force due to weight, in such a way that the regenerator (13b, 23b) floats on the working fluid.
  3. Hydro Stirling engine according to claim 2, characterised in that each displacement piston comprises insulation (13a, 23a) surrounding the regenerator (13b, 23b), the specific weight of which is less than the specific weight of the working fluid, and wherein the insulation extends over the lower end of the regenerator (13b, 23b) such that a lower section of the insulation (13a, 23a) is immersed into the working fluid.
  4. Hydro Stirling engine according to any one of the preceding claims, characterised in that each displacement piston unit comprises a lifting body (90, 110) connected to the displacement piston (13, 23).
  5. Hydro Stirling engine according to claim 4, characterised in that the cylinder shell (14, 24) forms at least a part of the connection between the displacement piston (13, 23) and the lifting body (90, 110).
  6. Hydro Stirling engine according to any one of the preceding claims, characterised in that the containers (11, 21) comprise on their inner side in each case a downwards facing step (11a), and the cylinder shells (13, 23) in each case comprise a stop for engaging in contact with this step (11a).
  7. Hydro Stirling engine according to any one of the preceding claims, characterised in that, in order to control the displacement pistons (13, 23), a static riser pipe (92) connected to the working fluid return line (70, 74), and a movable riser pipe (94) arranged in the static riser pipe (92) in the form of a piston, are provided in the interior of the container (11, 21) of each hydro Stirling unit.
  8. Hydro Stirling engine according to claim 7, characterised in that the static riser pipe (92) extends through the lifting body (90).
  9. Hydro Stirling engine according to any one of claims 7 or 8, characterised in that the movable riser pipe (94) exhibits an upwards pointing opening (95) at its upper end.
  10. Hydro Stirling engine according to any one of claims 7 or 9, characterised in that the displacement piston (13) is not securely connected to the movable riser pipe (94).
  11. Hydro Stirling engine according to claim 9 and claim 10, characterised in that the displacement piston (13) comprises a deflector (98) pointing towards the opening (95).
  12. Hydro Stirling engine according to any one of the preceding claims, characterised in that the turbine vessel (32) comprises a steam injector (100).
  13. Hydro Stirling engine according to claim 12, characterised in that the steam generators (17b, 27b) assigned to the steam injector (100) are in contact in each case with the outer wall of a container (11, 21) of a hydro Stirling unit (10, 20).
  14. Hydro Stirling engine according to any one of the preceding claims, characterised in that exactly two hydro Stirling units (10, 20) are provided, in which in each case a Stirling circuit process runs.
  15. Hydro Stirling engine according to any one of the preceding claims, characterised in that the turbine wheel (34) is a Pelton turbine wheel.
EP16744703.6A 2015-07-31 2016-07-22 Hydrostirling-maschine Active EP3329110B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015009975.2A DE102015009975B4 (en) 2015-07-31 2015-07-31 Hydro Stirling engine
PCT/EP2016/067523 WO2017021176A1 (en) 2015-07-31 2016-07-22 Hydro-stirling engine

Publications (2)

Publication Number Publication Date
EP3329110A1 EP3329110A1 (en) 2018-06-06
EP3329110B1 true EP3329110B1 (en) 2019-11-20

Family

ID=56551385

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16744703.6A Active EP3329110B1 (en) 2015-07-31 2016-07-22 Hydrostirling-maschine

Country Status (3)

Country Link
EP (1) EP3329110B1 (en)
DE (1) DE102015009975B4 (en)
WO (1) WO2017021176A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10267287B2 (en) * 2016-12-19 2019-04-23 Everett Ray Kile Oscillating unites buoyancy hydro electric loop pistons

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3608311A (en) * 1970-04-17 1971-09-28 John F Roesel Jr Engine
IL46964A (en) * 1975-03-30 1977-06-30 Technion Res & Dev Foundation Hydrost atic transmission system
DE102006028561B3 (en) 2006-06-22 2008-02-14 KNÖFLER, Steffen Hydro-Stirling motor has two-cylinders linked by pipe with hydraulic motor power take-off

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
DE102015009975A1 (en) 2017-02-02
DE102015009975B4 (en) 2017-03-16
EP3329110A1 (en) 2018-06-06
WO2017021176A1 (en) 2017-02-09

Similar Documents

Publication Publication Date Title
EP0857256B1 (en) Pneumo-hydraulic converter for energy storage
WO2005071232A1 (en) System for converting thermal to motive energy
EP3329110B1 (en) Hydrostirling-maschine
WO2013023231A2 (en) High-pressure gas drive unit
DE10319806B4 (en) Heat engine according to the ideal Stirling principle
EP2116697B1 (en) Drive unit with a fuel engine and a non-regulated self-actuating piston engine
DE202013011700U1 (en) Arrangement for the direct thermo-pneumatic or thermohydraulic conversion of steam energy into useful energy
DE3242773A1 (en) ENGINE WORKING WITH TEMPERATURE DIFFERENCES
DE632897C (en) Process for generating mechanical work with the help of the expansion of fluids
DE3939779A1 (en) Heat-energy conversion process - uses fluids with low boiling point as working medium
DE2948244A1 (en) Heating system using kinetic wind and wave energy - has pump forcing incompressible fluid through load resistance to raise its temp.
DE102013013104B4 (en) Heat engine
AT525551B1 (en) heat engine
DE19739856C2 (en) Method and device for extracting thermal energy from a gaseous medium by means of a heat exchanger
DE102013101214B4 (en) Process for direct conversion of steam energy into mechanical energy and thermohydraulic arrangement for carrying out the process
DE8914171U1 (en) Device for converting thermal energy into mechanical energy
DE102021104458B3 (en) Device for converting heat into mechanical work
DE3744487A1 (en) METHOD AND DEVICE FOR CONVEYING BOILABLE LIQUIDS
DE2438776A1 (en) NUCLEAR REACTOR WITH PUMPS FOR THE COOLANT CIRCULATION
WO1995018301A1 (en) Process for generating a flow
DE102016124048A1 (en) Axial piston pump with high flow rate at low speed and use of a piston pump in a wind turbine
DE2949678C2 (en)
WO2023011997A1 (en) Heat engine
DE102015112706A1 (en) axial piston
EP2824307A1 (en) Heat recovery system for an internal combustion engine

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180228

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190226

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

INTC Intention to grant announced (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

INTG Intention to grant announced

Effective date: 20190917

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016007649

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1204472

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191215

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: VALIPAT S.A. C/O BOVARD SA NEUCHATEL, CH

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20191120

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200220

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200220

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200320

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200412

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016007649

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20200821

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230523

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230731

Year of fee payment: 8

Ref country code: IE

Payment date: 20230726

Year of fee payment: 8

Ref country code: GB

Payment date: 20230724

Year of fee payment: 8

Ref country code: CH

Payment date: 20230801

Year of fee payment: 8

Ref country code: AT

Payment date: 20230718

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230724

Year of fee payment: 8

Ref country code: DE

Payment date: 20230920

Year of fee payment: 8