EP3328548B1 - Verfahren und vorrichtung zum selektiven sammeln von aerosolpartikeln nach partikelgrösse - Google Patents
Verfahren und vorrichtung zum selektiven sammeln von aerosolpartikeln nach partikelgrösse Download PDFInfo
- Publication number
- EP3328548B1 EP3328548B1 EP16744761.4A EP16744761A EP3328548B1 EP 3328548 B1 EP3328548 B1 EP 3328548B1 EP 16744761 A EP16744761 A EP 16744761A EP 3328548 B1 EP3328548 B1 EP 3328548B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- particles
- collection
- electrode
- charger
- conduit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002245 particle Substances 0.000 title claims description 147
- 239000000443 aerosol Substances 0.000 title claims description 57
- 238000000034 method Methods 0.000 title claims description 17
- 238000009792 diffusion process Methods 0.000 claims description 60
- 150000002500 ions Chemical class 0.000 claims description 57
- 230000000694 effects Effects 0.000 claims description 41
- 230000005684 electric field Effects 0.000 claims description 40
- 239000000758 substrate Substances 0.000 claims description 33
- 239000002105 nanoparticle Substances 0.000 claims description 16
- 230000002285 radioactive effect Effects 0.000 claims description 15
- 230000008021 deposition Effects 0.000 claims description 13
- 230000001747 exhibiting effect Effects 0.000 claims 1
- 230000001737 promoting effect Effects 0.000 claims 1
- 230000007246 mechanism Effects 0.000 description 13
- 238000000151 deposition Methods 0.000 description 12
- 238000004088 simulation Methods 0.000 description 11
- 230000037230 mobility Effects 0.000 description 9
- 230000008901 benefit Effects 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 238000002536 laser-induced breakdown spectroscopy Methods 0.000 description 6
- 238000004846 x-ray emission Methods 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 5
- 235000021183 entrée Nutrition 0.000 description 5
- 239000010419 fine particle Substances 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000005070 sampling Methods 0.000 description 5
- 238000011161 development Methods 0.000 description 4
- 230000018109 developmental process Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 230000005669 field effect Effects 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 238000011144 upstream manufacturing Methods 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 239000011324 bead Substances 0.000 description 3
- 238000011109 contamination Methods 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 238000005367 electrostatic precipitation Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 238000001730 gamma-ray spectroscopy Methods 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 238000013379 physicochemical characterization Methods 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- 101000801643 Homo sapiens Retinal-specific phospholipid-transporting ATPase ABCA4 Proteins 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- 102100033617 Retinal-specific phospholipid-transporting ATPase ABCA4 Human genes 0.000 description 2
- 240000008042 Zea mays Species 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 239000004816 latex Substances 0.000 description 2
- 229920000126 latex Polymers 0.000 description 2
- 238000004377 microelectronic Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000000399 optical microscopy Methods 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000004611 spectroscopical analysis Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000004876 x-ray fluorescence Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 241001354532 Holozonia filipes Species 0.000 description 1
- 238000003915 air pollution Methods 0.000 description 1
- 239000007900 aqueous suspension Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000002274 desiccant Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000001493 electron microscopy Methods 0.000 description 1
- 230000005686 electrostatic field Effects 0.000 description 1
- 239000012717 electrostatic precipitator Substances 0.000 description 1
- 229940082150 encore Drugs 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000008821 health effect Effects 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000001307 laser spectroscopy Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- 238000000386 microscopy Methods 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- JTJMJGYZQZDUJJ-UHFFFAOYSA-N phencyclidine Chemical class C1CCCCN1C1(C=2C=CC=CC=2)CCCCC1 JTJMJGYZQZDUJJ-UHFFFAOYSA-N 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000037452 priming Effects 0.000 description 1
- 230000005180 public health Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- 239000004509 smoke generator Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 231100000027 toxicology Toxicity 0.000 description 1
- 239000011882 ultra-fine particle Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C—MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C3/00—Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
- B03C3/02—Plant or installations having external electricity supply
- B03C3/025—Combinations of electrostatic separators, e.g. in parallel or in series, stacked separators or dry-wet separator combinations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C—MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C3/00—Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
- B03C3/02—Plant or installations having external electricity supply
- B03C3/04—Plant or installations having external electricity supply dry type
- B03C3/06—Plant or installations having external electricity supply dry type characterised by presence of stationary tube electrodes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C—MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C3/00—Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
- B03C3/02—Plant or installations having external electricity supply
- B03C3/04—Plant or installations having external electricity supply dry type
- B03C3/12—Plant or installations having external electricity supply dry type characterised by separation of ionising and collecting stations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C—MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C3/00—Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
- B03C3/34—Constructional details or accessories or operation thereof
- B03C3/36—Controlling flow of gases or vapour
- B03C3/368—Controlling flow of gases or vapour by other than static mechanical means, e.g. internal ventilator or recycler
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C—MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C3/00—Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
- B03C3/34—Constructional details or accessories or operation thereof
- B03C3/40—Electrode constructions
- B03C3/41—Ionising-electrodes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C—MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C3/00—Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
- B03C3/34—Constructional details or accessories or operation thereof
- B03C3/40—Electrode constructions
- B03C3/45—Collecting-electrodes
- B03C3/49—Collecting-electrodes tubular
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C—MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C3/00—Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
- B03C3/34—Constructional details or accessories or operation thereof
- B03C3/38—Particle charging or ionising stations, e.g. using electric discharge, radioactive radiation or flames
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C—MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C3/00—Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
- B03C3/34—Constructional details or accessories or operation thereof
- B03C3/40—Electrode constructions
- B03C3/45—Collecting-electrodes
- B03C3/47—Collecting-electrodes flat, e.g. plates, discs, gratings
Definitions
- the present invention relates to the field of collection and analysis of particles which may be present in suspension in an aerosol.
- It relates more particularly to the production of an electrostatic device for collecting particles by electrostatic precipitation, including nanoparticles contained in aerosols.
- the present invention aims to allow a collection of particles in suspension in aerosols which is simultaneous but selective according to their dimensions, the selectivity preferably aiming to collect, by separating them, particles of micron and submicron dimension, ie greater than or equal at 300 nm, and nanometric particles.
- nanoparticle is meant the usual definition according to ISO TS / 27687: a nano-object whose three dimensions are on the nanometric scale, that is to say a particle whose nominal diameter is less than 100 nm approximately.
- sampling devices adapted to be portable and to be attached to the unit to a work suit of a worker in the position of manufacturing nano-objects, developing or using nanomaterials could prove imperative.
- this high electric field (several thousand to tens of thousands of volts per centimeter in the vicinity of the discharge electrode) is induced by two electrodes arranged close to one another: a first polarized electrode or electrode of discharge, generally in the form of a wire or a point, being arranged opposite a second electrode, the latter being in the form of a counter-electrode, generally of planar or cylindrical geometry.
- the electric field existing between the two electrodes ionizes the volume of gas located in the inter-electrode space, and in particular a sheath or crown of ionized gas located around the discharge electrode.
- the charges created by migrating to the counter-electrode, charge the particles to be separated contained in the gas.
- the charged particles thus created then migrate to the counter-electrode, on which they can be collected.
- This counter electrode is usually called the collecting electrode.
- the discharge electrodes encountered are therefore generally either fine points or wires of small diameter. So by a process which originates from the electrons and ions created by natural irradiation, the electrons are accelerated in the intense electric field created in the vicinity of the electrode with (very) small radius of curvature. By the high voltage imposed, if this field exceeds a critical value, an avalanche effect causes the ionization of the air in this space. This phenomenon is called crown discharge.
- Figures 1A to 1E some of the most suitable electrode configurations for obtaining a crown discharge, namely respectively a tip-plane arrangement ( figure 1A ), blade-plane ( figure 1B ), background ( figure 1C ), wire-wire ( figure 1D ), wire cylinder ( figure 1E ).
- an ion wind also called ionic wind, is established, characterized by a flow of air directed from the point towards the plane, originating from the shocks of positive ions with the surrounding neutral molecules.
- the tip is negative with respect to the plane, the positive ions move towards the point, and the electrons move towards the plane by attaching themselves to the air molecules to form negative ions.
- the unipolar ions migrate from the tip to the plane with a large concentration of the order of 10 6 to 10 9 / cm 3 and, whatever the polarity, there appears an electric wind directed from the point towards the plane.
- the introduction of aerosol particles into the tip-plane space makes it possible to charge them with the same polarity as the tip, according to a charging process per field.
- the field used to create the crown effect and the electric wind also participate in the field charge process.
- Figure 15. 9 from page 341 of the publication [1] already cited shows an arrangement allowing the deposition of aerosol particles on a grid of electron microscope, the particles being charged and precipitated in a tip-plane configuration.
- FIG.10 Another example is illustrated in figure 10.10 from page 223 of this same publication [1] and implements the charge and precipitation technique in tip-plane geometry to collect aerosol particles on a piezoelectric crystal.
- the charger 10 comprises a body with symmetry of revolution 1 in two parts which hold a hollow metal cylinder 11 forming an external electrode connected to an AC power supply and a central metal wire 12 arranged along the axis of the body and connected to a power supply high voltage not shown.
- a cylindrical grid 14 Around the central wire 12 is also annularly arranged a cylindrical grid 14 forming an interior electrode.
- the aerosol containing the particles to be charged circulates in the charger 10 from the inlet orifice 17 to the outlet orifice 18 passing through the space 15 delimited between the internal electrode 14 formed by the grid and the 'outer electrode 11 formed by the cylinder.
- this charger 10 The operation of this charger 10 is as follows: ions are produced by the crown effect at the level of the central wire 12 and are collected by the meshed internal electrode 14 brought to a low potential, typically to ground. A part of these ions leaves this grid 14 to go towards the internal surface of the peripheral cylinder 11 due to the tension applied to the latter.
- the aerosol particles pass through the space 15 between grid 14 and cylinder 11 and are therefore charged by diffusion by unipolar ions leaving the grid 14.
- the diffusion charge mechanism operates as a function of the product N ⁇ t, where N represents the concentration of unipolar ions and t the residence time of the particles.
- the diffusion charge mechanism is the only one that can occur because there can be no charge mechanism per field since the electric field is very weak in space 15.
- DMA differential electric mobility analyzers
- the patent application DE19650585 discloses a charger having both the characteristics of a field effect charger and a unipolar ion diffusion charger. This type of charger takes part in the charge of any type of particles whatever their size.
- the general aim of the invention is then to meet this need at least in part.
- a step of emitting an alarm can be provided in the event of a predetermined threshold value of pulses counted according to step b / being exceeded.
- the invention consists of an electrostatic collection of all the particles present in an aerosol, but with a decoupling of the mechanisms on the one hand of charge of the particles by diffusion of unipolar ions to charge then collect the finest particles , and secondly charging by electric field with corona effect to charge and collect the largest particles in a zone different from the collection zone for the finest particles.
- the invention consists in electrically charging the fine particles first by diffusion of unipolar ions, then in charging the large particles by electric field and in collecting each group of particles thus charged according to their size on a adequate support.
- the invention makes it possible judiciously to classify the particles according to their particle size, by depositing them in physically distinct zones.
- the deposition of the particles can be carried out according to concentric rings at different locations on the same flat substrate arranged orthogonally to the direction of circulation of the aerosol.
- the substrate (s) on which the particle deposition collection zones are defined can then be analyzed by conventional techniques of physical or physico-chemical characterization, such as optical microscopy or electronics, surface scanner, ⁇ , ⁇ , ⁇ spectrometry if the particles are radioactive, X-ray fluorescence spectroscopy (XRF for “X-Ray Fluorescence”), X micro-fluorescence ( ⁇ -XRF), laser spectroscopy ( LIBS for “Laser-Induced Breakdown Spectroscopy”) ...
- XRF X-ray fluorescence spectroscopy
- ⁇ -XRF X micro-fluorescence
- LIBS laser spectroscopy
- a collection device is particularly well suited for the sampling of particles in gaseous media, in particular the air of the premises or the environment in order to know the concentration, the particle size, the composition of the particles d aerosol likely to be inhaled.
- the device according to this second mode can comprise plasma actuators arranged in the vicinity of the outlet.
- the wire of the ion diffusion charger, the electrode making it possible to generate an electric field without crown effect and the wire or the tip of the charger per field are connected to a high voltage supply, preferably between 2 and 6 kV .
- the grid is preferably connected to a low voltage power supply, preferably of the order of 100 V.
- the first, second and third conductive portions are preferably connected to the zero potential. It is also possible to provide the first conductive portion with low voltage, typically at around 50V.
- the collection device may constitute, after prior collection, an ionization chamber and a detector of radioactive particles with an alarm function in the event of a predetermined threshold being exceeded.
- the invention finally relates to the use of a device described above for collecting while separating nanoparticles in the first collection zone (Zn) and particles of micron size in the second collection zone (Zm).
- the device can also be used as an ionization chamber.
- An advantageous use of the device according to the invention is to evaluate the individual exposure of workers or consumers to nanoparticles.
- inlet designates the orifice of the device through which the aerosol containing the particles is sucked in while the outlet orifice designates that through which the air flow exits.
- FIG 3 a first example of an electrostatic device 1 according to the invention for the selective collection of particles capable of being contained in an aerosol.
- Such a device according to the invention makes it possible to collect both the finest particles, such as nanoparticles and the largest particles, such as those of micronic size while separating them from one another according to their range of cut.
- the collecting device 1 firstly comprises a conduit 11 which is a hollow cylinder of revolution around the longitudinal axis X and which is electrically connected to a low voltage, for example to a voltage of 50 Volt, or even to zero potential .
- the collecting device 1 comprises inside the duct 11, from upstream to downstream, between its inlet orifice 17 and its outlet orifice 18, four separate stages 10, 20, 30, 40.
- the first stage consists of a charger with unipolar ion diffusion 10, and is similar to that described previously in relation to the figure 2 .
- the charger 10 thus comprises a central electrode which extends along the axis X in the form of a wire 12 connected to a power supply delivering a high voltage 13, adapted to thereby create a corona discharge in the vicinity of the wire 12.
- It also includes a peripheral electrode in the form of a grid 14 connected to a low voltage supply 16.
- the stage 20, downstream of the charger 10, comprises a central electrode which extends along the axis X in the form of a rod 22 connected to a supply supplying a medium voltage 23, adapted to create a field without crown effect electric collecting device in the space 21 separating the central electrode 22 and the wall of the conduit 11.
- a hollow cylinder 24 conforming to the wall of the conduit and constituting a first collecting zone Zn is arranged around the rod 22 opposite the latter this.
- Stage 30, downstream of stage 20, comprises a central electrode which extends along the axis X in the form of a wire 32 connected to a high voltage supply 33, adapted to create a crown effect in the vicinity of the wire 32 and therefore an intense electric field in the space 31 separating the central wire 32 from the conduit 11.
- a hollow cylinder 34 conforming to the wall of the conduit and constituting a second collection zone Zm is arranged around the wire 32 opposite that -this.
- the stage 40 comprises a structure 41, for example a “honeycomb” structure, adapted to avoid the appearance of a vortex in the duct 11, and downstream a suction device 42.
- a structure 41 for example a “honeycomb” structure, adapted to avoid the appearance of a vortex in the duct 11, and downstream a suction device 42.
- the collection device according to the invention can overcome structure 41.
- the air containing the particles to be collected is sucked in through the inlet orifice 17 by the action of the suction device 42.
- the finest particles of the aerosol are electrically charged by diffusion of unipolar ions in the space 15 separating the grid 14 from the duct 11.
- the electric field without crown effect created in the space 21 between the rod 22 and the cylinder 24 collects the finest particles on the latter by defining the first collection zone Zn.
- the other, larger particles are not collected and are always present in the aerosol which enters the third stage 30.
- the purified air of both the finest particles deposited in the first collection zone Zn and the largest particles Zm is then evacuated through the outlet orifice 18 of the device.
- Each of the zones Zn and Zm can then be analyzed by conventional techniques of physical or physico-chemical characterization, such as optical or electron microscopy, surface scanner, ⁇ , ⁇ , ⁇ spectrometry if the particles are radioactive, X-ray fluorescence spectroscopy ( XRF for "X-Ray Fluoresence"), X micro-fluorescence ( ⁇ -XRF), laser-induced plasma spectroscopy (LIBS for "Laser-Induced Breakdown Spectroscopy”) .... to know the particle size on the one hand finer particles and on the other hand larger particles, their concentration, their chemical composition and / or their morphology.
- XRF X-ray Fluoresence
- ⁇ -XRF X micro-fluorescence
- LIBS laser-induced plasma spectroscopy
- the collection cylinder 24 and that 34 can consist of a single piece which thus forms a single collection substrate, which can be easily removed from the conduit once the targeted collection has been carried out.
- FIG 4 another advantageous example of a collecting device 1 according to the invention making it possible to collect the particles not on one or more cylinders arranged along the flow axis of the aerosol as illustrated in figure 3 , but on the same disc-shaped substrate 6 placed on its support 5 and arranged orthogonally to the axis of symmetry of the collection device.
- the collection device illustrated in figure 4 has the advantage compared to that illustrated in figure 3 , to be able to collect all the particles on the same flat surface of substrate according to concentric rings according to their relative dimensions, the largest particles being preferably collected at the center of the surface while the finest are preferably collected at the periphery.
- the collection device illustrated in figure 4 advantageously makes it possible to take advantage of the ionic wind created by the tip-plane configuration for the collection of the largest particles, and thus induce air circulation through the device in its downstream part.
- This air circulation can go as far as making it possible to dispense with the presence of a suction pump, which considerably lightens the collection device according to the invention and also makes it possible to reduce its nuisances (vibrations, noise, ).
- the collecting disc 6 is preferably conductive, typically made of metal, or even semiconductor. Its diameter is preferably between 10 and 25 mm, more preferably of the order of 20 mm.
- the collecting device 1 has a cylindrical geometry of revolution around the longitudinal axis X and comprises an elongated hollow body 11 surrounded by an envelope 110 which may or may not be conductive and surmounted by an electrically insulating body 3 in which the electrodes are fixed and by which the power supplies are made.
- the body 11 and the casing 110 may be one and the same piece.
- the conductive envelope 110, as well as the body 11 and the support 5 can be connected to zero potential by the supply terminal 2. It is also possible to use an envelope 110 and the body 11 made of insulating material thus brought to potential floating and maintain the support 5 at zero potential by an electric wire connecting it to the power supply terminal 2.
- the hollow body 11 defines within it with an insulating element 4, and a collection substrate 6 and its support 5, the aerosol circulation duct from the inlet orifice 17 to the outlet orifice 18 .
- the unipolar ion diffusion charger consists of a portion of the central electrode in the form of a wire 12 and a grid 14 arranged around the central wire 12.
- the central wire 12 preferably has a diameter less than 50 ⁇ m.
- an insulating element 4 makes it possible judiciously to ensure both the centering and the fixing of the electrode portion in the form of a rod 22 thus electrically connected to the wire 12.
- the rod 22 ends with a tapered tip 32 facing the collection disc 6.
- the angle of the tip is less than 35 ° and its apex (apex) has its greatest width less than 50 ⁇ m.
- the collecting device 1 can advantageously comprise in its downstream part, that is to say in the enlarged part of the aerosol circulation duct, downstream of the grid 14, plasma actuators 8 which make it possible to control the flow of the purified air from the particles in this downstream part, before its evacuation through the outlet orifice 18, as explained below.
- a single high voltage supply 13, 23, 33 makes it possible to achieve both the crown effect in the vicinity of the wire 12 and in the vicinity of the tip 32.
- the high voltage is chosen to be preferred between 2 and 6 kV, more preferably at about 4 kV.
- a low voltage supply 16 of the order of 100V, makes it possible to polarize the gate 14 to control the production of unipolar ions in the charge space by diffusion 15.
- Sizing is done taking care not to introduce too much shrinkage with a reduced section. This makes it possible to minimize the pressure drop of the assembly with respect to the air circulating in the annular space 15.
- the aerosol flows from the inlet orifice 17 to the outlet orifice 18 because the suction is carried out at the level of the latter.
- the finest particles are electrically charged by diffusion of unipolar ions in the annular space 15 while the largest particles are electrically charged under the action of the intense electric field in the space 31 between tip 32 generating the effect crown and collection substrate 6.
- FIG 4 a possible embodiment of the collection device 1 which makes it possible not to use an auxiliary suction pump.
- a vacuum appears in the annular space 15 of charge by diffusion, which creates a circulation at the flow q in the device.
- the suction can be optimized by the more or less wide opening of the outlet orifice 18, by the choice of the high voltage applied to the tip 32 as well as by the distance between the tip 32 and the plane 6.
- the tip 32 makes it possible to obtain a very intense electric field locally, which allows the ionization of the air and the charge of the microparticles. But moving away vertically, it decreases very quickly to a value of about 0.5 ⁇ 10 6 V / m at the place where the particles pass.
- the device according to the invention as shown in figure 4 dimensioned with a portion 111 of the wall of the hollow body 11 constraining the air flow going towards the outlet 18 to pass between two parallel walls between which the electric field is significantly amplified up to a value of 10 6 V / m.
- the radius of curvature of 1 mm at the bottom of the wall of the hollow body 11 is sufficient at the critical point to avoid any breakdown problem up to 4000 V.
- a fine particle, of high mobility, is immediately subjected to the action of the surrounding radial electric field, which results in a radial speed towards the outside w, while being transported by the aeraulic field, which results in a radial speed. inward c.
- the vector result, speed u thus defines the trajectory and the point of impact of this particle on the collecting disc 6.
- the point of impact defines an impact circumference or ring Zn on the substrate 6, taking into account the symmetry of revolution of the device.
- the larger particles of lower mobility, they are not charged by diffusion, arrive in the vicinity of the tip 32, are electrically charged by bombardment of the ions produced locally by the crown effect between the tip 32 and the substrate 6, and are therefore deposited on the latter in the vicinity of the axis X on impact circumferences Zm of radii which are smaller the larger their size.
- the particles are therefore collected on the disc in concentric circles according to their particle size, the finest on the outside, the largest in the center.
- the inventors sought to quantitatively assess the effectiveness of a collection device 1 which has just been described with reference to the figures 4 to 6 .
- a first evaluation was made from air loaded with latex-polystyrene (PSL) beads of 2 ⁇ m in diameter, sold by the company ABCR under the name ABCR 210832.
- PSL latex-polystyrene
- This first evaluation makes it possible to illustrate the charge mechanism by field effect of the micron-sized particles in the space 31 between the tip 32 and the metallic collecting substrate 6 and their deposition on the latter.
- the inventors proceeded as follows.
- An aqueous suspension of PSL beads is atomized using an aerosol generator, brand TSI, model 3076, then dried by a desiccant column, brand TSI, model 3062.
- the aerosol thus generated is then introduced into a chamber in which the collection device 1 is located, as illustrated in figures 4 to 6 , at a flow rate of 3.6 L / min.
- the chamber is provided with an outlet orifice making it possible to avoid an overpressure since the flow rate imposed by a pump external to the collection device, in the range of 0.4 to 1.4 L / min is always lower than the flow rate of aerosol entering the room.
- an imposed flow rate Q is applied to the collection device 1 to force a flow to pass from the inlet orifice 17 to that of the outlet 18 using a variable flow pump which is controlled by a flow meter.
- the high voltage 13, 23, 33 applied to the central electrode 12, 22, 32 is studied for positive (+) and negative (-) polarities from 1500 V to 4000 V and this for different distances z between the end of the tip 32 and the collection substrate 6.
- the figure 7 shows that for a constant flow of 1.4 L / min, the collection efficiency which results in the ratio expressed as a percentage between the number of particles leaving the device and the number of particles entering, increases when the applied voltage (in absolute value) increases.
- the collection efficiency is around 90% regardless of the distance between tip 32 and plane of substrate 6, which is varied by 2.5 mm at 6.5 mm.
- the figure 8 indicates that overall the collection efficiency is the highest when the flow is low, which is particularly the case for a flow of 0.4 L / min. Furthermore, it is observed that for a fixed flow rate the collection efficiency is higher when the polarity used is negative and when the distance from tip to plane is large.
- FIG. 9 the photograph of a collection substrate 6 made of copper 20 mm in diameter on which the micron particles were collected: it is clearly seen that they are deposited according to a ring Zm concentric with the axis X of the device or also of the point 32.
- This white crown Zm corresponds to the deposition of PSL particles of 2 ⁇ m in diameter.
- the inventors also simulated the operation of the collection device according to the invention as illustrated in figures 4 to 6 and this using a finite element calculation software marketed under the name "COMSOL Multiphysics”.
- the collection device 1 with the same geometry as that shown in the figures 4 to 6 , can be studied under COMSOL software by looking at flows, electric fields, particle trajectories as well as the ionic wind produced.
- the figure 10 is a view showing the description of models used to perform a simulation using a finite element calculation software to determine the flows and the electric fields which occur in a device according to the invention as illustrated in figure 4 .
- the enlarged wall portion 111 is brought to the same potential as the tip 32.
- this portion 111 can be at a potential different from the tip 32.
- the figure 11 shows the simulation of the flow for a distance z between tip 32 and plane 31 of 4 mm and a voltage applied U to tip 32 and to portion 111 of + 4000 V.
- the representation of the figure 11 highlights the generation of a plasma produced by corona effect under the tip 32 where the electric fields are the most high, this plasma inducing an ionic wind in the direction of the collecting disc 6.
- the jet thus produced flourishes on the surface of the collecting disc.
- the portion 111 creates an aerosol circulation in the device 1 according to the invention.
- the collection device 1 collects by depositing on the same support, for example a metal disc, both particles of different dimensions, according to concentric zones corresponding to well-defined particle sizes.
- the coarsest particles typically particles of micron size, are collected in a central Zm collection zone while the finest particles, typically nanoparticles are collected in a peripheral annular zone Zn.
- the support can then be extracted from the rest of the collection device and then analyzed by conventional techniques of physical or physico-chemical characterization (optical or electronic microscopy, surface scanner, X-ray fluorescence, LIBS spectrometry, ⁇ , ⁇ , ⁇ spectrometry if the particles are radioactive, ....
- the collection device according to the invention is particularly well suited for the sampling of particles in gaseous media, in particular the air of the premises or the environment in order to know the concentration, the particle size, the morphology and the composition. aerosol particles likely to be inhaled ... Because of its small size and its reduced electrical consumption, this device could be portable and therefore deployable on a large scale for a moderate cost.
- the collection device according to the invention can operate as an ionization chamber.
- the device can operate as an aerosol collector for a time t 1 , then as a pulse counter for a time t 2 .
- the ionization current collected by the tip 32 can then be detected by an appropriate electronic system, of the type of those commonly used in conventional ionization chambers.
- radioactive aerosols such an ionization chamber can thus constitute a radioactive contamination detector with an alarm function if a predetermined threshold is exceeded.
Landscapes
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
- Electrostatic Separation (AREA)
- Sampling And Sample Adjustment (AREA)
Claims (15)
- Verfahren zum Sammeln von Partikeln, die in einem Aerosol vorhanden sein können, umfassend die folgenden Schritte:- Saugen (18, 42) des Aerosols in einen Kanal (11) von dessen Eintrittsöffnung (17) bis zu dessen Austrittsöffnung (18);- Aufladen der feinsten Partikel stromab der Eintrittsöffnung durch Diffusion unipolarer Ionen (10) in einem Raum (15) zwischen einer Elektrode (14) in Form eines Gitters, die eine Elektrode (12) in Form eines Drahts umgibt, die einen Koronaeffekt erzeugt, und einem ersten leitfähigen Innenwandabschnitt des Kanals,- Erzeugen eines elektrischen Feldes ohne Koronaeffekt in dem Raum (21) zwischen einer Elektrode (22) und einem zweiten leitfähigen Innenwandabschnitt (24) des Kanals, um durch Abscheiden auf einem ersten Sammelbereich (Zn) die feinsten Partikel zu sammeln, die vom Diffusionsauflader aufgeladen wurden,- Erzeugen eines elektrischen Feldes mit Koronaeffekt in dem Raum (31) zwischen dem Draht oder der Spitze einer Elektrode (32) und einem dritten leitfähigen Innenwandabschnitt (34, 6) des Kanals, um durch Abscheiden auf einem zweiten Sammelbereich (Zm), der von dem ersten Sammelbereich verschieden ist, die gröbsten Partikel zu sammeln, die vom Diffusionsauflader nicht aufgeladen wurden.
- Verfahren zum Sammeln von Partikeln nach Anspruch 1, wobei die Partikel, die in einem Aerosol vorhanden sein können, radioaktive Partikel sind, wobei das Verfahren ferner die folgenden Schritte umfasst:a/ Sammeln von radioaktiven Partikeln auf dem ersten und/oder dem zweiten Sammelbereich während einer Zeit t1;b/ Zählen von Impulsen, die durch den Luftionisationsstrom in den Räumen (21, 31) während einer Zeit t2 erzeugt werden.
- Verfahren zum Sammeln von radioaktiven Partikeln nach Anspruch 2, umfassend einen Schritt des Sendens eines Alarms im Fall der Überschreitung eines vorbestimmten Schwellenwerts von gemäß Schritt b/ gezählten Impulsen.
- Vorrichtung (1) zum Sammeln von Partikeln, die in einem Aerosol vorhanden sein können, umfassend:- einen Kanal (11), der eine Eintrittsöffnung (17) und eine Austrittsöffnung (18) umfasst, zwischen denen das Aerosol zirkulieren kann;- Saugmittel (18, 42), um das Aerosol von der Eintrittsöffnung bis zur Austrittsöffnung zirkulieren zu lassen;- stromab der Eintrittsöffnung einen unipolaren Diffusionsauflader (10), der eine Elektrode in Form eines Drahtes (12) umfasst, die von einer Elektrode (14) in Form eines Gitters umgeben ist, wobei der Auflader geeignet ist, die feinsten Partikel in dem Raum (15), der das Gitter von einem ersten leitfähigen Innenwandabschnitt des Kanals trennt, durch Diffusion unipolarer Ionen durch das Gitter hindurch aufzuladen;- stromab des Diffusionsaufladers eine Elektrode (22), die dazu geeignet ist, ohne Koronaeffekt ein elektrisches Feld in den Raum (21), der die Elektrode (22) von einem zweiten leitfähigen Innenwandabschnitt (24) des Kanals trennt, zu erzeugen und so die feinsten Partikel, die zuvor vom Diffusionsauflader aufgeladen wurden, durch Abscheiden auf einem ersten Sammelbereich (Zn) zu sammeln;- stromab des Diffusionsaufladers und des ersten Sammelbereichs für die Nanopartikel einen Feldauflader (30), der eine Elektrode in Form eines Drahts oder einer Spitze (32) umfasst, der(die) geeignet ist, mit Koronaeffekt ein elektrisches Feld in dem Raum (31), der den Draht oder die Spitze von einem dritten leitenden Innenwandabschnitt (34, 6) des Kanals trennt, zu erzeugen und so die gröbsten Partikel aufzuladen und dann durch Abscheiden auf einem zweiten Sammelbereich (Zm), der von dem ersten Sammelbereich verschieden ist, zu sammeln.
- Sammelvorrichtung nach Anspruch 4, bei welcher:- der Kanal (11) ein hohler Rotationszylinder um eine Längsachse (X) ist;- die Saugmittel aus einer Pumpe (42) gebildet sind;- der erste, der zweite und der dritte leitfähige Wandabschnitt Zylinderabschnitte (11, 24, 34) sind, die einen Teil des Kanals bilden;- der Feldauflader (30) eine Elektrode in Form eines Drahts (32) in Draht-Zylinder-Anordnung mit dem entsprechenden Zylinderabschnitt (34) umfasst;- der Draht (12) des Diffusionsaufladers, die Elektrode (22), die es ermöglicht, ein elektrisches Feld ohne Koronaeffekt zu erzeugen, und der Draht (32) des Feldaufladers (30) getrennte Teile sind, die hintereinander entlang der Achse (X) angeordnet sind.
- Sammelvorrichtung nach Anspruch 4, bei welcher:- der Kanal (11) ein hohles Rotationselement um eine Längsachse (X) und ein ebenes Substrat (6), das an einem Ende des hohlen Elements und senkrecht zur Achse (X) angeordnet ist, umfasst, wobei der Abstand, der das hohle Element vom ebenen Substrat (6) und von dessen etwaigem Träger (5) trennt, die Abmessungen der Austrittsöffnung (18) definiert, wobei das ein Sammelsubstrat bildende ebene Substrat sowohl den ersten (Zn) als auch den zweiten (Zm) Sammelbereich definiert;- die Saugmittel durch die Austrittsöffnung (18) gebildet sind;- der erste leitfähige Wandabschnitt ein Rotationsabschnitt ist, der den Kanal bildet;- der zweite und der dritte leitfähige Abschnitt auf demselben Sammelsubstrat (6) zusammengefasst sind;- der Feldauflader (30) eine Elektrode in Form einer Spitze (32) in Spitze-Ebene-Anordnung mit dem Sammelsubstrat (6) umfasst; wobei die Spitze (32) geeignet ist, einen Koronaeffekt zu erzeugen, der zur Feldaufladung der Partikel beiträgt, aber auch zur Schaffung eines elektrischen Feldes, welches das Sammeln der zuvor vom Diffusionsauflader (10) aufgeladenen Arten begünstigt;- der Draht (12) des Diffusionsaufladers (10), die Elektrode (22) und die Spitze (32) des Feldaufladers (30) Abschnitte desselben, eine elektrische Durchgängigkeit aufweisenden Teils sind, das sich entlang der Achse (X) erstreckt.
- Sammelvorrichtung nach Anspruch 6, umfassend Plasma-Aktuatoren (8), die in der Nähe des Austritts (18) angeordnet sind.
- Sammelvorrichtung nach einem der Ansprüche 4 bis 7, umfassend eine Hochspannungsversorgung, bevorzugt zwischen 2 und 6 kV, wobei in der Vorrichtung der Draht (12) des Diffusionsaufladers, die Sammelelektrode (22) und der Draht oder die Spitze (32) des Feldaufladers (30) mit der Hochspannungsversorgung verbunden sind.
- Sammelvorrichtung nach einem der Ansprüche 4 bis 8, umfassend eine Niederspannungsversorgung, bevorzugt in der Größenordnung von 100 V, wobei in der Vorrichtung das Gitter (14) mit der Niederspannungsversorgung verbunden ist.
- Sammelvorrichtung nach einem der Ansprüche 4 bis 9, wobei der erste, der zweite und der dritte leitfähige Abschnitt (11, 24; 34 oder 6) mit dem Nullpotenzial verbunden sind.
- Sammelvorrichtung nach einem der Ansprüche 4 bis 10, die eine Luftionisationskammer bildet.
- Sammelvorrichtung nach einem der Ansprüche 4 bis 11, die einen Detektor für radioaktive Partikel bildet.
- Verwendung einer Vorrichtung nach einem der Ansprüche 4 bis 12, um Nanopartikel im ersten Sammelbereich (Zn) und mikrometergroße Partikel im zweiten Sammelbereich (Zm) zu sammeln und gleichzeitig zu trennen.
- Verwendung einer Vorrichtung nach einem der Ansprüche 4 bis 12 als Ionisationskammer.
- Verwenden einer Vorrichtung nach einem der Ansprüche 4 bis 12 zum Beurteilen der individuellen Exposition der Arbeiter oder der Verbraucher gegenüber Nanopartikeln.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1557221A FR3039435B1 (fr) | 2015-07-28 | 2015-07-28 | Methode et dispositif de collecte de particules d'aerosols, a collecte selective en fonction de la granulometrie des particules |
PCT/EP2016/067992 WO2017017179A1 (fr) | 2015-07-28 | 2016-07-28 | Methode et dispositif de collecte de particules d'aerosols, a collecte selective en fonction de la granulometrie des particules |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3328548A1 EP3328548A1 (de) | 2018-06-06 |
EP3328548B1 true EP3328548B1 (de) | 2019-12-18 |
Family
ID=55129961
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP16744761.4A Active EP3328548B1 (de) | 2015-07-28 | 2016-07-28 | Verfahren und vorrichtung zum selektiven sammeln von aerosolpartikeln nach partikelgrösse |
Country Status (5)
Country | Link |
---|---|
US (1) | US10814335B2 (de) |
EP (1) | EP3328548B1 (de) |
CN (1) | CN107921444B (de) |
FR (1) | FR3039435B1 (de) |
WO (1) | WO2017017179A1 (de) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102137879B1 (ko) * | 2018-09-05 | 2020-07-28 | 한국기계연구원 | 폭발성 배기가스 입자의 정전 제거 장치 |
US11541343B2 (en) * | 2018-12-14 | 2023-01-03 | Samsung Electronics Co., Ltd. | Electrical appliance with electrostatic dust collecting device using carbon fiber |
CN111420804B (zh) * | 2019-06-18 | 2022-04-15 | 湖北玖恩智能科技有限公司 | 一种磁电复合式气体净化方法 |
CN110227607B (zh) * | 2019-06-18 | 2020-12-04 | 兰州裕隆气体股份有限公司 | 一种智能气体净化系统及其控制方法 |
CN110793892B (zh) * | 2019-10-28 | 2020-09-22 | 清华大学 | 一种应用静电消散材料产生渐变电场的单极气溶胶荷电器 |
CN112231959B (zh) * | 2020-10-26 | 2021-10-15 | 安徽紫杉环境科技有限公司 | 一种等离子体模块制作方法及等离子体模块 |
EP4011496A1 (de) * | 2020-12-10 | 2022-06-15 | Ecole Polytechnique Fédérale de Lausanne (EPFL) | Sammler von elektrostatischen partikeln |
CN112665927B (zh) * | 2020-12-31 | 2022-04-22 | 南京信息工程大学 | 一种气溶胶颗粒物分尺寸收集装置和收集方法 |
CN113759416B (zh) * | 2021-09-09 | 2024-01-19 | 南华大学 | 一种220Rn子体状态参数的调控装置及调控方法 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3413545A (en) * | 1965-06-23 | 1968-11-26 | Univ Minnesota | Apparatus and method for determining aerosol particle concentration and particle size distribution |
US3747299A (en) * | 1972-02-04 | 1973-07-24 | Kuan Chiang Ta | Electrostatic precipitator |
JPS6028547B2 (ja) * | 1982-03-29 | 1985-07-05 | 閃一 増田 | パルス荷電型電気集塵装置 |
DE3324803A1 (de) * | 1983-07-09 | 1985-01-17 | Betriebsforschungsinstitut VDEh - Institut für angewandte Forschung GmbH, 4000 Düsseldorf | Staubabscheidegeraet |
DE19650585C2 (de) * | 1996-12-06 | 2001-11-22 | Appbau Rothemuehle Brandt | Verfahren und Vorrichtung zur elektrischen Aufladung und Abtrennung schwierig abzuscheidender Partikel aus einem Gasfluid |
US6761752B2 (en) * | 2002-01-17 | 2004-07-13 | Rupprecht & Patashnick Company, Inc. | Gas particle partitioner |
JP4873564B2 (ja) | 2007-03-29 | 2012-02-08 | トヨタ自動車株式会社 | 排ガス浄化装置 |
US8044350B2 (en) * | 2007-11-29 | 2011-10-25 | Washington University | Miniaturized ultrafine particle sizer and monitor |
US8894745B2 (en) * | 2011-08-10 | 2014-11-25 | John P. Dunn | Vane electrostatic precipitator |
FI124675B (fi) * | 2012-09-06 | 2014-11-28 | Tassu Esp Oy | Menetelmä pienhiukkasten keräämiseksi savukaasuista sekä vastaava sovitelma |
FR3039433B1 (fr) * | 2015-07-28 | 2017-08-18 | Commissariat Energie Atomique | Methode d'epuration selective d'aerosols |
-
2015
- 2015-07-28 FR FR1557221A patent/FR3039435B1/fr active Active
-
2016
- 2016-07-28 US US15/744,332 patent/US10814335B2/en active Active
- 2016-07-28 EP EP16744761.4A patent/EP3328548B1/de active Active
- 2016-07-28 CN CN201680044319.1A patent/CN107921444B/zh not_active Expired - Fee Related
- 2016-07-28 WO PCT/EP2016/067992 patent/WO2017017179A1/fr active Application Filing
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
CN107921444A (zh) | 2018-04-17 |
FR3039435A1 (fr) | 2017-02-03 |
US20180200727A1 (en) | 2018-07-19 |
EP3328548A1 (de) | 2018-06-06 |
CN107921444B (zh) | 2020-07-28 |
US10814335B2 (en) | 2020-10-27 |
FR3039435B1 (fr) | 2017-08-18 |
WO2017017179A1 (fr) | 2017-02-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3328548B1 (de) | Verfahren und vorrichtung zum selektiven sammeln von aerosolpartikeln nach partikelgrösse | |
EP3328549B1 (de) | Verfahren zur selektiven reinigung von aerosolen | |
EP3328547B1 (de) | Vorrichtung zum sammeln von partikeln in einem aerosol mit elektrometern zur bestimmung der nanopartikelkonzentration und partikelgrösse | |
EP0404681B1 (de) | Elektrostatischer Detektor von Aerosolen | |
EP2564933A1 (de) | Elektrostatische Sammelvorrichtung von Partikeln suspendiert in einem gasförmigen Medium | |
EP0128827B1 (de) | Methode und Verfahren zur Detektion der Luftverschmutzung durch alpha-Aerosole sowie zugehöriger tragbarer Strahlungsdetektor | |
EP2656921B1 (de) | Elektrostatische Sammelvorrichtung von Suspensionspartikeln in einem gasförmigen Milieu | |
FR2994271A1 (fr) | Systeme d'analyse de gaz | |
FR3071613B1 (fr) | Appareil de detection et d'identification chimique en temps reel de particules contenues dans des aerosols, notamment dans les aerosols atmospheriques | |
EP3152543B1 (de) | Vorrichtung zur aufnahme und transport von nanoobjekten in aerosolen mit einer kassette mit einem modul zur verringerung des einlassgeräusches während der aufnahme | |
EP3694650A1 (de) | Verfahren und vorrichtung zum sortieren von in einem aerosol suspendierten fasern unter verwendung einer kombination von elektrostatischen kräften und schwerkraft | |
EP3694649B1 (de) | Verfahren und vorrichtung zum sortieren von in einem aerosol suspendierten fasern unter verwendung kombinierter elektrostatischer und zentrifugaler kräfte | |
EP3883694A1 (de) | Elektrostatischer abscheider/kollektor für einen luftreiniger oder aerosolreiniger | |
EP3909684A1 (de) | Elektrostatischer abscheider/kollektor mit einer oder mehreren sammelelektroden, die mit einer oder mehreren folien beschichtet sind, die eine elektrisch leitende schicht und eine partikel- und gasabsorbierende schicht umfassen, entsprechende anordnung aus abziehbaren folien | |
EP0101354B1 (de) | Entstaubungsanordnung für Staub enthaltendes Gas | |
FR2649795A1 (fr) | Capteur electrostatique de particules d'aerosol |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20180228 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: B03C 3/12 20060101ALI20190628BHEP Ipc: B03C 3/47 20060101ALI20190628BHEP Ipc: B03C 3/38 20060101ALI20190628BHEP Ipc: B03C 3/49 20060101ALI20190628BHEP Ipc: B03C 3/36 20060101ALI20190628BHEP Ipc: B03C 3/06 20060101ALI20190628BHEP Ipc: B03C 3/02 20060101AFI20190628BHEP Ipc: B03C 3/41 20060101ALI20190628BHEP |
|
INTG | Intention to grant announced |
Effective date: 20190724 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602016026450 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1214005 Country of ref document: AT Kind code of ref document: T Effective date: 20200115 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191218 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200318 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191218 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191218 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191218 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200318 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200319 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191218 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191218 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191218 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191218 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200513 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191218 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191218 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200418 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191218 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191218 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602016026450 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1214005 Country of ref document: AT Kind code of ref document: T Effective date: 20191218 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191218 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191218 |
|
26N | No opposition filed |
Effective date: 20200921 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191218 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191218 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191218 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191218 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191218 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20200731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200728 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200728 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191218 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191218 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191218 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191218 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20230720 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20230724 Year of fee payment: 8 Ref country code: CH Payment date: 20230801 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20230720 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240723 Year of fee payment: 9 |